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between levels and cumulated levels of N time series of length T , generated by a fac- 

tor model with s common stochastic trends. For T → ∞ and fixed N and s , the largest s 

squared canonical correlations are shown to converge to a non-degenerate limit distribu- 

tion while the remaining N − s converge in probability to 0. Furthermore, if s grows at most 

linearly in N, the largest s squared canonical correlations are shown to converge in prob- 

ability to 1 as (T , N) seq → ∞ . This feature allows one to estimate the number of common 

trends as the integer with largest decrease in adjacent squared canonical correlations. The 

maximal gap equals 1 in the limit and this criterion is shown to be consistent. A Monte 

Carlo simulation study illustrates the findings. 
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1. Introduction 

Many economic and financial time series exhibit persistent co-movements, that reflect smooth economic changes over 

time. These phenomena are well replicated by linear processes with common stochastic trends, i.e. with fewer stochas- 

tic trends than variables, see Stock and Watson (1988) , or, equivalently, with cointegration, see Engle and Granger (1987) .

Because of this, the number of common trends plays a central role in the analysis of economic and financial time series. 

The number of common stochastic trends, s say, and the number of linearly independent cointegrating relations, r say, 

are complementary, i.e. N = r + s , where N is the number of time series, in case of processes integrated of order 1 or 0,

indicated as I (1) , I (0) . This type of complementarity is proved in Granger-type representation theorems, see e.g. Johansen

(1996) and references therein. 

Cointegration analysis initially focused on the case of small N and large T , where T is the number of time periods, see

e.g. Engle and Granger (1987) ; Stock and Watson (1988, 1993) ; Ahn and Reinsel (1990) ; Phillips (1991) , Johansen (1988,

1991, 1996) . These contributions were derived in a linear process framework, typically of Vector AutoRegressive (VAR) or 

Vector AutoRegressive Moving Average (VARMA) type, and results involved large- T asymptotics. Simulations in Abadir et al. 

(1999) and Gonzalo and Pitarakis (1999) showed that the small- T properties of many of these inferential procedures differ

from the large- T asymptotic distributions, and these discrepancies worsen as N increases. 
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In parallel to the cointegration literature, Dynamic Factor Models (DFMs) were introduced and discussed by Geweke 

(1977) and Sargent and Sims (1977) . They were further developed by Forni et al. (20 0 0, 20 04, 20 05) ; Forni and Lippi (2001) ;

Bai (2003) ; Bai and Ng (20 02, 20 07) . DFMs were introduced as models for large panels of stationary time series with sta-

tionary co-movements, see e.g. the surveys in Stock and Watson (2010) ; Anderson et al. (2022) ; Lippi et al. (2023) . 

Early DFM contributions, with the notable exception of Bai (2004) , were based on the assumption of stationarity of 

variables and factors; the corresponding analysis could be applied to panels of nonstationary time series only after prior 

variable transformations, such as first differencing or de-trending. In this setup, a few stationary dynamic factors are the 

driving forces responsible for a large fraction of the variation of the variables. 

Criteria and tests for the number of common factors in DFM are largely available in a stationary setting, see e.g. Onatski

(2010) ; Ahn and Horenstein (2013) , and Trapani (2018) for recent results; Bai (2004) has long been the only contribution

dealing with the non-stationary case, see Barigozzi and Trapani (2022) . 

More recent strands of literature consider stochastic trends in large dimensional systems. In a VAR context, Onatski and 

Wang (2018, 2019) show that the empirical distribution function of the squared sample canonical correlations that appear 

in the likelihood ratio (LR) rank test converges to the Wachter distribution when N and T go to infinity simultaneously and

proportionally, and r/N converges to 0. This result explains the observed LR rank tests over-rejection of the null hypothesis 

of no cointegration. 

Using a similar asymptotic setting, Bykhovskaya and Gorin (2022) propose a modification of the LR rank statistics to test 

the null of no cointegration in a VAR(1) and Liang and Schienle (2019) provide a Lasso-type consistent estimator of the

number s of stochastic trends when N is large and can increase with T . 

Zhang et al. (2019) propose a consistent estimator of s and of the cointegrating space for nonstationary time series of

unknown, possibly fractional, integration orders, both when N is fixed and T increases, and when N diverges slowly with T .

In a DFM context, Barigozzi and Trapani (2022) and Barigozzi et al. (2022) propose estimators of s for large N and T , where

the latter paper allows also for the possible presence of innovations with heavy tails. 

The present paper is closely related to the recent developments in the analysis of stochastic trends in a DFM framework.

It proposes and discusses a criterion to determine the number s of common stochastic trends in the N-dimensional DFM

X t = �F t + ξt , where the common factors F t are I(1) and cointegrated and the idiosyncratic components ξt are I(0) and non-

cointegrated, but where F t and ξt are both serially and cross-sectionally correlated. The present setup is a particular case of 

the one in Barigozzi and Trapani (2022) , who allow F t also to contain a drift, and of the one in Barigozzi et al. (2021) , see

also Barigozzi et al. (2020) , where the idiosyncratic component ξt can also be I(1) and possibly cointegrated. Moreover, the 

present setup includes the one in Bai (2004) , where F t is a pure random walk and ξt is cross-sectionally uncorrelated. 

The proposed criterion to determine the number s of common stochastic trends is based on a Canonical Correlations 

Analysis (CCA) between levels of the variables X t and cumulated levels SX t , where the operator S performs the cumulation

of the time series, see Gregoir (1999) . Results are based on large T and N sequential asymptotics, first for T → ∞ and

then for N → ∞ , indicated as (T , N) seq → ∞ , under the assumption that s grows at most linearly in N. It is shown that the s

largest squared canonical correlations converge to 1 in probability, while the remaining ones converge to 0 as (T , N) seq → ∞ .

This feature allows to estimate the number of common trends consistently as the number for which consecutive squared 

canonical correlations have the largest decrease. The Monte Carlo simulations show that the proposed criterion is accurate 

for N − s not too small, when the sample size T is at least 3 times larger than the cross-sectional dimension N. 

The assumption that s grows at most linearly in N implies that r = N − s → ∞ as N diverges. This is in line with the

tradition of DFMs where the number of common trends is assumed fixed for increasing cross sectional dimension N, see e.g.

Barigozzi et al. (2022) ; Barigozzi and Trapani (2022) . On the other hand, assuming s = � cN� with 0 < c < 1 is complementary

to the large dimensional VAR analysis in Onatski and Wang (2018) and Bykhovskaya and Gorin (2022) , who assume s/N → 1 ,

which is excluded in the present paper because c � = 1 . 

CCA has been used to analyze links among time series in several areas, including in likelihood-based analysis of cointe- 

gration in VARs, see Johansen (1988, 1991, 1996) and Ahn and Reinsel (1990) . In those settings, CCA is performed between 

differences �X t and lagged levels X t−1 after correcting for �X t−1 , . . . �X t−k +1 and deterministic terms. In this paper, CCA is

applied to levels X t and cumulated levels SX t ; to the best of the authors’ knowledge, Breitung (1998) appears to be the only

paper considering such a CCA, although it did not consider the large N analysis of this paper. 

On the contrary, the idea of performing a principal component analysis of levels and cumulated levels and exploiting the 

difference in the stochastic order of the eigenvalues has already been employed in the literature, see e.g. Breitung (2002) ;

Harris (1997) ; Nyblom and Harvey (20 0 0) ; Nielsen et al. (2022) . 

The (T , N) seq → ∞ sequential asymptotics is derived in two stages. The first part (for T → ∞ and fixed N, s ) shows that

the largest s squared canonical correlations converge to the R 2 of the regression of the limit non-stationary part of X t 
(driven by s Brownian motions) on the limit of SX t , which consists of N − s Brownian motions plus the cumulation of the

s Brownian motions present in X t ; the N − s smallest squared canonical correlations converge in probability to zero. In the 

second part (for N → ∞ and s growing at most linearly in N), it is found that the largest s squared canonical correlations

converge to 1, i.e. the limit densities of these squared canonical correlations shrink toward the point mass distribution at 1

as (T , N) seq → ∞ . 

The asymptotics for large N in the second part uses an extension of the results in Phillips (1998) , who showed that 

the R 2 of an L 2 [0 , 1] -regression of a Brownian motion W (u ) on a k -variate independent standard Brownian motion B (k ) (u ) ,

indicated as B (k ) (u ) = BM(I k ) , approaches one in probability as k diverges. Here and in the following I k indicates the iden-
2 
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tity matrix of order k . This convergence is due to a functional approximation of the sample paths of W (u ) and not to

an increasing degree of statistical dependence between the stochastic processes W (u ) and B (k ) (u ) , as represented by the

statistical regression function E(W (u ) | B (k ) (u )) ; thus, this convergence is often understood as spurious, see Johansen (2012) .

More precisely, consider the statistical regression function E(W (u ) | B (k ) (u )) , which is 0 if W (u ) and B (k ) (u ) are inde-

pendent. Let R 2 
k 

indicate the R 2 of the L 2 [0 , 1] -regression of W (u ) on B (k ) (u ) and let s 2 
k 

:= 

∫ 1 
0 (W (u ) − E(W (u ) | B (k ) (u ))) 2 d u

indicate the square of the L 2 [0 , 1] -norm of the statistical regression error. From a statistical standpoint, spuriousness of the

L 2 [0 , 1] -regression for k → ∞ can be understood as R 2 
k 

p → 1 with s 2 
k 

stochastically bounded away from 0; this is what Phillips

(1998) proved when W (u ) and B (k ) (u ) are independent and B (k ) (u ) = BM(I k ) . 

The present paper extends this spurious regression result to the case of dependent W (u ) and B (k ) (u ) , with B (k ) (u ) =
BM(�k ) , �k > 0 (positive definite). The proof in the present paper shows that also in this case R 2 

k 

p → 1 with s 2 
k 

stochastically

bounded away from 0, i.e. that the same spurious regression results hold. Note that the present setting includes the case

E(W (u ) | B (k ) (u )) = 0 and �k = I k considered in Phillips (1998) as a special case. 

The rest of the paper is organized as follows: Section 2 discusses the class of processes considered in the paper,

Section 3 derives their Common Trends representation, Section 4 presents the statistical analysis, Section 5 reports the main 

results, Section 6 illustrates simulation results, and Section 7 concludes. Appendix A contains proofs and Appendix B tables 

of the Monte Carlo simulations. 

2. Setup 

Consider the (large-dimensional) Dynamic Factor Model (DFM) 

X t = �F t + ξt , � ∈ R 

N×N F , rank � = N F < N, (1) 

where { X t , ξt } t∈ Z are N × 1 and { F t } t∈ Z is N F × 1 ; the differences of the common factors F t and the idiosyncratic component ξt 

are assumed to be linear processes generated by independent shocks { ζt , ε t } t∈ Z of dimension N ζ × 1 and N × 1 respectively,

N ζ ≤ N F , i.e. with 

ηt := 

(
ζt 

ε t 

)
∼ i.i.d. (0 , 	) , 	 = 

(
I 0 

0 	ε 

)
> 0 , N η := N ζ + N, (2) 

of dimension N η × 1 , and 

�F t = C(L ) ζt 

ξt = B (L ) ε t 
, 

0 < s := rank C(1) < N F 

B (1) nonsingular , 
0 < N ζ ≤ N F < N < N η, (3) 

where, for a generic process { w t } t∈ Z , �w t := w t − w t−1 performs the difference of the time series and C(z) = 

∑ ∞ 

n =0 C n z 
n ,

B (z) = 

∑ ∞ 

n =0 B n z 
n converge for all | z| < 1 + δ for some δ > 0 . 

Observe that 0 < s < N , and �F t and ξt are mutually uncorrelated; moreover, note that the convergence assumption

for C(z) and B (z) is for instance satisfied if �F t = C(L ) ζt and ξt = B (L ) ε t are the MA representations of stationary VARMA

processes. Fractional processes are excluded by the assumed convergence on | z| < 1 + δ, see e.g. Johansen (2008 , Definition

1). 

The present setup is a particular case of the one in Barigozzi and Trapani (2022) , who also allow for a random walk

with drift in F t . It is also a particular case of the one in Barigozzi et al. (2021) , see also Barigozzi et al. (2020) , where the

idiosyncratic component ξt can be I(1) and possibly cointegrated, and it includes the one in Bai (2004) , where F t = F t−1 + ζt 

is a pure random walk and 	ε is diagonal. 

The next definition presents the notions of I(d) process in Johansen (1996) and I nc (d) process in Franchi and Paruolo

(2019) . 

Definition 2.1. ( I(d) and I nc (d) , d = 0 , 1 , . . . ) Consider a linear process u t = A (L ) w t , where w t ∼ i.i.d. (0 , 	w 

) and A (z) =∑ ∞ 

n =0 A n z 
n converges for all | z| < 1 + δ for some δ > 0 . { u t } t∈ Z is said to be integrated of order 0 – indicated as I(0) – if

A (1) � = 0 ; { u t } t∈ Z is said to be I(0) and non-cointegrated – indicated as I nc (0) – if it is I(0) and, in addition, A (1) has full

row rank. If �d z t ∼ I(0) , then { z t } t∈ Z is said to be I(d) , while if �d z t ∼ I nc (0) , then { z t } t∈ Z is said to be I(d) and non-

cointegrated, indicated as I nc (d) . 

First observe that a linear process can be stationary but not I(0) , such as for instance u t = w t − w t−1 with u t , w t as in

Definition 2.1 . Next consider the cumulation operator S in Gregoir (1999) , defined as follows: for a generic process { w t } t∈ Z ,
its cumulation {Sw t } t∈ Z is defined as Sw t := 1 (t> 1) 

∑ t 
i =1 w i − 1 (t≤1) 

∑ 0 
i = t+1 w i . The cumulation operator S satisfies S�w t =

w t − w 0 , S1 = t and �Sw t = w t . 

Further note that the cumulation of a stationary process may as well be stationary; for example cumulating u t = �w t one

finds S�w t = w t − w 0 , which is stationary up to the choice of initial values w 0 . This cannot happen if the process is I(0) ,

i.e. the cumulation of an I(0) process gives an I(1) process by definition. Hence the order of integration of the cumulation

of a stationary process is not well defined while it is uniquely determined if the process is I(0) . 

Remark that the full rank assumption on B (1) in (3) implies that the idiosyncratic components ξt are I nc (0) while the

reduced rank assumption on C(1) in (3) implies that the common factors F t are I(1) and cointegrated. 
3
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The distinction between I(0) and I nc (0) allows one to establish the order of integration when taking linear combinations 

in the following sense: while a ′ u t ∼ I(0) for any nonzero a if u t ∼ I nc (0) , a ′ u t is stationary but not necessarily I(0) when

u t ∼ I(0) . Thus the order of integration of the cumulation of a ′ u t is not well defined if u t ∼ I(0) while it is equal to 1 if

u t ∼ I nc (0) . The CCA performed in Section 4 below involves X t and its cumulation and their integration properties in specific

directions, see (9) and (11) , hence the need for the distinction between I and I nc . 

3. Representation 

This section derives the Common Trends (CT) representation of X t , see (8) below. Consider (3) , substitute C(z) = C(1) +
(1 − z) C 1 (z) in �F t = C(L ) ζt and cumulate �F t = C(1) ζt + C 1 (L )�ζt ; this leads to the Common Trends (CT) representation of 

the factors 

F t = C(1) Sζt + C 1 (L )(ζt − ζ0 ) + F 0 , 0 < s = rank C(1) < N F . (4) 

Set w.l.o.g. F 0 = ζ0 = 0 and substitute (4) and ξt = B (L ) ε t into (1) to find the CT representation of the observables 

X t = C x Sηt + B x (L ) ηt , 
C x = (�C(1) , 0) 

B x (z) = (�C 1 (z) , B (z)) 
, ηt = 

(
ζt 

ε t 

)
, (5) 

where C x and B x (z) are N × N η and partitioned conformably with ηt , rank C x = rank C(1) = s and rank B x (1) = rank B (1) = N.

Next consider a rank factorization of C(1) , 

C(1) = γω 

′ , (6) 

where γ is N F × s and ω is N ζ × s both of full column rank s and let 

ψ = �γ , κ = 

(
ω 

0 

)
, (7) 

where ψ is N × s and κ is N ζ × s , both of full column rank s ; observe that ψκ ′ is a rank factorization of C x . Eq. (5) and

(7) give the CT representation of the observables 

X t = ψκ ′ Sηt + B x (L ) ηt ∼ I(1) . (8) 

Observe that (8) gives a decomposition of X t into an I(1) component ψκ ′ Sηt and a I nc (0) component B x (L ) ηt ; that is,

X t ∼ I(1) has s common trends κ ′ Sηt ∼ I nc (1) loaded by ψ and N − s cointegrating relations ψ 

′ 
⊥ X t ∼ I nc (0) . Here and in the

following a ⊥ indicates a basis of the orthogonal complement of col (a ) , the linear space spanned by the columns of the

matrix a . 

The loading matrix ψ is tall and of full column rank s , with basis of its orthogonal complement ψ ⊥ of the form ψ ⊥ =
(�⊥ , �̄γ⊥ ) , where ā indicates ā := a (a ′ a ) −1 for any tall matrix a of full column rank. Hence from (8) one has 

ψ 

′ 
⊥ X t = ψ 

′ 
⊥ B x (L ) ηt ∼ I nc (0) , ψ̄ 

′ X t = κ ′ Sηt + ψ̄ 

′ B x (L ) ηt ∼ I nc (1) . (9)

Remark that no further decrement in the order of integration is possible in (9) because ψ 

′ 
⊥ X t and ψ̄ 

′ X t are both I nc . The

aim of this paper is to discuss the estimation of s from data on X t . 

4. Canonical correlation analysis of levels and cumulated levels 

Consider a CCA of the levels X t , see (8) , and cumulated levels 

S X t = ψκ ′ S 2 ηt + B x (L ) S ηt ∼ I(2) , (10) 

which satisfy, see (9) , 

ψ 

′ 
⊥ S X t ∼ I nc (1) , ψ̄ 

′ S X t ∼ I nc (2) . (11) 

Remark that no further decrement in the order of integration is possible in (11) because ψ 

′ 
⊥ SX t and ψ̄ 

′ SX t are both I nc ;

moreover, unlike X t , SX t is nonstationary in all directions. 

The CCA delivers the squared canonical correlation λi and the canonical variates ϕ 

′ 
i 
X t and ς 

′ 
i 
SX t , i = 1 , . . . , N, s.t. the i -th

squared canonical correlation λi is maximal subject to the constraint that ϕ 

′ 
i 
X t ( ς 

′ 
i 
SX t ) is uncorrelated with the previously

found canonical variates ϕ 

′ 
1 
X t , . . . , ϕ 

′ 
i −1 

X t ( ς 

′ 
1 
SX t , . . . , ς 

′ 
i −1 

SX t ). By construction, the squared canonical correlations satisfy

1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 and the N × N matrices V = (ϕ 1 , . . . , ϕ N ) and Q = (ς 1 , . . . , ς N ) are nonsingular. 

The CCA is performed as follows: let 

z t = 

(
z 1 t 
z 2 t 

)
, z 1 t = X t , z 2 t = SX t , (12) 

see (8) and (10) , and define the sample moments 

T −1 
T ∑ 

t=1 

z t z 
′ 
t = 

(
S 11 S 12 

S 21 S 22 

)
, S i j = T −1 

T ∑ 

t=1 

z it z 
′ 
jt . (13) 
4 
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The N × j, j = 1 , . . . , N, full column rank matrices ϕ and ς that deliver the canonical variates are those that maximize

the function 

f (ϕ , ς ) = 

| ϕ 

′ S 12 ς ς 

′ S 21 ϕ | 
| ϕ 

′ S 11 ϕ || ς 

′ S 22 ς | , 

see e.g. Johansen (1996) and references therein. The maximal value of f (ϕ, ς ) is equal to 
∏ j 

i =1 
λi and it is attained for 

ϕ = (ϕ 1 , . . . , ϕ j ) , ς = (ς 1 , . . . , ς j ) , 

where V = (ϕ 1 , . . . , ϕ N ) are eigenvectors associated to the eigenvalues � = diag (λ1 , . . . , λN ) in the basic eigenvalue problem

| λS 11 − S 12 S 
−1 
22 S 21 | = 0 , (14) 

and Q = (ς 1 , . . . , ς N ) = S −1 
22 

S 21 V �
−1 / 2 . By definition, V and � satisfy 

S 11 V � = S 12 S 
−1 
22 S 21 V, V 

′ S 11 V = I, V 

′ S 12 S 
−1 
22 S 21 V = �. (15)

Premultiplying the first equation by V ′ one has V ′ S 11 V � = V ′ S 12 S 
−1 
22 

S 21 V and because � = diag (λ1 , . . . , λN ) and V =
(ϕ 1 , . . . , ϕ N ) , one finds 

λi = 

ϕ 

′ 
i 
S 12 S 

−1 
22 

S 21 ϕ i 

ϕ 

′ 
i 
S 11 ϕ i 

, i = 1 , . . . , N. 

This shows that the i -th squared canonical correlation λi coincides with the R 2 of a regression of the i -th canonical variate

ϕ 

′ 
i 
X t on SX t . 

5. Main results 

This section states the main results of the paper in Theorems 5.1, 5.4 and in Corollary 5.5 . The first part, see Theorem 5.1 ,

is for T → ∞ and fixed N, s . It shows that the largest s squared canonical correlations λ1 ≥ λ2 ≥ · · · ≥ λs converge to the R 2 

of the regression of the limit non-stationary part of X t (driven by s Brownian motions) on the limit of SX t , which consists of

N − s Brownian motions plus the cumulation of the s Brownian motions present in X t . The N − s smallest squared canonical

correlations λs +1 ≥ λs +2 ≥ · · · ≥ λN converge in probability to zero. The second part, see Theorem 5.4 , is for N → ∞ in the

large-T limits, with s growing at most linearly in N. It finds that the largest s squared canonical correlation converge to 1, i.e.

the limit densities of these squared canonical correlation shrink toward the point mass distribution at 1 as (T , N) seq → ∞ .

Corollary 5.5 combines Theorems 5.1 and 5.4 to show that the gap between consecutive squared canonical correlations 

λ j − λ j+1 converges to 0 for j < s and for j > s , while it converges to 1 for j = s as (T , N) seq → ∞ . 

The first result discusses the limit of the squared canonical correlations λi , i = 1 , . . . , N, as T → ∞ . Observe that a func-

tional central limit theorem applies to Sηt , namely 

T −
1 
2 

� T u � ∑ 

t=1 

ηt 
w → W (u ) , var W (1) = 	, (16) 

where �·� denotes the integer part, W (u ) = BM(	) is a N η × 1 Brownian motion in u ∈ [0 , 1] , with covariance 	, see (2) ;

finally 
w → indicates weak convergence of probability measures in D [0 , 1] , the space of all right continuous real-valued func-

tions having finite left limits on [0,1] endowed with the sup norm. 

Next define the following quantities that depend on W (u ) in (16) : 

Y (u ) = κ ′ W (u ) , K(u ) = 

( ∫ u 
0 Y (v )d v 

ψ 

′ 
⊥ B x (1) W (u ) 

)
, � i j = 

∫ 1 

0 

i (u ) j(u ) ′ d u, i, j ∈ { Y, K} , (17)

where ψ and κ are defined in (7) and B x (z) is defined in (5) ; note that Y (u ) is of dimension s × 1 and K(u ) of dimension

N × 1 . Observe that the Brownian motions κ ′ W (u ) and ψ 

′ 
⊥ B x (1) W (u ) are in general correlated. 

Theorem 5.1. (Limit of the squared canonical correlations as T → ∞ ) Let X t be generated as in (1) , (2) , (3) ; then (16) holds, and

as T → ∞ one has that: 

(i) the s largest squared canonical correlations 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λs of (14) jointly satisfy 

λi 
w → μi 

a.s. 
> 0 , i = 1 , . . . , s, T → ∞ , 

where μi is an eigenvalue of � −1 
Y Y 

� Y K � 
−1 
KK 

� KY and 1 ≥ μ1 ≥ μ2 ≥ · · · ≥ μs 
a.s. 
> 0 ; 

(ii) the N-s smallest squared canonical correlations λs +1 ≥ λs +2 ≥ · · · ≥ λN of (14) satisfy 

λi 
p → 0 , i = s + 1 , . . . , N. 
5 
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Proof. See Appendix A . �

Theorem 5.1 shows that the behavior of the s largest squared canonical correlations differs from that of the remaining

N − s . In fact the s largest squared canonical correlations λ1 ≥ λ2 ≥ · · · ≥ λs converge weakly to the eigenvalues of the s × s

random matrix � −1 
Y Y 

� Y K � 
−1 
KK 

� KY , which is positive definite a.s.. This implies that the i -th squared canonical correlation λi , i =
1 , . . . , s , is positive a.s. in the limit. On the contrary, the N − s smallest squared canonical correlations λs +1 ≥ λs +2 ≥ · · · ≥ λN 

converge in probability to zero without any normalization in T . 

Observe that the process SX t is nonstationary in all directions, see (11) , while X t is nonstationary only in the s directions

of ψ , see (9) . Then, because ψ̄ 

′ X t is asymptotically correlated with SX t , the s largest squared canonical correlations λ1 , . . . , λs 

tend to positive limits as T → ∞ . On the contrary, because ψ 

′ 
⊥ X t is asymptotically uncorrelated with SX t , the N − s smallest

squared canonical correlations λs +1 , . . . , λN converge in probability to 0 as T → ∞ . 

The second step (for N → ∞ ) in the sequential asymptotics is derived under the following assumption. 

Assumption 5.2. ( s grows at most linearly in N) The number s of stochastic trends can be: 

(i ) a fixed positive integer, or 

(ii ) s = � g(N) � with 1 ≤ g(N) = o(N) and non-decreasing in N, or 

(iii ) s = � cN� with 0 < c < 1 . 

Remark 5.3 Assumption 5.2 implies N − s → ∞ as N → ∞ . Assumption 5.2 accommodates different behavior for s as N →
∞ . In all cases, however, one has that N − s → ∞ as N → ∞ . In fact in case (i ) of a fixed number s of common trends, the

fact that N − s → ∞ follows directly. In case (ii ) of s = � g(N) � , one has that N − s > N − � cN� for N large enough and any

0 < c < 1 , because g(N) /N = o(1) by Assumption 5.2 . (ii ) . This implies N − s → ∞ . Finally, in case (iii ) the number of common

trends s is a constant proportion of N, and one has N − s ≈ N(1 − c) → ∞ because 1 − c > 0 by Assumption 5.2 . (iii ) . 

Under Assumption 5.2 , the next result shows that the largest s squared canonical correlations converge to 1 as (T , N) seq →
∞ , i.e. the limit densities of these squared canonical correlations shrink toward the point mass distribution at 1. 

Theorem 5.4. ( (T , N) seq → ∞ limit of the s largest squared canonical correlations) Under Assumption 5.2 , the ordered eigenvalues

μi , i = 1 , . . . , s , of � −1 
Y Y 

� Y K � 
−1 
KK 

� KY , see Theorem 5.1 , all converge in probability to 1 as N → ∞ . 

Proof. See Appendix A . �

Theorem 5.4 shows that under Assumption 5.2 the s largest squared canonical correlations λ1 ≥ λ2 ≥ · · · ≥ λs all converge 

in probability to 1 as (T , N) seq → ∞ . The proof of this result extends the results in Phillips (1998) , who showed that any

Brownian motion has an L 2 expansion, with random coefficients, in terms of independent standard Brownian motions, and 

the R 2 of the L 2 regression of an arbitrary Brownian motion on independent standard Brownian motions tends to one as the

number of regressors tends to ∞ . 

Here it is shown that the same result applies to arbitrary Brownian motions with nonsingular variance that are not 

necessarily independent of the regressand. The proof exploits the fact that μi is the R 2 of the L 2 regression of the Brownian

motion c ′ 
i 
Y (u ) on the process K(u ) , where c i is an eigenvector of � −1 

Y Y 
� Y K � 

−1 
KK 

� KY associated to μi and K(u ) contains the

(N − s ) -dimensional Brownian motion ψ 

′ 
⊥ B x (1) W (u ) . Assumption 5.2 ensures that N − s diverges, see Remark 5.3 , and this

implies that μi 
p → 1 . 

Combining Theorems 5.1 and 5.4 , one has that the gap between consecutive squared canonical correlations λ j − λ j+1 

converges to 0 for j < s and for j > s , while it converges to 1 for j = s as (T , N) seq → ∞ ; this leads to the definition of the

following estimator of the number of common trends: 

̂ s := argmax 
j∈{ 1 , ... ,N−1 } 

(λ j − λ j+1 ) (18) 

called the maximal gap estimator in the following. Note that 0 < ̂

 s < N in parallel to the assumption that 0 < s < N. 

Corollary 5.5. ( (T , N) seq → ∞ limit of the maximal gap estimator) Let ̂  s be the maximal gap estimator of s defined in (18) ; then,

under Assumption 5.2 , ̂  s 
p → s when first T → ∞ and then N → ∞ . 

6. Simulations 

The performance of the maximal gap estimator is investigated by simulation using two different Data Generating 

Processes, (DGPs): DGP 1, see Section 6.1 below, is inspired by the Monte Carlo study in Bai (2004) and DGP 2, see

Section 6.2 below, by the one in Barigozzi and Trapani (2022) . 

In the simulations, the number of variables is set to N = 50 , 100 , 300 , the sample size to T = (2 , 3 , 4 , 5 , 10) N and the

number of stochastic trends to s = 1 , 2 , 3 , 4 , 5 , 10 , 20 , 30 , 40 ; the number of Monte Carlo replications is set to 10 4 in every

simulation. In the following, a i j indicates the (i, j) element of a matrix A unless stated otherwise. 
6 
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Fig. 1. DGP 1 with ρ = 0 . 5 , T = 3 N(×) and T = 5 N(◦) . Frequency of ˆ s = s , i.e. 1 
MC 

∑ MC 
n =1 1 ˆ s n = s , and mean absolut error MAE( ̂ s , s ) = 

1 
MC 

∑ MC 
n =1 | ̂ s n − s | over 

MC = 10 4 replications for DGP 1, see Section 6.1 , with ρ = 0 . 5 . 

 

 

 

 

̂
 

 

6.1. DGP 1: Bai (2004) 

Following Bai (2004) , Section 6 , the factor structure of DGP 1 is 

X t = �1 f t + �2 f t−1 + ξt , 

where the s × 1 stochastic trends are generated as f t = f t−1 + ζt , ζt ∼ N(0 , I s ) , the N × s loadings �h , h = 1 , 2 , as λh,i j ∼
N(0 , 1) , independently of ζt and the N × 1 idiosyncratic component as 

ξt = Aξt−1 + ε t + Bε t−1 , 

A = diag (a 1 , . . . , a N ) 
B = diag (b 1 , . . . , b N ) 
ε t ∼ N(0 , 	ε ) 

, 

a i ∼ U[ −ρ, ρ] 
b i ∼ U[ −ρ, ρ] 

	ε = (0 . 5 

| i − j| ) i, j=1 , ... ,N 

, 0 < ρ < 1 , 

all independent, where U[ a, b] indicates the uniform distribution on the interval [ a, b] . This is an extension of the design

considered in Bai (2004) . The present setup satisfies (1) - (2) : in fact 

X t = �F t + ξt , � = (�1 , �2 ) , F t = 

(
f t 

f t−1 

)
, 

B (z) = (I − Az) −1 (I + Bz) = 

∑ ∞ 

n =0 B n z 
n converges for all | z| < 1 + δ for δ = −1 + min i =1 , ... ,N 1 / | a i | > 0 and B (1) is nonsingular.

The complete set of results of the simulations are grouped in Table B.1 and Table B.2 in Appendix B.1 according to

the value of ρ: non-autocorrelated idiosyncratic terms ( ρ = 0 ) and mildly autocorrelated idiosyncratic terms ( ρ = 0 . 5 ). The

overall conclusions are that the percentage of correct detection of the number of stochastic trends, i.e. the frequency of 
 s = s , is 100% (or very close to it) in most cases when the sample size T is at least 3 times larger than the cross-sectional

dimension N and N − s is not too small. 

A graphical illustration of the results for the ρ = 0 . 5 case is presented in Figure 1 , which reports frequencies of correct

estimation of s and the associated mean absolute estimation error. 

6.2. DGP 2: Barigozzi and Trapani (2022) 

Following Barigozzi and Trapani (2022) , Section 5 , the factor structure of DGP 2 is 

X t = �F t + ξt , � = (�2 , �3 ) , F t := 

(
f (2) ′ 
t , f (3) ′ 

t 

)′ 
, ξt = 

√ 

θu t , (19) 

where, following their original notation and with independent draws, one has that: 
7 
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Fig. 2. DGP 2 with r 3 = 3 , T = 4 N(×) and T = 5 N(◦) . Frequency of ˆ s = s , i.e. 1 
MC 

∑ MC 
n =1 1 ˆ s n = s , and mean absolut error MAE( ̂ s , s ) = 

1 
MC 

∑ MC 
n =1 | ̂ s n − s | over 

MC = 10 4 replications for DGP 2, see Section 6.2 , with r 3 = 3 stationary factors. 

 

 

 

 

 

 

 

(i ) the s × 1 stochastic trends f (2) 
t are generated as 

f (2) 
t = f (2) 

t−1 
+ e (2) 

t , e (2) 
t = diag (ρ1 , ..., ρs ) e 

(2) 
t−1 

+ ε (2) 
t , 

ρi ∼ U[0 . 4 , 0 . 8] 

ε (2) 
t ∼ N(0 , I s ) 

; (20) 

(ii ) the r 3 × 1 stationary factors f (3) 
t are generated as 

f (3) 
t = diag (α1 , ..., αr 3 ) f 

(3) 
t−1 

+ ε (3) 
t , 

αi ∼ U[ −0 . 5 , 0 . 5] 

ε (3) 
t ∼ N(0 , I r 3 ) 

; (21) 

(iii ) the N × 1 innovations u t in the idiosyncratic component ξt = 

√ 

θu t are generated as 

u t = 0 . 5 u t−1 + Bυt , υt ∼ N(0 , I N ) , (22) 

where B is s.t. b i j = 0 . 5 | j−i | for | j − i | ≤ min (� N/ 20 � , 10) and 0 elsewhere. 

In the setup of Barigozzi and Trapani (2022) , F t can also include a random walk with drift f (1) 
t and B is s.t. b i j = 0 . 5 for

| j − i | ≤ min (� N/ 20 � , 10) , b ii = 1 and 0 elsewhere; the present modification of B avoids warnings of numerical singularity of

the inverses in the CCA analysis. 

X t in (19) is thus generated as follows: define A as a random matrix of dimension N × (s + r 3 ) with elements inde-

pendently drawn from a N(0 , 1) distribution, compute its QR decomposition, QR = A say, and set � = 

√ 

N Q; this satisfies

�′ � = NI N . 

Next generate f 
( j) 
t , j = 2 , 3 , as in (20), (21) ; indicating the resulting realization of the factors as ˜ f 

( j) 
t , j = 2 , 3 , one then

computes 

k 2 = 

1 

NT 

N ∑ 

i =1 

T ∑ 

t=1 

(
λ(2) ′ 

i 
�˜ f (2) 

t 

)2 

, k 3 = 

1 

NT 

N ∑ 

i =1 

T ∑ 

t=1 

(
λ(3) ′ 

i 
˜ f (3) 

t 

)2 

where λ( j) ′ 
i 

is row i of � j , and one rescales the factors as f 
( j) 
t = ̃

 f 
( j) 
t / 

√ 

k j , j = 2 , 3 . Finally one generates ξt = 

√ 

θu t , where

u t is as in (22) and sets 

θ = 0 . 5 ·
∑ N 

i =1 

∑ T 
t=1 

(
λ(2) ′ 

i 
�˜ f (2) 

t + λ(3) ′ 
i 

�˜ f (3) 
t 

)2 

∑ N 
i =1 

∑ T 
t=1 ( �u it ) 

2 
;

one then computes X t from (19) . 

Table B.3 and Table B.4 in Appendix B.2 respectively report the estimation frequencies in the presence of r 3 = 0 , 3 sta-

tionary factors f (3) . The overall conclusions are: 
t 

8 
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(i ) the results do not change with the number r 3 = 0 , 3 of stationary factors; 

(ii ) when the cross-sectional dimension is moderate ( N = 50 and N = 100 ) and the number of stochastic trends is mod-

erate ( s ≤ 5 ), the percentage of correct detection of the number of stochastic trends s , ̂  s = s , is 100% (or very close to

it) in most cases when the sample size T is at least 4 times larger than the cross-sectional dimension N; 

(iii ) when the cross-sectional dimension is large ( N = 300 ) a sample size T is at least 4 times larger than the cross-

sectional dimension N generally guarantees a frequency of correct detection of 1 (or very close to it). 

Figure 2 reports frequencies of correct estimation of s and the associated mean absolute estimation error, for the r 3 = 3

case. 

7. Conclusions 

This paper discusses the limit behavior for CCA performed on the levels and cumulated levels of a vector time series

when the number of common trends s grows at most linearly in N and both the time and the cross sectional dimensions T 

and N diverge sequentially. 

It is found that the largest s squared canonical correlations tend to 1 due to a spurious regression phenomenon while

the smallest N − s squared canonical correlations tend to 0; this fact is used to estimate s consistently via the index of the

largest gap between squared canonical correlations. Monte Carlo simulations show that the proposed criterion is accurate 

when the sample size T is at least 3 times larger than the cross-sectional dimension N and for a number of stochastic trends

s that guarantees a large N − s dimension. 
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Appendix A. Proofs 

Proof. Proof of Theorem 5.1 . Eq. (16) holds by Johansen (1996) Theorem B.12, eq. (B.12), see also Phillips and Solo (1992) .

Next one can apply results for linear processes related to (16) that enter the CCA, following Johansen (1995) (henceforth

J95). 

Specifically, define X 0 , 1 t := ψ 

′ 
⊥ X t , �X 1 , 1 t := �ψ 

′ 
⊥ SX t = X 0 , 1 t , �X 1 , 2 t := �ψ 

′ X t , �2 X 2 , 1 t := �2 ψ 

′ SX t = X 1 , 2 t , see (9) and

(11) , and observe that they are linear processes of the type � j X j,ht = a j (L ) ηt = 

∑ ∞ 

i =0 a ji ηt−i , j = 0 , 1 , 2 and h = 1 , 2 , with

geometrically decreasing coefficients a ji . Hence, applying (A .4), (A .5) and (A .6) in J95 to z 1 t = X t , z 2 t = SX t in (12) and using

(8) , one finds for t = 1 , . . . , T and t = � T u � 
T −

1 
2 ψ̄ 

′ z 1 t = T −
1 
2 κ ′ Sηt + o p (1) 

w → Y (u ) := κ ′ W (u ) , 

T −
1 
2 ψ 

′ 
⊥ z 2 t = T −

1 
2 ψ 

′ 
⊥ B x (1) Sηt + o p (1) 

w → K ψ ⊥ (u ) := ψ 

′ 
⊥ B x (1) W (u ) , 

T −
3 
2 ψ̄ 

′ z 2 t = T −
3 
2 κ ′ S 2 ηt + o p (1) 

w → K ψ 

(u ) := 

∫ u 

0 

Y (v )d v = 

∫ u 

0 

κ ′ W (v )d v . 

Further note that ψ 

′ 
⊥ z 1 t is a stationary process with mean 0 and variance �ψ ⊥ ψ ⊥ := var (ψ 

′ 
⊥ z 1 t ) . Observe also that

E(K ψ ⊥ (u ) Y (u ) ′ ) = (ψ 

′ 
⊥ B x (1)	κ) u = ((0 , γ⊥ ) ′ C 1 (1) ω) u which is not necessarily equal to 0; this means that K ψ ⊥ (u ) and Y (u )

are in general correlated. 

Next define 

K(u ) = 

(
K ψ 

(u ) 
K ψ ⊥ (u ) 

)
, A T = 

(
T −

1 
2 ψ̄ ψ ⊥ 

)
, B T = 

(
T −

3 
2 ψ̄ T −

1 
2 ψ ⊥ 

)
; (A.1) 

then 

N 11 = A 

′ 
T S 11 A T 

w → 

(
� Y Y 0 

0 �ψ ⊥ ψ ⊥ 

)
, N 22 = B 

′ 
T S 22 B T 

w → � KK , N 12 = A 

′ 
T S 12 B T 

w → 

(
� Y K 
0 

)
by (A .7)-(A .10) in J95. 

Normalizing S(λ) = λS 11 − S 12 S 
−1 
22 

S 21 in (14) using the matrices A T and B T in (A.1) , one finds 

A 

′ 
T S(λ) A T = λN 11 − N 12 N 

−1 
22 N 21 

w → λ

(
� Y Y 0 

0 �ψ ⊥ ψ ⊥ 

)
−

(
� Y K � 

−1 
KK 

� KY 0 

0 0 

)
; (A.2) 
9 
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this shows that the s largest λ eigenvalues in (14) converge weakly to the ones of � −1 
Y Y 

� Y K � 
−1 
KK 

� KY and the smallest N − s

eigenvalues λ converge to 0 in probability. �

Proof. Proof of Theorem 5.4 . From Theorem 5.1 one has that λi 
w → μi as T → ∞ , i = 1 , . . . , s , eigenvalue of � −1 

Y Y 
� Y K � 

−1 
KK 

� KY ;

letting c i be a corresponding eigenvector, one has � Y Y c i μi = � Y K � 
−1 
KK 

� KY c i and hence 

μi = 

c ′ 
i 
� Y K � 

−1 
KK 

� KY c i 

c ′ 
i 
� Y Y c i 

, 

i.e. μi is the R 2 of a L 2 [0 , 1] regression of the Brownian motion c ′ 
i 
Y (u ) = c ′ 

i 
κ ′ W (u ) on K(u ) = (K ψ 

(u ) ′ , K ψ ⊥ (u ) ′ ) ′ , com-

posed by the s -dimensional integrated Brownian motion K ψ 

(u ) = 

∫ u 
0 Y (v )d v and the (N − s ) -dimensional Brownian motion

K ψ ⊥ (u ) = ψ 

′ 
⊥ B x (1) W (u ) . Hence, μi is bounded below by the R 2 of the regression of c ′ 

i 
Y (u ) on K ψ ⊥ (u ) alone. It is shown

next that the latter R 2 approaches 1 in probability, as N − s → ∞ , and hence, so does μi . 

The underlying fact is Theorem 4.3 of Phillips (1998) , asserting that an arbitrary Brownian motion on [0,1] has an L 2 [0 , 1]

expansion, with random coefficients, in terms of independent standard Brownian motions defined on an augmented prob- 

ability space. Specifically, given a standard Brownian motion W 0 (u ) , there exist independent standard Brownian motions ̂ 

 k (u ) , k = 1 , 2 , . . . , independent of W 0 (u ) and defined on a product extension of the probability space where W 0 (u ) is

defined, and r.v.’s ̂ d k such that, for every ε > 0 , 

Pr 

⎛ ⎝ 

∫ 1 

0 

[ 

W 0 (u ) −
N−s ∑ 

k =1 ̂

 d k ̂
 W k (u ) 

] 2 

d u < ε 

⎞ ⎠ → 1 

as N − s → ∞ . The previous probability is fully determined by the joint distribution of W 0 (u ) , ̂  W k (u ) , ̂  d k , k = 1 , . . . , N − s ,

whatever the structure of the supporting probability space. Therefore, also 

Pr 

⎛ ⎝ 

∫ 1 

0 

[ 

W 0 (u ) −
N−s ∑ 

k =1 

d k W k (u ) 

] 2 

d u < ε 

⎞ ⎠ → 1 (A.3) 

as N − s → ∞ for 

W 0 (u ) := σ−1 / 2 

ii.ψ ⊥ 
{ c ′ i Y (u ) − �iψ ⊥ �

−1 
ψ ⊥ ψ ⊥ 

K ψ ⊥ (u ) } (
W 1 (u ) , . . . , W N−s (u ) 

)′ 
:= �−1 / 2 

ψ ⊥ ψ ⊥ 
K ψ ⊥ (u ) 

with 

�ψ ⊥ ψ ⊥ = ψ 

′ 
⊥ B x (1)	B x (1) ′ ψ ⊥ , �iψ ⊥ = c ′ i ψ̄ 

′ C x 	B x (1) ′ ψ ⊥ , 

σii = c ′ i ψ̄ 

′ C x 	C ′ x ψ̄ c i , σii.ψ ⊥ = σii − �iψ ⊥ �
−1 
ψ ⊥ ψ ⊥ 

�ψ ⊥ i 

and d k (possibly defined on an extension of the original probability space) such that W 0 (u ) , W k (u ) , d k and W 0 (u ) , ̂  W k (u ) , ̂  d k ,

k = 1 , . . . , N − s , have the same joint distribution. Then (A.3) can be reformulated as 

P 

(∫ 1 

0 

[
c ′ i Y (u ) − a ′ i K ψ ⊥ (u ) 

]2 
d u < σii.ψ ⊥ ε 

)
→ 1 

as N − s → ∞ , with a ′ 
i 
= σ 1 / 2 

ii.ψ ⊥ 
d ′ �−1 / 2 

ψ ⊥ ψ ⊥ 
+ �iψ ⊥ �

−1 
ψ ⊥ ψ ⊥ 

, d ′ = (d 1 , . . . , d N−s ) . As the R 2 of the regression of c ′ 
i 
Y (u ) on K ψ ⊥ (u )

is invariant to the normalization of c i , without loss of generality, one can choose c i such that σii = 1 ; then 

∫ 1 
0 [ c 

′ 
i 
Y (u )] 2 d u is

bounded away from zero in probability, as N − s → ∞ , and σii.ψ ⊥ ≤ σii = 1 for all N. It follows that 

∫ 1 
0 

[
c ′ 

i 
Y (u ) − a ′ 

i 
K ψ ⊥ (u ) 

]2 
d u ∫ 1 

0 [ c 
′ 
i 
Y (u )] 2 d u 

→ 0 

in probability, as N − s → ∞ . One less the previous fraction is a lower bound for the R 2 of the regression of c ′ 
i 
Y (u ) on

K ψ ⊥ (u ) , implying that this R 2 approaches one in probability, as N − s → ∞ . Hence the convergence of μi . �
10 
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Appendix B. Tables and figures 

B1. DGP 1: Bai (2004) 

Table B1 
Frequency of ˆ s = m , i.e. 1 
MC 

∑ MC 
n =1 1 ˆ s n = m over MC = 10 4 replications for DGP 1, see Section 6.1 , with non-autocorrelated idiosyncratic terms ( ρ = 0 ). 

ρ = 0 N = 50 N = 100 N = 300 

T T T 

s ̂ s 100 150 200 250 500 200 300 400 500 10 0 0 600 900 1200 1500 30 0 0 

1 1 0 0.9945 1 1 1 0 1 1 1 1 0 1 1 1 1 

2 0 0.0021 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 0 0.9935 1 1 1 0 1 1 1 1 0 1 1 1 1 

3 0 0.0026 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 3 0 0.9949 1 1 1 0 1 1 1 1 0 1 1 1 1 

4 0 0.0024 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 4 0 0.9943 1 1 1 0 1 1 1 1 0 1 1 1 1 

5 0 0.0022 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 5 0 0.9935 1 1 1 0 1 1 1 1 0 1 1 1 1 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0.0042 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

10 10 0 0.9726 0.9999 1 1 0 1 1 1 1 0 1 1 1 1 

11 0 0.0091 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0.0017 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0.076 0.0139 0.0018 0 0 0.0002 0 0 0 0 0 0 0 0 

20 20 0 0.7188 0.9832 0.9982 1 0 0.9998 1 1 1 0 1 1 1 1 

21 0 0.0502 0.0025 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0.0145 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

28 0 0.0233 0.11 0.1725 0.1626 0 0 0 0 0 0 0 0 0 0 

29 0.0002 0.0252 0.0819 0.1272 0.2308 0 0.0056 0 0 0 0 0 0 0 0 

30 30 0.0004 0.027 0.0622 0.0727 0.2897 0 0.9942 1 1 1 0 1 1 1 1 

31 0.0007 0.0243 0.0413 0.0288 0.0005 0 0.0002 0 0 0 0 0 0 0 0 

32 0.0014 0.0265 0.0286 0.0112 0 0 0 0 0 0 0 0 0 0 0 

38 0.0103 0.0394 0.0359 0.0217 0.0024 0 0 0 0 0 0 0 0 0 0 

39 0.0149 0.0404 0.0336 0.0181 0.0005 0 0.0334 0.0004 0 0 0 0 0 0 0 

40 40 0.0205 0.0404 0.0304 0.0144 0.0004 0 0.9621 0.9996 1 1 0 1 1 1 1 

41 0.0274 0.0466 0.0304 0.0119 0 0 0.0035 0 0 0 0 0 0 0 0 

42 0.0357 0.0484 0.0263 0.0106 0 0 0.0001 0 0 0 0 0 0 0 0 
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Table B2 

Frequency of ˆ s = m , i.e. 1 
MC 

∑ MC 
n =1 1 ˆ s n = m over MC = 10 4 replications for DGP 1, see Section 6.1 , with midly autocorrelated idiosyncratic terms ( ρ = 0 . 5 ). 

ρ = 0 . 5 N = 50 N = 100 N = 300 

T T T 

s ̂ s 100 150 200 250 500 200 300 400 500 10 0 0 600 900 1200 1500 30 0 0 

1 1 0 0.4863 0.9999 1 1 0 0.9983 1 1 1 0 1 1 1 1 

2 0 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 0 0.5495 0.9999 1 1 0 0.9986 1 1 1 0 1 1 1 1 

3 0 0.0007 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0.0002 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 3 0 0.6399 0.9997 1 1 0 0.9992 1 1 1 0 1 1 1 1 

4 0 0.0007 0.0002 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0.0002 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 4 0 0.6853 0.9999 1 1 0 0.9997 1 1 1 0 1 1 1 1 

5 0 0.0012 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 5 0 0.7011 0.9997 0.9998 1 0 0.9997 1 1 1 0 1 1 1 1 

8 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0.0033 0.0013 0.0001 0 0 0 0 0 0 0 0 0 0 0 

10 10 0 0.7387 0.997 0.9999 1 0 0.9994 1 1 1 0 1 1 1 1 

11 0 0.0121 0.0016 0 0 0 0.0001 0 0 0 0 0 0 0 0 

12 0 0.0029 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0.0097 0.0069 0.0011 0 0 0 0 0 0 0 0 0 0 0 

19 0 0.0736 0.0851 0.0326 0.0018 0 0.0025 0 0 0 0 0 0 0 0 

20 20 0 0.3259 0.8757 0.9628 0.9982 0 0.9965 1 1 1 0 1 1 1 1 

21 0 0.0633 0.0256 0.0033 0 0 0.0008 0 0 0 0 0 0 0 0 

22 0 0.0278 0.0032 0.0002 0 0 0 0 0 0 0 0 0 0 0 

28 0.0001 0.0218 0.1066 0.1673 0.1745 0 0 0 0 0 0 0 0 0 0 

29 0.0002 0.0252 0.0841 0.129 0.2343 0 0.0213 0 0 0 0 0 0 0 0 

30 30 0.0003 0.0253 0.0624 0.0685 0.2715 0 0.9758 1 1 1 0 1 1 1 1 

31 0.0009 0.0289 0.042 0.0294 0.0009 0 0.0024 0 0 0 0 0 0 0 0 

32 0.0015 0.0238 0.0332 0.0141 0 0 0 0 0 0 0 0 0 0 0 

38 0.0131 0.0365 0.0359 0.0231 0.0024 0 0.0001 0 0 0 0 0 0 0 0 

39 0.0168 0.0401 0.0338 0.0183 0.0022 0 0.0515 0.001 0 0 0 0 0 0 0 

40 40 0.0199 0.0434 0.0335 0.0137 0.0001 0 0.9388 0.999 1 1 0 1 1 1 1 

41 0.0249 0.0459 0.0318 0.0136 0.0003 0 0.0065 0 0 0 0 0 0 0 0 

42 0.0332 0.0482 0.0286 0.0127 0 0 0.0003 0 0 0 0 0 0 0 0 
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B2. DGP 2: Barigozzi and Trapani (2022) 
Table B3 

Frequency of ˆ s = m , i.e. 1 
MC 

∑ MC 
n =1 1 ˆ s n = m over MC = 10 4 replications for DGP 2, see Section 6.2 , with r 3 = 0 stationary factors. 

r 3 = 0 N = 50 N = 100 N = 300 

T T T 

s ̂ s 100 150 200 250 500 200 300 400 500 10 0 0 600 900 1200 1500 30 0 0 

1 1 0 0.0218 0.9974 1 1 0 0.736 1 1 1 0 1 1 1 1 

2 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0.0011 0.0006 0 0 0 0 0 0 0 0 0 0 0 

2 2 0 0.0249 0.9919 0.9994 1 0 0.7088 1 1 1 0 1 1 1 1 

3 0 0 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0.004 0.0024 0.0002 0 0 0 0 0 0 0 0 0 0 

3 3 0 0.0178 0.9751 0.9973 0.9998 0 0.7318 1 1 1 0 0.9999 1 1 1 

4 0 0 0.0015 0.0002 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0.0098 0.0057 0.0004 0 0 0 0 0 0 0 0 0 0 

4 4 0 0.0219 0.958 0.9937 0.9996 0 0.6381 1 1 1 0 1 1 1 1 

5 0 0 0.0016 0.0004 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0.0129 0.0111 0.0028 0 0.0001 0.0004 0 0 0 0 0 0 0 

5 5 0 0.0232 0.9345 0.9878 0.9972 0 0.4156 0.9996 1 1 0 0.9999 1 1 1 

8 0 0 0.0146 0.0284 0.0057 0 0 0.0002 0 0 0 0 0 0 0 

9 0 0.0004 0.1221 0.1682 0.0668 0 0.0008 0.0133 0.0037 0.0002 0 0 0 0 0 

10 10 0 0.0039 0.4562 0.7398 0.9265 0 0.1247 0.9846 0.9963 0.9998 0 0.9988 1 1 1 

11 0 0.0001 0.0303 0.0238 0.0002 0 0 0.0003 0 0 0 0 0 0 0 

12 0 0.0001 0.0093 0.0056 0.0001 0 0 0 0 0 0 0 0 0 0 

18 0 0.0024 0.0801 0.1557 0.151 0 0.0003 0.0366 0.0201 0.0006 0 0 0 0 0 

19 0 0.0031 0.0935 0.2053 0.2661 0 0.0019 0.1717 0.1184 0.015 0 0.0001 0 0 0 

20 20 0 0.0037 0.0806 0.1664 0.3991 0 0.007 0.6277 0.8463 0.9844 0 0.9877 1 1 1 

21 0 0.0043 0.0539 0.0707 0.0172 0 0.0004 0.0265 0.0089 0 0 0 0 0 0 

22 0 0.005 0.0429 0.0439 0.002 0 0 0.0056 0.0006 0 0 0 0 0 0 

28 0 0.014 0.063 0.0882 0.1108 0 0 0.0786 0.1496 0.0514 0 0.0001 0 0 0 

29 0 0.0162 0.0651 0.0762 0.0792 0 0.0002 0.0986 0.2293 0.1494 0 0.0046 0.0001 0 0 

30 30 0.0004 0.019 0.0616 0.0655 0.0388 0 0.0003 0.0745 0.2417 0.7599 0 0.89 0.9999 1 1 

31 0.0001 0.0207 0.0602 0.0549 0.0119 0 0.0001 0.0353 0.0537 0.0025 0 0 0 0 0 

32 0.0001 0.0227 0.0541 0.0418 0.004 0 0.0004 0.0178 0.0206 0.0001 0 0 0 0 0 

38 0.0126 0.0404 0.0508 0.0382 0.0146 0 0.0006 0.0409 0.1071 0.1449 0 0.0008 0.0002 0 0 

39 0.015 0.0461 0.0432 0.0287 0.0052 0 0.0009 0.0427 0.0962 0.2176 0 0.0135 0.008 0.0004 0 

40 40 0.0197 0.0463 0.0354 0.0194 0.0017 0 0.0008 0.0326 0.0782 0.3049 0 0.221 0.9916 0.9996 1 

41 0.0252 0.0463 0.0305 0.0138 0.0006 0 0.0004 0.0287 0.0491 0.0199 0 0.0004 0.0001 0 0 

42 0.0348 0.0526 0.0258 0.01 0.0001 0 0.0009 0.0218 0.0345 0.0034 0 0 0 0 0 
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Table B4 

Frequency of ˆ s = m , i.e. 1 
MC 

∑ MC 
n =1 1 ˆ s n = m over MC = 10 4 replications for DGP 2, see Section 6.2 , with r 3 = 3 stationary factors. 

r 3 = 3 N = 50 N = 100 N = 300 

T T T 

s ̂ s 100 150 200 250 500 200 300 400 500 10 0 0 600 900 1200 1500 30 0 0 

1 1 0 0.0377 0.9988 1 1 0 0.7911 1 1 1 0 1 1 1 1 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0.0001 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 

2 2 0 0.0352 0.9964 0.9999 0.9999 0 0.7125 1 1 1 0 1 1 1 1 

3 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0.004 0.0023 0.0003 0 0 0.0001 0 0 0 0 0 0 0 

3 3 0 0.0286 0.9824 0.9976 0.9997 0 0.6776 0.9999 1 1 0 1 1 1 1 

4 0 0 0.0011 0.0001 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 

3 0 0 0.0201 0.014 0.0016 0 0 0 0 0 0 0 0 0 0 

4 4 0 0.0182 0.9297 0.9848 0.9983 0 0.6669 1 1 1 0 0.9999 1 1 1 

5 0 0 0.0038 0.0008 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0.0006 0 0 0 0 0 0 0 0 0 0 0 

4 0 0.0001 0.0322 0.0256 0.0054 0 0 0.0007 0.0001 0 0 0 0 0 0 

5 5 0 0.0142 0.8834 0.97 0.9946 0 0.4638 0.9993 0.9999 1 0 0.9999 1 1 1 

8 0 0.0001 0.0439 0.0702 0.0121 0 0 0.0006 0 0 0 0 0 0 0 

9 0 0.0003 0.1438 0.2418 0.0923 0 0.0015 0.0162 0.0042 0 0 0 0 0 0 

10 10 0 0.0011 0.2234 0.5678 0.8932 0 0.1357 0.9815 0.9957 1 0 0.9994 1 1 1 

11 0 0.0001 0.0251 0.0349 0.0006 0 0 0.0002 0.0001 0 0 0 0 0 0 

12 0 0.0006 0.0117 0.0099 0 0 0 0 0 0 0 0 0 0 0 

18 0 0.0016 0.0506 0.1294 0.1839 0 0.0003 0.0784 0.0599 0.0014 0 0 0 0 0 

19 0 0.0019 0.0453 0.1149 0.2518 0 0.0004 0.1912 0.1952 0.0246 0 0.0007 0 0 0 

20 20 0 0.0022 0.0362 0.0794 0.2455 0 0.0003 0.3523 0.6939 0.9733 0 0.986 1 1 1 

21 0 0.0035 0.0342 0.0569 0.0177 0 0.0001 0.0326 0.0184 0 0 0 0 0 0 

22 0 0.0043 0.0366 0.0463 0.0041 0 0.0001 0.009 0.0032 0 0 0 0 0 0 

28 0 0.0113 0.0492 0.0625 0.0785 0 0.0002 0.0587 0.1566 0.0615 0 0.0003 0 0 0 

29 0.0002 0.016 0.0478 0.0613 0.0462 0 0.0001 0.0547 0.1721 0.1706 0 0.0126 0.0003 0 0 

30 30 0.0004 0.0204 0.0502 0.0553 0.0226 0 0 0.0433 0.1579 0.7138 0 0.7199 0.9997 1 1 

31 0.001 0.0226 0.0508 0.0494 0.0101 0 0 0.0239 0.0508 0.0043 0 0.0001 0 0 0 

32 0.0009 0.0252 0.0501 0.0482 0.0052 0 0 0.0156 0.0229 0.0002 0 0 0 0 0 

38 0.0105 0.042 0.0396 0.0278 0.0057 0 0.0004 0.0257 0.0778 0.15 0 0.0011 0.0002 0 0 

39 0.0169 0.0398 0.0325 0.0194 0.0021 0 0.0003 0.0235 0.0709 0.2013 0 0.0146 0.0066 0.0008 0 

40 40 0.0225 0.042 0.0319 0.0154 0.0005 0 0.0001 0.0204 0.0504 0.226 0 0.2152 0.993 0.9992 1 

41 0.0295 0.0436 0.0265 0.0108 0.0001 0 0.0005 0.0209 0.0398 0.0226 0 0.0003 0.0002 0 0 

42 0.034 0.0446 0.0229 0.0068 0 0 0.0004 0.0183 0.0312 0.0046 0 0 0 0 0 
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