

SIS | 2022 51st Scientific Meeting of the Italian Statistical Society

Caserta, 22-24 June

Book of the Short Papers

A @ C

Editors: Antonio Balzanella, Matilde Bini, Carlo Cavicchia, Rosanna Verde

Matilde Bini (Chair of the Program Committee) - *Università Europea di Roma* Rosanna Verde (Chair of the Local Organizing Committee) - *Università della Campania "Luigi Vanvitelli"*

PROGRAM COMMITTEE

Matilde Bini (Chair), Giovanna Boccuzzo, Antonio Canale, Maurizio Carpita, Carlo Cavicchia, Claudio Conversano, Fabio Crescenzi, Domenico De Stefano, Lara Fontanella, Ornella Giambalvo, Gabriella Grassia - Università degli Studi di Napoli Federico II, Tiziana Laureti, Caterina Liberati, Lucio Masserini, Cira Perna, Pier Francesco Perri, Elena Pirani, Gennaro Punzo, Emanuele Raffinetti, Matteo Ruggiero, Salvatore Strozza, Rosanna Verde, Donatella Vicari.

LOCAL ORGANIZING COMMITTEE

Rosanna Verde (Chair), Antonio Balzanella, Ida Camminatiello, Lelio Campanile, Stefania Capecchi, Andrea Diana, Michele Gallo, Giuseppe Giordano, Ferdinando Grillo, Mauro Iacono, Antonio Irpino, Rosaria Lombardo, Michele Mastroianni, Fabrizio Maturo, Fiammetta Marulli, Paolo Mazzocchi, Marco Menale, Giuseppe Pandolfi, Antonella Rocca, Elvira Romano, Biagio Simonetti.

ORGANIZERS OF SPECIALIZED, SOLICITED, AND GUEST SESSIONS

Arianna Agosto, Raffaele Argiento, Massimo Aria, Rossella Berni, Rosalia Castellano, Marta Catalano, Paola Cerchiello, Francesco Maria Chelli, Enrico Ciavolino, Pier Luigi Conti, Lisa Crosato, Marusca De Castris, Giovanni De Luca, Enrico Di Bella, Daniele Durante, Maria Rosaria Ferrante, Francesca Fortuna, Giuseppe Gabrielli, Stefania Galimberti, Francesca Giambona, Francesca Greselin, Elena Grimaccia, Raffaele Guetto, Rosalba Ignaccolo, Giovanna Jona Lasinio, Eugenio Lippiello, Rosaria Lombardo, Marica Manisera, Daniela Marella, Michelangelo Misuraca, Alessia Naccarato, Alessio Pollice, Giancarlo Ragozini, Giuseppe Luca Romagnoli, Alessandra Righi, Cecilia Tomassini, Arjuna Tuzzi, Simone Vantini, Agnese Vitali, Giorgia Zaccaria.

ADDITIONAL COLLABORATORS TO THE REVIEWING ACTIVITIES

Ilaria Lucrezia Amerise, Ilaria Benedetti, Andrea Bucci, Annalisa Busetta, Francesca Condino, Anthony Cossari, Paolo Carmelo Cozzucoli, Simone Di Zio, Paolo Giudici, Antonio Irpino, Fabrizio Maturo, Elvira Romano, Annalina Sarra, Alessandro Spelta, Manuela Stranges, Pasquale Valentini, Giorgia Zaccaria.

Copyright © 2022 PUBLISHED BY PEARSON WWW.PEARSON.COM ISBN 9788891932310

Contents

Preface	XXVII
1 Plenary Sessions	1
Causal inference in air pollution epidemiology Francesca Dominici	2
Clustering of Attribute Data and Network Anuška Ferligoj	11
Bayesian approaches for capturing the heterogeneity of neuroimaging experiments Francesco Denti, Laura D'Angelo and Michele Guindani	17
2 Specialized Sessions	30
Advances in Bayesian nonparametric methodology	31
Repulsive mixture models for high-dimensional data Lorenzo Ghilotti, Mario Beraha and Alessandra Guglielmi	32
Bayesian nonparametric mixtures of directed acyclic graph models Federico Castelletti and Guido Consonni	37
Bayesian Clustering of Brain Regions via Extended Stochastic Block Models Sirio Legramanti, Tommaso Rigon and Daniele Durante	k 45
Data Science skills for next generation statisticians	52
Cluster based oversampling for imbalanced learning Giola Di Credico and Nicola Torellii	53
Estimating the effect of remote teaching for university students through generalised linear mixed models Silvia Bacci, Bruno Bertaccini, Simone Del Sarto, Leonardo Grilli and Carla Rampichini	65
Perceived stress across EU countries: does working from home impact?	71

Investigating effects of air pollution on health: a challenge for statisticians	77
Investigating effect of air pollution on health via Spatial-Resolution Varying Coefficient Models Garritt L. Page and Massimo Ventrucci	78
A statistical framework for evaluating health effect of PM sources Monica Pirani, Georges Bucyibaruta, Gary Fuller, David Green, Anja Tremper, Christina Mitsakou and Marta Blangiardo	84
Adjusting for unmeasured spatial confounding through shrinkage methods Pasquale Valentini, Alexandra M. Schmidt, Carlo Zaccardi and Luigi Ippoliti	91
Explainable Artificial Intelligence methods	98
Multidimensional Time Series Analysis via Bayesian Matrix Auto Regression Alessandro Celani and Paolo Pagnottoni	99
Advances in Classification and Data Analysis	109
Optimizing time slots in scientific meetings: a Latent Dirichlet allocation approach Luca Frigau	110
Clustering artists based on the energy distributions of their songs on Spotify via the Common Atoms Model Francesco Denti, Federico Camerlenghi, Michele Guindani and Antonietta Mira	121
Hidden markov models for four-way data Salvatore D. Tomarchio, Antonio Punzo and Antonello Maruotti	127
Family demography	133
Does family of origin make the difference in occupational outcomes? Annalisa Busetta, Elena Fabrizi, Isabella Sulis and Giancarlo Ragozini	134
Is there a cultural driver pushing Italian low fertility? Francesca Luppi, Alessandro Rosina and Maria Rita Testa	144
Unpaid family work and the subjective well-being of Italian women during lockdown Marina Zannella, Erica Aloé, Marcella Corsi and Alessandra de Rose	155
New Frontiers in the theory of composite indicators	164
Methodological PLS-PM Framework for Model Based Composite Indicators Rosanna Cataldo	165
Open issues in composite indicators construction Leonardo Salvatore Alaimo	176
The posetic approach to the construction of socio-economic indicators: open issues and research opportunities Marco Fattore	186

Advances in complex sampling strategies	197
Random forest model-assisted estimation for finite population totals Mehdi Dagdoug, Camelia Goga and David Haziza	198
Design-based consistency of the Horvitz-Thompson estimator in spatial sampling Lorenzo Fattorini	208
The responsive-adaptive survey design approach for planning the permanent census of population and housing Claudia De Vitiis, Stefano Falorsi, Alessio Guandalini, Francesca Inglese, Paolo Righi and Marco D. Terribili	216
Socio-demographic aspects of aging in Italy	228
Socio-economic and spatial stratification of frailty in the older population Margherita Silan	229
Time allocation and wellbeing in later life: the case of Italy Annalisa Donno and Maria Letizia Tanturri	241
The role played by migration and fertility on Italy's demographic aging trends: a provincial-level analysis Thais García-Pereiro and Anna Paterno	250
New challenges in the labour market	260
Detecting changes and evolution in specialized professional figures: an application on the Italian IT & Digital sector Andrea Marletta	261
How did the COVID-19 pandemic affect the genderpay gap in EU countries? Antonella Rocca, Paolo Mazzocchi, Giovanni De Luca, Rosalia Castellano and Claudio Quintano	272
Skill Similarities and Dissimilarities in Online Job Vacancy Data across Italian Regions Adham Kahlawi, Lucia Buzzigoli, Laura Grassini and Cristina Martelli	284
Small area estimation methods with socioeconomic applications	292
Exploring Small Area Estimation techniques to address uncertainty in Spatial Price Indexes Iaria Benedetti and Federico Crescenzi	293
Small Area Estimation of Relative Inequality Indices using Mixture of Beta Silvia De Nicolò and Silvia Pacei	301
Inference for big data assisted by small area methods: an application to OBEC (on-line based enterprise characteristics) Monica Pratesi, Francesco Schirripa Spagnolo, Gaia Bertarelli, Stefano Marchetti, Monica Scannapieco, Nicola Salvati and Donato Summa	305

Statistical methods and models for Sports Analytics	312
The 'hot shoe' in soccer penalty shootouts Andreas Groll and Marius Otting	313
G-RAPM: revisiting player contributions in regularized adjusted plus-minus models forbasketball analytics	319
Formative vs Reflective constructs: a CTA-PLS approach on a goalkeepers' performance model Mattia Cefis and Eugenio Brentari	323
Integrating available Data Sources for Official Statistics	329
The Use of Administrative Data for the Estimation of Italian Usually Resident Population Marco Caputi, Giampaolo De Matteis, Gerardo Gallo and Donatella Zindato	330
New frontiers for the analysis of the territorial economic phenomena	339
An empirical tool to classify industries by regional concentration and spatial polarization Diego Giuliani, Maria Michela Dickson, Flavio Santi and Giuseppe Espa	340
Comparing non-compensatory composite indicators: a case study based on SDG for Mediterranean countries Francesca Mariani, Mariateresa Ciommi, Maria Cristina Recchioni, Giuseppe Ricciardo Lamonica and Francesco Maria Chelli	346
Evaluating the determinants of innovation from a spatio-temporal perspective. The GWPR approach Gaetano Musella, Giorgia Rivieccio and Emma Bruno	354
Dimension Reduction for complex data	366
Discrimination and clustering via principal components Nikolay Trendafilov and Violetta Simonacci	367
Exploratory graph analysis for configural invariance assessment Sara Fontanella, Alex Cucco and Nicola Pronello	373
Penalized likelihood factor analysis	379

3 Solicited Sessions	385
Bayesian nonparametric modelling and learning	386
A regularized-entropy estimator to enhance cluster interpretability in Bayesian nonparametrics Beatrice Franzolini and Giovanni Rebaudo	387
Exact confidence sets from credible sets with finite amounts of data Bas J. K. Kleijn	399
Empirical Bayesian analysis of componentwise maxima in multivariate samples Simone A. Padoan and Stefano Rizzelli	411
Processing of textual data in large corpora	420
Predictive performance comparisons of different feature extraction methods in a financial column corpus Andrea Sciandra and Riccardo Ferretti	421
Topics and trends in the End-of-Year addresses of the Presidents of the Italian Republic (1949-2021) Matilde Trevisani and Arjuna Tuzzi	428
Thematic analysis on online education issues during COVID-19 Valerio Basile, Michelangelo Misuraca and Maria Spano	437
What do we learn by applying multiple methods in topic detection? A comparative analysis on a large online dataset about mobility electrification Fabrizio Alboni, Margherita Russo and Pasquale Pavone	446
Businesses in industry: new challenges in sustainability, innovation, performance and competitiveness	454
Multidimensional assessment of Eco-Innovation and its link with Marketing Innovations Ida D'Attoma and Marco leva	455
Circular Economy practices in the European SMEs: company-level and country-level drivers Francesca Bassi, Josè G. Dias and Nunzio Tritto	462
The employment effects of Italian Jobs Act. An ex-post impact evaluation Alessandro Zeli and Leopoldo Nascia	474
Statistics for finance: new models, new data	482
The News-Jumps Relationship in the Cryptocurrency Market Ahmet Faruk Aysan, Massimiliano Caporin, Oguzhan Cepni, and Francesco Poli	483
A weighted quantile approach to Expected Shortfall forecasting Giuseppe Storti and Chao Wang	489

Smooth and abrupt dynamics in financial volatility: the MS-MEM-MIDAS Giampiero M. Gallo, Edoardo Otranto and Luca Scaffidi Domianello	492
The tail index and related quantities for volatility models Fabrizio Laurini	501
Bayesian inference for complex random structures	507
Bayesian nonparametric modeling of mortality curves via functional Dirichlet processes Emanuele Aliverti and Bruno Scarpa	508
Bayesian nonparametric clustering of spatially-referenced spike train data Laura D'Angelo	514
Bayesian Analysis of Mortality in Iceland via Locally Adaptive Splines Federico Pavone and Sirio Legramanti	520
Advances in clustering	526
A Two-step Latent Class Approach with Measurement Equivalence Testing Zsuzsa Bakk, Roberto Di Mari, Jennifer Oser and Marc Hooghe	527
Group-wise penalized estimation schemes in model-based clustering Alessandro Casa, Andrea Cappozzo and Michael Fop	534
Extending finite mixtures of latent trait analyzers for bipartite networks Dalila Failli, Maria Francesca Marino and Francesca Martella	540
A Fast Majorization-Minimization Algorithm for Convex Clustering Daniel J.W. Touw, Patrick J.F. Groenen and Yoshikazu Terada	551
Statistical Methods for Complex Evolutionary Data	558
A FANOVA model with repeated measures for detecting patterns in biomechanical data Ana M. Aguilera, Christian Acal and Manuel Escabias	559
Modes of variation for Lorenz curves Enea G. Bongiorno and Aldo Goia	565
Analyzing textual data through Word Embedding: experiences in Istat Mauro Bruno, Elena Catanese, Massimo De Cubellis, Fabrizio De Fausti, Francesco Pugliese, Monica Scannapieco and Luca Valentino	571
Functional Horvitz-Thompson estimator for convex curves Adelia Evangelista, Francesca Fortuna, Stefano Antonio Gattone and Tonio Di Battista	584

Children, parents, grandparents: a look on changing relationships	590
Changes in social relationships of Italian older people. Evidence from FSS and SHARE Corona surveys Elvira Pelle, Giulia Rivellini and Susanna Zaccarin	591
Internet use and contacts with children among older Europeans Bruno Arpino	600
A time-based comparative approach to study the changing demography of grandparenthood in Italy ***Elisa Cisotto, Eleonora Meli and Giulia Cavrini	607
Carry that weight: Parental separation and children's Body Mass Index from childhood to young adulthood Marco Tosi	616
Living conditions, well-being and poverty	622
Analyzing the impact of COVID-19 pandemic on elderly population well-being Gioria Polinesi, Mariateresa Ciommi and Chiara Gigliarano	623
Exploring sustainable food purchasing behaviour using Italian scanner data Ilaria Benedetti, Alessandro Brunetti, Federico Crescenzi and Luigi Palumbo	629
The evaluation of heat vulnerability in Friuli-Venezia Giulia Laura Pagani, Maria Chiara Zanarotti and Anja Habus	635
Data Science for Functional and Complex Data	641
A parsimonious approach to representing functional Enea G. Bongiorno and Aldo Goia	642
Mixed-effects high-dimensional multivariate regression via group-lasso regularization Francesca leva, Andrea Cappozzo, and Giovanni Fiorito	648
The integration of immigrants in Italy: a multidimensional perspective	654
Albanian, Romanian and Italian women's fertility intentions: a comparative perspective among migrants, stayers and natives Thais García-Pereiro and Anna Paterno	655
Does self-employment in the origin-country affect self-employment after migration? Evidence from Italy and Spain Floriane Bolazzi and Ivana Fellini	662
The impact of integration on immigrants' health behaviours in Italy Giovanni Minchio, Raffaella Rusciani and Teresa Spadea	675
Migration, gender, and the distribution of paid and unpaid labour. Preliminary perspectives on foreign couples in Italy Rocco Molinari, Agnese Vitali and Ester Gallo	687

Sampling techniques for big data analysis	695
Non-probability samples and big data: how to use them? Pier Luigi Conti	696
Combining Big Data with probability survey data: a comparison of methodologies for estimation from non-probability surveys Maria del Mar Rueda, Ramn Ferri-Garcia and Luis Castro-Martin	707
A Bayesian approach for combining probability and non-probability samples surveys Camilla Salvatore, Silvia Biffignandi, Joseph Sakshaug, Bella Struminskaya and Arkadiusz Wisniowski	717
Big data and Official Statistics: some evidences Paolo Righi, Natalia Golini and Gianpiero Bianchi	723
The analysis of students performance and behaviour based on large databases	735
Students enrolled in STEM discipline in Italy: patterns of retention, dropout and switch Valentina Tocchioni, Carla Galluccio, Maria Francesca Morabito and Alessandra Petrucci	736
The routes of Southern Italy University students: an explorative analysis Gabriele Ruiu and Vincenzo Giuseppe Genova	747
A new bipartite matching approach for record linkage: the case of two big Italian databases Martina Vittorietti, Andrea Priulla, Vincenzo Giuseppe Genova, Giovanni Boscaino and Ornella Giambalvo	754
Statistical Methods for Science Mapping	7 <mark>61</mark>
A word embedding strategy to study the thematic evolution of ageing and healthcare expenditure growth literature Milena Lopreite, Michelangelo Misuraca and Michelangelo Puliga	762
An automatic approach for bibliographical co-words networks labelling Manuel J. Cobo and Maria Spano	773
Characterising research areas in the field of Al Alessandra Belfiore, Angelo Salatino and Francesco Osborne	780
Mapping evolutionary paths of a society: the longitudinal analysis of the Italian Economia Aziendale Corrado Cuccurullo, Luca D'Aniello and Michele Pizzo	786
Modelling complex structures in ecological data	793
New insights on the ecology and conservation of Mediterranean sharks through the development of Citizen Science networks and new modeling approaches Stefano Moro, Francesco Ferretti, Francesco Colloca	794

An overdispersed Poisson model for forest fires occurrences in Southern Italian municipalities Crescenza Calculli and Serena Arima	798
Assessment of the impact of anthropic pressures on the Giglio island meadow of Posidonia oceanica Gianluca Mastrantonio, Daniele Ventura, Gianluca Mancini and Giandomenico Ardizzone	804
Accounting for observation processes in spatio-temporal ecological data	811
Statistics and indicators for the recovery and resilience plan	815
The prominence of statistical information for the monitoring and effective implementation of the NRRP Andrea Petrella	816
Big Data Analytics in mobile cellular networks as enabler for innovative statistics to evaluate the effects of Recovery and Resilience Plan actions Andrea Zaramella, Dario Di Sorte, Denis Cappellari and Bruno Zamengo	819
Measuring the digital transition within the PA: proposals comparison Susanna Traversa and Enrico Ivaldi	823
Guest Session - European Network for Business and Industrial Statistics (ENBIS)	828
Interpretability in functional clustering with an application to resistance spot welding process in the automotive industry Christian Capezza, Fabio Centofanti, Antonio Lepore and Biagio Palumbo	829
Statistical process monitoring of thermal images in additive manufacturing: a nonparametric solution for in-situ monitoring Panagiotis Tsiamyrtzis, Marco Luigi Giuseppe Grasso and Bianca Maria Colosimo	835
Guest Session - International Biometric Society (IBS) - Italian region	837
Multiple arrows in the Bayesian quiver: Bayesian learning of partially directed structures from heterogeneous data	838

Luca La Rocca, Federico Castelletti, Stefano Peluso, Francesco Claudio Stingo and Guido Consonni

4 Contributed Sessions

844

Applications in Machine Learning	845
A neural network approach to survival analysis with time-dependent covariates for modelling time to cardiovascular diseases in HIV patients Federica Corso, Agostino Lurani Cernuschi, Laura Galli, Chiara Masci, Camilla Muccini, Anna Maria Paganoni and Francesca leva	846
Analyzing the Correlation Structure of Financial Markets Using a Quantile Graphical Model Beatrice Foroni, Luca Merlo and Lea Petrella	852
Neural Network for statistical process control of a multiple stream binomial process with an application to HVAC systems in passenger rail vehicles Gianluca Sposito, Antonio Lepore, Biagio Palumbo and Giuseppe Giannini	858
Sparse signal extraction via variational SVM Cristian Castiglione and Mauro Bernardi	864
Bayesian modelling and inference 1	870
Bayesian Inference for the Multinomial Probit Model under Gaussian Prior Distribution Augusto Fasano, Giovanni Rebaudo and Niccolo Anceschi	871
Mapping Indicators on the Unit Interval: the tipsae Shiny App Silvia De Nicolò and Aldo Gardini	877
A Bayesian spatio-temporal model of PM10 pollutant in the Po Valley Matteo Gianella, Alessandra Guglielmi and Giovanni Lonati	883
Construction if a proper prior for a Bayesian envelope model Andrea Mascaretti	889
Hilbert principal component regression for bimodal bounded responses Enea G. Bongiorno, Agnese M. Di Brisco, Aldo Goia, and Sonia Migliorati	895
Methods of causal inference	901
Bayesian causal mediation analysis through linear mixed-effect models Chiara Di Maria, Antonino Abbruzzo and Gianfranco Lovison	902
Bootstrap-aggregated adjustment set selection	908
Exploiting partial knowledge to evaluate the average causal effect via an ABC perspective Giulia Cereda. Fabio Corradi and Cecilia Viscardi	914

Intertemporal propensity score matching for casual inference: an application to covid-19 lockdowns and air pollution in Northern Italy Daniele Bondonio and Paolo Chirico	920
Methods for Spatio-temporal data	926
Local Spatio-Temporal Log-Gaussian Cox Processes for seismic data analysis Nicoletta D'Angelo, Giada Adelfio, and Jorge Mateu	927
Spatial explorative analysis of thyroid cancer in Sicilian volcanic areas Francesca Bitonti and Angelo Mazza	933
Using geo-spatial topic modelling to understand the public view of Italian Twitter users: a climate change application Yuri Calleo and Francesco Pilla	939
Comparing local structures of spatio-temporal point processes on linear networks Nicoletta D'Angelo, Giada Adelfio, and Jorge Mateu	945
DISTATIS-based spatio-temporal clustering approach: an application to business cycles' time series Raffaele Mattera and Germana Scepi	951
Developments in composite indicators	957
Bayesian Networks for monitoring the gender gap Flaminia Musella, Lorenzo Giammei, Silvana Romio, Fulvia Mecatti and Paola Vicard	958
An Alternative Aggregation Function for the UNDP Human Development Index Manuela Scioni and Paola Annoni	964
An ultrametric model for building a composite indicator system to study climate change in European countries Giorgia Zaccaria and Pasquale Sarnacchiaro	970
Functional Weighted Malmquist Productive Index: a proposal for a dynamic composite indicator Annalina Sarra, Eugenia Nissi and Tonio Di Battista	975
CFA & PLS-PM for UX-AI Product infused Emma Zavarrone and Rosanna Cataldo	981
Fertility, adulthood, and economic uncertainty	987
Uncertainty and fertility intentions: a comparison between the Great Recession and the Covid-19 crisis Chiara Ludovica Comolli	988
Interpreting the relationship between life course trajectories and explanatory factors. An example on the transition to adulthood Danilo Bolano, Matthias Studer and Reto Buergin	996

The relationship between economic news and fertility: the case of Germany	1002
Maria Francesca Morabito, Raffaele Guetto, Matthias Vollbracht and Daniele Vignoli	
Leaving home among Millennials in Italy: does economic uncertainty matter? Silvia Meggiolaro and Fausta Ongaro	1008
Adverse pregnancy outcomes in The United Kingdom following unexpected job loss Alessandro Di Nallo and Selin Koksal	1014
Bayesian modelling and inference 2	1020
A Bayesian beta linear model to analyze fuzzy rating responses Antonio Calcagnì, Massimiliano Pastore, Gianmarco Altoe and Livio Finos	1021
A Mixture Model for Multi-Source Cyber-Vulnerability Assessment Mario Angelelli, Serena Arima and Christian Catalano	1028
Hierarchical Bayesian models for analysing fish biomass data Rita Fici, Antonino Abbruzzo, Luigi Augugliaro and Giacomo Milisenda	1034
Insights into the derivative-based method for nonlinear mediation models Claudio Rubino and Chiara Di Maria	1040
An exploration of Approximate Bayesian Computation (ABC) and dissimilarities Laura Bondi, Marco Bonetti and Raffaella Piccarreta	1046
Advances in Categorical and Preference data	1052
On the predictability of a class of ordinal data models Rosaria Simone and Domenico Piccolo	1053
Multivariate analysis of binary ordinal data using graphical models Camilla Caroni, Fabio Alberto Comazzi, Andrea Deretti and Federico Castelletti	1059
Multinomial Thompson Sampling for adaptive experiments with rating scales Nina Deliu	1065
Ranking extraction in nested partially ordered data systems Marco Fattore, Barbara Cavalletti, Matteo Corsi and Alessandro Avellone	1071
Towards the definition of distance measures in the preference- approval structures Alessandro Albano, Mariangela Sciandra and Antonella Plaia	1077
Covid-19 Assessment and Evaluation 1	1083
Covid 10 impact accompant and incavality decomposition methods	1001

Covid-19 impact assessment and inequality decomposition methods 1084 Federico Attili and Michele Costa

Multiversal methods for model selection: COVID-19 vaccine coverage and relative risk reduction Venera Tomaselli and Giulio Giacomo Cantone	1090
Efficiency and feasibility of two stage sampling designs for estimating SARS-CoV-2 epidemic Pietro Demetrio Falorsi, Vincenzo Nardelli and Giuseppe Arbia	1096
Evaluating the impacts of Covid-19 on the overall Italian death process via Functional Data Analysis Riccardo Scimone, Alessandra Menafoglio, Laura M. Sangalli and Piercesare Secchi	1102
Developing countries, migration and migrants	1107
Domestic violence in Africa: a glance through the DHS survey Micaela Arcaio, Daria Mendola and Anna Maria Parroco	1108
Inequalities in undernutrition among Roma and non-Roma children in Western Balkans: an analysis of the determinants Annalisa Busetta, Valeria Cetorelli and Chiara Puglisi	1114
The manual, communicative and quantitative abilities of native and foreign workers according to their level of education in Italy Camilla Pangallo, Oliviero Casacchia and Corrado Polli	1120
HIV Prevalence in some African Territories: Socio-Economic Drivers Micaela Arcaio, Daria Mendola and Anna Maria Parroco	1126
A longitudinal cross country comparison of migrant integration policies via Mixture of Matrix-Normals Leonardo Salvatore Alaimo, Francesco Amato and Emiliano Seri	1132
Education and job placement	1138
Measuring happiness at work with categorical Principal Component Analysis Ulpiana Kocollari, Maddalena Cavicchioli and Fabio Demaria	1139
Early and accurate: a Machine Learning approach to predict students' final outcome with registry data Lidia Rossi, Marta Cannistrà and Tommaso Agasisti	1146
Students' experience with distance learning during Covid 19 pandemic in Southern Italy Angela Maria D'Uggento and Nunziata Ribecco	1153
Time series methods and Applications	1159
Trend and cycle decomposition in nonlinear time series Maddalena Cavicchioli	1160
Asymptotic properties of the SETAR parameters: a new approach Marcella Niglio and Guy Mélard	1166
Food prices forecast using post-sampled crowdsourced data with Reg-ARMA model: the case of Nigeria Iaria Lucrezia Amerise, Gloria Solano Hermosilla, Vincenzo Nardelli and Giuseppe Arbia	1172

Universal change point testing for dependent data Federica Spoto, Alessia Caponera and Pierpaolo Brutti	1178
Change point detection in fruit bioimpedance using a three-way panel model F. Marta L. Di Lascio and Selene Perazzini	1184
Bayesian modelling and inference 3	1190
A dynamic power prior approach to non-inferiority trials for normal means with unknown variance Francesco Mariani, Fulvio De Santis and Stefania Gubbiotti	1191
Bayesian Change-Point Detection for a Brownian Motion with a Total Miss Criterion Bruno Buonaguidi	1197
On the comparison of alternative Bayesian measures of posterior discrepancy Fulvio De Santis and Stefania Gubbiotti	1203
A Bayesian Test for the comparison of two independent populations Mara Manca, Silvia Columbu and Monica Musio	1209
A contribution to the L. J. Savage problem Francesco Bertolino, Silvia Columbu and Mara Manca	1215
Methods for Complex Data	1221
Optimization of delayed rejection adaptive metropolis Daniele Raffo and Antonietta Mira	1222
Dealing with multicollinearity and outliers in multinomial logit model: a simulation study Ida Camminatiello and Antonio Lucadamo	1228
A tool to validate the assumptions on ratios of nearest neighbors' distances: the Consecutive Ratio Paths Francesco Denti and Antonietta Mira	1233
Dimensionality reduction and visualization for interval-valued data via midpoints-ranges principal component analysis Viviana Schisa, Alfonso Iodice D'Enza and Francesco Palumbo	1239
Data-driven design-based mapping of forest resources Sara Franceschi, Rosa Maria Di Biase, Lorenzo Fattorini, Marzia Marcheselli and Caterina Pisani	1245
Environmental data and Climate change	1252
Ensemble model output statistics for temperature forecasts in Veneto Gaetan Carlo, Giummole Federica, Mameli Valentina and Siad Si Mokrane	1253
State of the urban Environment in Italy. A comparative analysis of selected composite indicators	1259

A Functional Data Analysis approach for Climate Model Selection: the case study of Campania Region Veronica Villani, Elvira Romano and Paola Mercogliano	1266
Evolution of scientific literature on climate change: a bibliometric analysis Gianpaolo Zammarchi, Giulia Contu, Maurizio Romano	1273
Energy and material demand of the Italian Regions Flora Fullone, Giulia Iorio, Assunta Lisa Carulli	1279
Health and survivorship	1285
Increasing Inequalities in Mortality by Socioeconomic Position in Italy Chiara Ardito, Nicolás Zengarini, Roberto Leombruni, Angelo d'Errico and Giuseppe Costa	1286
The role of health conditions in the relationship between socio- economic status and well-being: the counterfactual approach in mediation models Sara Manzella and Margherita Silan	1296
Excess economic burden of multimorbidity: a population-based study in Italy Chiara Seghieri, Niccolò Borri, Gaia Bertarelli and Sabina Nuti	1302
Depression-free life expectancy among 50 and older Americans by gender, race/ethnicity and education: the effect of marital disruption Alessandro Feraldi and Cristina Giudici	1308
Disability-free grandparenthood in Italy. Trends and gender differences Margherita Moretti, Elisa Cisotto and Alessandra De Rose	1314
Advances in regression models	1320
Semiparametric M-quantile regression for modelling georeferenced housing price data Riccardo Borgoni, Antonella Carcagni, Alessandra Michelangeli, Nicola Salvati and Francesco Schirripa Spagnolo	1321
Resampling-based inference for high-dimensional regression Anna Vesel, Jelle J. Goeman, Angela Andreella and Livio Finos	1327
Quantile regression coefficient modeling for counts to evaluate the productivity of university students Viviana Carcaiso and Leonardo Grilli	1333
Adaptive smoothing spline using non-convex penalties Daniele Cuntrera and Vito M.R. Muggeo	1339
Conditional tests for generalized linear models Riccardo De Santis, Jelle J. Goeman, Anna Vesely and Livio Finos	1345

Methods and applications in economics and finance	1351
Mixed models for anomaly detection in anti-money laundering aggregate reports Stefano lezzi and Marianna Siino	1352
On the drivers of Greenwashing risk: evidence from Eurostoxx600 Yana Kostiuk, Costanza Bosone and Paola Cerchiello	1358
Modelling Financial Returns with Finite Mixtures of GED Pierdomenico Duttilo and Stefano Antonio Gattone	1364
Risk Parity strategy for portfolio construction: a kurtosis-based approach Maria Debora Braga, Consuelo Rubina Nava and Maria Grazia Zoia	1370
Fully reconciled probabilistic GDP forecasts from Income and Expenditure sides Tommaso Di Fonzo and Daniele Girolimetto	1376
Latent Class models	1382
Latent thresholds model in classification tasks Giuseppe Mignemi, Andrea Spoto and Antonio Calcagni	1383
Adaptive filters for time-varying correlation parameters Michele Lambardi di San Miniato, Ruggero Bellio, Luca Grassetti and Paolo Vidoni	1389
Bayesian structural learning for Latent Class Model with an application to Record Linkage Davide Di Cecco	1395
Multilevel Latent Class modelling to advise students in self-learning platforms: an application in the context of learning Statistics Roberto Fabbricatore, Zsuzsa Bakk, Roberto Di Mari, Mark de Rooij and Francesco Palumbo	1401
Latent Markov models with associated mixed responses Alfonso Russo and Alessio Farcomeni	1407
Methods for health studies	1413
Beyond the fragility index Piero Quatto and Enrico Ripamonti	1414
Evaluation of the diagnostic-therapeutic paths for schizophrenic patients through state sequences analysis Laura Savaré, Giovanni Corrao and Francesca leva	1419
Optimal timing of bone-marrow transplant in myelodysplastic syndromes through multi-state modeling and microsimulation Caterina Gregorio, Marta Spreafico and Francesca leva	1425
A fully Bayesian approach for sample size determination of Poisson clinical trials Susanna Gentile and Valeria Sambucini	1431

XVIII

Compartmental models in epidemiology: Application on Smoking Habits in Tuscany Alessio Lachi, Cecilia Viscardi, Maria Chiara Malevolti, Giulia Carreras and Michela Baccini	1437
Covid-19 Assessment and Evaluation 2	1443
We are in the same storm but not in the same boat: Impact of COVID-19 on UK households Demetrio Panarello and Giorgio Tassinari	1444
A network approach to investigate learning experiences and social support in higher education Iaria Primerano, Maria Carmela Catone, Giuseppe Giordano, Maria Prosperina Vitale	1450
Physical and cultural activity, internet use and anxiety of Italian university students during the pandemic Giovanni Busetta, Maria Gabriella Campolo and Demetrio Panarello	1456
The digital divide in Italy before and during the pandemic phase Laura Zannella	1462
Covid-19 and financial professional advice Marianna Brunetti and Rocco Ciciretti	1468
Bayesian modelling and inference 4	1472
Bayesian functional mixed effects model for sports data Patric Dolmeta, Raffaele Argiento and Silvia Montagna	1473
Bayesian Optimization with Machine Learning for Big Data Applications in the Cloud Bruno Guindani, Danilo Ardagna and Alessandra Guglielmi	1479
Confidence distributions and fusion inference for intractable likelihoods Elena Bortolato and Laura Ventura	1485
Wasserstein distance and applications to Bayesian nonparametrics Marta Catalano, Hugo Lavenant, Antonio Lijoi and Igor Prunster	1491
Network Analysis and community detection	1497
Community detection in networks: a heuristic version of Girvan Newman algorithm Ilaria Bombelli and Lorenzo Di Rocco	1498
Geographically weighted regression for spatial network data: an application to traffic volumes estimation Andrea Gilardi, Riccardo Borgoni and Jorge Mateu	1504
Asymmetric Spectral Clustering: a comparison between symmetrizations Cinzia Di Nuzzo and Donatella Vicari	1510
Community detection of seismic point processes Valeria Policastro, Nicoletta D'Angelo and Giada Adelfio	1516

An Explorative analysis of Different Distance Metrics to Compare Unweighted Undirected Networks Anna Simonetto, Matteo Ventura and Gianni Gilioli	1522
Gender, attitudes and family ties	1528
Parents of a disabled child in Italy: less healthy but more civically engaged Nicoletta Balbo and Danilo Bolano	1529
Searching the nexus between women's empowerment and female genital cutting (FGC) Patrizia Farina, Liva Ortensi, Thomas Pettinato and Enrico Ripamonti	1535
Social stratification, gender, and attitudes towards voluntary childlessness in Europe: A double machine learning approach Danilo Bolano and Francesco C. Billari	1539
Integrating structuralism and diffusionism to explain the new Italian emigration Francesca Bitonti	1545
On the effects of rooted family ties in business networks: The South of Italy in the 19th century Roberto Rondinelli, Giancarlo Ragozini and Maria Carmela Schisani	1551
Methods and Applications in Clustering	1557
A semi-supervised clustering method to extract information from the electronic Word Of Mouth Giulia Contu, Luca Frigau, Maurizio Romano and Marco Ortu	1558
Spectral approach for clustering three-way data Cinzia Di Nuzzo and Salvatore Ingrassia	1564
Double clustering with a matrix-variate regression model: finding groups of athletes and disciplines in decathlon's data Matia Stival, Mauro Bernardi, Manuela Cattelan and Petros Dellaportas	1570
Classification of the population dynamics Federico Bacchi and Laura Neri	1576
Locating y-Ray Sources on the Celestial Sphere via Modal Clustering Anna Montin, Alessandra R. Brazzale and Giovanna Menardi	1582
Sampling and Official Statistics	1588
Fisher's Noncentral Hypergeometric Distribution for Population Size Estimation Veronica Ballerini and Brunero Liseo	1589
Small area models for skew and kurtotic distributions Maria Rosaria Ferrante and Lorenzo Mori	1595

The use of remotely sensed data in sampling designs for forest monitoring Chiara Bocci, Gherardo Chirici, Giovanni D'Amico, Saverio Francini and Emilia Rocco	1601
Analyzing different causes of one–inflation in capture recapture models for criminal populations Davide Di Cecco, Andrea Tancredi and Tiziana Tuoto	1607
Administrative database and official statistics: an IT and statistical procedure Caterina Marini and Vittorio Nicolardi	1613
Spatial modeling and Analyses	1619
Spatial statistics analysis using microdata: an application at agricultural sector Daniela Fusco, Maria Antonietta Liguori, Valerio Moretti and Francesco Giovanni Truglia	1620
Bayesian spatial modeling of extreme precipitation	1627
A proposal to adjust local Moran's I for measuring residential segregation Antonio De Falco and Antonio Irpino	1632
Accurate directional inference for gaussian graphical models Claudia Di Caterina, Nancy Reid and Nicola Sartori	1637
Advances in Classification	1643
Measures of interrater agreement based on the standard deviation Giuseppe Bove	1644
A Comparison of accuracy measures for Classification tasks Amalia Vanacore and Maria Sole Pellegrino	1650
Iterative Threshold-based Naive Bayes Classifier: an efficient Tb-NB improvement Maurizio Romano, Gianpaolo Zammarchi and Giulia Contu	1656
Reprogramming FairGANs with Variational Auto-Encoders: A New Transfer Learning Model Beatrice Nobile, Gabriele Santin, Bruno Lepri and Pierpaolo Brutti	1662
Robust statistics	1669
Combinatorial Analysis of Factorial Designs with Ordered Factors Roberto Fontana and Fabio Rapallo	1670
Robustifying the Rasch model with the forward search Anna Comotti and Francesca Greselin	1676
A novel estimation procedure for robust CP model fitting Valentin Todorov, Violetta Simonacci, Michele Gallo and Nikolay Trendafilov	1682

A robust approach for functional ANOVA with application to additive manufacturing Fabio Centofanti, Bianca Maria Colosimo, Marco Luigi Grasso, Alessandra Menafoglio, Biagio Palumbo and Simone Vantini	1688
Modeling unconditional M-quantiles in a regression framework Luca Merlo, Lea Petrella and Nicola Salvati	1692
Model-based clustering	1696
Bayesian mixtures of semi-Markov models Rosario Barone and Andrea Tancredi	1697
Specification of informative priors for capture-recapture finite mixture models Pierfrancesco Alaimo Di Loro, Gianmarco Caruso, Marco Mingione, Giovanna Jona Lasinio and Luca Tardella	1703
Clustering multivariate categorical data: a graphical model-based approach	1709
Francesco Rettore, Michele Russo, Luca Zerman and Federico Castelletti	
The Gaussian mixture model-based clustering for the comparative analysis of the Healthcare Digitalization Index in the Italian local health authorities Margaret Antonicelli, Michele Rubino and Filomena Maggino	1715
Student performance evaluation	1721
Rasch model versus Rasch Mixture model: strengthens and limits in identifying factors affecting students' performance in mathematics Clelia Cascella	1722
Does taking additional Maths classes improve university performance? Martina Vittorietti, Andrea Priulla and Massimo Attanasio	1728
University dropout and churn in italy: an analysis over time Barbara Barbieri, Mariano Porcu, Luisa Salaris, Isabella Sulis, Nicola Tedesco and Cristian Usala	1734
The ANOGI for detecting the impact of education and employment on income inequality Elena Fabrizi, Alessio Guandalini and Alessandra Spagnoli	1740
What causes juvenile crime? a case-control study Elena Dalla Chiara and Federico Perali	1747
Methods and Applications in Survival analysis	1753
Recursive partitioning for survival data Ambra Macis	1754
Detecting survival patterns in a digital learning platform Marta Cannistrà, Mara Soncin and Federico Frattini	1760
An extension of proper Bayesian bootstrap ensemble tree models to survival analysis Elena Ballante	1766

XXII

Modelling time to university dropout by means of time-dependent frailty COX PH models Mirko Giovio, Paola Mussida and Chiara Masci	1771
Family history in survival and disease development Maria Veronica Vinattieri and Marco Bonetti	1777
Text mining	1783
Topics & metaverse: an explorative analysis Emma Zavarrone, Alessia Forciniti, Emanuele Parisi, Maria Gabriella Grassia	1784
Applying Topic Models to bibliographic search: some results in basketball domain Manlio Migliorati and Eugenio Brentari	1791
Exploiting Text Mining and Network Analysis for future scenarios development: an application on remote working Yuri Calleo, Simone Di Zio and Vanessa Russo	1797
Emotion recognition in Italian political language to predict positionings and crises government Alessia Forciniti and Emma Zavarrone	1803
What does your self-description reveal about you? Riccardo Ricciardi	1809
Variable selection and complete matrix approaches	1815
A Statistical Approach for the Completion of Input-Output Tables Rodolfo Metulini, Giorgio Gnecco, Francesco Biancalani and Massimo Riccaboni	1816
On multivariate records over sequences of random vectors with Marshall-Olkin dependence of components A. Khorrami Chokami and Simone A. Padoan	1822
The joint censored gaussian graphical lasso model Gianluca Sottile, Luigi Augugliaro and Veronica Vinciotti	1829
Variable selection with unbiased estimation: the cdf penalty Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro	1835
Automatic variable selection for MIDAS regressions: an application Consuelo Rubina Nava, Luigi Riso and Maria Grazia Zoia	1841
Distribution Theory and Estimation	1847
A general framework for unit distributions Francesca Condino, Filippo Domma and Bozidar V. Popovic	1848
Prediction intervals based on multiplicative model combinations Valentina Mameli and Paolo Vidoni	1854
Some advances on pairwise likelihood estimation in ordinal data latent variable models Giuseppe Alfonzetti and Ruggero Bellio	1860

XXIII

Functional Data Analysis	1866
A new functional clustering method: the Functional Clustering and Dimension Reduction model Adelia Evangelista and Stefano Antonio Gattone	1867
Nonparametric functional prediction bands: theory with an application to bike sharing mobility demand in the city of Milan Jacopo Diquigiovanni, Matteo Fontana and Simone Vantini	1873
An R package for the statistical process monitoring of functional	1070
Christian Capezza, Fabio Centofanti, Antonio Lepore, Alessandra Menafoglio, Biagio Palumbo and Simone Vantini	10/0
Trend filtering for functional regression Federico Ferraccioli, Alessandro Casa and Marco Stefanucci	1884
Conformal prediction for spatio-functional regression models Diana, Romano, Irpino	1890
Tourism and sport studies	1895
Assessing satisfaction of tourists visiting Italian museums: evidence from the eWOM Daria Mendola and Valentina Oddo	1896
COVID-19 pandemic and tourism demand: a comparison between Spain and Italy Caterina Sciortino, Ludovica Venturella and Stefano De Cantis	1902
A compositional analysis of tourism in Europe Francesco Porro	1908
Improving administrative data quality on tourism using Big Data Antonella Bianchino, Armando d'Aniello and Daniela Fusco	1914
Geographical variations of socio-demographic issues	1920
Elderly HCE and health care need: comparing spatially unexplained levels Irene Torrini, Laura Rizzi and Luca Grassetti	1921
Measuring sustainable development at the regional level. The case of Italy Marianna Bartiromo and Enrico Ivaldi	1927
Socio-economic deprivation and COVID-19 infection: a Bayesian spatial modelling approach Antonino Abbruzzo, Andrea Mattaliano, Alessandro Arrigo, Salvatore Scondotto and Mauro Ferrante	1933
Applications in Economics	1939
The measurement of economic security through relative indicators Alessandro Gallo, Silvia Pacei and Maria Rosaria Ferrante	1940

1946
1953
1959
1965
1971
1972
1977
1983
1987
1993
1999
2000
2006
2011
2017
2023
2024

A note on testing for threshold non-linearity in presence of heteroskedasticity in time series Simone Giannerini and Greta Goracci	2030
The conditional autoregressive Whart-G model Massimiliano Caporin and Marco Girardi	2036
Semi-parametric generalized linear mixed effects models for binary response for the analysis of heart failure hospitalizations Alessandra Ragni, Chiara Masci, Francesca leva and Anna Maria Paganoni	2042
Issues in Data science	2048
etree: Classification and Regression With Structured and Mixed-Type Data in R Riccardo Giubilei, Tullia Padellini and Pierpaolo Brutti	2049
Deep Learning framework for ungrouping coarsely aggregated vital rates Andrea Nigri	2055
Inside the metaverse: analysis of the state of the art and development of a new usage approach based on quality and ethics Vito Santarcangelo, Emilio Massa, Saverio Gianluca Crisafulli, Antonio Ruoto, Angelo Lamacchia, Alessandro D'Alcantara, Alessandro Verderame and Massimiliano Giacalone	2061

Problematiche aperte nella costruzione di indicatori compositi

Leonardo Salvatore Alaimo

Abstract Composite indicators are useful to represent in a easy-to-read way a complex phenomenon. Over the years, their use has significantly, both among academics and policy makers. At the same time, issues related to their use have emerged. They constitute open questions in the debate on the subject and frontiers for the research. In this paper, we aim to briefly present the state of the art on this topic and illustrate the main issues and the directions the literature has taken to address them. The latter constitute potential topics of interest also for those who want to undertake the study of composite indicators for the first time.

Abstract Gli indicatori compositi sono utili per rappresentare in modo semplice e immediatamente comprensibile un fenomeno complesso. Nel corso degli anni, il loro uso è aumentato significativamente, sia tra gli accademici che tra i decisori pubblici. Allo stesso tempo, sono emerse questioni relative al loro uso, che costituiscono argomenti aperti nel dibattito e nuove frontiere per la ricerca. In questo articolo, ci proponiamo di presentare brevemente lo stato dell'arte su questo tema e di illustrare le questioni principali e le direzioni che la letteratura ha preso per affrontarle. Queste ultime costituiscono potenziali argomenti di interesse anche per chi voglia intraprendere per la prima volta lo studio degli indicatori compositi.

Key words: Multi-indicators systems, Synthesis of statistical indicators, Composite indicators

1 Introduction

As Karl Pearson stated if you haven't measured something, you really don't know very much about it. Measurement allows the production of scientific knowledge

Leonardo Salvatore Alaimo

Department of Social Sciences and Economics, Sapienza University of Rome, e-mail: leonardo.alaimo@uniroma1.it

Leonardo Salvatore Alaimo

about reality. Indeed, it develops as a dialogue between logic and evidence, it is the result of a complex interaction between theory and observations represented and realized by measurement. This interaction is necessary and unavoidable [1]. Dealing with phenomena defining reality (wellbeing, poverty, quality of life, development, and so on) requires an approach capable of grasping their complex and multidimensional nature. They are *complex adaptive systems*, i.e. open systems made up of numerous elements interacting with each other, in a linear and a non-linear way, that constitute a unique and organic entity capable of evolving and adapting to the environment [2, 3, 4]. They are multidimensional and their different elements are linked together in a non-linear way. They evolve over time, modifying both their dimensions and the links between them. Consequently, their measurement needs to consider different aspects. They are not directly observable, but they derive theoretically from observations. Almost all measures in social sciences are developed by means of a *defining process*, namely achieved as a consequence of a definition confirmed through the relationship observed between observations and the concept to be measured. The measurement process in social sciences is associated with the construction of systems of indicators. It is necessary to use a variety of elementary indicators and a criterion for summarising the information they contain. In statistics, an elementary indicator refers to indirect measures of phenomena that cannot be measured directly. In this perspective, an indicator is not simply raw statistical information, but represents a measure organically linked to a conceptual model aimed at describing different aspects of reality. They are not simply collections of measures. Indicators within a system are interconnected and new properties typical of the system and not of its constituent elements emerge from these interconnections. Therefore, a system of indicators allows the measurement of a complex concept that would not otherwise be measurable by taking into account the indicators individually. They play a key role in describing and understanding socio-economic phenomena. The complex nature of systems of indicators requires approaches allowing more concise views in order to analyse and understand them. The guiding concept is synthesis. The synthesis of indicators' systems has become a main issue in the literature. A variety of statistical methods useful for this purpose have been defined and used. From a technical perspective, these methods can be classified into two different approaches: the aggregative-compensative [5] and the non-aggregative [6, 7, 8, 9]. In this paper, we focus on the first one, the dominant framework in literature. Despite its success, the aggregative-compensative approach has been criticised and a series of conceptual and methodological issues have been posed. These questions are still open and inflame the debate in the literature on this topic. In this paper, we focus on some of them and how they constitute frontiers for the research in the composite indicators' field. Why should we continue to work and research on composite indices? We will try to answer this question.

2 Composite indicators: some conceptual and methodological research questions

A system of indicators is a three-way data array of type "same objects \times same indicators \times time occasions", which can be algebraically formalised as [10]:

$$\mathbf{X} \equiv \{x_{ijt} : i = 1, \dots, N; \ j = 1, \dots, J; \ t = 1, \dots, T\}$$
(1)

where the indices *i*, *j* and *t* stand for the units, the indicators and the times, respectively and x_{ijt} is the value of the *j*-th indicator observed for the *i*-th unit at time *t*. These data structures are characterised by a great complexity and require the use of specific statistical tools allowing a more concise view. Given $\mathbf{X} \equiv \{x_{ijt}\}$, the objective of the synthesis, generally, is to obtain a bi-dimensional data matrix:

$$\mathbf{V} \equiv \left\{ v_{it} : i = 1, \dots, N; t = 1, \dots, T \right\} = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1T} \\ v_{21} & v_{22} & \cdots & v_{2T} \\ \vdots & \ddots & \ddots & \vdots \\ v_{N1} & v_{N2} & \cdots & v_{NT} \end{pmatrix}$$
(2)

where v_{it} is the synthetic value of the unit *i*th at the time *t*-th. In the aggregativecompensative approach, the synthesis of **X** is performed by means of a mathematical function that combines the (previously normalised) basic indicators. In other words, it consists of the mathematical combination (or aggregation) of the set of indicators, obtained by applying specific methodologies [11] known as composite indicators (CIs). Over the years, these methodologies have been widely used in literature and by various international organisations and institutions for measuring and evaluating a great variety of socio-economic phenomena. The main purpose of their importance and success is to be informative. It is easier for the public to understand a synthetic indicator (one single measure) than many elementary indicators.

One of the main critical points is the treatment of multidimensional systems of ordinal data [7]. Ordinal indicators cannot be synthesised by using an aggregative method, suitable only for cardinal data. In fact, ordinal scores cannot be treated as numbers. Despite this, we often see their transformation into numerical scores, by more or less sophisticated scaling tools, in order to make possible their synthesis by aggregative procedures. These procedures may lead to controversial and incorrect results and pose delicate methodological and conceptual questions. This has led researchers to identify methods that can deal with non-cardinal indicator systems.

Another focal issue in composites construction is how to treat subjectivity. It is involved in any phase of composites' construction. Subjectivity is not negative per se, but it becomes so when it turns into *arbitrariness*. The first step in any synthesis is the definition of the phenomenon we want to measure and the subsequent identification of the theoretical framework and the relevant variables. The concept must always refer to a theoretical framework that gives it meaning. No meaning can be attributed without subjectivity. The role of the subject in knowledge production is clear. Fundamental attention must be given to the analysis of the *measurement* *model*, referring to the relationship between concepts and indicators. The debate on measurement models is part of the literature on the evaluation of latent variables, which has a long tradition in social science [12]. Latent variables are phenomena of theoretical interest which cannot be directly observed and have to be assessed by manifest measures which are observable. Two different conceptual approaches can be identified: *reflective* and *formative* [13, 14, 15, 16, 17].

Fig. 1: Measurement models: reflective (left); formative (right).

The reflective measurement models have a long tradition in social sciences (in particular, in psychometric research) and are based on classical test theory, according to which measures are effects of an underlying latent construct [18]. Therefore, causality is from the construct to the measures and, consequently, a change in the latent variable causes variation in all measures simultaneously (all indicators must be positively correlated). In a formative model, indicators are causes of the construct rather than its effects (like in the reflective one) and they determine the latent variable giving it its meaning [13, 19]. Accordingly, indicators are not interchangeable: omitting an indicator is omitting part of the construct [20]. Thus, the choice of indicators determines what we want to measure.

The literature about the difference between reflective and formative models is rich and the debate on this issue continues. We would like to point out that the choice between the two models does not depend on the researcher, but exclusively on the nature and direction of relationships between constructs and measures. Different methods of normalisation, weighting and aggregation exist and can be used, leading to different results and interpretations. Of course, the choice of methods is also subjective, although it must be guided by knowledge of the phenomenon and

based on clear assumptions so as not to be arbitrary. Each method has strengths and weaknesses. Different choices lead to different syntheses that often give a different interpretation of the phenomena studied. These considerations lead to two research questions. The first is whether, given a system of indicators, there can be a method that is better than the others, i.e. that is able to represent the phenomenon better than the others. The second question, strictly linked to the previous one, is whether it is possible to define a criterion for choosing such a method.

As highlighted in equation 2, the synthesis aims at obtaining for each unit of the original system a synthetic measure that is representative of its original profile (i.e., the combination in the basic indicators) at a specific time *t*-th. Such a measure gives an easy-to-read information about the phenomenon. Switching from multi-dimensional to uni-dimensional necessarily determines a loss of information, justified by the need to have a synthetic view of the measured phenomenon. In many cases, this loss of information is excessive. Synthesising a complex phenomenon into a single number can be not straightforward and lead to misleading results and conclusions which increase if the indicator is poorly defined and constructed. This can lead researchers and/or policy-makers to give an over-simplistic interpretation of a phenomenon. This aspect has been investigated in literature and has prompted researchers to question whether the synthesis of a multi-indicators system must necessarily be a single number assigned to each statistical unit at a specific time.

3 Frontiers of the research

The questions presented in the previous section constitute challenges for researchers and the answer to them might be a reason to approach the study of composite indicators.

The impossibility of synthesising indicator systems in which non-cardinal indicators are also present is intrinsically linked to the nature of composite indicators, which are obtained through the mathematical combination of elementary indicators. For this reason, over the years the research has focused on finding methods suitable for dealing with systems of indicators at different scaling levels. In this way, the so-called non-aggregative approach gradually became widespread: the synthetic indicator is obtained without any aggregation of the basic indicators. Among the different methodologies belonging to this approach (for instance, the Social choices theory [21, 22, 23] or the Multi-criteria Analysis [24, 25, 26]), the Partially Ordered Set (poset) Theory [27, 28, 29] has become a reference. The spread of these new methods was facilitated by the concomitant spread of increasingly powerful computer tools, which made their computation possible. Undoubtedly, research is moving towards the identification of methods that do not depend on and can, consequently, be used regardless of the scale of the elementary indicators. Subjectivity is an ineradicable element, but it must never become arbitrariness. Research has also focused on the management of the various subjective choices involved in the composites' construction. As regards the definition of the phenomenon to be measured

and the choice of the elementary indicators, one way to avoid arbitrariness is to stand on the shoulders of giants [30], i.e. always rely on a careful analysis of the literature and what others have done before. This does not translate into a kind of immobility, into the impossibility of departing from what has been done in the past. On the contrary, research in the field of indicators is highly dynamic as it is linked to societal evolution. For instance, if we wanted to construct an indicator measuring deprivation, we could not disregard the work on this subject by Townsend [31]. It is clear that the deprivation nowadays is not the same as it was in Townsend's reference and that the concept must therefore be adjusted. However, Townsend's work would be the starting point. Research in the field of indicators' synthesis is alive and evolving; phenomena change in different contexts (spatial, temporal, cultural). In this perspective, the researcher plays a decisive role and subjectivity becomes the lens through which he or she observes the world in an unique way. As mentioned above, the methodological choices are also subjective (obviously, based on the knowledge of the phenomenon) and different methods lead to different results. The research therefore focused on identifying *the best method* for the synthesis. There is no absolute method that is preferable to all others. However, a criterion for choosing a method would be useful. We often deal with CIs obtained by the most different methods, often chosen arbitrarily by the researchers. This makes the choices questionable. But, even if the choices are agreeable, it remains to be seen how much a method is a "good and valid choice". In this perspective, different authors [32, 33] have suggested robustness as a selection criterion: among the different choices and methods, we must select those which guarantee greater robustness of rankings, assessed by means of uncertainty analysis (how uncertainty in the input factors propagates through the structure of the composite index and affects the results) and sensitivity analysis (how much each individual source of uncertainty contributes to the output variance). However, this approach leaves a question open: why should a more robust method better represent a phenomenon? In particular, the idea that preferring the method which, by excluding and including individual indicators and setting different decision rules to construct the composite index, leaves the rankings obtained most unchanged is highly questionable. It could be argued that such an approach does not take the measurement model into account. Indeed, in a reflective model, the exclusion of an indicator does not affect the latent variable that is being measured. On the contrary, in a formative model excluding or including an indicator changes, even strongly, the measured latent variable. Let's take an example. Suppose we want to measure human development using UNDP's framework [34], considering three dimensions and four indicators: a long and healthy life assessed by life expectancy at birth; knowledge measured by means of mean years of schooling for adults aged 25 years and more and expected years of schooling for children of school entering age; a decent standard of living measured by gross national income per capita. If we remove the economic variable, we expect a significant change in the ranking obtained which will be different from that obtained by excluding life expectancy. Consequently, why, among the various methods, should we choose the one that leaves the rankings obtained by excluding an indicator more unchanged? As easily understood, the debate on this issue is very lively. Recently, an approach

linking the choice of method to the nature and structure of the indicators' system has been proposed. It is quite obvious that a good synthetic measure should give a good fit of the distributive assumptions on data. In other words, a composite can be considered "good" if it is able to give a good representation of the distributional form (or multiple forms) assumed on the system of indicators.

The last question addressed in this work is if the synthesis must necessarily be a single number or, more precisely, whether a single number is capable of accounting for the complexity of the observed phenomenon. In literature, we can find arguments in favour of the composites and against them. Some scholars [35] criticised the choice of constructing a single composite index, suggesting that it would be a better choice to use a dashboard, because it allows to avoid an arbitrary choice of the functional form and the weighting scheme and to observe a phenomenon from multiple points of view. In this perspective, the synthesis is an informative patrimony capable of describing the observed reality. Other researchers highlighted that a synthetic measure can be an object, a map or an image. There is a large amount of literature on the use of metaphoric images for the representation and synthesis of socio-economic phenomena [36, 37]. Another approach is to use intervals of composites rather than individual measures [38, 39, 40, 41]. The proposed intervals, although different one another, all respond to the idea of identifying a range of values within which the synthetic measure is included.

4 Conclusions

Composites indicators are a tool for measuring and understanding phenomena. They have become the focus of attention of researchers and policy makers for their ease of reading and usefulness for decision making and evaluation. Over the years, their use has increased, as well as the areas in which they have been applied. At the same time, the debate in the literature has become increasingly animated, focusing on problems and new areas of application and frontiers of research. In this paper, we have presented some of them, which are, of course, only examples that, although relevant, do not do justice to the enormous academic debate and production on composite indicator topic. This testifies to the liveliness of research in this field, the possibility of exploring new or established themes from new perspectives. Undoubtedly, we can consider this an adequate answer to why we must continue to study composite indicators.

References

 Leonardo S. Alaimo. Complexity of Social Phenomena: Measurements, Analysis, Representations and Synthesis. Unpublished Doctoral Dissertation, University of Rome" La Sapienza", Rome, Italy, 2020.

- [2] Mitchell M. Waldrop. *Complexity: The Emerging Science at the Edge of Order and Chaos.* New York: Simon and Schuster, 1992.
- [3] Leonardo S. Alaimo. Complexity and knowledge. In F. Maggino, editor, Encyclopedia of Quality of Life and Well-being Research, pages 1–2. Cham: Springer, 2021. doi: 10.1007/978-3-319-69909-7_104658-1.
- [4] Leonardo S. Alaimo. Complex systems and complex adaptive systems. In F. Maggino, editor, *Encyclopedia of Quality of Life and Well-being Research*, pages 1–3. Cham: Springer, 2021. doi: 10.1007/978-3-319-69909-7_104659-1.
- [5] OECD. Handbook on Constructing Composite Indicators. Methodology and User Guide, 2008.
- [6] Rainer Bruggemann and Ganapati P Patil. Ranking and prioritization for multi-indicator systems: Introduction to partial order applications. Dordrecht: Springer Science & Business Media, 2011.
- [7] Marco Fattore. Synthesis of Indicators: The Non-aggregative Approach. In F. Maggino, editor, *Complexity in Society: From Indicators Construction to their Synthesis*, pages 193–212. Cham: Springer, 2017.
- [8] Leonardo S. Alaimo, Alberto Arcagni, Marco Fattore, and Filomena Maggino. Synthesis of multi-indicator system over time: A poset-based approach. *Social Indicators Research*, pages 1–23, 2020. doi: 10.1007/s11205-020-02398-5.
- [9] Filomena Maggino, Rainer Bruggemann, and Leonardo S. Alaimo. Indicators in the framework of partial order. In R. Bruggemann, L. Carlsen, T. Beycan, C. Suter, and F. Maggino, editors, *Measuring and Understanding Complex Phenomena: Indicators and their Analysis in Different Scientific Fields*, pages 17–29. Cham: Springer International Publishing, 2021.
- [10] P. D'Urso. Dissimilarity measures for time trajectories. *Stat. Methods Appl.*, 9(1-3):53–83, 2000.
- [11] Michela Nardo, Michaela Saisana, Andrea Saltelli, and Stefano Tarantola. Tools for composite indicators building. *European Commission, Ispra*, 15(1):19–20, 2005.
- [12] Otis D. Duncan. Notes on Social Measurement: Historical and Critical. New York: Russell Sage Foundation, 1984.
- [13] Hubert M. Blalock. *Causal Inferences in Nonexperimental Research*. N.C.: University of North Carolina Press, 1964.
- [14] Kenneth A. Bollen. *Structural Equations with Latent Variables*. New York: Wiley, 1989.
- [15] Adamantios Diamantopoulos and Heidi M. Winklhofer. Index Construction with Formative Indicators: An Alternative to Scale Development. *Journal of Marketing Research*, 38(2):269–277, 2001.
- [16] Adamantios Diamantopoulos and Judy A Siguaw. Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. *British journal of management*, 17(4):263–282, 2006.
- [17] Adamantios Diamantopoulos, Petra Riefler, and Katharina P. Roth. Advancing Formative Measurement Models. *Journal of Business Research*, 61(12):1203– 1218, 2008.

- [18] Kenneth A. Bollen and Richard Lennox. Conventional Wisdom on Measurement: A Structural Equation Perspective. *Psychological Bulletin*, 110(2):305, 1991.
- [19] Hubert M. Blalock. The Measurement Problem: A Gap between the Languages of Theory and Research. In F. Kerlinger, editor, *Methodology in Social Research*, pages 5–27. New York: McGraw-Hill, 1968.
- [20] Kenneth A. Bollen. Multiple Indicators: Internal consistency or No Necessary relationship? *Quality and Quantity*, 18(4):377–385, 1984.
- [21] Amartya Sen. Social choice theory: A re-examination. *Econometrica: Journal of the Econometric Society*, pages 53–89, 1977.
- [22] Amartya Sen. Social Choice Theory. *Handbook of mathematical economics*, 3:1073–1181, 1986.
- [23] Iain McLean. The Borda and Condorcet principles: Three Medieval applications. Social Choice and Welfare, 7(2):99–108, 1990.
- [24] Phil Macoun and Ravi Prabhu. *Guidelines for applying multi-criteria analysis* to the assessment of criteria and indicators, volume 9. CIFOR, 1999.
- [25] Peter Nijkamp and Ad van Delft. *Multi-criteria analysis and regional decision-making*, volume 8. Springer Science & Business Media, 1977.
- [26] Constantin Zopounidis and Panos M Pardalos. Handbook of multicriteria analysis, volume 103. Springer Science & Business Media, 2010.
- [27] Joseph Neggers and Hee S. Kim. *Basic Posets*. Singapore: World Scientific Publishing, 1998.
- [28] Hilary A. Priestley. Ordered Sets and Complete Lattices. In R. Backhouse, R. Crole, and J. Gibbon, editors, *Algebraic and Co-algebraic Methods in the Mathematics of Program Construction. International Summer School and Workshop, Oxford, April 10-14, 2000, revised lectures*, pages 21–78. Dordrecht: Springer, 2002.
- [29] Berndt Schröder. Ordered Set. An Introduction. Boston: Birkäuser, 2002.
- [30] Robert K. Merton. On the Shoulders of Giants: A Shandean Postscript. San Diego (Calif.): Harcourt Brace Jovanivich, 1985.
- [31] Peter Townsend. Deprivation. Journal of Social Policy, 16(2):125–146, 1987.
- [32] Michael Freudenber. *Composite Indicators of Country Performance*. Paris: OECD Publishing, 2003.
- [33] Matteo Mazziotta and Adriano Pareto. Synthesis of Indicators: The Composite Indicators Approach. In F. Maggino, editor, *Complexity in Society: From Indicators Construction to their Synthesis*, pages 159–191. Cham: Springer, 2017.
- [34] UNDP. Human Development Report 2020: The Next Frontier Human Development and the Anthropocene. New York, NY: UNDP, 2020.
- [35] Ed Diener and Eunkook Suh. Measuring quality of life: Economic, social, and subjective indicators. *Social indicators research*, 40(1):189–216, 1997.
- [36] Edward R. Tufte. *The Visual Display of Quantitative Information*, volume 2. Cheshire, Connecticut: Graphics Press, 2001.
- [37] Manuel Lima. *Visual Complexity: Mapping Patterns of Information*. New York: Princeton Architectural Press, 2013.

- [38] Luis Diaz-Balteiro and Carlos Romero. In search of a natural systems sustainability index. *Ecological Economics*, 49(3):401–405, 2004.
- [39] Francisco J Blancas, Rafael Caballero, Mercedes González, Macarena Lozano-Oyola, and Fátima Pérez. Goal programming synthetic indicators: An application for sustainable tourism in andalusian coastal counties. *Ecological Economics*, 69(11):2158–2172, 2010.
- [40] Matteo Mazziotta and Adriano Pareto. Composite indices construction: The performance interval approach. *Social Indicators Research*, pages 1–11, 2020.
- [41] Emiliano Seri, Leonardo S. Alaimo, and Vittoria C. Malpassuti. BoD min range: A Robustness Analysis Method for Composite Indicators. In A. Pollice, N. Salvati, and F. Schirripa Spagnolo, editors, *Book of Short Papers SIS 2020*, pages 1154–1159. Milano: Pearson, 2020.