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We study the imprint of light scalar fields on gravitational waves from extreme mass-ratio inspirals—
binary systems with a very large mass asymmetry. We first show that, to leading order in the mass ratio, any
effects of the scalar on the waveform are captured fully by two parameters: the mass of the scalar and the
scalar charge of the secondary compact object. We then use this theory-agnostic framework to show that the
future observations by LISAwill be able to simultaneously measure both of these parameters with enough
accuracy to detect ultralight scalars.
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Introduction.—Asymmetric binaries represent a new
family of compact sources of gravitational waves (GWs)
with an exceptional discovery potential. Mildly asymmetric
binaries have already been observed by LIGO, VIRGO,
and KAGRA Collaborations (LVK) [1]. LISA [2] is
expected to observe compact binaries with much lower
mass ratios, up to a factor of 105. These sources can lie in the
detection band for years, rather than minutes, because in the
final stages of the inspiral the evolution timescale of a highly
asymmetric binary is proportional to the mass ratio. The
large number of gravitational wave cycles produced while
the smaller (secondary) object is performing relativistic
orbits around the larger (primary) object is expected to offer
unprecedented precision in parameter estimation for astro-
physics [3–15] and fundamental physics [16–31] alike.
Extreme mass-ratio inspirals (EMRIs), in which a stellar-

mass secondary of mass mp evolves around a supermassive
black hole (BH) of mass M with mass ratios of q ¼
mp=M ∼ 10−3 − 10−6, are perhaps the most promising
sources in this respect. In particular, they can be a very
sensitive probe of new fundamental scalar fields [17,32–38].
Scalars are ubiquitous in cosmological models of dark

energy and/or dark matter and in extension of the standard
model (SM) or general relativity (GR) [16,39].
Harnessing the potential of asymmetric binaries, and

EMRIs in particular, for detecting or constraining new
fundamental fields requires developing accurate waveforms
in scenarios that include such fields. Remarkably, for
massless scalars, it was shown in Ref. [35] that this can
be done in a theory-agnostic way to leading order in the
mass ratio. Any (self-)interaction of the scalar that
respects shift symmetry—the symmetry that protects
the scalar from acquiring a mass—affects the waveform
only through a single parameter: the scalar charge per unit
mass of the secondary d. This framework was used in
Ref. [36] to produce the first forecasts for LISA’s ability
to detect scalar charge.
It is worth stressing that massive scalars are expected to

leave an observable imprint on compact objects only if their
Compton wavelength, the inverse of their mass, is com-
parable to the wavelength of the emitted GW, i.e., to the
length scale of the source [40]. In geometrical (G ¼ c ¼ 1)
units, if M is the length scale of the source (e.g., for a BH
system, the BH mass) and μsℏ is the scalar-field mass, the
condition is roughly μsM ≲ 1. We note that [41]

μs½eV� ≃
�
μsM
0.75

��
106M⊙

M

�
10−16 eV: ð1Þ

Hence, the scalars that GWobservations can currently probe
would have masses smaller than∼10−16 eV (ultralight scalar
fields; see, e.g., Ref. [42], and references therein).
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Nonetheless, the assumption of a strictly vanishing mass
and of shift symmetry, as in Ref. [35], can be too restrictive.
Certain scenarios, such as superradiance-induced clouds
[41] or scalarization [43–47], rely on the presence of a mass
or of interactions that violate shift symmetry to generate
scalar charge. Moreover, measuring the mass of an ultra-
light scalar is in itself an exciting prospect. Indeed,
significant effort has already been put into constraining
the mass of scalar fields using pulsar or LVK observations;
see, e.g., Refs. [40,42,48,49].
The main goal of this Letter is to demonstrate that

EMRIs are sensitive probes of ultralight scalar fields,
which can allow us to measure the scalar charge per unit
mass of the secondary and the mass of the scalar field
simultaneously, and with impressive precision.
Setup.—We consider the general action

S½g;φ;Ψ� ¼ S0½g;φ� þ αSc½g;φ� þ Sm½g;φ;Ψ�; ð2Þ
where

S0 ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
R −

1

2
∂μφ∂

μφ −
1

2
μ2sφ

2

�
; ð3Þ

where R is the Ricci scalar and μs is the mass of the scalar
field. Sc encodes all additional interaction of the scalar field,
including nonminimal couplings to gravity, and is assumed
to be analytic in φ. Sm describes matter fields. In an EMRI
the secondary object can be treated as a point particle, by
replacing Sm with the “skeletonized action” [50],

Sp ¼ −
Z

mðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ

dyαp
dλ

dyβp
dλ

s
dλ; ð4Þ

where mðφÞ is a scalar function. By varying Eq. (2) with
respect to g and φ, we obtain the field equations:

Gμν ¼ −
16παffiffiffiffiffiffi−gp δSc

δgμν
þ 8πTscal

μν þ 8πTp
μν; ð5Þ

ð□ − μ2sÞφ ¼ −
8παffiffiffiffiffiffi−gp δSc

δφ
þ 16π

δSp
δφ

; ð6Þ

where Tscal
μν is the standard scalar-field stress-energy tensor

and Tp
μν is the stress-energy tensor for Sp. Equations (5)

and (6) can be solved perturbatively in q ¼ mp=M ≪ 1,
with the secondary acting as a perturbation of the massive
BH background.
We assume that α has negative mass dimensions in units

where c ¼ ℏ ¼ 1 (i.e., it suppresses irrelevant operators),
or positive length dimensions in the G ¼ c ¼ ℏ ¼ 1 geo-
metric units that we use here. Then following Ref. [35] one
can relate α to q as follows: α=Mn ¼ ðα=mn

pÞqn, where n is
a positive integer. As already stated in the Introduction, we
focus on scalar masses that satisfy μsM ≤ 1, as heavier
scalars are not expected to leave any imprint on EMRIs.
This implies that μsmp ≪ 1 and the scalar is far from being

confined at scales mp. The fact that it has not been already
detected by observation of black holes of a few solar
masses or in weak field [51] implies that α=mn

p is not much
larger than 1. The α ¼ 0 case in particular is covered by no-
hair theorems [52,53] and hence the primary would be a
Kerr black hole with φ ¼ 0. Combining all of the above,
one can treat the deviations from the Kerr metric and
the EMRI dynamics perturbatively, with q as a single
bookkeeping parameter. When μsM ≪ 1, the mass of the
scalar can be neglected and one recovers the results of
Ref. [35], while when μsM becomes O(1) it is essential to
include its contribution, as we do below.
We will only consider quantities to leading order in the

mass ratio. Hence Tscal
μν and δSc=δφ, which are quadratic

in q, can be neglected. The scalar perturbation φ1 is then
fully determined by the secondary. In a buffer region close
to the secondary, small enough to be inside its world tube,
but far away such that the metric can be considered as a
perturbation of flat spacetime, Eq. (6) reduces to

ð□ − μ2sÞφ1 ¼ 0; ð7Þ
whose solution, in a reference frame fx̃μg centered on the
particle, has the form

φ1 ≃
mpd

r̃
e−μsr̃ þO

�
m2

p

r̃2
e−μsr̃

�
; ð8Þ

where d is the scalar charge of the secondary. By matching
Eq. (8) with the solution of Eq. (6) in the buffer region,
we find that mð0Þ ¼ mp and m0ð0Þ=mð0Þ ¼ −d=4.
Equations (5) and (6) can then be written as

Gαβ ¼ 8πmp

Z
δð4Þðx − ypðλÞÞffiffiffiffiffiffi−gp dyαp

dλ
dyβp
dλ

dλ; ð9Þ

ð□ − μ2sÞφ ¼ −4πdmp

Z
δð4Þðx − ypðλÞÞffiffiffiffiffiffi−gp dλ; ð10Þ

where we have replaced explicit expressions for Tp
μν and

δSp=δφ, and yμp identifies the worldline followed by the
secondary. Equations (9) and (10) are solved perturbatively
following the Teukolsky approach [54]. The scalar field is
decomposed in spheroidal harmonics as a sum over multi-
poles ðl; mÞ. Details on the scalar perturbations are given in
the Supplemental Material [55].
The total energy loss emitted by both the scalar and the

gravitational sector is the sum of the contributions at the
horizon and at infinity:

_EGW ¼
X
i¼þ;−

½ _Ei
grav þ _Ei

scal� ¼ _Egrav þ _Escal; ð11Þ

where the dot indicates the time derivative. Since the source
term of the scalar-field equation depends linearly on the
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charge, the scalar energy flux can be written as _Escal¼
d2 _̄Escal, such thatq−2

_̄Escal onlydepends on (r=M,a=M,μsM).
The flux at infinity identically vanishes for frequencies

smaller than the scalar-field mass, ω < μs. This is a
typical behavior for massive scalar fields (see, e.g.,
Refs. [49,56,57]. Therefore, for every combination of
ðl; mÞ a specific radius rs exists such that for r > rs the
energy flux at infinity vanishes. This suppression may lead
to nondetectable imprints in the GW emission, as we will
discuss in our analysis. The general behavior of the scalar
energy flux as a function of the orbital radius and of μs is
discussed in the Supplemental Material [55].
Unlike the emission at infinity, the flux at horizon is

present for each value of the orbital frequency, and
contributes to the binary’s orbital evolution throughout
the entire inspiral. Moreover it shows a new important
feature, the appearance of resonances, which are not
present if the scalar field is massless.
Resonances occur when the binary orbital frequencies

are comparable with those of the scalar quasinormal modes
of the BH background spacetime. In this case the energy
emission grows toward a peak which can be either positive
or negative depending on the BH spin and on the super-
radiance condition ω < mΩh, where Ωh ¼ a=ð2MrhÞ and
rh ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. If the peak is negative, the scalar

radiation can be strong enough to counterbalance the
gravitational emission, giving rise to floating orbits
[33,58]. Determining whether floating orbits persist at
postadiabatic level or how quickly the secondary moves
through a resonance requires self-force calculations [33],
which are beyond the scope of this Letter. Hereafter,
we neglect resonances, which is a rather conservative
approach. Taking them into account is expected to make
the waveform more distinguishable from an EMRI wave-
form in GR and hence improve parameter estimation and
our ability to detect a new scalar.
The gravitational and the massless scalar fluxes have been

computed by making use of the Black Hole Perturbation
Toolkit [59], while for the massive scalar fluxes we
developed a Mathematica code, publicly available [60],

together with tabulated values of q−2 _̄E
�
scal as a function of

ðr=M; a=M; μsMÞ. Further details on the implementation
are given in the Supplemental Material [55].
The energy emission drives the EMRI orbital evolution

and, in the adiabatic approximation, the balance law
between the binary binding energy and the GW flux _E ¼
− _EGW allows us to compute the change in the orbital
parameters, i.e., the radial and the azimuthal coordinates
ðr;ϕÞ. We set the initial phase ϕ0 to zero and the initial
radius r0 such that the EMRI evolves until the secondary
reaches a plunging radius of 0.1M from the innermost
stable circular orbit in T ¼ 1 yr.
We model the emitted time-dependent gravitational wave-

form in the quadrupole approximation, finding the GW

strain measured by the detectors hðt; θ⃗Þ ¼ Fþhþ þ F×h×.
This quantity depends on 12 parameters θ⃗ ¼ ðlnM; lnmp;
χ; d; μ̄s; r0;ϕ0; θs;ϕs; θl;ϕl; dLÞ, where dL is the source
luminosity distance, χ ¼ a=M is the dimensionless spin
parameter, and μ̄s ¼ μsM. The LISA orbital motion is
taken into account by the time-dependent pattern functions
Fþ;× which depend on the binary orientation ðθs;ϕsÞ and
the spin direction ðθl;ϕlÞ in a solar barycentric frame (see
Ref. [36] for further details on the waveform modeling and
implementation).
Given two templates h1;2, we define their inner product:

hh1jh2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃⋆2ðfÞ
SnðfÞ

df; ð12Þ

where h̃ðfÞ is the Fourier transform of the time-domain
signal, the ⋆ superscript identifies complex conjugation,
and Sn is the LISA power spectral density, which includes
the confusion noise of unresolved white-dwarf binaries
[61]. The signal-to-noise ratio (SNR) of a given waveform
h1 is then given by ρ ¼ hh1jh1i1=2. We also define the
faithfulness between two templates,

F ½h1; h2� ¼ max
ftc;Φcg

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð13Þ

with ðtc;ΦcÞ time and phase offsets. This quantity
provides an estimate of how much two waveforms
differ, weighted by the detector sensitivity. We assume
that for a SNR ρ ¼ 30, two signals are distinguishable if
F ≲ F thr ¼ 0.994 [62].
In the limit of large SNR, the posterior distribution of θ⃗

inferred by an EMRI detection can be approximated by a

Gaussian centered around the true values ⃗θ̂, with covariance
Σ ¼ Γ−1, where Γij ¼ hð∂h=∂θiÞjð∂h=∂θjÞiθ⃗¼ ⃗θ̂

is the

Fisher information matrix, whose diagonal element σi ¼
Σ1=2
ii corresponds to the statistical error of the ith parameter,

and cθiθj ¼ Σij=σθiσθj is the correlation coefficient between
the parameters θi, θj [63]. For the waveform models which
include both the scalar charge and the field’s mass, we
obtain 12 × 12 Fisher matrices computed by varying the
all set of parameters θ⃗. In this approach the SNR scales
linearly with the inverse of the luminosity distance.
Hereafter, we scale dL in order to have binaries with
ρ ¼ 150, which is in the range of the expected SNRs of
EMRI detections by LISA [64].
Results.—We first study the distinguishability between

the baseline GR model, i.e., assuming ðd; μ̄sÞ ¼ ð0; 0Þ, and
waveforms with nonvanishing values of the charge and of
the scalar field mass. The top panel of Fig. 1 shows the
faithfulness between the “plus” polarization hþ computed
in these two scenarios, for EMRIs with secondary mass
of one and ten solar masses, as a function of d and μ̄s.

PHYSICAL REVIEW LETTERS 131, 051401 (2023)

051401-3



As previously discussed, large values of μ̄s tend to suppress
the GW flux at infinity, and hence the overall dissipative
contribution of the scalar sector, as the energy emission at
the horizon is subdominant.
Indeed, the faithfulness deteriorates rapidly as the scalar-

field mass decreases. For 0.05 < d < 0.1, it lies below F thr
for μ̄s ≲ 0.3 for the binaries we considered. Larger values
of the scalar charge (d ¼ 0.3) allow the two waveforms to
be distinguishable for more massive scalar configurations,
with μ̄s ≳ 0.7. For a lighter secondary the faithfulness
appears to reach F thr at a larger μ̄s. However, the d ¼ 0.3
case is an outlier in this respect and also exhibits some
additional peaks and troughs for larger values of μ̄s, which
persists for larger values of d. The corresponding fluxes do
not exhibit any remarkable difference from those corre-
sponding to lower values of d or μ̄s, so it is not clear what
causes these changes in the faithfulness for larger values of
d and μ̄s. Numerical errors were analyzed by varying the

precision of the fluxes which serve as input parameters for
the faithfulness computations. The results are stable under
large increase of the flux precision, and are presented in
Table 2 of the Supplemental Material [55].
We also note that for μ̄s ≲ 0.03 (μs ≲ 4 × 10−18 eV), the

GR and the scalar waveforms are clearly distinguishable,
with F ≲ 0.4, regardless of the charge. Such estimates are
complementary to other bounds which are expected to
provide information on the existence of scalar fields in the
gravity sector from future astrophysical probes. As an
example, in both panels of Fig. 1 we draw as shaded regions
the parameter space which can be potentially ruled out by
superradiance constraints inferred from observations of
massive BH binaries [41]. Our results suggest that, depend-
ing on d, EMRIs provide a new powerful channel to
constrain both light and heavy fields, which do not fall
within the superradiance window.
As a step forward in this analysis we exploit the

faithfulness to assess the minimum μ̄s which can be
distinguished from the massless case. The bottom panel
of Fig. 1 shows indeed the values of F computed between
the gravitational waveform with plus polarization with
either μ̄s ¼ 0 or μ̄s ≠ 0 and fixed scalar charge. We
consider the same binaries analyzed in the top panel.
Our results show that, for charges as small as d ∼ 0.05,
LISA could be able to distinguish fields with μ̄s ≳ 0.01
(μs ∼ 10−18 eV) from their massless counterpart. This
bound is larger by almost an order of magnitude if d≳ 0.3.
The analysis developed so far, however, takes only

partially into account the correlations between the wave-
form parameters, which could hamper our ability to
reconstruct the charge and the mass of the scalar field.
The actual detectability of such parameters requires a
more sophisticated analysis, based on the Fisher matrix
approach, which fully takes into account the correlations
among the GW parameters. We apply the latter to LISA
observations of prototype EMRIs injecting M ¼ 106M⊙,
χ ¼ 0.9, θs ¼ ϕs ¼ π=2, θl ¼ ϕl ¼ π=4, d ¼ 0.1 and con-
sidering four values of mp ¼ ð1.4; 4.6; 10; 15ÞM⊙ and two
values of μ̄s ¼ ð0.018; 0.036Þ, which lie outside the super-
radiance window highlighted in Fig. 1, and for which the
flux at infinity is significant throughout the entire inspiral.
The joint and marginal posterior distributions on μ̄s and

d derived for these systems are shown in the left- and right-
hand columns of Fig. 2, respectively. A summary of the 1σ
uncertainties inferred for μ̄s and d is reported in Table I,
together with their correlation coefficients, which show
how μ̄s and d are strongly (anti)correlated.
Errors on d decrease as the mass ratio mp=M increases,

for both values of μ̄s. Binaries with mp ≳ 10M⊙ are able to
exclude the d ¼ 0 case at more than 90% credible level.
For the EMRI configuration with mp ¼ 4.6M⊙, errors
slightly deteriorate, with the null scenario ruled out at
1σ. Constraints on μ̄s show more variability. For the lowest
injected value, μ̄s ¼ 0.018, errors follow the same

FIG. 1. Top: faithfulness between a GW signal with “plus”
polarization with d ¼ 0 and one with d ≠ 0, μ̄s ≠ 0 for 12 months
of observation before the plunge. We fix the primary mass and
spin toM ¼ 106M⊙ and χ ¼ 0.9, respectively, while considering
different values mp and d. The shaded region corresponds to the
range of scalar-field masses which could be excluded by super-
radiance bounds (courtesy of Brito). Bottom: faithfulness be-
tween two signals with the same value of d ≠ 0, one having
μ̄s ¼ 0 and the other with μ̄s ≠ 0. The horizontal dashed line
corresponds to the threshold value F thr. We consider the same
EMRI configurations as in the top panel.
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hierarchy observed for the scalar charge, with the meas-
urement accuracy improving for heavier secondaries. In
this setup, however, μ̄s remains unconstrained for the EMRI
withmp ¼ 4.6M⊙. This picture changes completely for the
μ̄s ¼ 0.036 case, in which the strongest bound is led by the
lightest secondary. Binaries with mp ¼ 10M⊙ and mp ¼
15M⊙ provide larger, and almost identical, errors. The
dependence on such results on the secondary mass is
mostly dictated by two ingredients: (i) correlations among
the scalar charge and the field’s mass and (ii) the EMRI
orbital configuration within the observational window we

have considered, which spans one year of evolution until
the plunge. Very light secondaries start their inspiral at
smaller initial radii, where the scalar flux has a smaller
relative contribution compared to the dominant quadrupolar
mode, and the signal features a very slow evolution with
little variation in the frequency content.
In comparison with the massless case, where the relative

error on the scalar charge for the binary with mp ¼ 10M⊙
is ≃4% [36], here it is larger: σd=d ≃ 45% and 49% for
μ̄s ¼ 0.036 and μ̄s ¼ 0.018, respectively. This is expected
due to correlations with μ̄s which enters now as an
additional parameter. Nevertheless, in all cases in which
the probability distribution of μ̄s is constrained by the data,
we are able to exclude the massless scenario at more than
90% credible level.
Discussion.—Our results provide the first direct analysis

on the capability of EMRI observations by the future space
interferometer LISA to detect massive scalar fields and
simultaneously measure the mass of the scalar and the
scalar charge of the secondary. Our analysis assumes that
the primary is adequately described by the Kerr spacetime
at leading order in the mass ratio. We have shown, using
no-hair theorems [52,53] and effective field theory argu-
ments [35], that this is quite generically a valid assumption,
provided that the primary is a black hole. Indeed our setup
is theory agnostic, and changes in the binary evolution are

FIG. 2. Left: credible intervals at 68% and 90% for the joint posterior distribution of the charge d and the scalar field mass μ̄s.
We consider EMRIs with injected parameters d ¼ 0.1, M ¼ 106M⊙, a ¼ 0.9M, different values of the secondary mass, μ̄s ¼ 0.036
(top row), and μ̄s ¼ 0.018 (bottom row). Right: marginal distributions for d and μ̄s. The white area between shaded regions provides
90% of the probability distribution. The vertical dashed lines identify the GR scenario with d ¼ μ̄s ¼ 0.

TABLE I. 1σ relative uncertainties and correlation coefficients
on the charge and on the scalar-field mass for the configurations
shown in Fig. 2. We assume d ¼ 0.1 for all the binaries.

mp (M⊙) μ̄s σd=d (%) σμ̄s=μ̄s (%) cdμ̄s
1.4 0.018 345 2364 0.997

0.036 363 391 0.992

4.6 0.018 92 243 0.995
0.036 97 8 −0.485

10 0.018 49 53 0.984
0.036 45 24 −0.990

15 0.018 38 22 0.938
0.036 26 21 −0.986
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uniquely determined by the scalar charge per unit mass of
the EMRI secondary d and by the scalar-field mass μs.
Therefore, ready-to-use templates for parameter estimation
and phenomenological studies can be straightforwardly
generated for a vast range of beyond-GR and beyond-
standard-model scenarios that contain a new massive scalar.
We have exploited such waveforms to assess the com-

bined effect of nonvanishing d and μs. By computing the
faithfulness between signals from uncharged and charged
secondaries, we have shown that ultralight scalar fields can
leave a strong imprint on the GW emission, potentially
detectable by LISA for a wide range of binary configura-
tions. In particular, our results show how EMRIs provide a
new observational window, complementary to other astro-
physical probes, for detecting or constraining ultralight
scalar fields.
We have performed a parameter estimation on prototype

EMRI signals to further investigate the constraints that
LISA will place on the scalar charge and on field’s mass.
Our results suggest that LISAwill be able to measure, with
a single event, both d and μs accurately enough to
potentially confirm the existence of an ultralight scalar
field at more than 90% confidence level. A limitation of
the analysis leading to this result is that it has focused
on equatorial circular inspirals and certain simplifying
approximations.
Indeed, realistic EMRIs are expected to follow more

complex trajectories along inclined and eccentric orbits.
The effects of inclination are currently under investigation
[65], while the inclusion of eccentricity is expected to
further enhance the distinguishability between signals with
and without a scalar field [38,66]. Moreover, the scalar field
emission exhibits some level of degeneracy with astro-
physical signatures of different origin, such as environ-
mental effects due to gravitational drag or accretion [8]. We
expect, however, correlations between the latter and the
scalar charge or mass to be small, so long as they carry a
different GW frequency content within the waveform
evolution.
Improvements to our work would also include using

fully relativistic GW templates, performing a Bayesian
analysis, and including postadiabatic terms which take into
account self-force corrections [67]. Considering the effects
of resonances [33] is also expected to further increase the
distinguishability against GR signals, thus strengthening
the results of our analysis. Finally, it would be interesting to
extend our analysis to vector fields.
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