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Insight into modelling offshore monopiles via 3D finite 
element analyses 

Considérations pour la modélisation de monopieux par élément finis 3D 
D. Gaudio* 

Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, Rome, Italy 

A.B. Batilas, L.M. Lapastoure, A. Loukas, J. Lee, T. Joseph, I. Thusyanthan 
Gavin & Doherty Geosolutions, Dublin, UK 

*domenico.gaudio@uniroma1.it 

ABSTRACT: Offshore wind farms have been attracting the attention of both researchers and practitioners over the past few 
decades, due to the growing interest in renewable energy. The choice of a particular foundation, which depends on several 
factors such as the mechanical properties of soil, depth to bedrock and bathymetry, may influence the overall wind farm cost 
by up to about 20%. Monopiles are the most used foundation system in the market, whose design can be further refined with 
advanced numerical analyses, provided that input parameters are properly calibrated. This paper shows the main results of a 
nonlinear static analysis of a monopile subjected to a horizontal load and embedded in a layered deposit. The analysis was 
performed using a 3D Finite Element model, where the foundation was represented with plate elements, and the soil 
mechanical behaviour was described with advanced constitutive models. The obtained pushover curves are shown and 
discussed, from which a reference design condition was selected. Then, the bending moment profile was obtained following 
three approaches, listed in a descending order of complexity: (1) integration of the stresses at the soil-plate interface; (2) 
derivation of the monopile rotation profile of the plate elements; (3) direct output from a dummy beam element located at 
the centreline of the monopile. It is shown that the dummy beam provides results in good agreement with those from the 
other two approaches, suggesting that it may be successfully adopted in practice to speed up the post-processing in the design 
of monopiles. The methodology presented in this paper would be useful for industrial projects. 

RÉSUMÉ: Le développement des parcs éoliens en mer s'est accéléré au cours des dernières décennies grâce aux politiques 
publiques en matière d'environnement. Les monopieux sont le type de fondation le plus courant. Leur optimisation nécessite 
des modèles numériques avancés. Cet article présente les principaux résultats de la modélisation par éléments finis 3D d’un 
monopieu soumis à une charge horizontale. Dans cet exemple, le monopieux est installé dans un sol stratifié composé d’argile 
et de sable. Les résultats sont présentés en termes de déplacement et rotation du pieu sous l’effet du chargement latéral. 
L'évolution du moment de flexion le long du pieu est extrait de trois manières différentes: (1) par intégration des efforts à 
l'interface sol-pieu; (2) par dérivation du profil de rotation calculé à partir du déplacement des éléments coques qui 
modélisent le pieu; (3) à l’aide d’une poutre fictive modélisée au centre du pieu et qui permet de faciliter l’extraction des 
résultats. Cet exemple montre que les trois approches mènent à des résultats équivalents. Cela suggère que l’utilisation d’une 
poutre fictive peut être adoptée afin de faciliter et accélérer la modélisation des monopieux. 

Keywords: Offshore wind turbines; monopiles; pushover analysis; 3D Finite Element model; dummy beam. 

1 INTRODUCTION 
Wind energy has emerged as a promising alternative 
energy source over the last few decades, to fill the 
world’s energy supply and overcome some of the key 
issues associated with traditional fossil fuels, such as 
global warming. Particularly in Europe, offshore wind 
energy shows immense potential thanks to the 
presence of substantial portions of sea that are ideally 
suited for the construction of offshore wind farms 
(OWFs). Thanks to advancements in technology, 
OWFs have become profitable enough, despite their 
high construction costs, which depend not only on 

governmental subsidies, but also on private support. 
Most of the OWFs budget is allocated to foundation 
design, construction, and installation. Despite other 
solutions being under development, monopiles are still 
the most used type of substructure. 

In this paper, the main preliminary results of a 
nonlinear static (i.e., pushover) analysis of a monopile 
embedded in a layered deposit are presented. The 
analyses were carried out with the Finite Element (FE) 
code Plaxis 3D (Bentley, 2023a), considering 
advanced constitutive models, capable of capturing the 
nonlinear and irreversible behaviour of the soil. The 

Proceedings of the XVIII ECSMGE 2024  
GEOTECHNICAL ENGINEERING CHALLENGES 
TO MEET CURRENT AND EMERGING NEEDS OF SOCIETY 
© 2024 the Authors  
ISBN 978-1-032-54816-6 
DOI 10.1201/9781003431749-571 
Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license 

2925 Proceedings of the XVIII ECSMGE 2024



E – Environment, water and energy 

results of the analyses are first given in terms of force-
displacement and force-rotation curves, together with 
the bending moment profile developed in the 
monopile. The latter was computed following three 
approaches, namely: (1) integration of the stresses at 
the soil-plate interface; (2) derivation of the rotation 
profile obtained from the plate elements representing 
the monopile; (3) extraction of direct output from a 
dummy beam element located at the centreline of the 
monopile. It is shown that the dummy beam provides 
results in good agreement with the other two strategies, 
which may suggest adopting it in the practice to speed 
up the post-processing step in the design of monopiles. 

2 PROBLEM DEFINITION 
Figure 1 shows the soil profile considered in the study, 
together with the geometry of the monopile. The soil 
profile is composed of two units, namely a clayey and 
a sandy layer. The layer thickness is equal to 5.2 m for 
the clay layer and 9.3 m for the sand layer. The water 
table is located 0.6 m below ground level. 

The monopile is a hollow steel pile with an outer 
diameter D = 2.0 m, a wall thickness t = 0.035 m, a 
length L = 11 m (L/D = 5.5), and an embedment depth 
H = 10.0 m. Although the above dimensions are 
slightly smaller than those typically adopted for 
monopiles, they were considered in the numerical 
study for ease of numerical runs. 

3 3D FINITE ELEMENT MODELLING 
The Finite Element Analysis (FEA) was performed 
using the Plaxis 3D software to simulate the 
monotonic test under undrained conditions with a 
horizontal load applied atop the monopile, with a level 
arm e = 0.5 m with reference to the ground surface. 

The mechanical clay behaviour was modelled using 
the NGI-ADP constitutive model (Grimstad et al., 
2012), while the sand was simulated using the HS-
small (HSS) model (Benz et al., 2009). The NGI-ADP 
constitutive model has been tailored to model the 
undrained behaviour of clays, matching both the 
undrained shear strength and strains at failure for three 
different stress paths i.e., Active (su

A), Direct Simple 
Shear (su

DSS), and Passive (su
P). The HSS model is 

simple to calibrate and yet capable of capturing the key 
soil behaviour for the problem under consideration, 
such as a good representation of the stiffness at small 
strains and the non-linear stiffness behaviour with 
increasing strain. 

The monopile was modelled using linear elastic, 
homogeneous and isotropic 6-node triangular plate 
elements with five degrees of freedom per node and 

quadratic shape functions, characterised by a wall 
thickness 0.035 m, a unit weight γ = 78.5 kN/m3, a 
Young’s modulus E = 199.2 GPa, and a Poisson’s 
ratio  = 0.3. The modulus is slightly lower than that 
of steel, as a consequence of the code interpreting the 
input diameter as a centreline diameter: hence, the 
Young’s modulus was corrected so that the bending 
stiffness EI remained unaffected. 

The behaviour of the interface within the soil-
monopile zone was modelled with linearly elastic-
perfectly plastic interface elements, whose coefficient 
of reduction of the shear strength was equal to 
Rinter = 0.7 along the shaft and to Rinter = 1.0 at the base. 
The FE model consisted of 18117 elements, extending 
by 40 m along the y-axis and by 16 m along the x-axis 
(Figure 2), corresponding to 20·D and 16·D/2, while 
the depth of the model was equal to 14.5 m. These 
model dimensions resulted from a preliminary 
sensitivity analysis, which showed that the boundaries 
did not affect the results when horizontal loads are 
applied atop the monopile. Also, they are in agreement 
with previous analyses performed on caisson 
foundations and onshore wind turbines under seismic 
loading (Gaudio et al., 2016; 2023). 

In the analysis, the monopile was applied a 
horizontal force at the top, along the y-direction: 
therefore, half of the domain was only modelled, due 
to the symmetry of the problem. 
 

 
Figure 1. Soil profile and monopile geometry. 
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Figure 2. 3D Finite Element model adopted in the study. 

3.1 Constitutive model soil parameters 
The soil parameters of the constitutive models adopted 
in the FE analysis are listed in Table 1 and 2 for the 
NGI-ADP and the HSS models, respectively, which are 
representative of the mechanical behaviour of the 
clayey and sandy layers. 

Table 1. NGI-ADP parameters for the clay layer. 
Soil parameter Value Units 

γsat 17 [kN/m3] 
γ' 7 [kN/m3] 

G0/su
A 500 [-] 

sA
u,ref 60 [kPa] 

sA
u,inc 0 [kPa/m] 

su
p/su

A 0.50 [-] 
su

DSS/su
A 0.75 [-] 

γf
C 12 [%] 

γf
E 24 [%] 

γf
DSS 18 [%] 

τ0/su
A 0 [-] 

k0 1 [-] 

Table 2. HS-small parameters for sand layer. 
Soil parameter Value Units 

γsat 18 [kN/m3] 
γ' 8 [kN/m3] 

E50
ref 69.6 [MPa] 

Eoed
ref 69.6 [MPa] 

Eur
ref 208.7 [MPa] 

G0
ref 200 [MPa] 

ur 0.25 [-] 
m 0.5 [-] 
γ0.7 0.015 [%] 

' 40.0 [°] 
'cv 32.0 [°] 

9.9 [°] 
k0 0.357 [-] 

OCR 6 [-] 

4 PUSHOVER CURVES 
The results obtained from the nonlinear static analysis 
are discussed in this paragraph, which was performed 
as a Plastic calculation in Plaxis 3D. The monotonic 
response of the monopile is presented in Figure 3 in 
terms of the lateral load against the horizontal pile 
displacement and rotation of the monopile at the 
mudline level (see Figure 1). 

As expected, the non-linear behaviour of the soil-
monopile system was triggered from low levels of 
horizontal displacement. The displacement 
y = D/10 = 0.20 m is also marked in Figure 3, which 
was taken as a reference design condition for the 
assessment of the bending moment acting into the 
monopile, to compare against the yield moment, My, 
as discussed in the following section. The horizontal 
load H0.1D = 3076 kN was computed for this design 
condition, which corresponded to a rotation  = 1.49°. 
 

 

 
Figure 3. Monotonic pile response at the mudline level. 

5 BENDING MOMENT PROFILES 
The structural checks of the foundation were made by 
comparing the maximum bending moment 
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experienced by the monopile for the reference design 
condition mentioned above. To this end, the bending 
moment profile was first evaluated, following three 
different approaches, such as: (1) integration of the 
stresses at the soil-plate interface; (2) derivation of the 
rotation profile of the plate elements simulating the 
monopile; and (3) extraction of a direct output from 
the dummy beam element located at the centreline of 
the monopile. 

The results obtained with the three approaches are 
compared in the next sections, after introducing them 
in a descending order of complexity. 

5.1 Stress integration at the soil-plate interface 
The bending moment profile was first calculated from 
the integration of stresses acting at the soil-plate 
interface as below: 

i iz z

i, s p
0 0

M H e p z z dz m z dz  (1) 

where subscript i represents a depth counter (i = 1 m, 
0.5 m, 0,…,-10.5 m), Hp is the lateral force applied 
atop the monopile, e = 0.5 m is the distance between 
the lateral load and the mudline level, p(z) and m(z) are 
the distributed lateral reaction and moment applied by 
the soil to the monopile, respectively, and Δz = 0.5 m 
is the depth interval selected for integration (Figure 4). 
The distributed lateral reaction p(z) was computed 
from the integration of the interface forces along the y-
direction, while the distributed moment, m(z), was 
obtained from the integration of forces along the z- 
direction, multiplied by the respective lever arm 
y = D/2 = 1 m: 

 
Figure 4. Distributed (a) lateral load p(z) and (b) moment 
m(z); (c) local coordinate system. 

z+

y
z

2

2

z

z

F z dz

p z
z

 (2) 

z+

z
z

2

2

z

z

F z y dz

m z
z

 (3) 

 
where Fy and Fz are the forces along the y and z-
direction, respectively. 

Only stresses in local coordinates are accessible 
rather than forces Fy and Fz in the FE analysis, where 

n is the stress normal to the interface, while 1 and 2 
are the vertical and horizontal tangential stresses, 
respectively (Figure 4). The stresses were translated 
into forces as in eqs. (4) and (5) below, for every stress 
point, i.e., for a given pair of coordinates, x and y, 
element area, A, and integration weight, w 
(Bentley, 2023b): 
 

y n 2sin cosF z w A z z  (4) 

z 1F z w A z  (5) 

5.2 Derivative of rotations of plate elements 
The bending moment profile was also calculated from 
the plate elements representing the monopile. To this 
end, the steps reported below were followed, starting 
from the vertical displacement of the two ends of the 
plates, whose sign convention is depicted in Figure 5: 

 extraction of the back and front vertical dis-
placement of the plate, uz, i

front and uz, i
back, re-

spectively; 
 calculation of the pile rotation, i, at the ith depth 

(i = 1 m, 0.5 m, 0,…,-10.5 m) as: 
 

1
i

back front
z,i z,itan

D

u u
 (6) 

 
 computation of the bending moment at the ith 

depth (i = 1 m, 0.5 m, 0,…,-10.5 m), Mi, p, from 
the derivative of the pile rotation with depth 
(i.e., curvature), where EI represents the bend-
ing stiffness of the monopile (E = Young’s 
modulus, I = moment of inertia around the ver-
tical axis) as: 

 

i i i+1
i, p

i i+1

tand
M EI EI

z zdz
 (7) 
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Figure 5. Calculation of the bending moment from plate 
elements. 

5.3 Direct output from the dummy beam 
Finally, the bending moment profile of the monopile 
was also obtained from a dummy beam, which was 
introduced at the centreline of the monopile. It is worth 
noting that this approach has already been routinely 
followed for excavation wall simulations in 2D 
conditions, when using continuum elements to model 
the wall and postprocessing the wall bending moments 
(Lam, 2018). 

The stiffness of the dummy beam was selected to be 
low (i.e., Ereal/Edummy ≈ 1000) in order to not affect the 
results, as this beam was only used as a trick to avoid 
either integrating stresses acting along the shaft of the 
monopile or differentiating the plate rotation profile. 
Therefore, a Young’s modulus Edummy = 210 MPa was 
assigned to the dummy beam element, since the “real” 
Young’s modulus of the monopile was the one of steel, 
Ereal = 199.2 GPa (see § 3). As for the moment of 
inertia of the dummy beam, only half of the monopile 
inertia was considered thanks to the symmetry of the 
problem, i.e., for the original diameter D = 2 m, the 
moment of inertia of the dummy beam was 
I = 1/2· /64·[D4 – (D – 2t)4] = 0.05216 m4. The bend-
ing moment profile was then extracted as follows: 

i, b dummy,i dummy,i
real

dummy

1897
EI

M
EI

 (8) 

5.4 Comparison of bending moments profiles 
A comparison of the bending moment profiles 
obtained with the three strategies above is made in 
Figure 6. The bending moments were computed for the 
design at the reference condition of a horizontal 
displacement y = D/10 = 0.20 m at mudline level. In 
the figure, the bending moment at yield, 
My = 33.9 MN·m, is also plotted. 

From Figure 6 it is evident that the three solutions 
provide quite similar results, both in terms of the 
bending moment profile and its maximum value. In 

 
Figure 6. Bending moment profiles along the monopile 
computed with the three approaches adopted in the study. 

 
particular, it is shown that the maximum bending 
moment from the stress integration (red line) was 
equal to Mmax, s = 10.4 MN·m, while the one from the 
derivative of the monopile rotation (black) was equal 
to Mmax, p = 10.8 MN·m, with negligible deviation of 
about 4.0%. As for the profile from the dummy beam 
(blue), the peak bending moment is equal to about 
Mmax, b = 11.5 MN·m, which corresponded to an 
overestimation of 1.1 MN·m (~ 9.6%) and 0.7 MN·m 
(~ 6.1%) from the maximum values obtained from the 
stress integration and the derivative of rotations from 
the plate elements, respectively. This result shows that 
the dummy beam provides results in a good agreement 
with the other two strategies, which may suggest 
adopting it in the practice in the design of monopiles. 
Based on project experience of the Authors, the best 
method to derive the bending moment profile was the 
derivative of rotation from plate element method. The 
results above are summarised in Table 3. 
 
Table 3. Summary of maximum bending moments (MN·m). 

Approach Value [MN·m] Comparison 
with the dummy 

beam 
stress integration 10.4 – 9.6% 

rotation derivative 10.8 – 6.1% 
dummy beam 11.5 / 
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6 CONCLUSIONS 
The market of offshore wind turbines has been 
expanding over the last decades due to climate change, 
thereby increasing focus on the design of the 
foundation system, which can represent up to about 
20% of the cost of the entire wind farm. Innovative 
solutions and design methods have therefore been 
sought to reduce costs of the foundation system. 

In this paper, the results of a 3D Finite Element 
pushover analysis conducted on a monopile embedded 
in a layered deposit have been presented. In the 
analyses, the monopile was simulated through plate 
elements and subject to a horizontal force applied to 
the top of the foundation. The resulting force-
displacement and force-rotation pushover curves have 
been first shown and discussed to detect a reference 
design condition for the monopile, corresponding to a 
horizontal displacement at the mudline level equal to 
one tenth of the outer diameter. 

Then, the bending moment profile developed in the 
monopile has been computed. For the design 
condition, three different approaches have been used 
to determine this profile which include the integration 
of the stresses at the soil-plate interface, the derivation 
of the rotation profile obtained from the plate elements 
representing the monopile, and the extraction of direct 
output from a dummy beam located at the centreline of 
the monopile. It has been shown that the dummy beam 
provides results in good agreement with the other two 
strategies, which may suggest adopting it in the 
practice to speed up the post-processing step in the 
design of monopiles. It is worth noting that the 
Timoshenko’s beam theory has been adopted in this 
study, which means that the beam deflection comes 
both from bending and shearing. This is expected to be 
well representative of the real behaviour for the 
monopile at hand. A discussion on the pitfalls of the 
deterministic approach followed for the dummy beam 
is given in Beck and Silva Jr. (2011). 

The capability of 3D Finite Element models of 
capturing the main features of the soil-monopile 
behaviour under consideration would always involve a 
level of uncertainty. It is recommended that these 
models and results are validated using field-test results 
or case histories from existing literature. 
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