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ABSTRACT
Noise manifests ubiquitously in nonlinear spectroscopy, where multiple sources contribute to experimental signals generating interrelated
unwanted components, from random point-wise fluctuations to structured baseline signals. Mitigating strategies are usually heuristic, depend-
ing on subjective biases such as the setting of parameters in data analysis algorithms and the removal order of the unwanted components.
We propose a data-driven frequency-domain denoiser based on a convolutional neural network to extract authentic vibrational features from
a nonlinear background in noisy spectroscopic raw data. The different spectral scales in the problem are treated in parallel by means of fil-
ters with multiple kernel sizes, which allow the receptive field of the network to adapt to the informative features in the spectra. We test
our approach by retrieving asymmetric peaks in stimulated Raman spectroscopy, an ideal test-bed due to its intrinsic complex spectral fea-
tures combined with a strong background signal. By using a theoretical perturbative toolbox, we efficiently train the network with simulated
datasets resembling the statistical properties and lineshapes of the experimental spectra. The developed algorithm is successfully applied to
experimental data to obtain noise- and background-free stimulated Raman spectra of organic molecules and prototypical heme proteins.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0198013

I. INTRODUCTION

Nonlinear optics has enabled and fostered the application
of spectroscopy to ultrashort time scales. Thanks to the develop-
ments of photonic techniques for femtosecond pulse generation
and shaping, nonlinear spectroscopy addressed the interdisciplinary
studies of ultrafast phenomena across a wide energy range,1 advanc-
ing, among others, the understanding of many-body interactions
in structured and strongly correlated systems,2–4 carrier dynamics
and e–ph couplings upon excitation,5–8 photochemical reactions,
and vibronic and non-adiabatic effects in molecules.9–14 Similar
advancements have also become possible in the closely related field
of microscopy.15–18 A common approach consists of using multi-
ple ultrashort pulses, shaped in frequency and time, to resolve the
induced modifications to a certain optical observable in a differential

manner when one of the pulses is switched on and off. Dynam-
ical insights can be obtained by adding a photochemical actinic
pump and/or by tuning the pulses in resonance with the electronic
absorption edges from which excited-state relaxation occurs. In par-
ticular, coherent resonant Raman spectroscopies exploit stimulated
Raman scattering (SRS) to probe the structural response of the sys-
tem undergoing ultrafast dynamics, thanks to their sensitivity to
both the electronic and vibrational degrees of freedom.19–26

Even if nonlinearity is pivotal for accessing ultrafast dynam-
ics over multiple time and energy scales, it is accompanied by two
major complications in the data analysis and interpretation: (1) the
signal generated by the nonlinear process is usually low compared
to the residual, non-interacting light or the fluctuations in the laser
source, leading to point-wise noisy fluctuations in the measured
spectra; and (2) multiple nonlinear processes are usually generated
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by the same experimental layout, leading to the need for a posteriori
protocols to isolate the desired spectroscopic information from an
unwanted baseline background and signal distortions due to over-
laying competitive effects.27–30 Post-processing routines are usually
strongly dependent on the specific sample and the experimental
parameters. The sources of noise are not quantitatively known, and
often the exact lineshapes of both the baseline and signal cannot
be predicted in advance.31,32 Moreover, point-wise denoising and
baseline subtraction are generally heavily correlated operations that
cannot be factorized, particularly when the target clean spectrum
contains asymmetric lineshapes or components with largely differ-
ent relative intensities.33 The practical solution is often delegated
to the experienced eye of the spectroscopist, a strategy that ham-
pers automatization of the routine and may lead to sub-optimal
resolutions, ambiguity, and human biases.

To overcome these critical issues and enhance the sensitivity of
nonlinear Raman techniques beyond the limitations induced by the
background and low signal-to-noise conditions, we have devised and
trained a deep neural network (NN) based on multiple convolutional
layers operating in parallel for denoising and baseline removal of raw
SRS spectra. By designing the network architecture and choosing
a suitable loss function and optimization strategy during training,
we show how to perform the two tasks in parallel and avoid the
difficulties that hinder the application of standard data processing
algorithms.

Applications of deep learning to nonlinear spectroscopy are still
in their infancy but have already demonstrated great potential.34–42

NN has also been applied to the preprocessing of spontaneous
Raman data.43–48 The lineshapes in these techniques are always pos-
itive, and the luminescence background is usually not structured.
More importantly, the removal of the luminescent background and
the denoising are typically tackled separately. In the case of nonlinear
Raman spectroscopy, due to the asymmetric and complex lineshapes
that are typical of SRS signals,49–51 there are no optimal methods
to disentangle the two tasks and perform them sequentially. Super-
vised training of the algorithms is further complicated by the absence
of large enough labeled datasets to ensure a statistically relevant
representation of the diverse SRS baseline and peak structures. To
address these challenges, we combine a multi-parallel convolutional
NN architecture with supervised training built on a theoretical tool-
box based on the density matrix perturbative expansion for accu-
rate modeling of the spectroscopic signals and their characteristic
noise.

II. SIGNAL AND NOISE IN STIMULATED
RAMAN SCATTERING

SRS is a third order nonlinear optical effect that can be gener-
ated in the sample by the joint action of a broadband femtosecond

FIG. 1. (a) Experimental scheme of SRS spectroscopy. A femtosecond broadband probe is focused on the sample together with a narrowband picosecond Raman pulse.
The probe is then spectrally dispersed and detected. The relative arrival time of the pulses can be varied by a delay line. A mechanical chopper allows for the differential
detection of the signal with and without the Raman pulse. (b) Spectral envelope of the probe pulse detected after the sample in the presence (black line) and absence (black
dashed line) of the Raman pulse (gray line). SRS features are obtained at the top of the probe spectrum when the two pulses interact with the sample. (c) Example of the
ambiguities that can arise from baseline removal in SRS red side data measured on a fluorescent protein (wt-GFP). The application of different algorithms—polynomial fitting,
Asymmetric Least Squares (ALSs), Penalized Least Squares (PLSs), and iterative morphological fitting—determines the baseline differently (bottom panel). This results in
differences in the retrieved SRS spectra (top panel).
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probe pulse (PP) and a narrowband picosecond Raman pulse (RP)
overlapped in time19 and then heterodyne detected for spectroscopic
applications to access the vibrational structure of the system under
investigation [Fig. 1(a)]. The signal is coherently stimulated when
the energy difference between the two laser pulses matches a Raman
active molecular transition. Similarly to the spontaneous case, where
the Raman peaks are spectrally located at the red and blue shifted
sides of the excitation wavelength, the SRS signal is positively and
negatively offset with respect to the RP. SRS features, however, arise
as peaks, dips, or even dispersive signals generated on top of the
broadband spectral envelope of the probe, which is spectrally dis-
persed by means of a monochromator and detected [Fig. 1(b)].
SRS data usually display the normalized difference between the PP
spectra recorded after the sample with the RP switched on and off
[Raman Gain (RG)] as a function of the detected frequency shift
with respect to the RP (Raman shift). If the RP wavelength is tuned
in resonance with the absorption of the sample, the transmission of
the PP itself can be modulated even in the absence of stimulated
Raman due to the fast electronic response of the sample [Transient
Absorption (TA) effect].52 This, together with additional nonlinear
processes, including but not limited to solvent effects53 and cross-
phase modulation,28 causes the presence of an unwanted baseline,
usually broader than the Raman features, which needs to be removed
from the SRS raw data to extract the Raman spectra and correctly
retrieve the vibrational information.

The treatment of raw SRS data are further complicated by the
phase and pulse-to-pulse instabilities of the laser sources and by
the noise associated with the detection process.54–56 This latter is
typically due to the electronic fluctuations of the photogenerated
carriers, the error related to the readout process, and the intrin-
sic shot noise limit caused by the quantum nature of light. As
expected in any type of heterodyne-detected spectroscopy, these
sources of noise combine with the inherent ambiguity of the base-
line subtraction procedure, resulting in an overall signal-to-noise
ratio that is often considerably lower than the nominal sensitivity
of the technique. This is exemplified in Fig. 1(c), in which we show
the outcomes of different baseline estimation techniques applied to
a typical SRS spectrum of the wild-type green fluorescent protein.
Without any assumption on the nonlinear dynamics and the Raman
peaks, lineshapes, and spectral positions, the estimated baseline is
highly dependent on the subtraction algorithm. Consequently, it
is often not possible to infer any conclusive statement from such
ambiguously extracted features.

III. METHODS
A. Simulated training datasets

In order to simulate SRS spectra closely resembling the data
obtained by the experiments, we used a perturbative framework
based on the density matrix expansion.57 We simulated two datasets
with different levels of noise, the high noise (HN) and low noise
(LN) datasets. Each dataset consists of 5000 raw SRS spectra of
801 points each, with noise and baseline associated with the corre-
sponding clean spectra, serving as ground truth (GT). 80% of the
samples (4000 simulated spectra for each dataset) were used during
the training phase. Additional details on the datasets are given in

Sec. I B of the supplementary material. Since we adopted the SRS
clean spectra as GTs, we expect the NN to preserve any asymmetry
due to resonance conditions, contributions to excited state vibra-
tions, or dynamics-induced effects in the retrieved peak lineshapes.
This choice maintains the related microscopic information accessi-
ble for further analysis of the experimental data and avoids biases
toward specific models. In settings where the asymmetry is known
and detrimental for a specific purpose, for example, in microscopy
applications, its source can be included in the simulation toolbox
before training the NN, or an asymmetry-free GT dataset can be used
instead while keeping the same NN architecture.

The HN and LN datasets have been simulated using nonlin-
ear response perturbation theory. In this theoretical framework,
the nonlinear signal is obtained from the n-th order nonlin-
ear optical polarization P(n), which consists of the convolution
between matter correlation functions and the electromagnetic fields.
The radiation–matter interaction is treated perturbatively, and the
density matrix is expanded in the power of the fields, applying
many-body Green function techniques in the Liouville space. Dia-
grammatic representations are exploited to isolate all the relevant
terms in the expansion and calculate the non-equilibrium expec-
tation values of the correlation functions.58,59 Different sets of dia-
grams are associated with the SRS signal and the TA baseline,60

which can be simulated separately (see Sec. I A of the supplementary
material). Shot noise is also included by means of fluctuations scaling
as the square root of the number of detected photons, and the asso-
ciated uncertainty is propagated through the spectroscopic signal.61

Consequently, all three different spectral scales that are peculiar
to the SRS data are present in the simulations: long-scale baseline
variations, point-wise noise fluctuations, and, in between these two
extrema, the vibrational features. Within each dataset, half of the
samples have been generated by simulated signals on the red side
of the SRS spectrum with respect to the narrowband RP and half on
the blue side. All the molecular and experimental parameters have
been varied randomly through the datasets and sampled from a uni-
form distribution within the boundaries summarized in Table S1 of
the supplementary material. The main difference between the two
datasets consists of the different number of averaged acquisitions per
sample, Nacquisition. Averaging impacts the overall noise of the sample
as a multiplicative factor inversely proportional to the squared root
of the number of acquisitions. Each sample in the dataset resulted
from the average of a Nacquisition noisy replica of the experiment.
Nacquisition was set to 1 and 100 for the HN and LN datasets, respec-
tively. To avoid biases due to the selection of a particular dynamical
model or pulse synthesis method, no explicit dynamics is consid-
ered, and the pulses are modeled as Gaussian temporal profiles with
random duration. In particular, the probe pulse duration is kept
constant since any effect due to the temporal dispersion of uncom-
pressed probe pulses is not expected to impact the signal lineshapes
or the outcome of the denoising procedure (see Sec. I B of the
supplementary material). A variety of possible lineshapes and spec-
tral properties are sampled by randomly selecting the experimental
and molecular parameters. Major deviations from these parameters,
such as strongly asymmetrical temporal profiles of the Raman pulses
or sample-specific dynamics, can be treated by a re-training or a fine
tuning of the neural network, starting from the pretrained weights
provided in this work.62
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B. Neural network architecture and supervised
training

Considering the different spectral scales present in the prob-
lem, we adopted a convolutional neural network architecture63–65

and combined different kernel sizes in parallel to reach different
receptive fields at the same time. The general architecture of the
model is shown in Fig. 2 and is based on parallel linear and non-
linear transformations consisting of zero padded convolutions with
different kernel sizes and nonlinear activation functions. The net-
work takes as an input the SRS spectra sampled at ninput points in
frequency. The input is replicated to feed Nkernel parallel branches,
which are composed of N layers convolutional blocks each and return
feature maps of different dimensions due to the different number
of output channels. In particular, each block performs ci convolu-
tions with a different, randomly initialized filter of size ki, followed
by a Rectified Linear Unit (ReLU) activation function.66 Both the
number of filters ci and the kernel size ki are branch-dependent and
fixed along the branch. After the last convolution block, each branch
returns a feature map of dimension b + {ci, (1, ninput)}, where b is
the size of the training batches. The features from different branches
are concatenated along the channel dimension after the last con-
volutional block of each branch and feed a single final branch of
Nconv convolutional blocks with ReLU activation. In the final branch,
the kernel size is fixed to one, and the number of filters downscales
by half each block. In such a way, we obtain a parametric linear
combination of the features obtained from the different branches to
be optimized by training. The last convolution has ninput filters so
that the output channel dimension matches the input to recover fea-
ture interpretability and precedes a final residual step in which the

input is subtracted from the feature map. The residual layer allows
the neural model to learn only the structure of the noise, reducing
the number of required labeled samples and the overall complexity
of the training phase. The network’s output is y = fθ,w,b(x), where
the parametric nonlinear map fθ,w,b depends on the hyperparame-
ters {θ}, summarized in Table I, and on the weights w and biases
b of the convolutional layers. The task of the training step is to learn
the set of {w, b} that solves the minimization problem,67

arg min
{w,b}

∑
k

L( fθ,w,b(xk), yGT
k ) (1)

being the hyperparameters {θ} fixed before the training. In Eq. (1),
{(x1, yGT

1 ), . . . , (xL, yGT
L )} is the training set of simulated noisy raw

TABLE I. Hyperparameters for the HN and LN networks obtained by training with the
HN and LN datasets and optimization with a grid search over the network architecture
shown in Fig. 2.

{θ} Network HN Network LN

Nconv 0 4
Nparam 11k 10k
Nkernel 63 21
Nbatch size 32 32
N0

epoch 25 25
N1

epoch 200 200
Wgrad 0.6 0.6
ℓ 2 2

FIG. 2. Architecture of the neural network. The input data (blue box) feed multiple convolutional branches, which operate in parallel (green boxes). Within each branch, data
are transformed by convolution layers (Conv1, . . . , Convn) with the same kernel size and number of channels, connected by nonlinear activation functions (ReLU, black
squares). Concatenated output data from the convolutional branches feed a series of 1D convolutional layers. The output (orange box) is obtained after the last residual layer.
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spectra (xk) and corresponding clean ones (yGT
k ), i.e., the ground

truth (GT). Both xk and yGT
k are the 1D vectors of size ninput ,

functions of the sampled frequencies ω1, . . . , ωninput . We performed
stochastic gradient descent68 to minimize the custom loss function
L,

L(y, yGT) = (1 −Wgrad)∥y − yGT∥2 +WgradN ∥∇y −∇yGT∥ℓ, (2)

where ∥ ⋅ ∥ℓ indicates the ℓ norm and y = fθ,w,b(x). L contains a
reconstruction term and a derivative term depending on the gra-
dients of the reconstructed spectrum and GT. The two terms are
activated at different epochs during training; initially, only the
reconstruction term is adopted for N0

epoch, allowing the algorithm
to perform first estimations of possible baselines and noise without
heavily impacting on the latter. Then the gradient term is included
in the loss calculation, and the model is trained for additional N1

epoch
epochs. The gradient term impacts heavily on the removal of the
point-wise fluctuating noise, while the reconstruction term is sen-
sitive to both the noise and corrections to the broadband baseline.
The parallel optimization of these two terms is the key to obtain
more accurate results with respect to performing these two tasks
sequentially. The balance weight between the reconstruction and the
gradient term is controlled by the hyperparameter Wgrad ∈ (0, 1),
which has been optimized by looking at the network performances
and fixed to the value reported in Table I. N is a normalization
factor fixed once per training set only to regularize the loss decay
during training so that the value of the total loss does not expe-
rience an abrupt change during the first epoch after the gradient
term is switched on. The final model architecture was selected after
cross-validating all the model hyperparameters by means of grid-
search, including N layers, Nconv, the kernel sizes, learning rate, batch
sizes, number of training epochs, and the relative weight between
the gradient and reconstruction loss terms. The learning rate was
also dynamically decreased during training, according to the sched-
uler. This also allowed for balancing the effects of the training with
the full loss function in Eq. (2), which occurs with a smaller learn-
ing rate. Batch normalization and regularization techniques were not
adopted since overfitting was not observed and they decreased the
performance of the neural net. The kernel sizes have been varied lin-
early across the branches, from a minimal size of 5 to a maximal size
of Mk, which was chosen by a hyperparameter sweep and then fixed
to Mk = 88. The number of filters and, hence, the output channels
of each convolutional block were chosen in a kernel-size dependent
way to obtain the same number of trainable parameters, Nparam, in
each convolutional branch. In addition, Nparam has been chosen by
a hyperparameter sweep in order to find a trade-off between the
needs of computational feasibility and performance. Backpropaga-
tion with the Adam optimizer was used to train the model.66 We
found that the optimal architecture depends on the level of variabil-
ity of the signal-to-noise in the training set. For a network trained
on the dataset HN with a high level of noise, the best architecture
(network HN) was obtained for the value of the hyperparameters
reported in the second column of Table I. For the LN training set
with a lower maximum value of noise, we obtained the best perfor-
mances with the network specified by the hyperparameters in the
third column of Table I (network LN). The choice of the best hyper-
parameters to be used on experimental data can be performed using
a discriminator on the signal-to-noise level of the data, as detailed in

Sec. II D of the supplementary material. Code with a minimal exam-
ple implementation, datasets, and pretrained weights discussed here
are available online.62

IV. RESULTS AND DISCUSSION
A. Validation on simulated data

We tested the networks trained on the HN and LN datasets
on test sets containing 20% of the samples of the corresponding
datasets, previously unseen by the networks during training. In
Fig. 3, we present the result for five typical spectra extracted from the
HN (panel a) and LN (panel b) test sets. The spectra reconstructed
by the NN (green lines) show excellent agreement with the clean
GT spectra (black dotted lines) for very different baseline shapes,
which are shown by the raw data in red in the top panels.
These examples are compared to the results obtained by an itera-
tive spline (iSpline) procedure for baseline removal69 followed by
Savitzky–Golay (SG) filtering. We note that the parameters of the
SG filter have been chosen a posteriori by using the GT in order to
obtain a trade-off between an optimal smoothing of the point-wise
noise and the preservation of the linewidth of the peaks. Conse-
quently, this is an optimal procedure that cannot be met in a real
case scenario, i.e., when the GT is not available. Notwithstanding,
the reconstruction of the lineshape, linewidth, and relative intensity
of the peaks and the overall removal of the baseline and the noisy
point-wise fluctuations are qualitatively better when using the NN.

For a quantitative comparison, it is necessary to define indi-
cators that measure the capability of a given algorithm to perform
a specific task. We combined selected metrics from the literature
with custom-defined ones to evaluate the performance of the NN
for tasks more closely related to spectroscopic purposes, namely, the
identification of peak positions and lineshapes, evaluation of relative
intensities, separation of overlapped components, and minimization
of false-peak predictions. In particular, we computed the Structural
Similarity Index Measure (SSIM), which evaluates the overall resem-
blance of the processed Raman spectra to the GT, the Normalized
Mean Absolute and Mean Squared Errors (NMAEs and NMSEs),
as defined in Sec. III B of the supplementary material. In addition
to these standard metrics, we developed a custom edge finder that
determines the spectral positions of the positive and negative peaks
from an input spectrum resulting from the processing of the noisy
raw data and compares them to the associated GT spectrum. We
used the edge finder to count the correctly assigned edges [true
positive (TP)] and the errors induced by the data processing [false
positive and false negative (FP and FN)]. The edges are considered
TP if their spectral position deviates from the corresponding GT by
more than a tunable value of tolerance. In the following, we set the
tolerance to one pixel. This allows us to redefine this problem as a
classification task and calculate standard metrics as the F1-score,

F1 = 2TP
2TP + FP + FN

(3)

and precision,

precision = TP
TP + FP

. (4)

Precision counts the number of correctly retrieved edges scaled by
the total number of edges found, while the F1-score measures the
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FIG. 3. Evaluation of representative simulated test samples from the HN (a) and LN (b) datasets. For each sample, noisy raw data are shown in the top panel (red lines).
The central and bottom panels show the SRS spectra obtained by using the NN (green) or the iterative spline procedure for baseline subtraction followed by Savitzky–Golay
filtering (blue). GTs are also reported for comparison (black dotted lines).

ability of each algorithm to deliver correct predictions, balancing
the possible predicting biases toward FPs and FNs. Both metrics
range from zero, indicating the worst performance, to a best value
of one. Finally, we defined custom Signal-to-Noise Ratio (SNR)
metrics as

SNR = Area(Iy) − ⟨Ny⟩
∥Ny −NyGT ∥2 ,

I = y(ων),
N f = f (ω ≠ ων)with f = y, yGT ,

(5)

where ων = {ωi, ∀i : ∣ωi − ωGT
peak∣ < ε} and ε = 80 pixels, which was

set taking into consideration the typical width of the Raman feature.
This metric measures the capability of an algorithm to obtain a clean
and smooth baseline with respect to the area of the main peaks in the
spectral position defined by the GT.

We have compared the results obtained by the NN with
those obtained by four different traditional algorithms for base-
line removal: third-order modified polynomial (iModPoly),70 itera-
tive spline, SG filter, and peak-screened Asymmetric Least Squares
(ALSs).71 For each algorithm, baseline removal was followed by
an additional SG filter for point-wise denoising and smoothing
(see Sec. III A of the supplementary material for additional details).
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The results obtained for the HN test set are shown in panels (a) and
(b) of Fig. 4, while the corresponding results for the LN dataset are
reported in panels (c) and (d). For both datasets, the NN outper-
forms the standard algorithms in identifying all the edges in the SRS
spectrum. In particular, for the HN dataset, the NN achieves a full
precision score in 63% of the test samples, compared to 42% of the
best standard algorithm (the iSpline+SG filter). More importantly,
the distribution of the F1-score achieved by the NN is narrower and
shifted to higher values, with a mean of 0.86 and a standard devia-
tion of 0.18 to be compared with the mean of 0.70 and a standard
deviation of 0.30 of the standard data processing routine. This is
shown by the histograms of the distribution of F1-scores reported in
Fig. S2 of the supplementary material, while, in the whisker box plots
of Fig. 4(a), we isolate the quartile of the test set in which each of
the two algorithms achieved the worst results to highlight the dif-
ferences in their performances. We note that the values of precision
depend on the amount of tolerance on the peak position discrep-
ancy between the GT and reconstructed data, but this dependence
does not alter the results presented here (details are reported in Sec.
II B of the supplementary material). In addition for the other tasks

that we have considered, the NN shows superior performances, as
illustrated by the analysis of the associated metrics in Fig. 4(b). In
particular, for the metrics NMAE, NMSE, and 1/SNR, which project
optimal results toward zero, the medians relative to the NN are lower
than the first quartile of all the distributions of the standard meth-
ods. There is also a large improvement in the SSIM metrics—optimal
at SSIM = +1—for which the median of the NN is larger than the
95th percentile of the best standard method. This is correlated with
the ability of the NN to also recover the overall lineshape of the
Raman features, in addition to the signal-to-noise, intensity, and
peak positions, which are best measured by the other metrics. The
performances of the standard methods are comparable to each other,
with the polynomial and iterative spline algorithms giving the best
results. Similar results are also obtained on the LN dataset, where
all the methods achieve better results overall, with a gap between
the best metrics of the NN and those of the standard algorithms,
as shown in Figs. 4(c) and 4(d) and Sec. II C of the supplementary
material. In particular, the mean of the F1-score achieved by the NN
is 0.92 with a standard deviation of 0.14, while the iSpline with the
SG filter obtained a mean of 0.84 with a standard deviation of 0.24.

FIG. 4. Comparison of the statistical analysis over selected metrics between the NN method and multiple non-data driven routines applied to the HN [panels (a) and (b)]
and LN [panels (c) and (d)] test sets. As indicated by the black arrows, for the F1 and SSIM metrics, the best scores correspond to higher values on the x-axis (optimal
performance is at one). For all the other metrics, the best scores correspond to lower values on the x-axis (optimal performance is at zero). [(a) and (c)] Results of the
classification metrics obtained by means of the edge finder algorithm. The whisker plots report on the F1-score relative to the portion of 30% of the test set for which each
method has the worst score. [(b) and (d)] Whisker plots of the results obtained by the different methods measured by the SSIM, SNR, NMSE, and NMAE metrics. For all the
whisker plots, the box covers from the first to the third quartile, while the whiskers extend from the box to the 5th and 95th percentiles. The orange line and dot indicate the
median and the mean, respectively. Black dots indicate values that are past the end of the whiskers.
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B. Validation on experimental data
To validate the NN denoiser in a real case scenario, we have

applied it to the resonant SRS spectra measured on equine heart
deoxy Myoglobin (Mb) dissolved in pH 7.4 buffer and Cresyl Vio-
let (CV) dissolved in methanol, using the hyperparameters found by
training with the LN dataset, whose signal-to-noise ratios are com-
parable to the ones obtained for these particular samples with our
SRS setup. In Fig. 5(a), we report the raw experimental SRS spectra
of Mb pumped across the Soret absorption band, with the RP wave-
length tuned at 447 and 472 nm for the red and blue sides of the
spectrum, respectively. The resonant condition impacts differently
on the two sides of the spectrum and makes the Raman lineshapes
highly dependent on the RP wavelength and, for the blue side, on
the frequency of the normal mode.49 In the central and lower pan-
els, we show the corresponding spectra processed by the NN and
the polynomial algorithm. The results are in good agreement with

the literature,69,72 and the best results were obtained by traditional
processing routines for both the gain and dispersive lineshapes.

We then tested the algorithm in the more demanding case of
CV undergoing photoexcitation due to a resonant, high-fluence RP
tuned at 580 nm. In these conditions, the RP also acts as an actinic
pump, inducing electronically excited-state populations in the sam-
ple by means of two additional light–matter interactions preceding
the SRS process.74 The efficiency of this higher-order nonlinear pro-
cess depends on the time delay between the Raman and the probe. By
tuning the delay, it is possible to control the amount of excited-state
population induced by the Raman pulse. Here, a positive (nega-
tive) sign indicates that the PP follows (precedes) the RP. At large
negative delays, the Raman scattering mainly involves molecules ini-
tially in the electronically ground state. At positive delays, SRS can
probe vibrational transitions originating from a mixture of excited
and ground-state populations, with the cost of a lower signal-to-

FIG. 5. Application to SRS experimental data. (a) SRS spectra of deoxy Mb. Left panels: red side Raman spectra obtained with RP tuned at 447 nm. Right Panels: blue side
Raman spectra obtained with the RP tuned at 472 nm. Raw data are indicated by red lines, while green and blue lines represent processed spectra predicted by the LN
network and by the iModPoly algorithm for baseline removal, followed by a SG noise filter. Vertical dashed lines indicate the spectral position of the Raman modes of deoxy
Mb for resonant excitation in the Soret absorption band69 (reported in Table S2 of the supplementary material). (b) SRS spectra of Cresyl Violet obtained upon resonant
excitation with a RP tuned at 580 nm at two different delays between the RP and PP: −0.8 ps (PP preceding RP, left panels) and +1.2 ps (PP following RP, right panels).
Raw data are indicated by red lines, while green and blue lines represent processed spectra predicted by the LN network and by the iModPoly algorithm for baseline removal,
followed by a SG noise filter. Vertical dashed lines indicate the spectral position of the Raman modes of the ground (in black)73–76 and the excited states (in orange),73–75

which are reported in Table S3 of the supplementary material.
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noise ratio, spectral distortions, and an overall increased complexity
of the baseline and lineshapes. We considered the SRS spectra for
two different delays between the Raman and probe pulses: −0.8 ps
(PP preceding RP) and +1.2 ps (PP following RP). In Fig. 5(b), we
report the raw SRS spectra at the two delays and the correspond-
ing ones processed by the NN and by the iModPoly algorithm,
followed by SG filtering. For the negative delay (left panel), the
processed spectra present sharp and intense features, with a high
signal-to-noise ratio and spectral positions matching the frequencies
of both the electronically excited and ground-state Raman modes
of CV, due to the resonant RP wavelength. For the positive delay
(right panel), as a consequence of the superposition of the Raman
processes originating from a system initially prepared in the ground
or the excited-state population,74 spectral features appear broadened
and red-shifted, their lineshapes become dispersive and asymmet-
ric, and the signal-to-noise ratio decreases drastically due to the
effective time window during which the vibrational coherences are
sampled.69 The increased complexity has a different impact on the
two methods used to process the raw spectra. Notably, the com-
bined iModPoly and SG algorithms are not able to resolve the
excited-state peak at 733 cm−1, which is conversely retrieved by
the NN. The polynomial processing also shows parasitic broad peaks
between 850 and 900 cm−1 and poorly captures the dispersive line
shape at 680 cm−1. Moreover, the two approaches give different rel-
ative intensities between the peaks, as also observed for the simulated
datasets. Even if a microscopic model of the excited state effects
causing the changes in the Raman peaks was not included in the sim-
ulated dataset, during the training phase, the NN was exposed to a
statistical population of lineshapes, intensities, and spectral positions
that was large enough to allow it to interpolate among a wider range
of peak characteristics. These results confirm that the NN algorithm
achieves higher performances in the case of complex experimental
spectra.

V. CONCLUSION
Low signal-to-noise ratios and structured spectral lineshapes

in nonlinear Raman spectroscopy cause loss of information and
increase the complexity of performing the measurements due to the
need for longer exposure times for averaging and extensive data
analysis. We have demonstrated that wisely designed deep neural
networks can overcome these limitations and achieve background
removal and denoising of stimulated Raman spectra. By means of
multiple kernel sizes operating in parallel within a convolutional
residual neural architecture, it is possible to adapt the receptive field
of the network to the informative features in the spectra and treat the
multiple spectral scales present in the SRS data, related to the com-
plex Raman lineshapes, to the background, and to point-wise noisy
fluctuations. We have shown that such architecture is able to adapt
to different levels of noise and prominence of the Raman bands from
the baseline by training on datasets simulated through the diagram-
matic theory and characterized by noise and material parameters
resembling those present in experimental conditions. Depending on
the level of noise, the NN demonstrated itself to be comparable to
or superior to the standard algorithms commonly used for SRS data
post-processing. The advantages are particularly evident in the pres-
ence of multiple features with asymmetric lineshapes and intensities,
that are weak compared to the noise and the other bands in the

same spectral region. The NN algorithm was able to identify the
Raman bands, reconstruct the correct lineshapes and relative inten-
sities and enhance the spectral resolution by resolving the vibrational
frequencies and bandwidths for close or overlapping Raman fea-
tures. These abilities are pivotal for the interpretation of experiments
leveraging resonant optical excitations to detect cooperative mecha-
nisms between coherent vibrations and electronic excitations. Once
trained, the network generalizes to experimental spectra obtained
on different samples, preserving its high performance. It can be
adopted as a post-processing routine to access the wealth of infor-
mation concealed by the data complexity in SRS and combined with
optimization methods that operate during the data acquisition to
enhance the instrumental SNR of the technique. We note that SRS
is an optimal test-bed for investigating deep learning applications
to nonlinear spectroscopy, given its spectral complexity and variety
of lineshapes for both the Raman features and background contribu-
tions. For these reasons, we anticipate the possibility of extending the
use of the proposed NN architecture to different linear and nonlin-
ear spectroscopic techniques that are affected by similar noise effects
by means of fine tuning of the final NC layers and transfer learning
techniques.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following: (I) Gener-
ation of the simulated datasets, (II) analysis of the performance
of HN and LN networks on the simulated datasets, (III) standard
post-processing methods and evaluation metrics, (IV) experimen-
tal methods, and (V) frequencies of the Raman modes in the
experimental spectra.
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