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Activation energy and force fields during
topological transitions of fluid lipid vesicles
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Topological transitions of fluid lipid membranes are fundamental processes for cell life. For

example, they are required for endo- and exocytosis or to enable neurotransmitters to cross

the neural synapses. Here, inspired by the idea that fusion and fission proteins could have

evolved in Nature in order to carry out a minimal work expenditure, we evaluate the minimal

free energy pathway for the transition between two spherical large unilamellar vesicles and a

dumbbell-shaped one. To address the problem, we propose and successfully use a Ginzburg-

Landau type of free energy, which allows us to uniquely describe without interruption the

whole, full-scale topological change. We also compute the force fields needed to overcome

the involved energy barriers. The obtained forces are in excellent agreement, in terms of

intensity, scale, and spatial localization with experimental data on typical fission protein

systems, whereas they suggest the presence of additional features in fusion proteins.
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Topological transitions of fluid lipid membranes are
involved in most of the fundamental processes of cell life,
like endocytosis and exocytosis. An example of such

transformation is the merging of two membranes. This is the case
of vesicle–vesicle fusion or viral membrane fusion. Indeed, viruses
enveloped by a lipid bilayer, such as HIV, Ebola virus, influenza,
measles, rabies virus, and SARS-CoV-2 can infect a target cell by
fusion of their membrane with the cell plasma membrane1,2. Viral
infection can also occur via endocytosis, in which the plasma
membrane undergoes fission to internalize the virus via an
endosome. Therefore, another important topological change is
membrane fission, which is also fundamental for cell division and
therefore for life3,4. Topological transitions of lipid membranes
are of great interest not only in biology and biophysics but also in
medicine and in the pharmaceutical industry. Indeed, lipid-based
nanoparticles are used for drug delivery, offering many advan-
tages including biocompatibility, bioavailability, self-assembly,
and payload flexibility5. Micelles, closed lipid monolayers, are
currently used in mRNA vaccines against COVID-19 and many
other lipid nanoparticle-mRNA applications are under clinical
evaluation, e.g. for the treatment of cancer or genetic diseases6.
Regardless of the application, all these nanoparticles are engi-
neered to overcome the physiological barriers by exploiting
topological transitions7.

Fluid lipid membranes can be mechanically described using a
continuum approach initially introduced by Canham8 and
Helfrich9. Such a classical elastic perspective describes a mem-
brane as a two-dimensional surface Γ with an energy density
depending on its principal curvatures. An expansion of this
density up to the second-order in curvatures leads to the
Canham–Helfrich Hamiltonian:

ECH½Γ� ¼ 2k
Z

Γ
ðM �mÞ2 dSþ kG

Z
Γ
G dS: ð1Þ

Here, the first term on the right-hand side is the bending
energy and the second one is the Gaussian energy. M is the mean
curvature of the surface, G it’s Gaussian curvature, m a sponta-
neous mean curvature that the membrane tends to adopt in
absence of external forces, and k and kG are called bending
rigidity and Gaussian curvature modulus, respectively. k can be
experimentally measured in different ways10, whereas kG is more
elusive due to the celebrated Gauss–Bonnet theoremZ

Γ
G dS ¼ 2πχðΓÞ �

Z
∂Γ
kg dl; ð2Þ

where χ(Γ) is the Euler characteristic of Γ and kg is the geodesic
curvature of the surface boundary ∂Γ. In the vesicle case, since
they are compact surfaces without boundary, the line integral
vanishes, and χ(Γ) becomes equal to 2−2g, being g the genus of
the surface. Therefore, the Gaussian energy term remains con-
stant as long as no topological transitions occur, leading to the
aforementioned elusive behavior of kG. A stability argument11

shows that −2 < kG/k < 0 and there is evidence12–14 that kG ≈−k.
Because of the scale invariance of the Canham–Helfrich free
energy, for a given topology, vesicles shapes are dictated by their
reduced volume v ¼ V=ðπD3

ve=6Þ, as well as by their reduced
spontaneous curvature m0=mDve, where Dve ¼

ffiffiffiffiffiffiffiffiffi
A=π

p
is the

characteristic length of the vesicle under consideration, having
area A and volume V. The Canham–Helfrich description is
thought to hold15 for vesicles with a characteristic length Dve ≥
40ℓme, being ℓme the lipid bilayer thickness, which is usually
about 5 nm; otherwise, higher-order terms in the energy density
could make a significant contribution. In fact, for symmetric
membranes15–17, this limit safely reduces to 10ℓme. As a matter of
fact, most of the experimental results concerning lipid bilayers are
still today interpreted in light of this celebrated model.

Nevertheless, its main limitation consists of the inability to
account for topological changes, like those associated with fusion
and fission processes.

The most commonly used techniques for in silico studies of
topological transitions to date are coarse-grained molecular
dynamics (MD) and dissipative particle dynamics (DPD)18–28.
These computer simulations, which take into account the mole-
cular details of lipid bilayers, allow monitoring in time mor-
phological changes of small liposomes29. In many cases of
interest, including topological transitions, the size of the vesicles
is significantly larger or the characteristic time of the process is
longer than accessible to purely atomistic methods. For example,
in neurotransmission, the fusion of small synaptic vesicles can
take hundreds of microseconds30. Recently, in order to reach
larger vesicle sizes, hybrid, multiscale approaches have been
proposed31–33. Describing the complete topological rearrange-
ment of these large-sized vesicles is the target of the present study.

Concerning experiments, controlled fission of cell-sized vesi-
cles by low densities of membrane-bound proteins has been
recently reported34 and other examples of fission experiments can
be found in literature35,36. As regards fusion, the merging of giant
liposomes has been observed37–39 along with the stalk
intermediate40 and activation energies for small liposomes fusion
events have been measured by means of kinetic analysis41,42.

In order to enable the modeling of full-scale topological tran-
sition, a Ginzburg–Landau approach43, as opposed to the classical
Canham–Helfrich description, is intrinsically able to handle
topological transformations. In this context, an analog of the
bending energy term was initially introduced by Du et al.44–46,
leading to numerous applications regarding, e.g., vesicle adhesion,
equilibrium shapes, pearling instability, or red blood cells under
flow47–55. Furthermore, it has been pointed out56 that it is pos-
sible to retrieve topological information from such models.
However, all these works do not include the Gaussian contribu-
tion to free energy in the dynamics. As will be shown below, the
inclusion of a term accounting for such a contribution is crucial
to correctly predict the physics of fusion and fission events.
Indeed, in accordance with the Gauss–Bonnet theorem, the term
we introduce allows for the quantized energy jumps that sig-
nificantly contribute to the free energy barriers of topological
transitions. From a strictly mathematical point of view, the pro-
posed free energy function regularizes the Gaussian term of the
Canham–Helfrich Hamiltonian, allowing the description of the
process also across the topological change.

In this work, we develop, numerically demonstrate, and use a
Ginzburg–Landau type of free energy to study fission and fusion
events of large unilamellar vesicles (LUVs). Exploiting rare event
techniques57, we compute a minimal energy pathway (MEP)58–61

and the free energy barrier between two spherical vesicles and a
dumbbell-shaped one, a case recently observed in experiments34.
We also compute the force fields needed to overcome these
barriers in a straightforward manner, uniquely accounting for the
force component arising from the Gaussian energy. These forces
are necessary to balance the reaction resulting from the mem-
brane (bending and Gaussian) elasticity and incompressibility; see
Guckenberger et al.62 for a discussion on the difficulties in
computing the bending forces using more classical approaches.
The computation of the complete system of forces is expected to
pave the way for exploring how the protein machinery effectively
works across the full scale of vesicles.

In the main text, for the reason of brevity and definiteness, we
focus on the aforementioned system considering a zero sponta-
neous curvature. However, we stress that the approach we pro-
pose and the simulations that can be carried out thereof are
completely general, as demonstrated by some further examples
illustrated in the Supplementary Discussion.
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Results and discussion
Free energy functional. The classical Canham–Helfrich model
succeeds in describing many aspects of the vesicle dynamics but
rules out the possibility of dealing with topological changes unless
surgical operations are conceived to cut and paste patches of the
membrane63. A viable alternative to the sharp interface descrip-
tion is to employ a smooth function defined on a domain Ω —the
phase-field ϕ(x)— that discriminates between the inner and the
outer environment of the vesicle assuming the limiting values ±1
in the two regions. The ϕ(x)= 0 level set represents the mem-
brane mid-surface Γ. The transition between the two limiting
values takes place in a narrow region whose width is controlled by
a small parameter ϵ. This region will also be related to the
thickness of the lipid bilayer. The main advantage of describing
the membrane with such a field lies in the fact that it enables
topological modifications of the membrane, allowing to address
the problem of vesicle fusion and fission.

A free energy functional

E½ϕ� ¼ EB½ϕ� þ EG½ϕ�; ð3Þ

is associated with each field configuration, where

EB½ϕ� ¼ k
3

4
ffiffiffi
2

p ϵ

Z
Ω
Ψ2

B dV ; ð4Þ

ΨB ¼ ∇2ϕ� 1
ϵ2
ðϕ2 � 1Þðϕþ

ffiffiffi
2

p
ϵmÞ; ð5Þ

and

EG½ϕ� ¼ kG
35

16
ffiffiffi
2

p ϵ3
Z

Ω
ΨG dV; ð6Þ

ΨG ¼∇j∇ϕj2 � ∇j∇ϕj2
2

� ð∇j∇ϕj2 � ∇ϕÞ∇2ϕ

þ j∇ϕj2 ð∇2ϕÞ2 þ ∇ϕ � ∇∇2ϕ� ∇2j∇ϕj2
2

� �
:

ð7Þ

EB[ϕ] models the bending energy of the membrane44, while EG[ϕ]
is the term proposed here to account for the Gaussian
contribution. In the section “Methods”, we show that the free
energy functional E[ϕ] recovers the Canham–Helfrich Hamilto-
nian, E[ϕ] ~ ECH[Γ], in the sharp interface limit (λ= ϵ/Dve≪ 1).

Furthermore, lipid vesicles are subjected to geometrical
constraints on area A and enclosed volume V. Indeed, given the
large tension associated with the area change, membrane bending
cannot significantly modify A. The volume V is instead
determined by the osmotic conditions. In order to enforce the
above constraints in this phase-field context, we use suitable
functionals A[ϕ] and V[ϕ] which recover the vesicle area and
volume, respectively, in the sharp interface limit (see the section
“Methods”).

Throughout the paper, an asterisk will denote the dimension-
less quantities obtained using ϵ as the reference length and 8πk as
the reference energy. The latter is the bending energy of an
isolated sphere. The typical value of the bending rigidity is
k= 20 kBT, with kB the Boltzmann constant and T the
temperature. Moreover, unless, otherwise explicitly stated, we
will henceforth assume kG=−k.

As an illustrative example of the effectiveness of the approach,
Fig. 1 shows the Gaussian energy during a series of scissions of an
unstable prolate shape into several spheres due to the presence of
a spontaneous curvature, see also Rueda-Contreras et al.64. The
evolution equation is described in the section “Methods” together
with the adopted numerical scheme. In the same section, the
consistency of the present phase-field approach with the
Gauss–Bonnet theorem is discussed. Here, it is only worth saying
that the energy functional we propose is able to properly capture
the Gaussian energy jumps due to topological transitions.

Minimal energy pathway. In the topological transition between
two spherical vesicles and a dumbbell-shaped one, which are two
stable states, the system goes through a sequence of configura-
tions ϕα(x) in the space of the phase field, identifying a path
which we parameterize by the normalized arc-length α∈ [0, 1].
An MEP for this transition is a curve on the energy landscape
E[ϕ] connecting the two stable states ϕα=0(x) and ϕα=1(x),
respectively, and such that it is everywhere tangent to the gradient
of the potential (∂ϕα/∂α∝ δE[ϕα]/δϕ), except at critical points65.
An initial guess of the path is discretized in a string made up of
N= 100 images corresponding to αi= (i−1)/(N−1). The initial
guess is relaxed towards the MEP by means of the string
method57,66,67, suitably accounting for the constraints of constant
total surface area, Eq. (17), and enclosed volume, Eq. (18) (see the
section “Methods”). The obtained MEP goes through a saddle
point ϕαc ðxÞ for the free energy, determining the transition bar-

riers ΔEy
0!1 ¼ E½ϕαc � � E½ϕα¼0� and ΔEy

1!0 ¼ E½ϕαc � � E½ϕα¼1�,
for the forward and backward processes, respectively.

Figure 2 shows the computed MEP for membranes with zero
spontaneous curvature, m= 0. Since the phase-field ϕ reaches its
limiting values ±1 with an accuracy of about 3% already at a
distance of ±3ϵ from the ϕ= 0 membrane mid-surface, we assume
that ℓpf= 6ϵ represents the thickness of the diffuse interface. In the
section “Methods”, we show that the phase-field description
recovers the Canham–Helfrich model in the limit of small λ∝ ‘pf/
Dve. Our numerical experiments, reported in the Supplementary

Fig. 1 Free energy evolution example. The phase-field Gaussian energy
EG during a series of scissions of a prolate shape into several spheres (main
plot, blue line), where symbols identify the shown vesicle configurations.
The energy jumps by −4πk for any division as prescribed by the
Gauss–Bonnet theorem (k=−kG). The fission process occurs due to the
presence of a spontaneous curvature m*≈ 0.42. Time evolution is given by
the Allen–Cahn gradient flow with M*= 8 (see the section “Methods” for
more details on the dynamics, the adopted numerical scheme, and
dimensionless quantities). The inset shows the total energy E= EB+ EG,
which monotonically decreases in time, revealing the stability of the
scheme. This z-axial symmetric simulation has been carried out in a
[0, 36] × [0, 440] computational domain in the r*−z* plane with a
54 × 660 mesh, initial D�

ve ¼ 1=λ � 109 and dt*= 4. There is no constraint
on the area, which, at the end of the simulation, differs from the initial value
by ~6.9%. Volume is conserved with a relative error smaller than 10−7 with
respect to its initial value.
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Methods, point out that this asymptotic behavior is already
achieved when ‘pf=Dve>> ð‘me=DveÞmax ¼ 1=40.

Since the relative distance between approaching membrane
segments is relevant during the topological transition, it is crucial
that the diffuse interface width matches the bilayer
thickness. This requirement fixes the scale of our system. Setting
‘pf= ‘me= 5 nm, the configurations shown in Fig. 2a correspond
to vesicles with Dve ≈ 206 nm, thus within the range of validity of
the asymptotic Canham–Helfrich model.

Figure 2a shows successive configurations along the MEP.
Increasing/decreasing α corresponds to moving along the path in
the direction of the fusion/fission (forward/backward) process,
respectively. Proceeding forward, the two vesicles come closer to
each other without deforming, get in touch, and merge together
forming a narrow neck that expands until the final dumbbell-
shaped configuration is reached. As explained in the section
“Introduction”, the equilibrium states of a vesicle are determined
by its reduced volume and reduced spontaneous curvature,
which, in the present case, are v ¼ 1=

ffiffiffi
2

p
and m0= 0,

respectively, where 1=
ffiffiffi
2

p
is the only reduced volume compatible

with a vesicle obtained from the fusion of two spheres of the same
radius (see the Supplementary Discussion). With these para-
meters, it is possible to reach two axisymmetric configurations
with the topology of a sphere, namely one oblate-discocyte shape
and one prolate-dumbbell shape68. The latter has the lowest
energy and, in the present case, is the equilibrium state assigned
to the string as the final configuration, ϕα=1(x).

The main plot of Fig. 2b shows the free energy profile along the
MEP. The free energy of the final configuration (prolate) is
E[ϕα=1]/(8πk) ≈ 1.12, which is larger than the sum E[ϕα=0]/
(8πk)= 1 of the initial energies of the two spheres. Both values
are in excellent agreement with the data reported in the

literature68. One may notice that the two-sphere configuration
possesses a sequence of neutral equilibrium states, corresponding
to rigid translations during which the two vesicles approach/
separate from each other (configurations i from 1 to 11, as also
depicted in Fig. 2a). The saddle point consists of two spheres
connected by a small narrow neck and is located between
configurations i= 14 and i= 15, with the latter having the
highest energy of the two, E½ϕα¼αc

�=ð8πkÞ � 1:45. It should be
noticed that such a configuration possesses the bending energy of
two spheres together with the Gaussian energy and the topology
of a single sphere. Hence, the forward and backward free energy
barriers are ΔEy

0!1=ð8πkÞ � 0:45 and ΔEy
1!0=ð8πkÞ � 0:33,

respectively. Considering a bending rigidity10 k of order 20 kBT,
it turns out that, in the present conditions, m= 0, both fusion and
fission processes cannot take place spontaneously and require
further agents in order to happen, in addition to the elasticity and
thermal fluctuations. These agents are typically protein systems
whose mode of operation may differ considerably from case to
case, e.g. by involving active motors or simply modifying the
membrane spontaneous curvature69; see Fig. 1 and the Supple-
mentary Discussion for examples of spontaneous curvature-
induced topological rearrangement. Still, in the main plot of
Fig. 2b, it is possible to observe a substantial asymmetry between
fusion and fission, with a much steeper energy increase required
to reach the transition state in the fusion process.

Figure 2c provides the bending and Gaussian contributions to
the free energy along the MEP. Apparently, the forward barrier
ΔEy

0!1 is almost entirely due to the Gaussian energy jump
associated with the topological change. On the other hand, the
backward barrier ΔEy

1!0 builds up continuously with the
progressive deformation of the prolate shape to form the narrow
neck preceding the actual fission. This conclusion is substantiated

Fig. 2 The minimal free energy path. The MEP connecting two spheres of radius R*= 87.5 with a dumbbell shape, k=−kG. The path consists of vesicles
with a constant area and volume and therefore with constant reduced volume v � 1=

ffiffiffi
2

p
. There is no spontaneous curvature, m*= 0. This z-axial

symmetric result is obtained with the string method and the here proposed free energy functional, using a [0, 96] × [−245, 245] computational domain in
the r*−z* plane with a grid of 144 × 735 nodes per image, N= 100 images and 1/λ≈ 247.5. As explained in the text, this setting leads to having
Dve≈ 206 nm. The dimensionless quantities are however useful because, far from the moment in which the topology changes, the scale invariance is
expected to hold. a Six vesicle shapes along the minimal energy path, identified by their image number i= (N−1)αi+ 1, being α the string parameter (equal
arc-length parameterization). From right to left we can observe the fission process of the dumbbell shape into two spheres, whereas from left to right the
fusion process. b The free energy (Eq. (3)), along the path. The saddle point is placed between the images i= 14 and i= 15 and consists of two spherical
vesicles connected by a catenoid-like neck. The black solid line identifies the steepest stretch of the MEP, namely the region where a refinement will be
carried out in the Discussion. The inset shows two additional MEPs for the same system but with kG/k=−0.5 and kG/k=−1.5, respectively. In this case,
the energy difference with respect to the initial state, ΔE, is reported on the y-axis. c The bending and Gaussian energy contributions along the path.
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in the inset of Fig. 2b, where additional MEPs with different kG
show that the fusion barrier is directly affected by the Gaussian
modulus while the fission one remains substantially unaffected.

The formation of the catenoid-like neck70 has also been
observed in the experiments36. Operationally, we define the neck
region as the z-chunk of the fused vesicle where the local
contribution to the Gaussian energy

Eneck
G ðZÞ ¼ kG

35
16

ffiffi
2

p ϵ3
RþZ
�Z dz

R
2πr ψG dr; ð8Þ

is positive. The Gaussian energy of the neck along the MEP is
shown in Fig. 3a, blue line. Proceeding from left to right,
Eneck
G ðZÞ=ð8πkÞ sharply increases to a value close to (though

smaller than) 0.5 and subsequently decreases. According to the
Canham–Helfrich model, the sharp interface Gaussian energy of
a sphere is ECH

G =ð8πkÞ ¼ �0:5. Given two initially disjoint sharp
spheres (ECH

G =ð8πkÞ ¼ �1), a joining neck changes the topology
and reduces the energy to that of a single sphere,
ECH
G =ð8πkÞ ¼ �0:5. There are two main reasons why the present

free energy provides a neck contribution that is slightly smaller
than 0.5: (i) close to the transition state, the curvature of the neck
generatrix is comparable with the finite thickness of the bilayer so
that the sharp-interface model is inappropriate; (ii) the value 0.5

is an upper limit for the sharp interface Gaussian energy of the
neck (see, e.g., the Gauss Map71). Evidently, Eneck

G ðZÞ is the main
contribution to the forward barrier ΔEy

0!1=ð8πkÞ � 0:45. Pro-
ceeding to the right along the MEP, beyond the saddle point,
Eneck
G ðZÞ progressively decreases, Fig. 3a, blue line. Since, Fig. 2c,

in that region the total Gaussian energy remains overall constant,
EG/(8πk)=−0.5, the (Gaussian) energy lost by the neck is
redistributed to the remaining, dome-like parts of the vesicle.
Figure 3a, orange line with dots, also provides the neck Gaussian
energy as post-processing based on the sharp interface
Canham–Helfrich energy (Eq. (1)), computed considering the
ϕ= 0 levels set as the membrane mid-surface (see Fig. 3b and
the Supplementary Methods for additional details).

Force fields. Figure 4 focuses on the region of the MEP where the
most relevant events associated with the topological transition
take place, images i= 11,… , 40. The contour plots provide the
structure of the phase-field as a function of radius r* and axial
coordinate z*, with ϕ smoothly joining the inner region ϕ= 1 to
the outer region ϕ=−1 through the layer of dimensionless
thickness ‘�pf ¼ 6.

As explained in the section “Methods”, each image of the string
can be rendered a state of equilibrium by introducing a force field
f=−δE/δϕ∇ϕ that counterbalances the membrane elastic reac-
tion. Considering the forward transition, 0→ 1, such force field
from α= 0 to α= αc can be interpreted as the external force
needed to drive the transition under quasi-static conditions, thus
spending the minimal work W0!1 ¼ ΔEy

0!1. Once the critical
state is overcome, the system can be left to evolve spontaneously
until it reaches the final equilibrium state α= 1. Symmetric
considerations hold for the backward transition 1→ 0. The
dimensionless vector fields f�αðxÞ are depicted as arrows in each
panel of Fig. 4, where, for the sake of better readability, they are
plotted only on the ϕ= 0 isoline. It should be noticed that the
scale of the arrows changes from panel to panel, at least for the
upper frames, i= 11,… , 14. For the forward process, the latter
are the configurations achieved just before the critical state. In
this region, the MEP is particularly steep, requiring more intense
forces, which result to be strongly localized near the vesicle
contact region. On the contrary, the backward process requires a
more distributed force field, as shown in images i= 15,… , 40.
The arrows reverse their direction between configurations i= 14
and i= 15, showing that in this interval the force field vanishes,
confirming that the critical state occurs somewhere between these
two images.

Insights into the action of proteins from the MEP. The forces
required for overcoming the fusion topological barrier are
stronger than those relative to fission, thus suggesting that the
sole mechanical action of proteins may be complemented by
additional features. For example, setting10 k= 20 kBT, the
resulting activation energy, ΔEy

0!1 � 226 kBT , is associated with a
very steep free energy profile. Consistently with the present
findings, Deserno72 suggests that fusion proteins, besides
mechanical action, may contribute to lowering the energy barrier
by locally modifying the Gaussian modulus in the contact region
of the approaching membranes. Indeed, the introduction of a
suitable, spatially dependent Gaussian modulus is expected to
reduce the stiffness associated with the Gauss–Bonnet theorem,
opening alternative routes to the topological change. Our results
show that this scenario is actually possible since the forces
associated with the Gaussian energy are localized in the region of
contact between the two spheres and, therefore, it is reasonable
that a variation of kG in such a region could lower the activation

Fig. 3 Neck Gaussian energy. a Normalized Gaussian energy of the neck,
EneckG ðZÞ=ð8πkÞ (Eq. (8)), along the MEP (blue line). The orange line with
dots provides the neck Gaussian energy as post-processing based on the
sharp interface Canham–Helfrich energy (Eq. (1)), computed considering
the ϕ= 0 levels set as the membrane mid-surface. The agreement between
the two curves progressively deteriorates when getting closer to the saddle
point, due to the increasing curvature of the membrane generatrix. In this
region, the finite thickness of the bilayer plays a crucial role and is taken
into account by the phase field. b Three membrane configurations sketching
the upper (yellow) circular boundary of the neck with its curvature radius r(Z)
(yellow arrow), and the osculating (red) circle to the vesicle cross-section with
the cutting plane passing through the neck boundary and containing both the
surface normal and the tangent to the circle. The radius Rn of the osculating
circle is shown as a red arrow. Using these quantities, the sharp interface

Canham–Helfrich energy reads EneckG;CHðZÞ=ð8πkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðrðZÞ=RnÞ2

q
=2. The

position of each configuration along the MEP is denoted by the corresponding
symbol (triangle, star, and rhombus).
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energy. For example, this situation is compatible with the
observation that influenza virus hemagglutinin proteins, in
addition to having apposition activity, are also able to perturb the
membrane lipid bilayer by insertion of their amphipathic fusion
peptide73. In this regard, the present phase-field approach can be
easily adapted to the instance of a topological transition with a
spatially dependent Gaussian modulus, a case we leave for
future work.

As anticipated, the forces at play during fission are more
distributed and less intense than for fusion. The large region they
act on (Fig. 4), is consistent with the cooperation of several
protein systems, like, e.g., in clathrin-mediated endocytosis,
which involves clathrin polymerization and the subsequent action
of the constrictase dynamin36. One can estimate the minimal
work the protein system needs to perform to induce the
topological change by comparing the free energy barrier ΔEy

1!0
with the protein work W1!0 ¼ f p Δr, where fp is the order of
magnitude of the protein force and Δr ¼ rmax � r0 is the change
in vesicle radius at the neck, between the equilibrium prolate
(rmax) and the saddle point configurations (r0). Given the scale of
the system described above, we find Δr= 37.4 nm which, from
the barrier height, provides fp= 0.91 k/(kBT) pN. For the values of
k proper of fluid lipid membranes, we thus obtain protein forces
in fairly good agreement with the experimental estimates34,
e.g.≃ 20 pN for dynamin,≃ 65 pN for ESCRT-III and ≃80 pN for
FtsZ. For example, by assuming k= 20 kBT, we obtain a protein
constriction force fp of 18.2 pN. For the same bending rigidity,
Fig. 5 shows —red curve with squares— the energy needed to
complete the fission process as a function of the current neck
radius rn, ΔE(rn)= E(rn)−E(r0) (note that the fission proceeds
from larger to smaller neck radii, i.e. from right to left along the
abscissa). The corresponding image number i along the MEP is
provided on the second abscissa axis on the top of the frame. The
slope of the plot, dΔE/drn, orange line with triangles, provides the
estimate of the constriction force (positive when constrictive). A
plateau is apparent at dΔE/drn≃ 20 pN in the range of radii
16 ≤ rn ≤ 21 nm. Notably, it is known from the literature74 that,
e.g., dynamin polymerizes on tubules with radius between 10 and
30 nm, exerting forces of the order of 20 pN. In order to facilitate
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Fig. 4 Force fields along the MEP. Detailed views in the r*−z* plane of the vesicle configurations. The index i= (N−1)αi+ 1 numbers the images on the
string. Vectors, that are plotted for clarity only on the ϕ= 0 isoline, provide the force field f* required to keep the vesicle in equilibrium in the given
configuration, balancing the internal elastic reaction. The contours depict the field ϕ. For better visibility, vectors are scaled according to the reference
arrow in each plot.

Fig. 5 Proteins and constriction forces. Red curve with squares: the energy
needed to complete the fission as a function of the current neck radius rn,
ΔE= E(rn)−E(r0) vs. rn. The second abscissa axis on top of the frame provides
the image number i along the MEP. Orange curve with triangles: estimated
constriction force (second ordinate axis on the right), dΔE/drn vs. rn. Blue curve
with dots: fp=ΔE(rn)/(rn−r0) vs. rn. The vertical light blue band represents the
range in which dynamin polymerizes74. The horizontal light orange strip
depicts the value of dynamin constriction force measured in experiments34, 74.
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comparison with published data, Fig. 5 also provides in blue, with
dots, fp= ΔE(rn)/(rn−r0).

Discussion. We have provided a description of the full-scale
process of topology change in the fusion/fission process of two
large unilamellar vesicles (LUVs) with an approach that can be
extended to deal with giant unilamellar vesicles (GUVs). The
proposed free energy accounts for the Canham–Helfrich Gaus-
sian energy jumps as prescribed by the Gauss–Bonnet theorem,
and, far from the topological changes, recovers the
Canham–Helfrich Hamiltonian itself in the limit of small bilayer
thickness. However, during topological transitions, when the
relative distance between approaching membrane segments
becomes comparable to the bilayer thickness, the scale invariance
of the asymptotic Canham–Helfrich Hamiltonian is broken. For
such a reason, we defined the scale of our system by matching the
lipid bilayer thickness with the diffuse interface width.

The smoothness of the free energy functional is the key aspect
to featuring a well-defined chemical potential δE/δϕ, and,
physically, a meaningful distributed force field also across the
topological transition. In other words, the functional derivative of
the Gaussian energy allows access to the force preventing the
topological change, thus extending the realm of the classical, kG-
independent, shape equation, which, being obtained at constant
topology, cannot account for the work done against the
topological constraints. From a purely mathematical standpoint,
our proposal should be interpreted as a rational way to regularize
the singularity of the process and smoothly match the external
solution before and after the transition, thus enabling the
deployment of powerful variational approaches.

As anticipated in the section “Introduction”, the results
explicitly presented in the paper concern the simple, yet
extremely important, case of the fusion of two identical LUVs
with zero spontaneous curvature, together with the reverse
process of fission. The approach is however readily applicable to
more complex configurations, as shown by the few more
cases illustrated in the Supplementary Discussion, where, in
addition to numerical validation simulations, we report more data

concerning (i) the MEP for the transition between two spheres
and a single one with no volume constraint, (ii) the fission of a
prolate shape into two spheres induced by a spontaneous
curvature, (iii) the forced fusion between two nested spheres to
form a stomatocyte, and (iv) the forced transformation of an
oblate vesicle (g= 0) into a torus (g= 1). Clearly, several
microscopic effects are not included in the model. In any case,
the impression is that the energetic correction due to such
microphysics is small as compared to the energy barrier
associated with the full-scale evolution of the vesicle.

It may be interesting to speculate whether more detailed
information on the local structural rearrangement of the bilayers
can be obtained from the present mesoscale model. For this
reason, we extract enlarged views of the merging region, as
depicted in Fig. 6a. The close-ups, shown in Fig. 6b, correspond to
states between images i= 10 and 14, thus along the steepest
stretch of the MEP of Fig. 2b (black line). These states have been
obtained as a refinement of the original string. To this purpose, a
new, finer string has been evolved with the final configuration
fixed at the saddle point i= 14. The initial image of the new
string, which is left free to fall down along the MEP, has found its
equilibrium somewhere between images i= 10 and 11 in the
original string. In the forward direction, the progression of the
topological change is apparent (Fig. 6b), with the fusion of the
outer parts of the contacting interfaces occurring first. The
process is completed after the merging of the distal parts and the
subsequent connection of the volumes originally enclosed by the
disjoined vesicles. The vectors in each snapshot provide the
distributed force field f=− δE/δϕ∇ϕ, namely the external force
needed to counterbalance the elastic reaction, in the same spirit as
Fig. 4. The external field pushes the two bilayers one against the
other in the contact region until the proximal parts of the
approaching interfaces get fused (top right). Once the distal parts
of the interfaces start to get merged, the external force pushes
outward (bottom left) in order to form a pore-like connection
between the two vesicles (bottom right). At this moment the
critical state is reached, and, from then onwards, the neck tends to
spontaneously expand under the action of its own elasticity.
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Fig. 6 Close-ups of the merging region. a Full-scale vesicle configuration highlighting the merging region enlarged in panel b. b Proceeding in the forward
direction: equilibrium of the two bilayers (circle); merging of the proximal interface region (triangle); merging of the distal interface region (rhombus);
saddle point configuration (square). Considering ℓpf= ℓme as described above, the initial distance between the two vesicles is about 3.85 nm. Vectors
depict the force field f* required to keep the vesicle in equilibrium in the given configuration, balancing the internal elastic reaction. Vectors are scaled
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These intermediate configurations are reminiscent of those found
in experiments40 and MD simulations22,23,28, i.e. pre-fusion
states, stalks, hemifusions, and fusion pores. None of these is a
metastable state in our case. Recent MD results with coarse-
grained force fields show, however, that the stalk state, in
particular, may become (meta)stable, decreasing the initial
distance between the disjoined vesicles, itself related to the
hydration state of the bilayers24,27. Clearly, hydration effects
would need to be introduced through a suitable potential75, in
particular, to account for close apposition work expenditure.
Figure 7 shows the zoom of the steepest stretch of the MEP
obtained with the new 100 images of the finer string. The force
fields in Fig. 6 can be exploited to evaluate the differential forces
acting on the hypothetical leaflets

Δf ¼
Z
D
�signðϕÞ δE

δϕ
j∇ϕj dV ; ð9Þ

where D denotes the upper half of the merging region in the plots
of Fig. 6b, the sign of ϕ accounts for the difference between the
forces across the dividing surface, and −δE/δϕ∣∇ϕ∣ is the normal
component of the (external) force density f. Δf is shown in the
inset of Fig. 7. It is positive where the external force pulls the
leaflets apart. Apparently, the differential of the force tends to lyse
the bilayer during the first phase, after which the leaflets are
packed back together when Δf becomes negative. The two
configurations denoted by a triangle and a rhombus in Fig. 6
correspond to the two (positive and negative, respectively)
minima of the disjoining force.

Additional microscale effects could eventually be introduced
via a local, configuration-dependent Gaussian modulus, taking
inspiration from the expression kG ¼ 2 kml

G � kmlz0m
ml

� �
, which,

in the context of the Canham–Helfrich theory11, provides the
Gaussian modulus of a bilayer. Here, kml

G , usually negative, is the
Gaussian modulus, kml the bending rigidity, and mml the
spontaneous curvature of the constituent (symmetric) mono-
layers of a given vesicle. z0 can be interpreted as a measure of the
thickness of the bilayer. The presence of the parameter z0 in the
classical theory can be exploited to introduce an additional, local

scale that modulates kG of the phase-field interface, particularly in
the region where the lamellar structure of the bilayer is lost due to
the topology rearrangement.

It may be noted that the above expression for the Gaussian
modulus accounts for the fusogenic effect of a negative
spontaneous curvature of the monolayer, mml < 0, which tends
to reduce the absolute value of the bilayer Gaussian modulus,
∣kG∣, lowering the fusion barrier as shown in the inset of Fig. 2b.
As already anticipated, the fission branch remains substantially
unaltered. Consistently, the force field along the fission branch
does not change appreciably with the Gaussian modulus. On the
other hand, along the fusion branch, the forces are reduced by
decreasing ∣kG∣, in line with the behavior of the corresponding
barrier.

Conclusions
Naively, one may argue that protein systems could have evolved
in Nature to overcome the large barrier that stabilizes the vesicle
topology by following a minimal energy pathway. Hence, by
means of the proposed free energy functional, we have evaluated
the minimal free energy path for the transition and extracted the
force field able to drive the process with minimal work expen-
diture. The free energy profile we find shows the strong asym-
metry between the fusion and the fission processes. For fusion,
the required force field is extremely intense and suggests that
proteins could locally modify the Gaussian modulus during the
topological change, a case that can finally be addressed with the
presented approach. On the contrary, as regards fission, the
obtained spatial scales and forces are consistent with the experi-
mental estimates for typical fission protein systems, like the
ESCRT-III, FtsZ, and dynamin.

It may be stressed that the approach proposed here is readily
extended to fully 3D configurations, see e.g. the “Numerical
validation” section in the Supplementary Methods where the
axisymmetric configuration of the two spheres was actually
computed with a fully 3D simulation. This extension can be
important in describing asymmetric neck geometries and their
effects on the energy barrier76,77.

To conclude, it can be noted that the proposed approach can
naturally be coupled with hydrodynamics78,79 to include the
dynamics of external and internal aqueous environments. One
may also observe that the Gaussian energy functional can find a
much broader scope, e.g., as an indicator of the topological
genus in the context of cluster analysis80,81, or as a way to
provide a barrier towards undesired/unphysical fusion pro-
cesses. A compelling example concerns emulsions where
surfactant-covered droplets behave much like lipid
micelles82,83, suggesting that the Gaussian energy could play a
role in the emulsification process.

Methods
Sharp interface limit. An energy E[ϕ] (Eq. (3)), is associated with each field
configuration and is such as to admit local minimizers of the form

ϕðxÞ ¼ f
dðxÞ
ϵ

� �
; ð10Þ

where d( ⋅ ) is the signed distance function from the membrane mid-surface Γ. We
choose to define the signed distance such that n=∇d computed on Γ is equal to
the inward-pointing unit normal to the vesicle. Setting d*(x)= d(x)/ϵ, we also
require that limd�!±1ϕ ¼ ± 1 and ϕ= 0 for d= 0. Therefore, ±1 are the values
for the stable phases of the inside and outside bulk, and the level set ϕ= 0 identifies
the membrane mid-surface. Physically, the free energy functional should recover
the Canham–Helfrich Hamiltonian (Eq. (1)), in the limit of a small width-to-
vesicle-extension ratio. EB[ϕ] models the bending energy of the membrane44, while
EG[ϕ] is the term proposed here to account for the Gaussian energy.

As anticipated, our purpose here is to show that, under the general ansatz (10)
and in the sharp-interface limit (ϵ/Dve= λ < < 1), minimizing the phase-field free
energy functional (3) is equivalent to minimizing the Canham–Helfrich free

Fig. 7 MEP steepest stretch zoom. Refinement of the black line of Fig. 2b,
obtained by evolving a new string made up of other 100 images, indexed
with j (main plot, red line with small rhombuses). Image j= 100
corresponds to i= 14 of the original MEP, while j= 1 lies somewhere
between images i= 10 and i= 11. The gray symbols identify the four
configurations of Fig. 6b: equilibrium of the two bilayers (circle); merging of
the proximal interface region (triangle); merging of the distal interface
region (rhombus); saddle point configuration (square). The blue line with
small dots in the inset shows the difference between the forces on the ϕ < 0
and ϕ > 0 regions of a single interface as described in the main text. Note
that the triangle and rhombus states identified on the main plot correspond
to the two minima of the inset.
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energy. Denoting with a prime the derivative done with respect to d*(x), a direct
computation leads to

EB½ϕ� ¼ k
3

4
ffiffiffi
2

p λ

Z
�Ω

1

λ2
f 00 � ðf 2 � 1Þf� ��

þ 1
λ

f 0 �∇ � nþ ð1� f 2Þ
ffiffiffi
2

p
�m

	 
�2
d�V;

ð11Þ

EG½ϕ� ¼ kG
35

16
ffiffiffi
2

p
Z

�Ω

f 04

λ
ð�∇ � nÞ2 þ n � �∇ð�∇ � nÞ
h i

d�V ; ð12Þ

where we have denoted with a bar the dimensionless lengths obtained by dividing
by Dve. Therefore, in order to minimize E= EB+ EG, as λ→ 0, the leading-order
term f0 of ϕðxÞ ¼ f ðd�ðxÞÞ ¼ f 0ðd�ðxÞÞ þ∑þ1

i¼1 λi f iðd�ðxÞÞ must satisfy
f 000 ¼ ðf 20 � 1Þf 0, which has the solution

f 0ðd�ðxÞÞ ¼ tanh
dðxÞ
ϵ

ffiffiffi
2

p
� �

: ð13Þ

Hence, ϵ is actually related to the width of the interface. Moreover, by repeating
the computations done by Wang84 for the bending energy alone, it is possible to
show that, also in the presence of the Gaussian energy term, one finds f1(d*(x))≡ 0
(see the Supplementary Methods for the whole computation). Therefore, given thatffiffiffi
2

p
f 00 ¼ ð1� f 20Þ, we are left with

EB½ϕ� ¼ k
3

4
ffiffiffi
2

p
Z
�Ω

f 00
2

λ
ð�∇ � nþ 2�mÞ2 d�V þ OðλÞ; ð14Þ

EG½ϕ� ¼ kG
35

16
ffiffiffi
2

p
Z
�Ω

f 00
4

λ
ð�∇ � nÞ2 þ n � �∇ð�∇ � nÞ
h i

d�V þ Oðλ2Þ: ð15Þ

Denoting with k1 and k2 the principal curvatures, we have ∇ ⋅ n=−(k1+ k2)=
−2M and n � ∇ki ¼ k2i , with the result that (∇⋅n)2+ n ⋅ ∇(∇ ⋅ n)= 2k1k2= 2G.

Now, noticing that for λ→ 0 one finds f 00
2ð�dðxÞ=λÞ=λ�!W 2

ffiffiffi
2

p
=3 δð�dðxÞÞ;

f 00
4ð�dðxÞ=λÞ=λ�!W 8

ffiffiffi
2

p
=35 δð�dðxÞÞ; where δ(x) is the Dirac delta function and W

denotes a weak limit in the sense of distributions, and getting back to dimensional
variables, the asymptotic behavior follows as

E½ϕ� � 2k
Z

Γ
ðM �mÞ2 dS þ kG

Z
Γ
G dS; ð16Þ

i.e., the phase-field energy functional reproduces the Canham–Helfrich free energy
in the sharp-interface limit (ϵ/Dve≪ 1). It is worth noticing that the inclusion of
the Gaussian energy, which is subdominant in λ, preserves the hyperbolic tangent
form (13) of the leading order solution together with f1(d*(x))≡ 0, as for the more
standard model with the bending energy alone44. Since f1(d*(x))≡ 0, the desired
expression of the bending energy is retained at order λ−1, and the accuracies O(λ)
and O(λ2) are guaranteed in Eqs. (14) and (15), respectively. Furthermore, in our
formulation, the phase-field Gaussian energy (6) has no singularities and actually
depends at most on derivatives of order two, as it is possible to see by replacing
∇ϕ ⋅∇∇2ϕ with ∇2∣∇ϕ∣2/2−Hϕ : Hϕ in Eq. (7), where Hϕ is the Hessian matrix of
the field. As regards the incompressibility of the membrane, we impose the
geometrical constraints described in the section “Results and discussion” using the
functionals

A½ϕ� ¼ 3

4
ffiffiffi
2

p ϵ

Z
Ω

ð1� ϕ2Þ2
2ϵ2

þ j∇ϕj2
" #

dV; ð17Þ

V ½ϕ� ¼
Z

Ω

ð1þ ϕÞ
2

dV ; ð18Þ

which, respectively, behave like the vesicle area and enclosed volume in the sharp
interface limit.

Gauss–Bonnet theorem. Let us assume that

ϕðxÞ ¼ tanh
dðxÞ
ϵ

ffiffiffi
2

p
� �

; ð19Þ

where x∈Ω, being Ω a cylindrical domain of radius R and height L in the ordinary
three-dimensional space, and d( ⋅ ) the signed distance from an axisymmetric
surface in Ω. This assumption leads to j∇ϕj ¼ ð1� ϕ2Þ=ðϵ ffiffiffi

2
p Þ; and, moreover, we

set hðϕÞ ¼ ð1� ϕ2Þ=ðϵ ffiffiffi
2

p Þ� �4
: Using the cylindrical coordinates system, it is pos-

sible to show by a direct computation56 that one of the two principal curvatures is
k1=−∂rϕ/(r∣∇ϕ∣). Therefore, remembering that ∇ ⋅ n=−(k1+ k2) and

n � ∇ki ¼ k2i , with n=∇d, Eq. (15) can be rewritten as

EG½ϕ� ¼ kG
35

8
ffiffiffi
2

p ϵ3
Z

Ω
hðϕÞ k1k2 dV

¼� kG
35

8
ffiffiffi
2

p ϵ3
Z

Ω
hðϕÞ∇ � ðn k1Þ dV

¼ kG
35

8
ffiffiffi
2

p ϵ3
Z

Ω

dh
dϕ

∇ϕ � n k1 dV þ I∂Ω

¼ kG
35

8
ffiffiffi
2

p ϵ3
Z

Ω

dh
dϕ

j∇ϕj k1 dV þ I∂Ω

¼� kG
35

4
ffiffiffi
2

p ϵ3π

Z þL=2

�L=2
dz

Z R

0

dh
dϕ

∂ϕ

∂r
dr þ I∂Ω

¼ kG
35

4
ffiffiffi
2

p ϵ3π

Z þL=2

�L=2
½hðϕðr ¼ 0; zÞÞ � hðϕðr ¼ R; zÞÞ�dz þ I∂Ω;

where

I∂Ω ¼ � kG
35

8
ffiffiffi
2

p ϵ3
Z

∂Ω
hðϕÞ k1 nΩ � n dS:

Supposing to have a single, connected, closed surface, after letting Ω invade R3,

and considering relation f 00
4ð�dðxÞ=λÞ=λ�!W 8

ffiffiffi
2

p
=35 δð�dðxÞÞ applied to h(ϕ), we

obtain

lim
ϵ!0

EG½ϕ� ¼ 2πkG

Z þ1

�1
δðdðr ¼ 0; zÞÞ dz

¼ 4πkG ð1� gÞ;
recovering the Gauss–Bonnet theorem (Eq. (2)), in the axially symmetric case. The
last equality is justified by the fact that the Dirac delta function counts the
intersections of the surface with the z-axis, which is equivalent to checking whether
the surface has a hole.

Numerical scheme. The numerics relies on FFT-based spectral differentiation in
cell-centered grids which provide high-accuracy solutions, with special regard to
the estimate of the Gaussian energy. The accuracy in evaluating the Gaussian
energy (Eq. (6)), is shown in Table 1 for a sphere, a torus, and a straight cylinder.
Given the axial symmetry of these shapes, all the computations are done in a
[0, 40] × [0, 40] computational domain in the r*−z* plane with a grid of 80 × 80

nodes. In evaluating the functional, we set ϕðx�Þ ¼ tanhðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2 þ ðz� � 20Þ2

p
�

10Þ= ffiffiffi
2

p Þ for the sphere, ϕðx�Þ ¼ tanhðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� � 20Þ2 þ ðz� � 20Þ2

p
� 10Þ= ffiffiffi

2
p Þ for

the torus and ϕðx�Þ ¼ tanhððr� � 10Þ= ffiffiffi
2

p Þ for the cylinder, which is obtained by
imposing Eq. (13).

The energy pathways of the section “Results and discussion” and the MEP with
unconstrained volume in the Supplementary Discussion are obtained by means of
the string method, which is briefly described below. The remaining simulations
reported in this paper, i.e. the one shown in Fig. 1 and those in the Supplementary
Discussion and Supplementary Methods, are carried out using the Allen–Cahn
dynamics

∂ϕ

∂t
¼ �M

δ�E
δϕ

; ð20Þ

where M is the mobility coefficient and δ�E=δϕ is the functional derivative of the
augmented energy

�E½ϕ� ¼ E½ϕ� þ γðA½ϕ� � A0Þ þ
1
2
M1ðA½ϕ� � A0Þ2

þΔpðV ½ϕ� � V0Þ þ
1
2
M2ðV½ϕ� � V0Þ2:

ð21Þ

Here, the additional terms added to the energy (3) are needed when
constraining to A0 and V0 the vesicle area (17) and volume (18), respectively. M1,
M2 are two penalty constants, whereas γ and Δp are updated at each time step
according to the augmented Lagrangian method85:

γnþ1 ¼ γn þM1ðA½ϕnþ1� � A0Þ; ð22Þ

Δpnþ1 ¼ Δpn þM2ðV ½ϕnþ1� � V0Þ: ð23Þ
Therefore γ and Δp are estimates of the Lagrange multipliers that improve at

every time step. Starting from an assigned initial condition, the Allen–Cahn

Table 1 Gaussian energy computed values, kG=−k.

Shape EG/8πk (exact) EG/8πk (numerical)

Sphere −5.0 × 10−1 −5.000525 × 10−1

Torus 0 −1.729446 × 10−18

Cylinder 0 −9.860761 × 10−32
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dynamics causes the energy to monotonically decrease in time until it reaches a
critical steady-state. The dimensionless time and mobility are t*= t/τR and
M*= 8πkMτR/ϵ3, respectively, with τR a suitable time scale.

With the help of the PETSc library86, a Crank–Nicolson time-stepping scheme
is employed to integrate the Allen–Cahn gradient flow, while a semi-implicit Euler
single-step scheme is used to solve the more computationally demanding string
dynamics. The explicit form of the functional derivative δ�E=δϕ is given in
the Supplementary Methods together with some numerical experiments carried out
to validate the approach.

String method. The zero-temperature string method57 is a technique for com-
puting free energy barriers and transition pathways on a given energy landscape.
The method proceeds by evolving in time a string, namely a curve parameterized by
α∈ [0, 1]. For each α the image of the string is a phase-field function ϕα(x)
representing a membrane state.

Given an initial guess for the pathway connecting two local minima, the string
evolves in time following the dynamics

∂ϕα
∂t

¼ �M
δ�E
δϕα

� �?
8α 2 ½0; 1�; ð24Þ

where M is a mobility coefficient, δ�E=δϕα is the functional derivative of Eq. (21)

evaluated on the image ϕα and ðδ�E=δϕαÞ? is its component normal to the string.

This last quantity can be computed as ðδ�E=δϕαÞ? ¼ δ�E=δϕα � δ�E=δϕαjτ

 �

τ,

where τ ¼ ∂αϕα= ∂αϕαj∂αϕα

 �1=2

is the unit tangent to the string and �j�h i is the
standard L2 inner product. In this way, at a steady state, the string converges to a
minimal energy path65. In order to eliminate the trouble of projecting the
functional derivative and in order to use the equal arc-length parameterization, the
string dynamics can be rewritten67 as

∂ϕα
∂t

¼ �M
δ�E
δϕα

þ �λτ 8α 2 ½0; 1�; ð25Þ

where �λ ¼ λþM δ�E=δϕαjτ

 �

and λ is a Lagrange multiplier for the purpose of

enforcing the chosen parameterization ∂α ∂αϕαj∂αϕα

 �1=2 ¼ 0.

The algorithm follows the steps:

1. Evolution from t to t+ Δt of the discrete string, made up of N images ϕi,
with the dynamics

∂ϕi
∂t

¼ �M
δ�E
δϕi

; i ¼ 1; ::: ;N :

Time integration is performed in wave number space by means of the semi-
implicit Euler single-step scheme. The evolved images at time t+ Δt are
denoted as ~ϕi .

2. Computation of the arc lengths corresponding to the evolved images:

s1 ¼ 0;

si ¼ si�1 þ ~ϕi � ~ϕi�1j~ϕi � ~ϕi�1


 �1=2
;

i ¼ 2; ::: ;N:

Thus, the evolved images have parameters αi= si/sN.
3. Linear interpolation of the evolved images in order to compute the new

images at equal arcs αi= (i−1)/(N−1). These are the actual solutions at time
t+ Δt. It is worth noticing that linear interpolation conserves vesicle
volume.

4. Go back to one and iterate until convergence.

Force fields computation. Given a membrane state, it is possible to compute the
external force needed to balance the elastic force arising from the energy of the
membrane. For this purpose, let us consider an arbitrary and infinitesimal variation
δϕ of the phase field, consistent with the area and volume constraints if present.
This variation results in a spatial displacement δx of the field lines. The dis-
placement can be thought to occur in a virtual time interval δt, within which the
field lines move with a virtual velocity u such that ∂ϕ/∂t=−∇ϕ ⋅ u (null material
derivative condition). By integrating in time this last equation from t to t+ δt, we
are left with the first-order approximation

δϕ ¼ �∇ϕ � uδt ¼ �∇ϕ � δx: ð26Þ
Hence, the work performed by the external force field f to deform the

membrane is Z
Ω
f � δx dV ¼ δ�E ¼Z

Ω

δ�E
δϕ

δϕ dV ¼ �
Z

Ω

δ�E
δϕ

∇ϕ � δx dV ;

ð27Þ

and one can identify the force field

f ¼ � δ�E
δϕ

∇ϕ ; ð28Þ

thanks to the arbitrariness of δx.

Data availability
The datasets generated during and analyzed during the current study are available from
the corresponding author on reasonable request.
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