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Abstract

Artificial Intelligence plays a main role in supporting and improving smart manufacturing and
Industry 4.0, by enabling the automation of different types of tasks manually performed by
domain experts. In particular, assessing the compliance of a product with the relative schematic
is a time-consuming and prone-to-error process. In this paper, we address this problem in a
specific industrial scenario. In particular, we define a Neuro-Symbolic approach for automat-
ing the compliance verification of the electrical control panels. Our approach is based on the
combination of Deep Learning techniques with Answer Set Programming (ASP), and allows for
identifying possible anomalies and errors in the final product even when a very limited amount
of training data is available. The experiments conducted on a real test case provided by an
Italian Company operating in electrical control panel production demonstrate the effectiveness
of the proposed approach.

KEYWORDS: Automated Quality Control Systems, Answer Set Programming, Computer Vi-
sion, Data Scarcity

1 Introduction

With the rise of new technologies, industry moved a step forward to a new era in the field

of manufacturing. This complex transformation, including the integration of emerging

paradigms and solutions such as Artificial Intelligence (AI), Human-Computer Interac-

tion, Cloud Computing, Industrial Internet Of Things (IIoT) and Blockchain, is referred
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Proceedings vol. 3204 pp.247–253.



2 Barbara et al.

as Industry 4.0. The impact of the field is witnessed by the effort to promote its devel-

opment within several national economic policies. For example, the Italian Ministry of

Development (nowadays called Ministry of Enterprise and Made in Italy, and identified

by the MIMI acronym) is funding the application of AI to the manufacturing processes to

improve efficiency and push the development and modernization of Italian SMEs. In this

evolving scenario, Quality Control (QC) is greatly benefiting from the adoption of ad-

vanced AI tools and techniques, that can allow for speeding up or automatizing processes

of assessment about integrity, working capability, and durability of the products (Javaid

et al. 2022). In particular, the automation of the compliance verification process for prod-

ucts is among the promising applications of AI for QC that poses a significant challenge

for all manufacturing-related businesses, because it can make more efficient a necessary

but costly and time-consuming operation in the supply chain.

Among the projects funded by MIMI is the one titled “Multipurpose Analytics Plat-

form 4 Industrial Data” (MAP4ID), where one of the main use cases is precisely the

development of an AI capable of automating the compliance checking of Electrical Con-

trol Panels (ECPs). Basically, an ECP is an enclosure, typically a metal or plastic box,

which contains electrical components to control and monitor various mechanical pro-

cesses, motors, sensors, and actuators. ECPs are employed to regulate a wide variety

of components used in industry: e.g., they allow to control of mechanical equipment,

electrical devices, manufacturing machinery, etc.

One of the basic QC tasks in the manufacturing of ECPs requires checking the com-

pliance of the produced control panels with their schematics. Automating this task is

particularly relevant since it is currently manually performed by human experts, which

makes the whole process inefficient, expensive, and prone to errors. The release of defec-

tive ECPs (due to poor quality control) can cause exposure to penalties by the customer

and compromise the company’s reputation. The adoption of AI-based tools can greatly

mitigate these risks by enabling continuous monitoring of the whole production chain

and early detection of issues in each stage of the production process.

Main Problem. In this work, we devise an innovative approach combining Deep Learning

(DL) (Goodfellow et al. 2016), and Answer Set Programming (ASP) (Brewka et al. 2011)

to support the QC for the production of electrical control panels. Here, the main task

consists in identifying anomalies in the final product, such as the lack, the misplacing, or

the wrong connectivity of the electrical components in the cabinet of the ECP, by just

analyzing an image of the assembled product. Important requirements are that the AI

must be capable of producing the results of the compliance-checking task in a very short

time (in the order of seconds) and with high accuracy (> 90%), to enable the integration

into a tool assisting human inspectors that delivers real-time and robust performance.

This problem is made very challenging for standard DL approaches by the following

main issues:

1. Data scarcity. Although the companies can produce sufficient amounts of data,

semantics, and labels are often missing from images. In particular, in our scenario,

such a problem affects both the data representations i.e., the pictures depicting the

ECPs, and the correspondent schematics. Indeed, supervised information about the

position, dimensions, and typology of the installed components is missing for the
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pictures. As regards the schematics, although they seem to provide a more detailed

representation, the possibility of easily translating them into actionable constraints

(in the form of grammar rules) strongly depends on the underlying software used

to produce them.

2. Custom Designs. Despite ECP being made of standard components, there is no

standard set of schematics for ECPs. Usually, the design of a solution is customized

and very specific for the needs of a specific customer. Thus, the AI must be able

to work with different schematics without requiring any additional training.

Contribution. In this work, we define a solution approach composed of two main phases:

1. First, a Deep Learning based solution allows for recognizing the electrical com-

ponents (object detection) from the images of the panels and reconstructing the

scheme. In this phase, a number of data augmentation strategies are also exploited

to cope with the lack of labeled data.

2. Then, an Answer Set Programming-based system is used to compare the scheme

reconstructed from the picture with its original schematic in order to discover

possible mismatches/errors.

The contribution of this paper can be located in the challenge of providing a suitable

combination of learning and reasoning through the development of integrated compo-

nents, which, nowadays, is identified by the buzzword neuro-symbolic AI (d’Avila Garcez

et al. 2015). Actually, our system can be classified as a Neural—Symbolic architecture

(or architecture of Type 3) according to Henry Kautz’s taxonomy (Kautz 2022), where

DL is used for sensing (detecting components) and a reasoner (ASP-based) is used for

checking conformance and detecting issues.

Although based on a conceptually straight combination of DL and ASP, an experiment

conducted on (scarce) data provided by an Italian SME leader in the production of ECPs

confirms that our neuro-symbolic system can deliver the expected performance, which is

the main acceptability criteria to be fulfilled by a successful real-world application.

2 Framework overview

In this section, we illustrate the solution approach devised to address the main problem

of how to automate the compliance verification process of control panels. As highlighted

in Section 1, an effective solution for this problem has to cope with the challenges of

understanding image contents and extraction of the constraints encoded in schematics,

while coping with the issues of lack of labeled data and unlabeled data distribution. To

this aim, we defined the framework shown in Figure 1 that includes two main macro-

modules, respectively named Component Detection and Quality Assessment.

The former is devoted to recognizing the electrical components assembled in the cab-

inet. Basically, it includes the modules characterizing the adopted machine learning

methodology, whose main objective is to identify the components of the panel from a

picture. Specifically, a set of Data Augmentation and generation techniques builds a suit-

able dataset (robust to overfitting), which feeds a Convolutional Neural Network (CNN)

based model trained to perform the component detection.
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Fig. 1: Framework for Automatic Compliance Verification.

The latter exploits ASP to tackle the task of compliance checking. It automatically

compares the control panel scheme built starting from the neural network output and

the corresponding schematic to highlight any anomalies.

3 Component Detection via Deep Learning

The component detection is meant to recognize, given a picture representing a panel, the

type and geometric position of each component within the panel. This is a preliminary

and fundamental step since, in order to check the compliance of the cabinets with their

schematics, we need first to understand their composition. The main problem in this step

is given by the scarcity of data, as well as the lack of labeling annotations. This is a typical

scenario characterizing industrial processes: the quality of a machine learning model relies

on the data used to train it; however, the latter requires an accurate labeling process

that is time and resource-consuming and hence difficult to obtain. In our framework, we

address these issues by exploiting a synthetic data generation process that allows us to

enrich the starting training set.

3.1 Data Augmentation and Generation

Basically, our synthetic data generation method is fed with three inputs: (i) a picture

showing an empty cabinet, (ii) a catalog including all the available components that

can be installed in a cabinet, and (iii) a limited number of real pictures that will be

manipulated in order to add noisy elements in the generated data, by exploiting a suitable

strategy described in the following.

The core idea is to enrich the ground truth (consisting of a limited number of im-

ages) with synthetic images, where the area of the empty cabinet is filled with random

components picked from the catalog. Notice that, at this stage, we are not interested in

generating compliant panels, since our only objective at this stage is to build a suitable
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Fig. 2: Input and output of the component detection approach.

object detector that is capable of recognizing both the component and its geometrical

position and extension. The size of the catalog and the randomness of the composition

allow us to generate a suitable number of images where each component can be included

with a suitable frequency, thus making the result dataset robust to object detection and

segmentation learning tasks.

This simple approach can be further combined with other image augmentation strate-

gies (Image Processing module in Figure 1) with the aim of yielding a training set that

includes a sufficient and diversified number of examples for learning the model. In partic-

ular, our framework also includes traditional data augmentation strategies i.e., Gaussian

Blur and PerspectiveTransform. As regards the former, the idea consists in introduc-

ing imperfections into data so as to make component detection more resilient to data

changes, it is obtained by averaging contiguous pixel values. The last one allows for

applying random four-point perspective transformations to images.

The resulting dataset from this process will include all the necessary features for the

training phase: (i) a large number of different pictures, (ii) the position of each compo-

nent, (iii) the type of each component. Notably, since each component depicted in the

synthetic pictures is randomly placed, the detection model will be forced to learn the

intrinsic features of each component, instead of considering positional features, that may

vary in the different schematics. Within a cabinet, there are other “auxiliary” elements

that are simplified in a schematic, mainly separation boxes, metal runners, and cables.

For simplicity, we call them noise to randomly add to the generated images in order to

make the object detection model able to distinguish and ignore these elements.

Figure 2, show some examples of the data generation process. We can observe the

empty cabinet (figure 2a), and two instances where it is filled with random components

(figures 2b and 2c). Notice that the synthetic data does not necessarily represent a

realistic situation. As already mentioned, this is not an issue since our purpose here is to

strengthen the object detection and segmentation phase, which is discussed below.

3.2 Component Detection

The Model Building module in Figure 1 allows for training the deep architecture used to

perform the component detection. For this, we adopted the Mask R-CNN convolutional
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Fig. 3: R-CNN working flow.

neural architecture proposed in (He et al. 2017). In general, R-CNN (Region based CNN)

refers to a family of neural architectures adopting a Multi-shot approach. The underlying

idea is a two-step process: first, different bounding boxes across possible regions of interest

(RoIs) are extracted; then, such regions are independently evaluated through a CNN

architecture in order to map them to any of the proposed classes (see Figure 3).

Mask R-CNN extends a specific architecture named Faster R-CNN (Ren et al. 2015)

that includes two main components: (i) Region Proposal Network (RPN), a deep neural

network aimed at extracting RoIs from the picture, and (ii) Fast R-CNN, a neural archi-

tecture that performs classification, by scaling a region to a predefined size thus enabling

the computation of a set of CNN feature maps. The main advantage of the Faster R-

CNN architecture is a suitable trade-off between competitive accuracy in terms of object

recognition, and relative speed in the recognition phase. By contrast, other approaches

based on Single-Shot architectures such as YOLO (Redmon et al. 2016) or SSD (Liu et al.

2016) focus on fast recognition, at the cost of recognition accuracy. This is clearly not

acceptable in our scenario, where we aim at checking compliance, and missing a compo-

nent in the picture would result in a failure in the check. Mask R-CNN further improves

Faster R-CNN by introducing a further branch for predicting segmentation masks on

each Region of Interest. The recognition of the mask is crucial in our scenario since it

allows to precisely identify the geometrical position of the component within the panel.

Technically, Mask R-CNN rebuilds the mask by resorting to an alignment component and

a mask head, composed of two convolutional layers and capable of generating a mask for

each RoI in order to segment the picture in a pixel-to-pixel fashion.

Mask R-CNN relies on a backbone convolutional architecture. In our framework, we

used ResNet (Residual Network) (He et al. 2016), a very deep CNN architecture charac-

terized by residual blocks and skip connections. These two features guarantee both, fast

convergence in the training stage and expressiveness/accuracy in the recognition phase.

We further strengthened the training phase by exploiting Transfer Learning. In partic-

ular, we used a ResNet pre-trained on COCO dataset1, which was also fine-tuned for

our specific scenario, by exploiting the generated dataset with the artificially generated

labeled components.

Figure 2d shows the output of the recognition phase, on a real picture representing a

true panel. We can see that the model successfully recognizes all available components,

and additionally devises a contour of their geometric extension. These contours represent

one of the inputs to the reasoning component.

1 Available online at: https://cocodataset.org/\#home [Last Accessed: June 2022].
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4 Compliance-checking in Answer Set Programming

In this section, we describe the reasoning component of our architecture for compliance

checking. In particular, this component has been implemented by resorting to Answer Set

Programming (ASP). ASP is a well-established paradigm for declarative programming

and non-monotonic reasoning developed in the area of Knowledge Representation and

Reasoning (Baral 2003; Brewka et al. 2011; Gelfond and Lifschitz 1991). ASP has been

employed to develop many academic and industrial applications of AI (Erdem et al.

2016; Calimeri et al. 2016). ASP is based on logic programming and non-monotonic rea-

soning, and it allows for flexible declarative modeling of search problems, by means of

logic programs (collection of rules), whose intended models (answer sets) encode solu-

tions (Baral 2003; Brewka et al. 2011). The specification (logic program) described in the

following can be fed to an ASP system to actually compute the solutions to the modeled

program (Lierler et al. 2016).

The reasoning module is fed by two handlers, named ASP File Generator and CAD

Parser. The former component is devoted to translating the objects recognized by the

neural model in ASP facts (a file containing a list of facts concerning coordinates and

membership of the electrical component), similarly, the second one yields a list of facts

from the input CAD image.

In the following, we focus on the core parts of our solution and simplify some technical

aspects that do not impact the comprehension of the working principle of our solution.

This is done with the aim of making the presentation more accessible and meeting space

requirements. Hereafter, we assume the reader to be familiar with ASP. For details please

refer to (Brewka et al. 2011; Baral 2003; Gelfond and Lifschitz 1991).

4.1 Input specification

In ASP the input specification is made by a set of “facts”, which are assertions that

model true sentences. Thus, the labeled schematic of the circuit (we informally refer to it

as cad), and the output of the Mask R-CNN net (exemplified in Figure 2d) are converted

in a set of ASP facts of the following form:

object(LABEL, ID, X_TOP_L, Y_TOP_L, X_BOT_R, Y_BOT_R, MEMBERSHIP).

These facts provide information about the components like their label, id, top-left

and bottom-right coordinates, and membership. In particular, the membership is valued

with “cad” if the object modeled is part of the schematic of the panel, and “net” if it is

recognized by the neural network in the actual picture we are comparing to the schematic.

Moreover, we also compute a graph of topological relations among objects, providing

information on relative position and distance among objects. The relative position and

the distance among components are actually calculated by our ASP program, but for

simplicity, we assume here they are given in input as facts of the form:

between(ID, START_ID, END_ID, DIR, MEM).

manhattan(ID1, ID2, DIST, MEM1, MEM2).

The between predicate denotes the neighbors for the component ID along the direc-

tion DIR having MEM as membership; additionally, the manhattan predicate specifies the
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Encoding 1 ASP program modeling compliance

1: . Calculate auxiliary information
2: previous(ID, Start_ID, D, M):- between(ID, Start_ID, _ , D, M).
3: after(ID, End_ID, D, M):- between(ID, _, End_ID, D, M).
4: . Guess mapping between cad components and net components
5: simpObject(C1,ID1,M) :- object(C1,ID1,_,_,_,_,M).
6: mapped(ID1,ID2) || noMapped(ID1,ID2)
7: :- simpObject(C1,ID1,"cad"),simpObject(C1,ID2,"net").
8: . No element from the cad is mapped twice
9: :- mapped(Cad_ID,Net_ID1), mapped(Cad_ID,Net_ID2),

10: Net_ID1!=Net_ID2.
11: . No element from the net is mapped twice
12: :- mapped(Cad_ID1,Net_ID), mapped(Cad_ID2,Net_ID),
13: Cad_ID1!=Cad_ID2.
14: . Minimize the cad elements without a mapping
15: atLeastOne(Cad_ID) :- mapped(Cad_ID,_).
16: :~ simpObject(C1,ID1,"cad"), not atLeastOne(ID1). [1@3,C1,ID1]
17: . Optimize mapping by relative position
18: :~ mapped(Cad_ID1, Net_ID1), mapped(Cad_ID2,Net_ID2),
19: previous(Cad_ID1,Cad_ID2,DIR,"cad"),
20: not previous(Net_ID1, Net_ID2, DIR,"net").
21: [1@2,Cad_ID1, Net_ID1,Cad_ID2,Net_ID2,DIR]
22: :~ mapped(Cad_ID1,Net_ID1), mapped(Cad_ID2,Net_ID2),
23: after(Cad_ID1, Cad_ID2,DIR,"cad"),
24: not after(Net_ID1,Net_ID2,DIR,"net").
25: [1@2,Cad_ID1,Net_ID1,Cad_ID2,Net_ID2,DIR]
26: :~ mapped(Cad_ID1, Net_ID1),
27: previous(Cad_ID1, Cad_ID2, DIR,"cad"),
28: absent(_,Cad_ID2). [1@2,Cad_ID1,Net_ID1,Cad_ID2,DIR]
29: :~ mapped(Cad_ID1, Net_ID1),
30: after(Cad_ID1, Cad_ID2, DIR,"cad"),
31: absent(_,Cad_ID2). [1@2,Cad_ID1,Net_ID1,Cad_ID2,DIR]
32: . Optimize mapping by distance
33: :~ mapped(Cad_ID, Net_ID),
34: manhattan(Cad_ID, Net_ID, Dis,"cad","net").
35: [Dis@1,Cad_ID,Net_ID,Dis]
36: . Identify absent and in excess components
37: mappedCad(ID1):- mapped(ID1,_).
38: mappedNet(ID1):- mapped(_,ID1).
39: absent(C1,ID1):- simpObject(C1,ID1,"cad"), not mappedCad(ID1).
40: excess(C1,ID1):- simpObject(C1,ID1,"net"), not mappedNet(ID1).

manhattan distance between the two components ID1 and ID2, where the terms MEM1

and MEM2 stand for their membership.

4.2 ASP program

We now present ASP program (see Encoding 1) that encodes in a uniform way (w.r.t.

the input instance provided as a set of facts) the compliance problem. First, the graph

is preprocessed (lines 2-3), by calculating useful information about the relative positions

of the objects. Next, according to the “guess-and-check” programming methodology, a

disjunctive rule guesses the mapping between “cad” components of the schematic and

“net” components predicted by the neural network (see lines 6-7).

The disjunctive rule can be read as follows: ‘Given a cad component and a net com-

ponent of the same type, the two can be mapped, or not”. The candidate solutions are

filtered out by the constraints in lines 9-13, ensuring that the same element of the cad is

not mapped twice, and the same element of the net is not mapped twice.
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The optimal mapping is obtained by weak constraints in lines 15-35. In detail, the

program first minimizes the cad elements without a mapping (lines 15-16), then (also in

order of priority) the weak constraints in lines 18-31 ensure that “If a cad component ID1

is mapped to a net component ID2, ID1 neighbors should be mapped to ID2 neighbors”.

The mapping is further optimized considering the distance (lines 33-35) between cad

components and net components. The distance is optimal when the elements are in the

same position in "net" and "cad". Finally, the program identifies components that are

absent or in excess w.r.t. the schematic by rules in lines 37-40.

5 Evaluation

This section describes a suite of experiments we conducted, devoted to demonstrating the

effectiveness of our approach and its suitability for the industrial scenario. Specifically,

we are interested in evaluating the capability of DL-based approach in recognizing the

cabinet components when no training data are available, and the scalability of the ASP-

based technique in verifying the conformance of the image with the schematics.

5.1 Experimental setup

We set up the experimentation by considering the extreme scenario where no labeled

examples are available. Therefore, our training set used includes only the synthetically

generated images (by using the data augmentation techniques described in section 3),

while the real pictures of the EPCs are used to evaluate the predictive performances.

The final result of this process is a training set composed of ∼ 10, 000 colored images

synthetically generated with size (320 × 320) and a test set of 32 images depicting real

control panels with the same size as the training ones.

The model discussed in Section 3 has been implemented in the form of a python

prototype based on TensorFlow2 library. The experiments were performed on an NVidia

DGX Station equipped with 4 GPU V100 32GB. As described in section 3, a ResNet

instance (including 101 layers) is used as the backbone of the component detection model,

the Mask R-CNN, that is trained over 200 epochs with batch size = 2, while Adam is

adopted as optimizer with learning rate lr = 10−4.

To assess the capability of the proposed approach in detecting the components installed

in the ECPs, a number of traditional measures and well-known metrics for the Object

Recognition tasks have been used. In this sub-section, we briefly introduce and define such

measures. The first measures we consider are the standard Precision and Recall metrics,

defined as p = TP
TP+FP and r = TP

TP+FN . Here, TP , FP , FN , and TN denote respectively

the number of cases that are: positive and correctly classified, positive and incorrectly

classified, negative and incorrectly classified, and negative and correctly classified. Hence,

a Precision-Recall Curve can be obtained by computing and plotting the precision against

the recall for different threshold values (i.e., the detection probabilities of the model).

In an object detection scenario, precision and recall represent the capability of the

prediction model to identify the boxes that contain the target objects. In particular,

2 TensorFlow machine learning library: https://www.tensorflow.org/ [Last Accessed: June 2022].
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(a) Averaged PR-Curve. (b) PR-Curves computed per instance.

Fig. 4: Precision-Recall Curves on test set.

for a given object the focus is on comparing the true bounding box with the predicted

bounding box, and the TP , FP , FN , and TN values depend on the degree of overlap

between these two boxes. Given two boxes, the Intersection Over Union (IoU) is defined

as the fraction of the overlapping area between the ground truth b and the predicted

bounding box b̂:

IoU (b, b̂) =
b ∩ b̂
b ∪ b̂

(1)

Then, given a threshold θ, an object with a true bounding box b and a predicted bounding

box b̂ is positive if IoU (b, b̂) > θ, and negative otherwise. For a given θ, it is possible

to devise a precision-recall curve by plotting all p/r values relative to all objects and

interpolating the resulting curve (He et al. 2020; Ren et al. 2015).

Since the values of precision and recall are defined on a given θ threshold, we can de-

fine (He et al. 2020; Ren et al. 2015) Average Precision and Recall as the area represented

by integrating over all possible thresholds:

AP =

∫ 1

0

p(θ) dθ (and resp.) AR =

∫ 1

0

r(θ) dθ . (2)

Finally, by averaging AP (resp. AR) over all class components we can finally obtain the

mean average precision (mAP) and mean average recall (mAR) measures.

5.2 Evaluation results

Here, we discuss the results in terms of the effectiveness of the DL-Based detection model

and the scalability of the ASP module. For the first aspect, the detection model exhibits

optimal performances for both the quality measures, exhibiting values of mAP = 0.954

and mAR = 0.935. In order to evaluate the operational applicability of our approach in a

real scenario, we conducted a further analysis by considering the values of precision and

recall on a fixed IoU threshold θ = 0.5. Figure 4a reports the resulting precision-recall

curve. The resulting area is 0.947, which denotes a good performance of the detection

model also considering the operational case. Figure 4b shows a more detailed picture

of the model performances by plotting the pr-curve for each instance. As expected, for

almost all instances, the yielded curves highlight the good predictive accuracy of the

model in recognizing the different types of components, except for one case in which
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Fig. 5: Performance of the ASP-Based component (Execution time).

the quality is slightly lower. The above evaluation shows that the component detection

module is effective in recognizing the components of a panel: in particular, prediction

errors can occur in rare cases with inaccurate image acquisition (e.g., non-frontal framing

or inclusion of elements external to the cabinet) as the catalog provides only a limited

number of component perspectives. Since the ASP program performs the compliance task

with optimal accuracy in our benchmark images, the accuracy of the system corresponds

with the one of the neural model.

One might wonder whether the ASP component is efficient thus in a further experiment

the execution time of the ASP-based component was measured. We generated instances

of compliance testing in a range of 6 to 50 labels (types of components), and of 12 to 75

components and averaged over 500 samples the execution time needed by our ASP engine

DLV2 (Alviano et al. 2017) to solve the instances. The results reported in Figure 5 show

that our system provides answers in a short time, in the order of seconds for instances

sized as real-world ones, and performance is acceptable (avg. 1.93s, max about 18s) also

for instances of 75 components.

6 Related works

In this section, we survey some relevant works that try to address the product quality

assurance problem by leveraging AI-based strategies, then we review some preliminary

works proposing solutions to integrate ML techniques with logic programming.

Compliance Checking through Machine Learning. To the best of our knowledge, the prob-

lem of assessing the compliance of a product with its schematic through Artificial In-

telligence techniques is new and quite unexplored however some recent works tried to

tackle similar tasks, in particular within Predictive Maintenance field. For instance, in

(Tanuska et al. 2021), the authors propose a comprehensive framework integrating Indus-

trial Internet of Things (IIoT) devices, neural networks, and sound analysis for detecting

anomalies in the production chain. (Schmitt et al. 2020) define a holistic solution for

quality inspection based on merging Machine Learning techniques and Edge Cloud Com-

puting technology. A Deep Learning based approach for monitoring the process of sealing

and closure of matrix-shaped thermoforming food packages is proposed in (Banus Pa-

radell et al. 2021). Specifically, Computer Vision techniques are exploited to process the

images and perform quality checking. A comparison analysis performed by ranging dif-
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Table 1: Comparison of the ML/DL based approaches.

Article Application
Scenario

Solution ML/DL
Model(s)

Neur.
Symb.

Labeled
Data

(Tanuska
et al. 2021)

IIoT, Sensors data Combining Neural Networks
and Sound Analysis

Feedforward
Neural Net-
works

× !

(Schmitt
et al. 2020)

Surface Mount
technology manu-
facturing

Merging ML with Edge Cloud
Computing

Traditional
ML Supervised
techniques

× !

(Banus Pa-
radell et al.
2021)

Quality Control
(Food Packages)

Computer Vision ResNet,
VGGNet,
DenseNet

× !

(Villalba-
Diez et al.
2019)

Quality Control
(Printing Industry)

Computer Vision CNN (loosely
inspired to
AlexNet)

× !

(Subakti
and Jiang
2018)

Smart Factory
(Machine Recogni-
tion)

Combination of Computer Vi-
sion and Augmented Reality

MobileNet × !

Our Solu-
tion

ECP Compliance
Verification

A framework based on DL and
Answer Set Programming

Mask R-CNN ! ×

ferent Convolutional Neural Network architectures (e.g., ResNet50, VGG19, ImageNet,

etc.) highlights the best solutions to address this task. (Villalba-Diez et al. 2019) propose

a deep neural network (DNN) soft sensor enabling fast quality control for the Printing In-

dustry. Basically, the solution allows for comparing the scanned surface of the print with

the correspondent file that generated it and performs an automatic quality control pro-

cess by learning features through exposure to training data. In (Subakti and Jiang 2018),

the authors define and develop a deep learning-based framework to detect/recognize dif-

ferent machines and portions of machines for smart factories. MobileNets is used as the

backbone for the machine recognition model, and it is deployed on mobile devices to sup-

port the operators in performing the machine classification through an augmented reality

system. Experimental results on a real scenario show the capability of the approach in

recognizing different machines and providing intuitive visualizations.

In Table 1, we compare the main approaches proposed in the literature and highlight

the differences w.r.t. our solution. The main advantage of our approach (the only one

based on a neuro-symbolic architecture) stays in the nature of the symbolic component

that does not require additional training to deal with new (unseen) schematics. Another

distinguishing feature is the ability to work with data scarcity (i.e., small training sets).

ML and ASP integration. The integration of inductive with deductive reasoning is an

emerging problem in Artificial Intelligence (AI). Several proposals were made to imple-

ment the reasoning process in complex deep neural network (DNN) architectures, e.g.,

(Donadello et al. 2017; Kathryn and Mazaitis 2018; Rocktäschel and Riedel 2017; Yang

et al. 2020; Lin et al. 2019). The integration of deductive logical reasoning with the Deep

Learning paradigm is a novel and quite unexplored research topic, although some recent

works introduced interesting preliminary solutions (Ebrahimi et al. 2021). Concerning

ASP, we recall that it is a declarative rule-based programming paradigm for knowledge

representation and declarative problem-solving, that is known to be appropriate for ex-

ecuting complex knowledge-based applications (Erdem et al. 2016). One of the main

issues is to incorporate high-dimensional vector space and pre-trained models for per-

ception tasks as handled in deep learning, which limits the applicability of ASP in many
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practical applications involving data and uncertainty. Nonetheless, to overcome this issue

a blending ASP with DL has been recently studied (Yang et al. 2020).

7 Conclusions and future works

This paper describes a Neuro-symbolic approach to checking the compliance of electrical

control panels with their schematics. The system can handle the lack of labeled data and

is resilient to noise and variety in the specifications of schematics (no additional training

is required, just an updated logical representation of the schematic). The overall system

has been exploited in a practical use case provided by an italian SME leader in the

production of ECPs, where it has been shown to fulfill the requirements both in terms

of accuracy and evaluation time.

Despite its practical utility, there is still room for improving the proposed framework.

In fact, we plan to extend it along two research directions. Concerning the model, we

can improve the learning phase by adopting a Triplet Loss architecture and by changing

the model backbone (e.g., by resorting to Vision Transformers). Another potential issue

is that the proposed model disregards the depth of the cabinet. In practice, we only

consider a two-dimensional model where each component is placed on a plane. There are

situations, however, where components partially overlap frontally but occupy different

positions in depth. For these situations, a more accurate model that also addresses depth

estimation should be considered.

The second line for possible is represented by the reasoning modules, where the logic

programs can be calibrated to compute suggestions for the user, as well as suggest alter-

nate schematic plans. Finally, one could study whether a tighter integration of the neural

and logic-based components can enhance the results provided by the vision procedure.
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