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Abstract: It is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR)
may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell
lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In
this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared
to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL)
cells, in correlation with c-Myc downregulation. Interestingly, such an effect was more evident
in Epstein-Barr virus (EBV)-negative BL cells or those cells expressing type I latency compared
to type III latency BL cells. The other interesting finding of this study was that the inhibition of
IRE1α/XBP1 downregulated BRCA-1 and RAD51 and potentiated the cytotoxicity of PARP inhibitor
AZD2661 against BL cells and also against Primary Effusion Lymphoma (PEL), another aggressive
B-cell lymphoma driven by c-Myc and associated with gammaherpesvirus infection. These results
suggest that combining the inhibition of UPR sensors, particularly IRE1α/XBP1 axis, and molecules
involved in DDR, such as PARP, could offer a new therapeutic opportunity for treating aggressive
B-cell lymphomas such as BL and PEL.

Keywords: Burkitt lymphoma; UPR; IRE1α/XBP1; c-Myc; DDR; BRCA-1

1. Introduction

Burkitt lymphoma (BL) is a malignant B-cell lymphoma whose pathogenesis is strictly
linked to c-Myc-translocation/hyper-expression and, in its endemic form, also to EBV
infection [1]. The virus is carried out in a latent state in these cells with different sets
of latent viral gene expression. Type I latency is characterized by Epstein–Barr nuclear
antigen (EBNA)1, Epstein-Barr encoding region (EBER) and BART expression, whereas
type III latency includes a broader latent viral gene expression comprising of EBNA2,
EBNA3A, -3B, -3C, the latent membrane proteins (LMPs) and BHRF1 [2]. Besides BL, c-Myc
overexpression drives cell proliferation of a variety of solid and hematological cancers,
including Diffuse Large B-Cell Lymphoma (DLBL) and Primary Effusion Lymphoma (PEL),
although its translocations/mutations do not frequently occur in most of these cancers [3,4].
c-Myc overexpression promotes an increase of protein synthesis [5] and this effect may
trigger ER stress, to which cancer cells attempt to adapt by activating the Unfolded Protein
Response (UPR). This effect renders c-Myc-driven cancers particularly dependent on the
activation of such a response [6]. Among the three UPR sensors, IRE1α, PERK, and ATF6,
c-Myc has been reported to mainly activate the IRE1α/XBP1 axis [7], an effect that occurs
also in BL [8]. Interestingly, XBP1s in turn may transactivate c-Myc, as reported for example
in the case of prostate cancer [9]. In this regard, we have recently shown that targeting
c-Myc reduces the constitutive activation of XBP1s, unbalancing UPR towards cell death.
Moreover, c-Myc inhibition impaired DNA damage response (DDR) both in multiple
myeloma (MM) and in PEL cells [10]. Indeed, XBP1s have the capacity to upregulate the
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expression of several molecules involved in DDR, either belonging to Homologous Repair
(HR) and non-homologous end joining (NHEJ) repair. The cross-talk between UPR and
DDR has been extensively reviewed [11] and we have recently contributed to dissect the
relationship between these as well as the other adaptive responses that sustain the survival
of cancer cells [12]. Based on this background, in this study, we investigated the impact
of UPR inhibition on BL cell survival, focusing on IRE1α which is known to be the more
important UPR sensor for the survival of a variety of hematological cancers [13]. At the
molecular level, we analyzed the effect of UPR sensor inhibition on the expression level of
c-Myc. We also evaluated the expression of BRCA-1 and RAD51, molecules involved in
HR, an error-free DNA repairing pathway, which is essential for cancer cell integrity [14].
Finally, the possibility to potentiate the cytotoxicity induced by IRE1α/XBP1 axis inhibition
by combining it with PARP inhibitors was evaluated. Indeed, it is known that defects
in the HR pathway may render cancer cells more susceptible to treatment with PARP
inhibitors [15], PARPs being mainly involved in other DNA repairing pathways such as
NHEJ and BER, activated in response to single strand DNA brakes [16]. We finally extended
this study to PEL cells, in which c-Myc is hyper-expressed, although not translocated, in
which the IRE1α/XBP1 axis is known to sustain cell survival [17] and whose pathogenesis
is linked to another oncovirus, Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) and
in many cases also to EBV. Whether the inhibition of IRE1α/XBP1 axis and PARP could
be more cytotoxic than the single treatments against PEL was also evaluated, to assess if
this therapeutic strategy could be widened against c-Myc-and gammaherpesvirus-driven
B-cell lymphomas.

2. Results
2.1. IRE1α/XBP1 Axis Is the UPR Sensor Most Involved in Survival of BL Cells, Particularly in
EBV-Negative and Type I Latency Cells

Three BL cell lines, namely Akata (type I latency), BL36 (Type III latency), and Oma
5 (EBV-negative) [18], were treated with specific inhibitors of the three branches of UPR,
namely PERK, IRE1α/XBP1, and ATF6. Towards this aim, we used GSK2606414 (GSK),
4µ8C, and CeapinA7, drugs known to inhibit PERK, IRE1α/XBP1, and ATF6, and found
that all of them efficiently inhibited their targets, p-EIF2α, XBP1s, and BIP, respectively
(Figure 1A). The inhibition of all three UPR sensors affected BL cell survival (Figure 1B)
while it did not affect that of primary B lymphocytes (Figure S1), according to the knowl-
edge that normal cells are less dependent than cancer cells on UPR activation for their
survival [12]. However, 4µ8C, the IRE1α/XBP1 inhibitor, was more efficient against Akata
and Oma 5, as BL36 cells displayed sensitivity to 4µ8C similar to that induced by GSK and
CeapinA7 (Figure 1B). Accordingly, the caspase 9 cleavage, which indicates the activation
of an intrinsic apoptotic pathway, was observed in Oma 5 and Akata cells following the
4µ8C treatment and to a lesser extent by CeapinA7 in the latter cell line (Figure 1C). All
together, these results suggest that the inhibition of IRE1α/XBP1 axis was more cytotoxic
than the inhibition of the other two UPR sensors in EBV-negative Oma 5 BL and Akata
expressing type I latency.
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Figure 1. Effects of PERK, IRE1-alpha, and ATF6 sensors inhibition in BL cells. Akata, BL36, and 
Oma 5 cells were treated with GSK2606414 (GSK) (0,5 μM), 4μ8C (15 μM), or CeapinA7 (12 μM). 
The untreated cells were used as control (CT). (A) Protein expression levels of p-EIF2α, EIF2α, 
XBP1s, and BiP were evaluated by Western blot analysis. β-Actin was used as loading control. The 
histograms represent the densitometric analysis of the ratio of specific protein and the appropriate 
control of three different experiments. The data are shown as the mean plus S.D. (B) Cell viability 
was measured by a Trypan Blue exclusion assay, and the histograms represent the mean plus S.D. 
of live cells as percent of untreated control cells of three different experiments. (C) Protein 
expression level of cleaved Caspase-9 (cl. Casp-9) was evaluated by Western blot analysis. β-Actin 
was used as loading control. The histograms represent the densitometric analysis of the ratio of cl. 
Casp9/β-Actin of three different experiments. Data are represented as the mean plus S.D. p value: * 
p < 0.05; ** p < 0.001; *** p < 0.0001. 

Figure 1. Effects of PERK, IRE1-alpha, and ATF6 sensors inhibition in BL cells. Akata, BL36, and
Oma 5 cells were treated with GSK2606414 (GSK) (0.5 µM), 4µ8C (15 µM), or CeapinA7 (12 µM). The
untreated cells were used as control (CT). (A) Protein expression levels of p-EIF2α, EIF2α, XBP1s, and
BiP were evaluated by Western blot analysis. β-Actin was used as loading control. The histograms
represent the densitometric analysis of the ratio of specific protein and the appropriate control of
three different experiments. The data are shown as the mean plus S.D. (B) Cell viability was measured
by a Trypan Blue exclusion assay, and the histograms represent the mean plus S.D. of live cells as
percent of untreated control cells of three different experiments. (C) Protein expression level of
cleaved Caspase-9 (cl. Casp-9) was evaluated by Western blot analysis. β-Actin was used as loading
control. The histograms represent the densitometric analysis of the ratio of cl. Casp9/β-Actin of three
different experiments. Data are represented as the mean plus S.D. p value: * p < 0.05; ** p < 0.001;
*** p < 0.0001.
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2.2. The Cytotoxic Effect of UPR Sensor Inhibition Correlates with the Downregulation of c-Myc

Given the strict interplay between IRE1α/XBP1 and c-Myc, previously demonstrated
by us and others [7,19], and the key role of c-Myc in BL growth/survival, we next inves-
tigated whether the higher cytotoxic effect of 4µ8C observed in Akata and Oma 5 could
correlate with a stronger downregulation of c-Myc in these cells compared to BL36. As
shown in Figure 2A, we found c-Myc expression level was more strongly reduced in Akata
and Oma 5 than in BL36 in which 4µ8C downregulated c-Myc similarly to GSK and Ceap-
inA7. To evaluate if the downregulation of c-Myc could occur at the transcriptional level,
we performed q-RT-PCR and found the c-Myc mRNA was reduced by 4µ8C in both Akata
and Oma 5 (Figure 2B), suggesting that c-Myc was transcriptionally modulated by 4µ8C in
these BL cells.
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2.3. IRE1α/XBP1 Inhibition Increases DNA Damage by Reducing the Expression of BRCA-1 
and RAD51, Particularly in Akata and Oma 5 BL Cells 

UPR and DDR are known to be strictly interconnected responses. In particular, XBP1s 
and its cross-talk with c-Myc can affect DDR [11]. Moreover, a critical role of PERK and 
ATF6 in DDR regulation has also been demonstrated [17,20,21]. Therefore, we evaluated 
whether the inhibition of PERK, IRE1α, and ATF6 could increase DNA damage in terms 
of H2AX phosphorylation. We found that 4μ8C was more effective compared to the other 
UPR sensor inhibitors to induce such an effect, particularly in Akata and Oma 5 cells (Fig-
ure 3A), in correlation with the higher cytotoxic effect observed in these cells. Of note, 
CeapinA7, which reduced cell survival in Akata, was also able to induce DNA damage in 
this cell line (Figure 3A). Taken together, these results suggest that cell survival, c-Myc 

Figure 2. UPR sensor inhibitors affect c-Myc expression. Akata, BL36, and Oma 5 cells were treated
with GSK2606414 (GSK) (0.5 µM), 4µ8C (15 µM), or CeapinA7 (12 µM) for 24 h. The untreated cells
were used as control (CT). (A) c-Myc expression was evaluated by Western blot analysis. β-Actin
was used as loading control and one representative experiment is shown. The histograms represent
the densitometric analysis of the ratio of c-Myc/β-Actin of three different experiments. Data are
represented as the mean plus S.D. (B) qRT-PCR of c-Myc in Akata and Oma 5 cells treated or not
with 4µ8C (15 µM) for 24 h. The data are expressed relative to reference gene B2M. The histograms
represent the mRNA expression levels of c-Myc genes of three different experiments. The data are
represented as the mean relative to the control plus S.D. p value: * p < 0.05; ** p < 0.001; *** p < 0.0001.

2.3. IRE1α/XBP1 Inhibition Increases DNA Damage by Reducing the Expression of BRCA-1 and
RAD51, Particularly in Akata and Oma 5 BL Cells

UPR and DDR are known to be strictly interconnected responses. In particular, XBP1s
and its cross-talk with c-Myc can affect DDR [11]. Moreover, a critical role of PERK and
ATF6 in DDR regulation has also been demonstrated [17,20,21]. Therefore, we evaluated
whether the inhibition of PERK, IRE1α, and ATF6 could increase DNA damage in terms of
H2AX phosphorylation. We found that 4µ8C was more effective compared to the other UPR
sensor inhibitors to induce such an effect, particularly in Akata and Oma 5 cells (Figure 3A),
in correlation with the higher cytotoxic effect observed in these cells. Of note, CeapinA7,
which reduced cell survival in Akata, was also able to induce DNA damage in this cell line
(Figure 3A). Taken together, these results suggest that cell survival, c-Myc expression, and
DNA damage are strictly interconnected events in BL cells. We then evaluated whether
defects of HR molecules could underly the strong DNA damage induced by IRE1α/XBP1
inhibition. As shown in Figure 3B, we found that BRCA-1 and RAD51 were downregulated
by such treatment, the latter more strongly in Akata and Oma 5, and that it occurred also
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at mRNA level in these cells (Figure 3C). BRCA-1 and RAD51 are molecules essential to
preserving cell integrity, and have been previously shown to be under XBP1s and c-Myc
control [22]. We next evaluated the possibility of obtaining the effects induced by 4µ8C by
using another IRE1α/XBP1 inhibitor, namely MKC8866, and found that it induced similar
effects, although they were less efficient than 4µ8C (Figure 3D).
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Figure 3. IRE1-alpha inhibition by 4µ8C impairs DNA repair in BL cells. Akata, BL36, and Oma
5 cells were treated with GSK2606414 (GSK) (0.5 µM), 4µ8C (15 µM), or CeapinA7 (12 µM) for 24 h.
Untreated cells were used as control (CT). (A) Protein expression level of γ-H2AX was evaluated
by Western blot analysis. β-Actin was used as loading control and one representative experiment
is shown. The histograms represent the densitometric analysis of the ratio of γ-H2AX/β-Actin of
three different experiments. Data are represented as the mean plus S.D. (B) Akata, BL36, Oma 5 cells
were treated or not with 4µ8C (15 µM) for 24 h. Protein expression level of BRCA-1 and RAD51 was
evaluated by Western blot analysis. β-Actin was used as loading control and one representative
experiment is shown. The histograms represent the densitometric analysis of the ratio of specific
protein and β-Actin of three different experiments. Data are represented as the mean plus S.D.
(C) qRT-PCR of BRCA-1 and RAD51 in Akata cells treated or not with 4µ8C (15 µM) for 24 h. Data are
expressed relative to reference gene B2M. The histograms represent the mRNA expression levels of
BRCA-1 and RAD51 genes of three different experiments. Data are represented as the mean relative
to the control plus S.D. (D) Akata cells were treated with MKC-8866 (MKC) (30 µM) for 24 h. Protein
expression level of c-Myc, BRCA-1, RAD51, γ-H2AX was evaluated by Western blot analysis. β-Actin
was used as loading control and one representative experiment is shown. The histograms represent
the densitometric analysis of the ratio of specific protein and β-Actin of three different experiments.
Data are represented as the mean plus S.D. p value: * p < 0.05; ** p < 0.001; *** p < 0.0001.
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2.4. IRE1α/XBP1 Axis Inhibition Potentiates the Cytotoxic Effect of AZD2461 PARP Inhibitor

Cancers carrying defects in BRCA-1 are known to be more susceptible to the cytotoxic
effect of PARP inhibitors [22], and therapeutic strategies able to reduce the expression
of BRCA-1 as well as other HR molecules, such as RAD51 [23], or to exacerbate DNA
damage [24] can be used to potentiate the cytotoxicity of PARP inhibitors. Therefore, in
this study the combination of 4µ8C and AZD2461 PARP inhibitor was evaluated against
Akata cells in which BRCA-1 and RAD51 were efficiently downregulated by 4µ8C. As
shown in Figure 4A,B, such a drug combination reduced Akata cell survival and induced a
stronger PARP cleavage compared to single treatments. As expected, the AZD2461/4µ8C
combination also triggered stronger DNA damage in these cells, which was evidenced by
the increased phosphorylation of H2AX (Figure 4B) and by the high number of H2AX-
positive foci (Figure 4C).
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Figure 4. Inhibition of IRE1-alpha/XBP1 axis increases the cytotoxic effect of PARP inhibition in
BL cells. Akata cells were pre-treated with 4µ8C (15 µM) for 1 h followed by treatment with AZD2461
(AZD) (40 µM). (A) After 24 h, the cell viability was measured by a Trypan Blue exclusion assay; the
histograms represent the mean plus S.D. of live cells as percent of untreated control cells. (B) Protein
expression level of PARP and γ-H2AX was evaluated by Western blot analysis. β-Actin was used as
loading control and one representative experiment of three is shown. The histograms represent the
densitometric analysis of the ratio of specific protein and the appropriate control of three different
experiments. The data are represented as the mean plus S.D. (C) γ-H2AX foci (red) were assessed by
IFA in Akata cell line. DAPI (blue) was used for nuclear staining. One representative experiment out
of three is reported. The histograms represent the mean plus S.D. of the number of foci/cell obtained
by three different experiments. Bars = 20 µm. p value: * p < 0.05; ** p < 0.001; *** p < 0.0001.
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2.5. 4µ8C Induces in PEL Cells Effects Similar to Those Observed against BL Cells

We then extended this study to BCBL1 PEL cells, a B-cell lymphoma in which the
pro-survival role of XBP1s [25] and the cross-talk of this molecule with c-Myc has been
previously shown [10]. Interestingly, 4µ8C, which efficiently reduced XBP1s expression
(Figure 5B), increased the cytotoxicity of AZD2461 also in these cells compared to the single
treatments (Figure 5A). Again, in these cells, such a combination induced a stronger PARP
cleavage (Figure 5C) and DNA damage (Figure 5C) in comparison to 4µ8C and AZD2461
alone. These results suggest that the combination of inhibitors of IRE1α and PARP could
be a promising therapeutic strategy against lymphomas other than BL, given that it was
effective also against PEL cells that are known to respond poorly to therapy [26].
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Figure 5. The inhibition of IRE1-alpha/XBP1 axis increases the cytotoxic effect of PARP inhibition
also in PEL cells. BCBL1 cells were pre-treated with 4µ8C (40 µM) for 1 h and subsequently treated
with AZD2461 (AZD) (40 µM). (A) After 24 h, the cell viability was measured by a Trypan Blue
exclusion assay. The histograms represent the mean plus S.D. of live cells as percent of untreated
control cells. (B, C) Protein expression level of XBP1s, PARP and γ-H2AX was evaluated by Western
blot analysis. β-Actin was used as loading control and one representative experiment is shown. The
histograms represent the densitometric analysis of the ratio of specific protein and β-Actin of three
different experiments. Data are represented as the mean plus S.D. p value: * p < 0.05; ** p < 0.001;
*** p < 0.0001.

3. Discussion

c-Myc overexpression is strongly involved in cell proliferation and pathogenesis of
BL [27,28]. This B-cell lymphoma also often carries EBV infection with a different pattern
of viral protein expression, which may influence the response to therapy [29]. It has been
reported that IRE1α/XBP1 signaling is particularly important for growth/survival of Myc-
overexpressing BL cells, dependent on elevated stearoyl-CoA-desaturase 1 (SCD1) activity,
and that the inhibition of IRE1α/XBP1 could potentiate the cytotoxicity of chemotherapies
already used against BL [8]. In this study, we observed that IRE1α/XBP1 inhibition by
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4µ8C was more effective in reducing BL cell survival compared to the inhibition of the
other two UPR sensors, although such a difference was more evident in type I latency
expressing Akata and EBV negative Oma 5 cells in comparison to type III latency BL36 cells.
Interestingly, the presence or the absence of EBV can also influence the susceptibility to
superinfection by other herpesviruses [30]. Identifying the differences between lymphoma
cells harboring or not harboring viral infection or expressing a different pattern of viral
antigens can help to design more appropriate therapies. In the case of EBV-associated
lymphomas, our results suggest that for BL, which mainly express type I latency, the
targeting of IRE1α/XBP1 may be more promising than for post-transplant EBV-positive
lymphomas, mainly characterized by type III latency. However, as for other cancers,
lymphoma cells overexpressing c-Myc are characterized by a high level of constitutive
stress, which renders them highly dependent on the activation of UPR sensors such as
IRE1α [13]. The cytotoxic effect of IRE1α/XBP1 inhibition by 4µ8C correlated with the
downregulation of c-Myc in BL cells, given that the latter may engage a positive feedback
loop with XBP1s to sustain the survival of cancers [6,10]. Targeting UPR has also been
reported to be effective in reducing cell survival of mutp53-carrying cancers through the
upregulation of the pro-apoptotic UPR molecule CHOP [31], even if the presence of mutp53
may render cancer cells more resistant to such treatment [32]. However, in a recent study,
we found that the inhibition of the IRE1α/XBP1 axis efficiently reduced the survival of
mutp53-carrying Multiple Myeloma (MM) cells [19], encouraging the use of this therapeutic
strategy against mutp53-carrying hematological cancers also. In concordance with previous
studies showing an interconnection between UPR and DDR [11], in this study we found that
XBP1s inhibition resulted in a reduced expression of RAD51 and BRCA-1, both at protein
and mRNA levels. This led to an impairment of DDR, in particular of the HR pathway,
and to an increase of DNA damage in BL cells. Another interesting finding of this study is
that, through this mechanism, 4µ8C sensitized BL cells to the cytotoxic effect of AZD2461
PARP inhibitor, identifying a new therapeutic combination that could be used against
this aggressive B-cell lymphoma. Indeed, when drugs directly targeting DDR are used in
combination with PARP inhibitors, they not only induce a stronger cytotoxic effect but may
also help to reduce the resistance to PARP inhibitors that cancer cells often develop [16,33].
In particular, strategies targeting the HR may offer this opportunity [34], as PARPs, although
contributors to all DNA repairing systems, are particularly involved in base excision repair
(BER) and NHEJ rather than HR [35]. Interestingly, an impairment of HR can be induced by
4µ8C, as this drug, besides inhibiting a specific UPR sensor, can indirectly impair DDR. Of
note, we found that the 4µ8C/AZD2461 combination was effective also against PEL cells,
another B-cell lymphoma known to be strongly dependent on UPR activation, particularly
on the IRE1α/XBP1 axis [25]. As for BL, PEL proliferation is driven by c-Myc together with
the presence of the oncovirus KSHV and, in some cases, also of EBV [36]. The findings
of this study suggest that this previously unexplored combinatorial therapeutic approach
could have wider applications for the treatment of aggressive B-cell lymphomas such as
those associated with gammaherpesviruses, even if more cell lines and in vivo experiments
will be important to further support our results. The combination therapy tested in the
present study could be also added to the evolving therapeutic landscape of aggressive
B-cell lymphoma recently reviewed by Patriarca et al. [37].

4. Materials and Methods
4.1. Cell Cultures and Treatments

BL cell line Akata established from a Japanese patient with Burkitt’s lymphoma
was kindly provided by Prof. Takada [38], BL-36 cells were obtained from Prof. Klein
laboratories [39], Oma 5 cells were isolated as EBV-negative clone from Oma-BL1 [18],
and PEL cell line BCBL1 was kindly provided by Prof. P. Monini (National AIDS Center,
Istituto Superiore di Sanità, Rome, Italy). Cells were maintained in RPM1-1640 (PAN-
Biotech, Aidenbach, Germany) supplemented with 10% Fetal Bovine Serum (FBS) (Corning,
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Corning, NY, USA), 1% L-glutamine (100 µg/mL) (Aurogene, Rome, Italy), 1% streptomycin
and penicillin (100 U/mL) (Aurogene, Rome, Italy) at 37 ◦C in a 5% CO2 incubator.

Cells were plated in 6-well plates at a density of 3 × 105 cells/mL in 2 mL and
treated with 0.5 µM GSK2606414 (GSK) (PERK inhibitor) (S7307; Selleckem, Houston, TX,
USA), 15 µM 4µ8C (IRE1 RNAse inhibitor) (SML0949; Sigma-Aldrich, Burlington, MA,
USA), 12 µM CeapinA7 (ATF6a signaling blocker) (SML2330; Sigma-Aldrich, Burlington,
MA, USA and 30 µM MKC-8866 (IRE1 RNase inhibitor) (HY-104040; MedChemExpress,
Monmouth Junction, NJ, USA) for 24 h. The concentrations of the drugs were designed
based on preliminary experiments and previous studies [25]. In some experiments, cells
were plated in 6-well plates as reported above and were pre-treated 15 µM 4µ8C for 1 h,
subsequently treated with 40 µM AZD2461 (PARP inhibitor) (SML1858; Sigma-Aldrich,
Burlington, MA, USA) and cultured for additional 24 h. The untreated cells were used
as control.

To evaluate the cytotoxic effects of these drugs on primary B lymphocytes, human
peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated by lympho-
cyte cell separation medium (CL5020; Cedarlane, Burlington, Canada) [40] and B lympho-
cytes were separated by immunomagnetic cell separation kit using anti-CD19-conjugated
microbeads, according to the manufacturer’s instructions (130-050-301, Miltenyi Biotec,
Bergisch Gladbach, Germany). B cells were cultured in RPMI-1640 complete medium, in 5%
CO2-saturated humidity at 37 ◦C in 24-well plates at density of 2 × 106 cells/mL and then
treated with 0.5 µM GSK2606414, 15 µM 4µ8C or 12 µM CeapinA7 for 24 h. The untreated
cells were used as control.

4.2. Cell Viability

The cell viability was evaluated by a Trypan Blue (Sigma-Aldrich, Burlington, MA,
USA) exclusion assay after 24 h of treatments. The cells were counted by light mi-
croscopy (Labovert FS Inverted Microscope, Leica Microsystems, Wetzlar, Germany) using
a Neubauer hemocytometer. The experiments were performed in triplicate and repeated at
last three times.

4.3. Western Blot Analysis

After treatments, the cells were washed in 1X PBS (Aurogene, Rome, Italy), lysed
in RIPA buffer (150 mM NaCl, 1% NP-40 (Calbiochem, San Diego, CA, USA), 50 mM
Tris-HCl (pH 8), 0.5% deoxycholic acid (Sigma-Aldrich, Burlington, MA, USA), 0.1% SDS
(Sigma-Aldrich, Burlington, MA, USA), protease and phosphatase inhibitors (Roche, Basel,
Switzerland), and centrifuged at 14,000 rpm for 20 min at 4 ◦C by Sigma 1-15PK refrig-
erated centrifuge (Sigma Laborzentrifugen, Osterode am Harz, Germany). The protein
concentration was measured by using the Bio-Rad Protein Assay (BIO-RAD laboratories
GmbH, Munich, Germany), and 12 µg of protein was subjected to electrophoresis on 4–12%
NuPAGE Bis-Tris gels (Life Technologies, UK) according to the manufacturer’s instruc-
tion. The gels were transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA)
for 1 h in Tris-glycine buffer and the membranes were blocked in 1X PBS–0.1% Tween 20
(Serva, Heidelberg, Germany) solution containing 3% of BSA (Serva, Heidelberg, Germany),
probed with specific antibodies and developed using ECL Blotting Substrate (Advansta,
CA, USA).

4.4. Antibodies

To evaluate protein expression the following primary antibodies were used: rabbit
polyclonal anti-phospho-eIF2α (Ser51) (9721; Cell Signaling, Danvers, MA, USA), rab-
bit polyclonal anti-eIF2α (9722; Cell Signaling, Danvers, MA, USA), rabbit polyclonal
anti-XBP1s (24868-1-AP; Proteintech, Rosemont, IL, USA), anti-BiP/GRIP78 (11587-1-AP;
Proteintech), rabbit polyclonal anti-Caspase 9 (10380-1-AP; Proteintech, Rosemont, IL,
USA), rabbit polyclonal anti-c-Myc (10828-1-AP; Proteintech, Rosemont, IL, USA), mouse
monoclonal anti-γ-H2AX (Ser 139) (sc-517348; Santa Cruz Biotechnology, Dallas, TX, USA),
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mouse monoclonal anti-BRCA-1 (OP92; EMD Millipore, Burlington, MA, USA), mouse
monoclonal anti-RAD51 (G-9) (sc-377467; Santa Cruz Biotechnology, Dallas, TX, USA), and
rabbit monoclonal anti-PARP (46D11) (9532; Cell Signaling, Danvers, MA, USA). Mouse
monoclonal anti-β-actin (A5316; Sigma-Aldrich, Burlington, MA, USA) was used as loading
control. The goat anti-Mouse IgGP Peroxidase Conjugate (401215; Sigma-Aldrich, Burling-
ton, MA, USA) and the goat anti-Rabbit IgG Peroxidase Conjugate (DC03L; Sigma-Aldrich,
Burlington, MA, USA) were used as secondary antibodies.

4.5. Indirect Immunofluorescence Assay

Indirect immunofluorescence assay (IFA) was performed to evaluate γ-H2AX foci
formation. Akata cells were plated in 6-well plates as reported above, and were pre-treated
with IRE1 RNAse inhibitor 4µ8C (15 µM) for 1 h, then treated with AZD2461 (10 µM),
which is a PARP inhibitor, for an additional 24 h. After treatments, cells were washed with
PBS, applied onto multi-spot microscope slides, and air-dried. Slides were then incubated
with 2% paraformaldehyde (Electron Microscopy Science) for 30 min and permeabilized
with 0.1% Triton X-100 (Sigma-Aldrich, Burlington, MA, USA) for 5 min. After three
washes, cells were incubated with 1% glycine (Serva, Heidelberg, Germany), 3% BSA
for a further 30 min. Thereafter, cells were incubated with mouse primary monoclonal
antibody anti-γ-H2AX (phosphor-Ser 139) (sc-517; Santa Cruz Biotechnology, Dallas, TX,
USA) for 1 h at room temperature. Subsequently, cells were incubated with a polyclonal
conjugated-Cy3 sheep anti-mouse antibody (Jackson ImmunoResearch, Cambridge, UK)
for 30 min at room temperature and stained with DAPI (Sigma-Aldrich) for 1 min at room
temperature. Slides were analyzed with Apotome Axio Observer Z1 inverted microscope
(Zeis, Wetzlar, Germany) equipped with an AxioCam MRM Rev.3 at 40× magnification.
Foci number analysis was performed by Image J software (1.47 version, NIH, Bethesda,
MD, USA).

4.6. RNA Isolation and Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

After treatments, total RNA from Akata and Oma 5 cells was isolated as described
previously [41]. Briefly, total RNA was isolated with TRIzol™ Reagent (Invitrogen, Life
Technologies Corporation, Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions. The concentration and purity of RNA were determined at 260/280 nm using a
Nanodrop (MaestroNano Micro-Volume Spectrophotometer, MaestroGen, Hsinchu, Tai-
wan). c-Myc, BRCA-1, and RAD51mRNA expression levels were analyzed using TaqMan
gene expression assays (Applied Biosystems, Vilniaus, Lithuania): 2 µg of total RNA
was reverse-transcribed into cDNA using High-capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific, Waltham, MA, USA) and a mastermix containing 2 µL
cDNA (20 ng), 1 µL of TaqMan gene expression assays specific for c-Myc, BRCA-1, RAD51
(HS00153408-m1, HS01556193-m1, HS01556193-m1; Applied Biosystem, Vilniaus, Lithua-
nia) and 10 µL of 2x TaqMan Fast Advance Master Mix was prepared for each PCR. The
PCRs were run on an Applied Biosystem Real-Time thermocycler (Applied Biosystems, Vil-
niaus, Lithuania). Each amplification was performed in triplicate, and the average of three
threshold cycles was used to calculate transcript abundance. The starting concentration
of each specific product was divided by the starting concentration of reference gene B2M
(HS99999907-m1; Applied Biosystem, Vilniaus, Lithuania) and this ratio was compared
between treated/control groups.

4.7. Densitometry Analysis

The quantification of protein bands was performed by densitometric analysis using
the Image J software (1.47 version, NIH, Bethesda, MD, USA).
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4.8. Statistical Analysis

The results are represented as the mean plus standard deviation (SD) of at least
three independent experiments, and a two-tailed Student’s t-test was used to demonstrate
statistical significance. Difference was considered as statistically significant when p-value
was at least < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23169113/s1.
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