
Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 17-22  https://doi.org/10.21741/9781644902431-3 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

17 

A variational model for plastic reorientation in fibrous material: 
numerical experiments on phase segregation  

Andrea Rodella1, a *, Antonino Favata1,b and Stefano Vidoli3,c  
1DISG, "Sapienza" University of Rome, Via Eudossiana 18, 00185 Rome, Italy 

aandrea.rodella@unitoma1.it, bantonino.favata@uniroma1.it, cstefano.vidoli@uniroma1.it 

Keywords: Phase Segregation, Fibrous Material, Plastic Remodeling, FEniCS 

Abstract. We propose a continuum model of fibrous material that may undergo an internal 
reorganization, which turns out in a plastic change of the orientation of the fibers when the 
remodeling torque achieves a threshold. We have recently found that the reorientation may induce 
a complex scenario in the response of such materials. In a traction test, we show that the most 
general transversely isotropic material may evolve in three different ways; in particular, the fibers 
asymptotically tend (regularly or with jumps): (A) to a given angle; (B) to align perpendicularly to 
the load direction; (C) to align with the load direction if their initial orientation is less than a given 
value otherwise perpendicularly. We focus on the latter material response (C) which has all the 
ingredients to manifest a phase transition phenomenon. Finally, we provide a numerical 
investigation to demonstrate phase segregation. 
Introduction 
Due to their ubiquity, fibrous materials have gained a predominant role in the scientific community 
in the last few decades. Fibrous structures are everywhere; the human body is a glaring example: 
the connective tissue, the most abundant tissue in mammals, is composed mainly of extracellular 
matrix and collagen fibers (∼6% of the total body weight). It is also well established that biological 
tissues may experience an internal reorganization, including segregation [1], due to external 
stimuli at chemo-mechanical levels. This phenomenon corresponds to a change in the fiber 
orientation that may be associated with a loss of the elastic energy content, resulting in irreversible 
deformations [2]. The effects of reorientation, particularly those occurring during the post-yield 
deformation, remain largely unexplored in biological and manufactured composites despite their 
fundamental role in the mechanical response [3]. We focus on the most general 2D transversely 
isotropic material to model the plastic reorientation in fibrous materials. Then, we consider a 
linearized framework concerning the strain measure; nevertheless, we admit finite rotation for the 
fibers. Within a thermodynamically consistent framework [4], we present a variational model 
taking into account the anisotropic response of the material, which depends on an internal variable, 
e.g., the fiber orientation. The latter, similarly to plasticity [5], has the peculiarity to evolve till a 
threshold beyond which the reorientation is permanent. We recall the main analytical results of the 
incremental homogenous traction problem we recently found in [6]. In this work, we show three 
different asymptotic behavior for the orientation of the fibers, which tend to align, smoothly or 
not: (A) with a given angle; (B) perpendicularly with the load direction and (C) perpendicularly 
with the load direction or with the load direction itself in accordance with the initial orientation. 
The energy of the material in class (C) presents a double-well landscape which may induce a phase 
transition and give room for exploring the phase segregation.  

We organize the work as follows: i) we present the assumptions to formulate a 
thermodynamically consistent phase-field model taking into account the anelastic response of the 
material; ii) we recall the main analytical results found in [6] for the traction test; iii) we provide 
some numerical results for a non-homogeneous initial fiber orientation distribution showing the 
evolution of the traction test leading to the segregation phenomenon. 
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Assumptions for the free energy and the reversibility domain 
For the sake of simplicity, we confine our analysis to a two-dimensional body ℬ. The vector 
position of the point 𝑥𝑥 ∈ ℬ is defined as 𝐱𝐱 = 𝑥𝑥 − 𝑜𝑜  =  𝑥𝑥𝑎𝑎 𝐞𝐞𝑎𝑎 with respect to the origin 𝑜𝑜 of the 
Cartesian frame {𝑜𝑜,  𝐞𝐞1,  𝐞𝐞2}. We chose to associate an orientated fiber to each material point in ℬ, 
whose direction is represented by the unit vector 𝐧𝐧(𝜗𝜗) = cos𝜗𝜗 𝐞𝐞1 + sin𝜗𝜗 𝐞𝐞2 as a function of the 
internal state variable 𝜗𝜗 . Recalling [4,7,8], the state variable influences the free energy and the 
dissipation rests upon the evolution of 𝜗𝜗. The state for the body ℬ at each time 𝑡𝑡 is known if the 
list of functions of the spatial coordinate 𝑥𝑥, 𝚲𝚲  =  {𝐄𝐄,  𝜗𝜗} is known, where 𝐄𝐄  =  sym∇𝐮𝐮 is the 
linearized strain measure expressed in terms of the displacement field 𝐮𝐮. The free energy density 
is taken as a quadratic form of the strain field  

𝜓𝜓 = 𝜓𝜓�(𝐄𝐄,𝜗𝜗) = 1
2
ℂ�𝐧𝐧(𝜗𝜗)�𝐄𝐄 ∙ 𝐄𝐄, (1) 

where ℂ�𝐧𝐧(𝜗𝜗)� represents the elasticity tensor of a linearly elastic transversely isotropic material 
with respect to the direction 𝐧𝐧(𝜗𝜗). For the most general two-dimensional case, we specify the free 
energy density as follows: 

𝜓𝜓�(𝐄𝐄,𝜗𝜗) = 𝜇𝜇‖𝐄𝐄‖2 + 𝜆𝜆
2

(tr𝐄𝐄)2 + 𝑐𝑐1(tr𝐄𝐄)𝐄𝐄𝐄𝐄(𝜗𝜗) ∙ 𝐧𝐧(𝜗𝜗) + 𝑐𝑐2�𝐄𝐄𝐄𝐄(𝜗𝜗) ∙ 𝐧𝐧(𝜗𝜗)�
2
, (2) 

where 𝜆𝜆 and 𝜇𝜇 are the Lamé coefficients and 𝑐𝑐1 and 𝑐𝑐2 are the material constants characterizing 
the transversely isotropy. By fixing the Lamé coefficients, which must respect the conditions 𝜇𝜇 >
0 and 2𝜇𝜇 + 𝜆𝜆 > 0, the pair of constants (𝑐𝑐1, 𝑐𝑐2) must lie in a set 𝒫𝒫, ensuring the positiveness of 
the energy Eq. (2)  

𝒫𝒫 = �𝑐𝑐1, 𝑐𝑐2 ∈ ℝ: 𝑐𝑐2 > 𝑐𝑐12−4𝜇𝜇𝑐𝑐1−4𝜇𝜇(𝜇𝜇+𝜆𝜆)
2(2𝜇𝜇+𝜆𝜆)

� , (3) 

which represents a parabola, see Fig. 1. In order to clarify the role of the constant 𝑐𝑐1 and 𝑐𝑐2 on the 
anisotropic material response, it is useful to recall the definitions of Young modulus and Poisson 
ratio, defined for a uniaxial traction test 𝐓𝐓� = 𝜎𝜎𝐭𝐭⨂𝐭𝐭 in the direction 𝐭𝐭 =  cosα 𝐞𝐞1 + sin𝛼𝛼 𝐞𝐞2. The 
strain corresponding to 𝐓𝐓� is defined as 𝐄𝐄� = ℂ−1�𝐧𝐧(𝜗𝜗)�𝐓𝐓�. Therefore, the Young modulus and the 
Poisson ratio are functions of the angle resulting from the difference between the testing direction 
and the fiber orientation (𝛼𝛼 − 𝜗𝜗) and follow the definitions: 

𝐸𝐸(𝛼𝛼,𝜗𝜗) = 𝐸𝐸�(𝛼𝛼,𝜗𝜗) ≔ 𝐓𝐓�𝐭𝐭∙𝐭𝐭
𝐄𝐄�𝐭𝐭∙𝐭𝐭

;                      ν(𝛼𝛼,𝜗𝜗) = 𝜈̂𝜈(𝛼𝛼,𝜗𝜗) ≔  𝐄𝐄
�𝐭𝐭⊥∙𝐭𝐭⊥

𝐄𝐄�𝐭𝐭∙𝐭𝐭
. (4) 

Polar plots are, therefore, a meaningful tool to understand how Young modulus and Poisson ratio 
change in function of the angle (𝛼𝛼 − 𝜗𝜗), see the insert in Fig. 1. We define the stiffening set 𝒮𝒮 by 
imposing the ratio between the Young modulus in the parallel and perpendicular with respect to 
the fiber direction 𝐸𝐸|| = 𝐸𝐸�(𝛼𝛼 = 𝜗𝜗,𝜗𝜗) and 𝐸𝐸⊥ = 𝐸𝐸�(𝛼𝛼 = 𝜗𝜗 − 𝜋𝜋/2,𝜗𝜗) to be greater than 1: 

𝐸𝐸∥/𝐸𝐸⊥ = 1 + 2(𝑐𝑐1+𝑐𝑐2)
2𝜇𝜇+𝜆𝜆

> 1     ⟹    𝒮𝒮 = {𝑐𝑐1, 𝑐𝑐2 ∈ 𝒫𝒫: 𝑐𝑐1 + 𝑐𝑐2 > 0}                         (5) 
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In the framework of Generalized Standard Materials [4], the dissipative behavior is described 
through the dissipation potential, which is a convex and positive function of the internal state 
variables rates. Since 𝐧𝐧 ∙ 𝐧𝐧 = 1, we have 𝐧̇𝐧 ∙ 𝐧𝐧 = 0 or, equivalently, 𝐧̇𝐧 = 𝛽𝛽𝐧𝐧⊥ with 𝐧𝐧⊥ ≔
∂𝜗𝜗𝐧𝐧(𝜗𝜗)  = −sin𝜗𝜗 𝐞𝐞1 + cos𝜗𝜗 𝐞𝐞2, from Eq. (2), the energy release rate turns out to be 

−𝜕𝜕𝜗𝜗𝜓𝜓�(𝐄𝐄,𝜗𝜗)𝜗̇𝜗 = −𝜕𝜕𝐧𝐧𝜓𝜓��𝐄𝐄,𝐧𝐧(𝜗𝜗)� ∙ 𝐧̇𝐧(𝜗𝜗)                                                                      
= −2�𝑐𝑐1tr𝐄𝐄 + 2𝑐𝑐2𝐄𝐄𝐄𝐄(𝜗𝜗) ∙ 𝐧𝐧(𝜗𝜗)�𝐄𝐄𝐄𝐄(𝜗𝜗) ∙ 𝛽𝛽𝐧𝐧⊥(𝜗𝜗)
= −𝛽𝛽𝛽𝛽(𝐄𝐄,𝜗𝜗)                                                                  

                      (6) 

where 𝛾𝛾(𝐄𝐄,𝜗𝜗) is the force thermodynamically associated to the change of fiber orientation 𝜗𝜗, 
hereafter named remodeling torque. In order to respect the fundamental inequality [4], the energy 
release rate in Eq. (6) calculated at 𝐄𝐄 must be greater than the energy release rate calculated at any 
other admissible 𝐄𝐄�: 

−𝛽𝛽�𝛾𝛾(𝐄𝐄,𝜗𝜗) − 𝛾𝛾�𝐄𝐄�,𝜗𝜗�� > 0                         (7) 

for any 𝐄𝐄 and 𝐄𝐄� in the reversibility domain, ℛ(𝜂𝜂). This latter is the set of the symmetric strain 
tensors that make the remodeling torque stay below the critical material threshold 𝜂𝜂 > 0: 

ℛ(𝜂𝜂) = �𝐄𝐄 ∈ 𝕊𝕊ym: sup
𝜗𝜗∈[−π/2,   π/2]

|𝛾𝛾(𝐄𝐄,𝜗𝜗)| ≤ 𝜂𝜂 �. (8) 

Equivalently, this set can also be interpreted as the strains for which the fiber orientation ϑ cannot 
evolve, and the material response is purely elastic. Finally, by following [4,5], the dissipation rate 
is given through the Legendre transform: 

𝑑𝑑(𝜗𝜗)�𝜗̇𝜗� = sup
𝐄𝐄∈ℛ(𝜂𝜂)

�−𝜕𝜕𝜗𝜗𝜓𝜓�(𝐄𝐄,𝜗𝜗)𝜗̇𝜗� = 𝜂𝜂𝛽𝛽�𝜗̇𝜗� = 𝜂̅𝜂�𝜗̇𝜗�.      (9) 

Figure 1: The gray area confined by the black dashed line represents the set where the pair 
{𝑐𝑐1, 𝑐𝑐2}/𝐸𝐸0 ensures the positiveness of the energy, see Eq. (3), where 𝐸𝐸0 is the Young modulus of 
the isotropic case. While the yellow area represents the stiffening set, a subset of 𝒫𝒫, obeying Eq. 
(5). The insert figure is the polar plot of the Young modulus 𝐸𝐸�(𝛼𝛼,𝜗𝜗 = 0) where 𝛼𝛼 ∈ [0,2𝜋𝜋]. Each 

polar plot corresponds to the colored dot picked from the stiffening set 𝒮𝒮. 
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Now, by considering a quasi-static process over a time interval observation 𝑡𝑡, the total dissipation 
is defined as 

𝛿𝛿 = 𝛿𝛿(𝑡𝑡) =  ∫ 𝑑𝑑(𝜗𝜗(𝜏𝜏))�𝜗̇𝜗(𝜏𝜏)�𝑑𝑑𝑑𝑑𝑡𝑡
0 = 𝜂̅𝜂 ∫ �𝜗̇𝜗(𝜏𝜏)�𝑑𝑑𝑑𝑑𝑡𝑡

0 = : 𝜂̅𝜂Θ�(t), (10) 

where the dependency with respect to the time 𝑡𝑡 has been highlighted; Θ�(𝑡𝑡) represents the 
accumulated fiber rotation over the time interval 𝑡𝑡. The total energy is, then, defined by integrating 
the free energy density Eq. (1) plus the remodeling dissipation Eq. (10) over the body 

ℰ(𝐄𝐄(𝑡𝑡),𝜗𝜗(𝑡𝑡)) = ∫ �𝜓𝜓�(𝐄𝐄(𝑡𝑡),𝜗𝜗(𝑡𝑡)) + 𝛿𝛿(𝑡𝑡)�𝑑𝑑𝑑𝑑 
𝛀𝛀 . (11) 

Traction problem 
We examine the traction problem sketched in Fig. 2(a). A rectangular sample, of length 𝐿𝐿 and 
height 𝐻𝐻, is left free on the upper and lower sides and free to slide on the left side; the horizontal 
displacement of the points on the right side is equal to 𝐮𝐮� = 𝜀𝜀𝜀𝜀𝐞𝐞1, whilst their vertical displacement 
is left free.  

The present section consists of two parts: the first is dedicated to briefly recalling the analytical 
results obtained in our recent work [6], while the second focuses on the main objective of this 
paper: the numerical observation of the segregation phenomenon. 

Figure 2: (a) Schematics of the traction test, 𝜗𝜗0 represents the initial fiber orientation, 𝑢𝑢� is the 
imposed displacement acting on the left side of the sample. (b) In the stiffening set 𝒮𝒮 three 

different materials are highlighted. (c) 𝜗𝜗 evolution paths (gray continuos lines with arrows) for 
each case for the three different domains of (b): (A) left, (B) center, and (C) right. Dashed lines 
represent unstable branches that make the initial fiber orientation jump to the stable branches 

when the elastic limit is reached. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 17-22  https://doi.org/10.21741/9781644902431-3 

 

 
21 

Analytical solution for the homogeneous case In [6] it is presented a complete analytical 
characterization of the homogeneous case in terms of strain and fiber rotation, as the imposed 
horizontal displacement 𝑢𝑢� = 𝜀𝜀𝜀𝜀 monotonically increases starting from 0. Hence, it is possible to 
find an asymptotic value of the fiber orientation 𝜗𝜗∞(𝜆𝜆, 𝜇𝜇, 𝑐𝑐1, 𝑐𝑐2) for 𝜀𝜀 → ∞. The stiffening 
materials are identified in three classes, see Fig. 2(b): 
• class (A) presents a minimum of the elastic energy 𝜓𝜓 in correspondence of 0 ≤ 𝜗𝜗∞ ≤ 𝜋𝜋/21 

and two maxima 𝜗𝜗 = {0,𝜋𝜋/2}. The evolution of the homogeneous traction problem with an 
initial uniform fiber orientation 𝜗𝜗0 ∈ [0,𝜋𝜋/2]  is depicted in Fig. 2(c) left. The fiber orientation 
evolves with jumps if 𝜗𝜗0 has been taken on an unstable branch (0 ≤ 𝜗𝜗0 < 𝜗𝜗𝑠𝑠1𝐴𝐴  or 𝜗𝜗𝑠𝑠2𝐴𝐴 ≤ 𝜗𝜗0 <
𝜋𝜋/2), or continuously if 𝜗𝜗0 is initially on a stable branch (𝜗𝜗𝑠𝑠1𝐴𝐴 ≤ 𝜗𝜗0 < 𝜗𝜗∞ or 𝜗𝜗∞ < 𝜗𝜗0 ≤ 𝜗𝜗𝑠𝑠2𝐴𝐴 ). 

• class (B) presents the only minimum of 𝜓𝜓 at 𝜗𝜗 = 𝜋𝜋/2; 𝜗𝜗 = 0 is, instead, the maximum. 
Moreover, 𝜗𝜗∞ does not exist in ℝ, see Fig. 2(c) center.  

• class (C) presents two minima of 𝜓𝜓 at 𝜗𝜗 = {0,𝜋𝜋/2}, while 𝜗𝜗∞ exists and corresponds to the 
maximum, see Fig. 2(c) right. In this scenario, it is then possible to observe the segregation in 
two phases of the fiber orientation, which is the objective of the numerical simulations 
presented in the next section. 

Phase segregation The Lamé constants are chosen 𝜆𝜆 = 𝜇𝜇 = 3/8 in order to have a unitary 
Young modulus 𝐸𝐸0 = 1 and Poisson ratio 𝜈𝜈0 = 1/3. The anisotropic parameters 𝑐𝑐1 = 1.5 and 𝑐𝑐2 =
0 are chosen in region (C); see the orange dot in Fig. 2(b). We present three study cases where we 
consider the evolutions of different non-uniform distributions of initial orientation.  
• In Fig.s 3(a-d) are displayed the results obtained by tacking into account an initial linear 

distribution of orientation 𝜗𝜗0(𝐱𝐱) that goes from 9° on the left side to 22° on the right one, Fig. 
3(a). This specific non-homogeneous distribution is collocated below the 𝜗𝜗∞. The imposed 
displacement grows until the incipient touching of the yield surface Fig. 3(b). The orientation 
of the fiber starts to decrease with or without jumps; Fig. 3(c) shows one of those intermediate 
steps. Eventually, the fibers reach a uniform distribution decreasing toward 8°, Fig. 3(d). At 
this point, the analytical solution, see Fig. 2(c) left, describes the evolution of the orientation 
until 0°, that is the closest minimum of the elastic energy.  

• Fig.s 3(e-h) describe a sample with a distribution of fiber orientated from 52° to 72°. The 
evolution is similar to the previous one, but in this case the initial distribution 𝜗𝜗0(𝐱𝐱) > 𝜗𝜗∞. 
Therefore, the fibers tend to reach the minimum collocated at 90° once the elastic limit is 
overcome, Fig. 3(g). Again, once the field 𝜗𝜗 reaches homogeneity, see Fig. 3(h), the analytical 
solution provides the evolution. 

• Finally, Fig.s 3 from (i) to (l) show the orientation evolution for a sample in which the initial 
distribution is 𝜗𝜗0(𝐱𝐱) = (𝜋𝜋/2)(𝑥𝑥1/𝐿𝐿). In this case, 𝜗𝜗∞ is a value comprised in the initial 
distribution, expecting the rotation of the fibers going toward the two minima at 0° and 90°. 
Snapshot (k) shows the beginning of this process, while snapshot (i) shows the left part of the 
sample completely segregate with respect to the right one. The left part has the fibers initially 
orientated above 𝜗𝜗∞ = 30°. 

Conclusions 
We have presented a variational model describing the reorientation in a transversely isotropic 
material. Similarly to plasticity, the model considers the irreversibility of an internal variable, e.g., 
the fiber orientation, when the remodeling torque reaches a threshold. Then, we focused on the 
traction problem by recalling the essential analytical findings for the homogeneous case. 

 
1 It suffices to consider 𝜗𝜗 ∈ [0,𝜋𝜋/2] as 𝜗𝜗 ≡  𝜗𝜗 + 𝜋𝜋 and, for the symmetry of the problem, 𝜗𝜗 ≡ −𝜗𝜗. 
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It has been possible to divide the material responses into three categories based on their energetic 
characteristics. Materials in class (C), characterized by double-well energy, are suitable for 
observing phase transitions and, eventually, segregation. In this context, we have presented a 
numerical case study where an initial inhomogeneous distribution of fiber orientation leads to the 
segregation of the internal variable. 
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Figure 3: Sequences for a stiffening non-homogeneous material in class (C) characterized by 
𝝑𝝑∞ = 𝟑𝟑𝟑𝟑° with different initial linear distribution of 𝝑𝝑. Sequence from (a) to (d) has 𝝑𝝑𝟎𝟎(𝒙𝒙) <
𝝑𝝑∞∀𝒙𝒙 ∈ 𝓑𝓑 . Sequence from (e) to (h) has 𝝑𝝑𝟎𝟎(𝒙𝒙) > 𝝑𝝑∞∀𝒙𝒙 ∈ 𝓑𝓑. Finally (i)-(l) has 𝝑𝝑𝟎𝟎(𝒙𝒙) =

(𝝅𝝅/𝟐𝟐)(𝒙𝒙𝟏𝟏/𝑳𝑳). 
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