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Abstract 14 
 15 
Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid 16 
transmission, the severity of infection, the absence of the protection on immunocompromised 17 
patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and 18 
the lack of availability of worldwide vaccination require additional antiviral treatments.  19 
Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-20 
chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host 21 
cells and/or surface components of viral particles. In the present review, we summarize in vitro and 22 
in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped 23 
viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to 24 
SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts 25 
COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory 26 
homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, 27 
gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will 28 
be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to 29 
HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only 30 
support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or 31 
as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching 32 
the limited literature on Lf effectiveness for COVID-19 treatment. 33 
 34 
Keywords: Lactoferrin, SARS-CoV-2, COVID-19, inflammatory and iron homeostasis, gut-lung 35 
axis, coagulation and fibrinolysis.  36 
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Lactoferrin and iron 37 

Lactoferrin (Lf), identified in 1939 in bovine milk and isolated in 1960 from both human (Johansson 38 
1960; Montreuil et al. 1960) and bovine milk (Groves 1960), is constitutively synthesized by exocrine 39 
glands and secreted in human fluids. After induction, Lf is also found in the granules of neutrophils 40 
in infection and inflammation sites. 41 
Human Lf (hLf) and bovine Lf (bLf) are constituted of 691 and 689 amino acid residues, respectively. 42 
HLf and bLf, belonging to the transferrin family, are capable to reversibly chelate two Fe(III) per 43 
molecule with high affinity (Kd ~ 10–20M), retaining ferric iron until pH values as low as 3.0. 44 
Differently from Lfs, transferrin (Tf) retains iron until pH values around 5.5 (Rosa et al. 2017). Both 45 
Lfs are folded into homologous N- and C-terminal lobes. Each lobe contains an iron-binding site, 46 
highly conserved and located in a deep cleft between two domains (N1 and N2 or C1 and C2). Lf and 47 
Tf have similar amino acid composition, secondary structure (including their disulphide bonds), and 48 
tertiary structure, whereas exerting different biological functions (Bluard-Deconinck et al. 1974). 49 
Iron binding and release are associated with large conformational changes in which hLf and bLf adopt 50 
either open (iron unsaturated, apo-Lf) or closed states (iron saturated, holo-Lf) (Baker and Baker 51 
2004). 52 
Lfs are among the most important cationic multifunctional glycoproteins belonging to innate and 53 
nutritional immunity. Nutritional immunity comprehends natural components able to sequester trace 54 
minerals, as iron in the case of Lf, thus both limiting bacterial or viral multiplication and lowering 55 
the severity of infections. Lf can exist in three different isoforms: Lf-α, the iron-binding isoform, and 56 
Lf-β and Lf-γ, which possess ribonuclease activity and do not bind iron (Furmanski et al. 1989). HLf 57 
and bLf show noticeable differences at glycosylation level. In hLf, there are three possible N-linked 58 
glycosylation sites (Asn138, Asn479, and Asn624) always occupied, while in bLf there are five 59 
possible N-linked glycosylation sites (Asn233, Asn368, Asn476 and Asn545 and Asn281) of which 60 
four sites always occupied, whereas Asn281 is found glycosylated for approximately 30% in bovine 61 
colostrum and 15% in mature milk (Spik et al. 1994; Van Veen et al. 2004). Moreover, hLf and bLf 62 
possess high sequence homology (69%) and exert identical multifunctionality as antimicrobial 63 
(antibacterial, antifungal and antiviral properties), anti-parasitic, anti-inflammatory, anti-oxidant, and 64 
immunomodulating activities (Valenti and Antonini 2005; Puddu et al. 2009; Puddu et al. 2011). 65 
Therefore, most of the in vitro and in vivo studies have been carried out using bLf, generally 66 
recognized as a safe substance (GRAS) by the Food and Drug Administration (FDA, USA) (U.S FDA 67 
2014) and as a dietary supplement by the European Food Safety Authority (European Food Safety 68 
Authority 2012). 69 
Recently, in addition to the well-characterized activities, bLf has been found to be a physiological 70 
orchestrator of iron and inflammatory homeostasis through its ability in modulating the expression of 71 
the major iron proteins, such as ferroportin (Fpn), transferrin receptor 1 (TfR1) and ferritin (Ftn), both 72 
in in vitro and in vivo studies as well as in clinical trials (Cutone et al. 2017; Rosa et al. 2017; Lepanto 73 
et al. 2018; Cutone et al. 2019). 74 
Iron, an essential element for living cells, is a component of fundamental processes such as DNA 75 
replication and energy production as well as it is present in hemoglobin, myoglobin and some specific 76 
enzymes involved in viral transcription, mRNA translation, and assembly (Sienkiewicz et al. 2021). 77 
However, iron can also be toxic when present in excess for its capacity to donate electrons to oxygen, 78 
thus causing the generation of reactive oxygen species (ROS), well known to provoke DNA, protein 79 
and membrane lipid damages, tissue injury and organ failure (Andrews 2000). This dichotomy of 80 
iron, able to gain and loss electrons, has led to the development of sophisticated strategies to avoid 81 
free available iron overload and to maintain the correct iron balance/ratio between tissues/secretions 82 
and blood, defined as iron homeostasis. Dietary iron is absorbed in the proximal small intestine 83 
(duodenum). In developed countries, about 15 mg of iron per day are provided by a balanced diet, 84 
but only ~10% (1–2 mg) is absorbed, due to its extremely poor bioavailability. Interestingly, 20 mg 85 
of iron per day, to be used for the de novo synthesis of heme, derive from senescent erythrocyte lyses 86 



4 
 

by macrophages. The iron recovered from hemoglobin of senescent erythrocytes is the largest iron 87 
source in the reticuloendothelial system. Finally, every day, a few milligrams of iron are regained 88 
from storage in hepatocytes and macrophages. In human cells, the required iron is guaranteed by Tf-89 
bound iron, which is imported into cells through Tf receptor-mediated endocytosis. In the endosome, 90 
Tf-bound iron is released as ferrous ion, which is translocated via divalent metal transporter 1 91 
(DMT1) into cytoplasm where it is sequestered by Ftn. Ftn, the major iron storage protein, composed 92 
by 24 subunits, possesses ferroxidase activity and a large cavity where up to 4,500 ferric ions, as oxy-93 
hydroxide micelles, are sequestered. The release of iron from this protein to cytoplasm occurs after 94 
reduction of ferric to ferrous ions. Then, ferrous ions are exported into plasma by Fpn, the only known 95 
mammalian iron exporter found on the cytoplasmic membrane of enterocytes, hepatocytes, 96 
macrophages, and placental cells (Donovan et al. 2005). Of note, Fpn acts in partnership with two 97 
ferroxidases: hephaestin (Heph) in epithelial cells, and ceruloplasmin (Cp) in macrophages 98 
(Bonaccorsi et al. 2018). Both ferroxidases convert ferrous into ferric ions to allow their binding to 99 
Tf in the blood. 100 
Fpn is an important actor of iron homeostasis, regulated by multiple factors. In particular, Fpn is 101 
down-regulated by the pro-inflammatory cytokine interleukin-6 (IL-6) (Cutone et al. 2014; Cutone et 102 
al. 2017) and by hepcidin, another pivotal actor, which regulates iron homeostasis through the 103 
binding, internalization and degradation of Fpn (Qiao et al. 2012). The bioactive hepcidin, a cationic 104 
peptide hormone of 25 amino acids mainly synthesized by hepatocytes, derives from the proteolytic 105 
cleavage of an 84-amino acid precursor, and it is secreted in urine (Park et al. 2001; Hunter et al. 106 
2002) and plasma (Krause et al. 2000). Differently from Fpn, hepcidin is up-regulated by several 107 
factors as iron stores and IL-6, IL-1α and IL-1β (Nemeth et al. 2004; Lee et al. 2005; Wrighting and 108 
Andrews 2006; Verga Falzacappa et al. 2007; Coffey and Ganz 2017). This mechanism involves 109 
multiple pathways through which hepatocytes directly sense systemic iron levels (Zumerle et al. 110 
2014; Coffey and Ganz 2017).  111 
The Fpn degradation caused by the binding with hepcidin or its down-regulation by IL-6 provokes a 112 
significant decrease of iron export from cells into plasma. Consequently, at the cellular level, 113 
intracellular iron overload in enterocytes and macrophages is established, thus inducing an increase 114 
of the host susceptibility to infection (Rosa et al. 2017).  At the systemic level, the intracellular iron 115 
overload is related to iron deficiency (ID), ID anemia (IDA) and anemia of inflammation (AI) (Frazer 116 
and Anderson 2003; Paesano et al. 2012; Miller 2012; Lepanto et al. 2018). 117 

Antiviral activity of bovine lactoferrin in in vitro models 118 

Among the several functions of bLf, the antiviral activity will be deeply discussed in this review 119 
because viral infections are one of the major problems for human health. 120 
Vaccines can prevent epidemic or pandemic but antiviral treatments are needed. BLf exerts an 121 
antiviral activity in the early phase of viral entry and protects the host from the infections, enough to 122 
be considered a first-line defense glycoprotein. It matches with virus through both topic/local (Valenti 123 
and Antonini 2005; Berlutti et al. 2011; Wakabayashi et al. 2014: Chang et al. 2020) and systemic 124 
action (Kruzel et al. 2017). 125 
The topic/local antiviral action of bLf is achieved through i) its binding to the anionic surface 126 
components of host cells as glycosaminoglycans (GAGs); ii) its binding to the anionic surface 127 
components of viral particles; iii) its binding to the anionic surface components of host cells and viral 128 
particles; iv) inhibition of viral replication.   129 
As viruses enter inside host cells through GAGs, the binding between bLf and GAGs competitively 130 
hinders viral infection by enveloped viruses, such as alphavirus, cytomegalovirus, human 131 
immunodeficiency virus (HIV), herpes simplex virus, respiratory syncytial virus, simian foamy virus, 132 
Sindbis virus, Dengue virus, hepatitis B virus (HBV), hepatitis C virus (HCV), norovirus, Japanese 133 
encephalitis virus, hantavirus, influenza A virus, parainfluenza virus, rhinovirus, SARS-CoV and  134 
SARS-CoV-2 or by non-enveloped viruses as rotavirus, poliovirus, enterovirus 71, echovirus 6, 135 
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human papillomavirus, feline calicivirus, and adenovirus (Wu et al. 1995; Lang et al. 2011; Kell et 136 
al. 2020; Denani et al. 2021; Hu et al. 2021 and references therein).  137 
Moreover, bLf is also able to bind to the surface components of viral particles pivotal to interact with 138 
cell receptors thus limiting viral entry and infection (Table 1). 139 
Furthermore, in most studies, Lf was tested both in apo- and in metal-saturated forms and no striking 140 
differences in the antiviral effect between the different forms were reported (Marchetti et al. 1996; 141 
Marchetti et al. 1998; Puddu et al. 1998). Of note, bLf exhibited higher antiviral activity than hLf 142 
(Berlutti et al. 2011 and references therein) but the reason of this major antiviral activity is still under 143 
investigation. 144 
Concerning the systemic action, bLf is a mediator that connects innate and adaptive immune function 145 
in mammals (Actor et al. 2009; Kruzel et al. 2017). In particular, Lf plays a key role in the resolution 146 
of microbial injuries that lead to disorders in immune homeostasis (Kruzel et al. 2007; Actor et al. 147 
2009). 148 
During infections, monocytes and macrophages respond to this injury with the production of NF-kB, 149 
which, in turn, induces inflammatory mediators (cytokines) which stimulate the production of fresh 150 
immature neutrophils and monocytes from bone marrow. The presence of Lf, due to the degranulation 151 
by mature neutrophils, attenuates inflammation, repairs tissue damage, protects integrity of various 152 
organs and limits microbial spread (Kruzel et al. 2017 and references therein).  153 
In addition, Lf modulates excessive immune-responses (Legrand et al. 2005; Kruzel et al. 2007), 154 
decreases ROS production, pro-inflammatory cytokines and mitochondrial dysfunction (Actor et al. 155 
2009), apoptosis (Actor et al. 2009; Pietrantoni et al. 2010), induces the synthesis of interferons 156 
(IFNs) (Kruzel et al. 2017; Mirabelli et al. 2021), activates NK cells (Legrand and Mazurier 2010), 157 
enhances CD4+, CD8+ and decreases CD69+ (a marker of inflammation) (Welsh et al. 2011), 158 
promotes the maturation of T-cell precursors in helper cells (Actor et al. 2009), differentiates 159 
immature B-cells in antigen-presenting cells (Actor et al. 2009), differentiates monocytes in 160 
macrophages (Wisgrill et al. 2018), balances the polarization of Th1/Th2 (Puddu et al. 2011) and the 161 
macrophages M1/M2 switching (Cutone et al. 2017), decreases inflammatory cytokines and 162 
intracellular iron overload (Rosa et al. 2017), inhibits platelet aggregation (Leveugle et al. 1993) and 163 
modulates cell receptors useful for its multiple functions (Mancinelli et al. 2020). 164 

Influence of lactoferrin glycosylation on in vitro antiviral activity 165 

As reported, hLf and bLf share a high sequence homology (69%) but possess noticeable differences 166 
at glycosylation level: hLf possesses three possible N-linked glycosylation sites, while bLf five 167 
possible N-linked glycosylation sites (Spik et al. 1994; Van Veen et al. 2004). The glycosylation sites 168 
seem to influence bLf antiviral activity. The first paper, published by Superti and colleagues (2001), 169 
demonstrated that the anti-rotavirus activity of bLf is increased upon sialic acid removal, which 170 
causes an increase in the interaction between rotavirus and bLf. Successively, the influence of 171 
mannose on antiviral activity was investigated (Groot et al. 2005). It was found that bLf is more 172 
effective than hLf in inhibiting DC-SIGN, a C-type lectin that mediates the internalization of HIV-1 173 
virus. This occurs as a consequence of the binding of the oligomannose glycans of bLf to the DC-174 
SIGN (Groot et al. 2005). This effect combined with enhanced toll like receptor signaling might be 175 
the mechanism by which mannose glycans contribute to the prevention of the disease (Figueroa-176 
Lozano et al. 2018). 177 
Recently, it has been proven that the hemagglutinins of influenza A virus (IAV) bind to 178 
sialoglycoconjugates of the host cell surface thus initiating the infection process (Wang et al. 2021). 179 
Sialylated glycans of bLf bind IAV thus blocking viral attachment to host cells during the early stages 180 
of infection. When bLf is desialylated, the binding of bLf to IAV is significantly reduced with respect 181 
to native bLf and antiviral activity is lowered (Wang et al. 2021). 182 
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The different antiviral activity of desialylated bLf against influenza virus (Wang et al. 2021) and 183 
rotavirus (Superti et al. 2001) could be due to the different structures of enveloped or non-enveloped 184 
viruses, respectively.   185 

Antiviral activity of bovine lactoferrin in vivo  186 

The antiviral activity of hLf was first demonstrated in mice infected with the polycythemia inducing 187 
strain of the Friend virus complex (Lu et al. 1987). Since 1995, a potent antiviral activity of both hLf 188 
and bLf against enveloped and non-enveloped viruses has been also in vivo demonstrated.  189 
The most valuable studies carried out in in vivo models are reported in Table 2 and all references are 190 
included in three reviews (Berlutti et al. 2011; Wakabayashi et al. 2014; Chang et al. 2020) except 191 
for five four clinical trials on bLf efficacy against SARS-CoV-2, recently published by Serrano et al. 192 
2020; Algahtani et al. 2021; Campione et al. 2021b; Oda et al. 2021a and Rosa et al. 2021.  193 
As reported, in most of the in vivo studies the administration of bLf is performed orally. Even if the 194 
oral administration of bLf may have a beneficial role in managing symptoms and recovery of patients 195 
suffering from respiratory tract infections (Stefanescu et al. 2013; Motoki et al. 2020; Ali et al. 2021; 196 
Oda et al. 2021b), the systemic effects of oral administration of bLf are not fully understood. 197 
However, the gut-lung axis or the bidirectional interaction between gut and lung must be considered. 198 
Gut microbiota protects the gastrointestinal tract from pathogenic microbes acting as a barrier, 199 
neutralizes pathogens with their anti-microbial metabolites, regulates the innate and adaptive 200 
immunity, locally and systemically, in both health and disease as well as contributes to the mucosal 201 
immune system (interplay microbiota-mucosal immunity) through segmented filamentous bacteria 202 
that stimulate Th17. Th17 play an important role in maintaining mucosal barriers and contribute to 203 
pathogen clearance at mucosal surfaces through IL-17 (Wang et al. 2014a; Szabo and Petrasek 2015; 204 
Broz and Dixit 2016; Mangan et al. 2018).  205 
Of note, the alteration of the gut microbiota, due to the prolonged antibiotic therapy, can potentially 206 
lead to the deleterious effects on respiratory immune responses (Ichinohe et al. 2011) as well as viral 207 
and bacterial respiratory infections can be causative of the alteration of the gut microbiota (Wang et 208 
al. 2014a; Bartley et al. 2017; Hanada et al. 2018; Yildiz et al. 2018). In addition, respiratory viral 209 
infections, due to influenza or respiratory syncytial virus, result in gut dysbiosis in mice, predisposing 210 
to secondary bacterial infection (Deriu et al. 2016; Groves et al. 2018). Lastly, the gut microbiota 211 
alterations are related to abnormal activation of the immune system and respiratory illnesses such as 212 
asthma, lung allergic responses and chronic respiratory diseases (Enaud et al. 2020).    213 
Moreover, the influence of Lf on the activation of IFNs and NK cells must not be neglected. As matter 214 
of fact, at systemic level, the oral administration of bLf in mice induces type I IFNs production that 215 
play an important role in antiviral defense, such as the inhibition of protein synthesis, degradation of 216 
viral RNA in infected cells, and enhancement of antiviral immune activity (Kuhara et al. 2006). This 217 
antiviral response seems to be principally mediated by plasmacytoid dendritic cells, the main 218 
producers of type I IFNs, which have been shown to be activated by bLf (van Splunter et al. 2018).     219 
In addition, oral administration of bLf in mice increases NK cells activity, that plays an important 220 
role in the early innate host defense against several pathogens (Kuhara et al. 2006).  221 

SARS-CoV-2 and bovine lactoferrin 222 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a lipid-enveloped positive-sense 223 
RNA virus belonging to the β-coronavirus genus, is a highly pathogenic coronavirus causing the 224 
recent pandemic (Hartenian et al. 2020; Wu et al. 2020a; Zhu et al. 2020). This virus mainly infects 225 
the respiratory tract of humans, causing fever, dry cough, fatigue, shortness of breath, body aches, 226 
and diarrhea. In a small number of the patients, it may progress to acute respiratory distress syndrome 227 
(ARDS), metabolic acidosis, septic shock, and clotting dysfunction, or even death. 228 



7 
 

Like other β-coronaviruses, spike (S) glycoprotein mediates the attachment and membrane fusion of 229 
viral particles with target cells in SARS-CoV-2 infection (Hatmal et al. 2020). The S glycoprotein is 230 
a typical type I fusion protein composed by two functional subunits: S1, containing the receptor 231 
binding domain (RBD), mediating cell receptor binding, and S2, containing the transmembrane 232 
domain involved in virus-cell fusion (Ke et al. 2020). In the proximity of cytoplasmic tail, a sequence 233 
resembling the human peptide hepcidin has been discovered, but its function is still unknown although 234 
its role in local and systemic iron regulation or in iron homeostasis disorders can be hypothesized 235 
(Ehsani 2020). 236 
Spike protein can bind to heparan sulphate proteoglycans (HSPGs) (Hu et al. 2021), thus anchoring 237 
the virus to the cell surface, and interact with angiotensin-converting enzyme 2 (ACE2) (Wang et al. 238 
2020), the principal gate for viral entry. Moreover, TfR1 has been identified as another potential 239 
receptor of SARS-CoV-2. Of note, the binding between virus and apical part of TfR1 does not 240 
interfere with iron transport by holo-Tf (Tang et al. 2020; Dai et al. 2021).  241 
The port of entry for SARS-CoV-2 is the nasal cavity while the respiratory droplets represent the 242 
main exit site. However, the fecal-oral transmission must be taken into account, especially in presence 243 
of gastrointestinal (GI) symptoms, because SARS-CoV-2 nuclear fingerprints have been isolated in 244 
the esophagus, stomach, GI mucosa, duodenum, rectum and fecal samples (Giobbe et al. 2021). Of 245 
note, SARS-CoV-2 in stool samples has been observed to persist longer than that in respiratory 246 
samples (Wu et al. 2020b). Lastly, the neurologic and hematologic symptoms demonstrate the 247 
systemic nature of SARS-CoV-2 (Wan et al. 2021). 248 
The in vitro antiviral activity of bLf against this enveloped RNA virus has been demonstrated 249 
(Campione et al. 2021a; Mirabelli et al. 2021). Similar to other viruses, bLf has been shown to impede 250 
SARS-CoV-2 entry by competing with cell HSPGs (Hu et al. 2021). Moreover, bLf binds to Spike 251 
glycoproteins of SARS-CoV-2 (Campione et al. 2021a), thus limiting both viral entry inside host cells 252 
and infection (Campione et al. 2021a; Mirabelli et al. 2021). A detailed in silico analysis of the 253 
interaction network between bLf and spike glycoproteins reveals the presence of 28 different 254 
interactions, which persist for more than 25% of the simulation time, in agreement with the high 255 
interaction energy calculated. In detail, three salt bridges, 5 hydrogen bonds and 20 residue pairs 256 
involved in hydrophobic contacts have been found (Campione et al. 2021a). To check if some of the 257 
spike residues targeted by bLf were involved in the binding with ACE2, the average structure 258 
extracted from the simulation of the binding between ACE2 and C-terminal domain 1 (CTD1) of 259 
spike glycoprotein has been compared (Campione et al. 2021a). Surprisingly, only two spike residues 260 
(Gly502 and Tyr505) were shared between the complexes interfaces. Despite this, bLf holds the same 261 
position assumed by the ACE2 enzyme, that is, above the up CTD1 domain (Campione et al. 2021a). 262 
After the results obtained in silico, the antiviral activity of bLf against SARS-CoV-2 was in vitro 263 
assayed (Campione et al. 2021a). It has been demonstrated that the anti-SARS-CoV-2 activity varies 264 
according to different experimental approaches: i) bLf pre-incubation with cells, ii) bLf preincubation 265 
with viral particles, iii) preincubation with cells and virus. Furthermore, cell lines, multiplicity of 266 
infection (MOI), and bLf concentrations influence the bLf antiviral activity (Campione et al. 2021a). 267 
As a matter of fact, 500 μg/ml of bLf inhibit at higher extent respect to 100 μg/ml and the 268 
preincubation of bLf with viral particles shows the highest antiviral activity (Campione et al. 2021a).   269 
Taken together, these results reveal that the topic/local antiviral activity of bLf are also extendable to 270 
SARS-CoV-2. 271 
Concerning the systemic activity of oral administration of bLf in COVID-19 patients, some 272 
elucidations, involving gut-lung axis, must be made. This axis, believed to be bidirectional, affects 273 
the immune response of both tracts when one of the two sites is dysregulated (Ichinohe et al. 2011). 274 
The gut-lung tracts share a common mucosal immune system (Budden et al. 2017; Enaud et al. 2020) 275 
and they are colonized by their microbiota, constituted by quasi-stable genre of microorganisms via 276 
the oral route (Grier et al. 2018). Although the microbiota of both tracts consists of similar phyla, 277 
they differ at the level of species in composition and density. Even if many respiratory viral illnesses 278 
are commonly accompanied by GI symptoms (Deriu et al. 2016), the immune-related interactions 279 
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between resident gut and respiratory tract microbiota are yet to be explored. Similarly, Wang and 280 
colleagues (2014a) demonstrated indirect intestinal inflammation with influenza infection in a mouse-281 
model occurring via microbiota-mediated Th17 cell dependent inflammation (Wang et al. 2014a). 282 
Several studies have reported gut dysbiosis after respiratory viral infection (Bartley et al. 2017; Yildiz 283 
et al. 2018). Groves et al. (2018) showed that gut dysbiosis, in the form of an increase in Bacteroidetes 284 
and a decrease in Firmicutes phyla abundance, occurred in mice models with respiratory syncytial 285 
and influenza virus infections, but not in those vaccinated with live attenuated influenza viruses.  286 
As matter of fact, as reported, oral administration of bLf may have a beneficial role in managing 287 
symptoms and recovery of patients suffering from respiratory tract infections (Stefanescu et al. 2013; 288 
Motoki et al. 2020; Ali et al. 2021; Oda et al. 2021b). In SARS-CoV-2 infection, the viral particles, 289 
entering from nasal cavity, infect lung through ACE2 receptors thus over-expressing circulating pro-290 
inflammatory cytokines which alter the gut microbiota and compromise intestinal integrity (Hussain 291 
et al. 2021). On the other hand, SARS-CoV-2 by binding to enterocytes through ACE-2 provokes a 292 
dysbiosis in gut microbiota and the resultant leaky gut allows translocation to the lung of microbial 293 
products and antigens through the blood and lymphatic vessels (Liu et al. 2021). In consequence of 294 
this, the enhance of pro-inflammatory cytokines, the dysbiosis in lung microbiota and the disorders 295 
of local and systemic immune response have been observed (Hussain et al. 2021). Therefore, severe 296 
SARS-CoV-2 infection is not only caused by virus and subsequent bacterial secondary infections in 297 
the respiratory and intestinal tracts but is also closely related to gut microbiota dysbiosis (Liu et al. 298 
2021). Gut microbiota is essential for host immune system’s induction, education, function, 299 
development of immune responses, and regulates the integrity of the mucosal barrier, provides 300 
bacterial metabolites, and regulates the immunoregulatory functions of intestinal epithelial cells by 301 
modulating the expression of antimicrobial factors (Hussain et al. 2021). 302 

Iron, reactive oxygen species, iron-proteins, SARS-CoV-2 infection and lactoferrin  303 

Viral replication is dependent from host cell iron enzymes, some of which are involved in 304 
transcription, viral mRNA translation, and viral assembly (Sienkiewicz et al. 2021). It is well known 305 
that SARS-CoV-2 infection induces pro-inflammatory cytokine storm, including IL-6 (Campione et 306 
al. 2021b) which in turn dysregulates iron homeostasis leading to an intracellular iron overload (Rosa 307 
et al. 2017). Therefore, intracellular iron overload increases viral replication, thus enhancing the 308 
severity of the infection (Mancinelli et al. 2020).  309 
However, bLf, by exerting the anti-inflammatory activity, reduces IL-6 levels, restores the synthesis 310 
of Fpn, iron export and, consequently, decreases the concentration of intracellular iron (Campione et 311 
al. 2020). The consequence of this bLf activity leads to a reduction in viral replication as demonstrated 312 
in in vitro models infected by SARS-CoV-2 (Campione et al. 2021a).  313 
In inflamed COVID-19 patients, high levels of IL-6 induce the up-regulation of hepcidin (Nai et al. 314 
2021) and high levels of intracellular free available iron which generate the dangerous ROS through 315 
Haber-Weiss and Fenton reactions, reported below:  316 

Haber-Weiss Reaction 317 

·O2- + H2O2 → ·OH + OH- + O2       or       H2O2 + ·OH → H2O + ·O2- + H+ 318 

Fe3+ + ·O2- → Fe2+ + O2 319 

Fenton Reaction  320 

Fe2+ + H2O2 → Fe3+ + OH- + ·OH 321 

The ROS and oxidative stress lead to lung damage and fibrosis thus provoking a decline of lung or 322 
other organs functions. BLf, by binding free iron, decreases iron overload and inhibits ROS formation 323 
and oxidative stress thus preserving the organs from damages. Recently, it has been also demonstrated 324 
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that iron chelating compounds as deferoxamine decrease the level of replication of some RNA viruses 325 
(Abobaker 2020; Perricone et al. 2020; Vlahakos et al. 2021). 326 
Furthermore, SARS-CoV-2 attacks one of the beta chains of the hemoglobin which leads to the 327 
dissociation of iron from heme thus enhancing free iron level in the body (Wenzhong and Hualan 328 
2021). This increase of available iron could explain why most patients with COVID-19 have very 329 
high levels of Ftn (Cheng et al. 2020). However, in COVID-19 patients, bLf early oral administration 330 
decreases serum Ftn levels (Campione et al. 2021b). Concerning iron overload, it increases viral 331 
replication (Drakesmith and Prantice 2008) while the decrease of iron overload through both iron 332 
binding ability and anti-inflammatory activity of bLf decreases viral replication (Campione et al. 333 
2020; Campione et al. 2021a).  334 
The infection by SARS-CoV-2 up-regulates the synthesis of IL-6 (Campione et al. 2021b) which, in 335 
turn, induces the expression of hepcidin (Nai et al. 2020). The oral administration of bLf influences 336 
iron-proteins expression: the decrease of serum IL-6 and Ftn. These different but parallel functions 337 
are interesting signals of the restoring of iron and inflammatory homeostasis which contributes to 338 
antiviral activity together with the binding of bLf to HSPGs and spike glycoproteins (Campione et al. 339 
2020; Campione et al. 2021a; Campione et al. 2021b).  340 

Inflammasome, SARS-CoV-2 and lactoferrin 341 

Inflammasomes, cytosolic multiprotein oligomers responsible for the activation of inflammatory 342 
responses, are an important part of the innate immune system that can recognize cellular stresses and 343 
infections (Szabo and Petrasek 2015; Mangan et al. 2018). Inflammasomes are named according to 344 
different four sensing proteins: NLRP1, NLRP3, NLRC4, and AIM212. Among them, the NLRP3 345 
inflammasome has important functions in RNA virus infection (Wang et al. 2014b; Pan et al. 2019). 346 
NLRP3 protein contains three domains: Pyrin domain (PYD), Nucleotide-binding domain, and 347 
Leucine-rich repeat domain (Pan et al. 2019). The activation of the NLRP3 inflammasome, supports 348 
caspase-1 activation. Active caspase-1 processes pro-IL-1β into mature IL-1β (Latz et al. 2013). Of 349 
note, nucleocapsid protein of SARS-CoV-2 activates inflammasomes which, in turn, induces active-350 
Caspase-1 and IL-1β. Excessive IL-1β stimulates systemic inflammation responses and, 351 
consequently, cytokine storm provoking lung injury (Pan et al. 2021).  Studies have reported that 352 
inflammasomes are associated with COVID-19 severity (Toldo et al. 2021), probably because 353 
excessive activated inflammasomes induce cell pyroptosis, harmful to the host (Dai et al. 2018).  354 
The effect of bLf on inflammasomes in SARS-CoV-2 infections is still unknown while the peptide 355 
hLf (1-11) is known to inhibit A. baumannii-induced caspase-1 activation, IL-1β, IL-6 and pyroptosis 356 
of pulmonary alveolar macrophages in mice (Dai et al. 2018). 357 

Coagulation and fibrinolysis, SARS-CoV-2 and lactoferrin 358 

Thrombin, a serine protease and an activated coagulation factor (FIIa), plays an important role in the 359 
coagulation system in humans by converting fibrinogen into fibrin that aggregates to form a thrombus.  360 
It activates coagulation factors, platelet aggregation, and vascular endothelial cells mainly by binding 361 
to protease-activated receptors 1,3 located on the surface of vascular endothelial cells involved in the 362 
regulation of thrombotic responses (Kalashnyk et al. 2013).  363 
At present, commonly used antithrombotic drugs include heparin, warfarin, and argatroban, which 364 
can present mild to severe side effects. Consequently, anticoagulant products, free from adverse 365 
effects and deriving from natural foods, as milk, have been studied and are still under investigation. 366 
Among these, Lf hydrolysates with a molecular weight of less than 3 kDa has been used as a dual 367 
vasopeptidase (angiotensin-converting enzyme and endothelin-converting enzyme, ACE/ECE) or a 368 
single ECE inhibitor with different anti-vasoconstrictive effects (Fernandez-Musoles et al. 2013). 369 
Recently, a peptide located at 93−101 positions of the amino acid sequence of bLf, and identified in 370 
the gastrointestinal tract of mice, has been found to have anticoagulant functions without side effects 371 
(Xu et al. 2020a). The binding of this peptide, named LF-LR, to thrombin inhibits platelet aggregation 372 
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thus explaining the results already obtained by Qian and colleagues (1995). These Authors tested 373 
sheep and human Lfs and pepsin hydrolysates deriving from both glycoproteins, demonstrating that 374 
both Lfs and only one digestion product were able to inhibit thrombin-induced platelet aggregation 375 
(Qian et al. 1995).   376 
Along with the cytokine storm, in COVID-19 patients, a storm of large and small blood clots has 377 
been found (Cui et al. 2020; Klok et al. 2020). SARS-CoV-2 infects endothelium through ACE-2 378 
thus inducing complement system which, in turn, stimulates clots (Skendros et al. 2020). However, 379 
COVID-19 patients can be hospitalized when already suffering from conditions that promote clot 380 
formation, such as hypertension, diabetes, and hereditary thrombophilia. The close relationship 381 
between COVID-19 and thrombosis, venous thromboembolism and arterial thrombosis are of 382 
significant clinical importance. Histopathology of lung specimens from patients with severe disease 383 
demonstrate fibrin-based occlusion of small vessels (Fox et al. 2020; Tian et al. 2020; Xu et al. 384 
2020b). 385 
Therefore, patients suffering from COVID-19 are at high risk for thrombotic arterial and venous 386 
occlusions (Zuo et al. 2021). Beside the coagulation process, fibrinolysis must be considered because 387 
the balance between coagulation and fibrinolysis will allow an optimal approach not only to 388 
thrombosis but also to fibrinolysis therapies.  389 
Fibrinolysis is tightly regulated by plasminogen activators and inhibitors with the conversion of 390 
plasminogen to plasmin (Longstaff and Kolev 2015). The plasminogen activation system is essential 391 
for dissolution of fibrin clots. HLf binds to human plasminogen thus blocking its activation and fibrin 392 
clots dissolution (Zwirzitz et al. 2018). The dissolution of clots forms D-dimers. Elevated D-dimer 393 
was associated with both thrombotic and bleeding complications (Al-Samkari et al. 2020) and are 394 
predictors of the mortality of COVID-19 patients (Zuo et al. 2021).  395 
Recently, COVID-19 patients treated with oral administration of bLf showed a significant lower 396 
concentration of serum D-dimers respect to untreated patients (Campione et al. 2021b).  397 

Oral administration of lactoferrin on COVID-19 patients 398 

The first study on oral administration of bLf against SARS-CoV-2 infection was carried out by 399 
Serrano et al. (2020) on 75 symptomatic COVID-19 patients. This prospective observational study 400 
was performed administering liposomal bLf (LLf) (from about 120 to 200 mg per day) for 10 days in 401 
association with 10 mg of zinc administered two to three times a day. The Authors reported that 100% 402 
recovery of all SARS-CoV-2-positive patients was achieved within 4–5 days. However, this study 403 
shows several limits as no randomized clinical trial, limited sample size, low doses of LLf, short 404 
duration of treatment and absence of controls.  405 
Successively, a randomized, prospective, interventional pilot study on 54 COVID-19 patients with 406 
mild-to-moderate symptoms was published (Algahtani et al. 2021). The treatment consisted in the 407 
administration of oral bLf (200 mg/once a day or 200 mg/twice a day) for seven days. Control group 408 
received intranasal oxygen, oral hydroxychloroquine, oral vitamin C, Zn and acetylcysteine. BLf-409 
treated groups received the above-mentioned therapy plus bLf 200 mg/day (Group 1) or bLf 200 mg/ 410 
2 times a day (Group 2). This study showed no statistically significant difference among studied 411 
groups regarding recovery of symptoms or laboratory improvement. Also, this study possesses some 412 
limits as short duration of treatment (7 days), limited sample size (18 patients/group) and, more 413 
importantly, very low bLf dosages.  414 
Conversely, positive results have been described in other two papers (Campione et al. 2021b; Rosa 415 
et al 2021). The first in vivo preliminary study was designed to investigate the antiviral effect of oral 416 
and intranasal liposomal bLf in asymptomatic and mild-to-moderate COVID-19 patients. From April 417 
2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 418 
patients were enrolled and divided into three groups. Thirty-two patients (14 hospitalized and 18 in 419 
home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were 420 
treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any 421 
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medication. In addition, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary 422 
analysis. Even if at the beginning of the pandemic, no drug was proven to be safe and effective for 423 
treating COVID-19, SOC regimens of this study consisted in lopinavir/darunavir, an inhibitor of 424 
protease of SARS-CoV-2 in vitro, and hydroxychloroquine able to inhibit fusion of SARS-CoV-2 425 
(Campione et al. 2021b). Liposomal bLf for oral use was 1 g per day for 30 days and liposomal bLf 426 
intranasal formulation was administered from early phase of COVID-19 disease 3 times daily (a total 427 
of about 16 mg/nostril/day) until the SARS-CoV-2 RNA negativization.  428 
BLf-treated COVID-19 patients obtained an earlier and significant (p<0.0001) SARS-CoV-2 RNA 429 
negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 430 
vs. 32.61 days, respectively) and showed fast clinical symptoms recovery compared to the SOC-431 
treated COVID-19 patients. Furthermore, a significant decrease in serum Ftn, IL-6, and D-dimers 432 
levels was observed in bLf-treated patients. No side events were registered. Even if one of the 433 
limitations of this study was the small sample size of patients, the COVID-19 patients were 434 
immediately treated after positive molecular swab test or at the first symptoms. Moreover, it is 435 
important to underline that intranasally and orally liposomal bLf administrations exert two different 436 
main functions: topical and systemic. The topical intranasal administration (about 16 mg/nostril/day) 437 
is related to bLf binding with HSPGs of host cells and spike glycoproteins (Campione et al. 2021a). 438 
These competitive bindings establish a protective barrier against viral infection. Conversely, oral 439 
systemic administration of bLf (1 g/day) is related to the anti-inflammatory activity and to the 440 
regulation of coagulation cascade. Of note, the anti-inflammatory activity also decreases intracellular 441 
iron overload, which, in turn, facilitates viral multiplication (Campione et al. 2021a; Sienkiewicz et 442 
al. 2021). Despite all these interesting results, this trial has the limit of not being a randomized double-443 
blind study. Therefore, only after randomized clinical trials, aimed at confirming its efficacy, could 444 
bLf be considered as an effective treatment, alone or as a supplementary agent, in asymptomatic and 445 
mild-to-moderate COVID-19 patients. This could not only improve patient outcomes and prevention 446 
of hospital recovery, but also hinder chronic consequences of infection and disease transmission, 447 
mainly by shortening the period of infectiousness. 448 
A second retrospective study, conducted by Italian general practitioners on their COVID-19 patients 449 
in home-based isolation, has been published (Rosa et al. 2021). The COVID-19 patients were treated 450 
immediately after positive molecular test or at the onset of first symptoms. Asymptomatic patients 451 
received a median dose of 400 mg bLf (200 mg/twice a day before meals); paucisymptomatic a 452 
median dose of 600 mg bLf (200 mg/three times a day before meals); moderate symptomatic a median 453 
dose 1,000 mg bLf (three times a day before meals) alone or as supplementary treatment (paracetamol 454 
and/or ibuprofen and/or cortisone and/or azithromycin depending on their symptoms). In this study 455 
82 COVID-19 patients were bLf-treated while 39 COVID-19 were untreated (Rosa et al. 2021). The 456 
time required to achieve SARS-CoV-2 RNA negativization in bLf-treated patients (n=82) was 457 
significantly lower (p<0.001) compared with bLf-untreated ones (n=39) (15 versus 24 days), similarly 458 
to patients treated with liposomal bLf (14.25 vs. 27.13). Of note, a link among reduction in symptoms, 459 
age, and bLf treatment was found. In addition, the bLf treatment is safe and well-tolerated by all 460 
treated patients. This retrospective study shows the advantage of a prompt treatment after positive 461 
molecular swab test or at the first symptoms, while possesses some limits as the sample size and the 462 
lack of a randomization.   463 

Conclusions 464 

Lf is one of the most important cationic pleiotropic glycoproteins of the innate immunity, highly 465 
conserved among different species, although the highest sequence homology has been found between 466 
hLf and bLf (about 70%). In 1987 the antiviral activity of hLf was discovered (Lu et al. 1987). 467 
Successively, the antiviral activity of bLf against enveloped and non-enveloped DNA and RNA 468 
viruses has been widely demonstrated (see references in Valenti and Antonini 2005; Berlutti et al. 469 
2011; Wakabayashi et al. 2014: Chang et al. 2020; Mancinelli et al. 2020). The capability of bLf to 470 
hinder viral infection is generally attributed to its competitive binding to cell surface anionic 471 
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components as GAGs (Wu et al. 1995; Kell et al. 2020; Hu et al. 2021) and/or viral particles (Table 472 
1). 473 
A lower number of papers have been published on bLf in vivo efficacy against viral infection (Table 474 
2). Even if bLf and hLf possess identical biological functions (Rosa et al. 2017), bLf has been applied 475 
in in vitro and in vivo studies, being GRAS by the FDA and available in large quantities. Recently, 476 
bLf has been discovered to possess an antiviral activity even against SARS-CoV-2 in vitro (Campione 477 
et al. 2020; Campione et al. 2021a; Mirabelli et al. 2021) and in vivo (Campione et al. 2021b; Rosa 478 
et al. 2021). In vitro, a direct interaction between bLf and host receptors as HSPGs (Hu et al. 2021) 479 
as well as between bLf and virus structural glycoproteins as SARS-CoV-2 Spike (Campione et al. 480 
2021a; Miotto et al. 2021) has been demonstrated. Furthermore, bLf is also able to enter inside the 481 
nucleus of host cells (Paesano et al. 2012) thus inhibiting the transcription of proinflammatory 482 
cytokine genes (Rosa et al. 2017). Therefore, bLf could strongly influence the cytokine storm cascade 483 
activation in COVID-19 patients as demonstrated in a preliminary clinical trial by Campione et al. 484 
(2021b).  As bLf performs many functions useful to avoid systemic complications as well as decreases 485 
the severity of COVID-19, it is pivotal to summarize how many steps of the pathogenesis of SARS-486 
CoV-2 can be influenced by this glycoprotein (Fig. 1). 487 
Firstly, SARS-CoV-2 induces cytokine storm but bLf can reduce cytokines storm, including IL-6, in 488 
COVID-19 patients (Campione et al. 2021b). SARS-CoV-2 induces excessive immune responses but 489 
bLf can counteract excessive immune responses (Zimecki et al. 2021). COVID-19 patients show an 490 
up-regulation hepcidin (Nai et al. 2021), which in turn could down-regulate Fpn. In several in vitro 491 
models (epithelial and macrophages) bLf up-regulates Fpn (Cutone et al. 2014; Frioni et al. 2014; 492 
Cutone et al. 2017) while in vivo the bLf-mediated decrease of hepcidin has been demonstrated only 493 
in pregnant and non-pregnant women (Paesano et al. 2010; Lepanto et al. 2018). SARS-CoV-2 494 
induces an intracellular iron overload, but bLf can decrease intracellular iron overload (Drakesmith 495 
and Practice 2008; Cutone et al. 2017). SARS-CoV-2 induces dysbiosis of intestinal microbiota but, 496 
unfortunately, no papers have been published on the influence of bLf oral administration on the 497 
composition of gut microbiota. SARS-CoV-2 increases the thrombosis associated with 498 
microcoagulation but bLf or its peptides can decrease the thrombosis associated with 499 
microcoagulation (Xu et al. 2020a) or reduce the concentration of serum D-dimers in COVID-19 500 
patients (Campione et al. 2021b). 501 
The efficacy of bLf oral administration, loaded or unloaded in liposomes, in treating asymptomatic, 502 
paucisymptomatic and moderate symptomatic COVID-19 patients has been demonstrated (Campione 503 
et al. 2021b; Rosa et al. 2021, respectively). For all patients from both studies, the median value of 504 
days to SARS-CoV-2 RNA negativization was significantly lower in bLf-treated patients than in 505 
those untreated (14 or 15 vs 27 or 24 days, respectively). Furthermore, a very interesting link between 506 
the symptom’s reduction and the age was observed (Rosa et al. 2021): the protective effect of bLf in 507 
reducing the time of the symptom’s resolution is related to the age. This could be explained by the 508 
fact that the synthesis of hLf is under hormone controls (Valenti et al. 2018) and, therefore, it 509 
decreases with age. Moreover, another factor to be considered is that chronic low-grade inflammation 510 
is common in older individuals, and it is a strong risk factor for aging-related disorders that cause 511 
high morbidity and mortality (Simpson 2016; Bektas et al. 2017). On the other hand, high levels of 512 
IL-6 lead to iron homeostasis disorders and tissue injuries (Rosa et al. 2017) and, therefore, the oral 513 
administration of bLf with its anti-inflammatory activity is really important because it induces IL-6 514 
blockade which may contribute to counteract severe and critical outcome in COVID-19 patients. 515 
Even if the results of bLf administration published until now in preliminary clinical trials require 516 
further confirmations on both a wider number of COVID-19 patients and a randomized double-blind 517 
study, it is possible to affirm that a prompt bLf treatment, sole or as adjuvant nutraceutical 518 
supplement, in COVID-19 patients could be the winning strategy. Based on these encouraging results 519 
we cannot ignore a so important protein of innate immunity, “companion of life and brick in the 520 
mucosal wall, effective against both microbial and viral attacks” (Valenti and Antonini 2005; Superti 521 
et al. 2020). Finally, the humankind should consider bLf as one of the more precious gifts from the 522 
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‘Mother Nature’ in the fight against the current COVID-19 and the future pandemics (Naidu et al. 523 
2020)! 524 
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Table 1: Bovine lLactoferrin (bLf) binding to surface viral components. The viruses are 1053 
alphabetically sorted.  1054 
 1055 

VIRUS LF SOURCE BLF BINDING SITE BLF ACTIVITY REFERENCES 

Adenovirus Bovine III and IIIa structural 
polypeptides  Pietrantoni et al. 

2003 

Coxsakievirus A16 Bovine  Inhibition of cytopathic 
effect 

Wakabayashi et al. 
2014 

Echovirus 5 Bovine Structural proteins  Furlund et al. 2012 
Echovirus 6 Bovine  Inhibition of apoptosis Tinari et al. 2005 

Enterovirus 71 Bovine and Human  Inhibition of cytopathic 
effect Lin et al. 2002 

Hantavirus Bovine  Inhibition of viral 
adsorption Ng et al. 2015 

Hepatitis C virus Bovine and Human Envelope proteins E1 and E2  Yi et al. 1997 
Herpes simplex virus Bovine Glycoprotein B, D, H, L  Marchetti et al. 2009 

Human 
immunodeficiency 

virus 

Bovine and 
Human* V3 loop of glycoprotein 120  Swart et al. 1996 

Influenza A virus Bovine  

Prevents cytopathic effects 
independent from metal 

saturation and 
carbohydrates 

Pietrantoni et al. 
2012 

Influenza A virus 
H1N1 Bovine  

Inhibits apoptosis, caspase 
3, nuclear export of viral 

ribonucleoproteins so 
preventing viral assembly 

Pietrantoni et al. 
2010 

Influenza A virus 
H1N1 and H3N2 Bovine Hemagglutinin  Ammendolia et al. 

2012 
Influenza A virus 

H5N1 Bovine Viral constituents  Taha et al. 2010 

Influenza A virus 
H5N1 Bovine Sialylated glycans and 

hemagglutinin  Wang et al. 2021 

Parainfluenza virus 
type 2 Bovine Intracellular and extracellular 

activity  Yamamoto et al. 
2010 

Poliovirus Bovine and Human  Inhibition of cytopathic 
effect Marchetti et al. 1999 

Respiratory syncytial 
virus Human Fusion protein F  Sano et al. 2003 

Rotavirus Bovine  Inhibition of cytopathic 
effect Superti et al. 1997 

SARS-CoV-2 Bovine Spike glycoproteins  Campione et al. 
2021a 

* This study has been conducted using bovine and human Lf, as reported in Materials and Methods. In Results 1056 
and Discussion sections, the Lf source for each experiment was not specified.  1057 
  1058 
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Table 2: Antiviral aActivity of lactoferrin (Lf) against different viruses in in vivo models. 1059 
 1060 
ADMINISTRATION 

ROUTE LF SOURCE MODEL VIRUS REFERENCES 

ORAL Human Mice Friend virus complex Lu et al. 1987 
TOPIC Bovine Mice cornea Herpes simplex virus Fujihara and Hayashi 1995 
ORAL Bovine Mice Cytomegalovirus Shimizu et al. 1996 

ORAL Bovine Patients with hepatitis 
C Hepatitis C virus Tanaka et al. 1999 

ORAL Bovine Patients with chronic 
hepatitis C Hepatitis C virus 

Okada et al. 2002; Hirashima 
et al. 2004; Ishibashi et al. 

2005; Ueno et al. 2006 
ORAL Bovine Mice Herpes simplex virus Wakabayashi et al. 2004 

ORAL Bovine Mice Influenza virus Yamauchi et al. 2006 Shin et 
al. 2005 

ORAL Bovine Rat Rotavirus Pérez-Cano et al. 2008 

ORAL Bovine Children from 2 to 6 
years old Enterovirus 71 Yen et al. 2011 

ORAL Bovine Mice Respiratory syncytial virus Gualdi et al. 2013 

ORAL Bovine Patients with common 
cold Rhinovirus Vitetta et al. 2013 

SUBCUTANEOUS Bovine Mice Influenza virus A Sherman et al. 2015 
ORAL* Bovine COVID-19 patients SARS-CoV-2 Serrano et al. 2020 
ORAL Bovine COVID-19 patients SARS-CoV-2 Algahtani et al. 2021 

ORAL* AND 
INTRANASAL* Bovine COVID-19 patients SARS-CoV-2 Campione et al. 2021b 

ORAL Bovine Patients with summer 
cold with   gastritis NorovirusDifferent viruses Oda et al. 2021a 

ORAL Bovine COVID-19 patients SARS-CoV-2 Rosa et al. 2021 
* These two clinical trials have been performed with liposomal bovine Lactoferrin. 1061 
  1062 
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Fig. 1. Different functions of lactoferrin to in counteracting SARS-CoV-2 pathogenesis 1063 
 1064 

 1065 


