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Abstract: This paper introduces an innovative approach to explore the capabilities of Quantum
Annealing (QA) for trajectory optimization in dynamic systems. The proposed method involves
transforming trajectory optimization problems into equivalent binary optimization problems using
Quadratic Unconstrained Binary Optimization (QUBO) representation. The procedure is general
and adaptable, making it applicable to a wide range of optimal control problems that entail the
satisfaction of dynamic, boundary, and path constraints. Specifically, the trajectory is discretized
and approximated using polynomials. In contrast to the conventional approach of determining
the polynomial degree (n) solely based on the number of boundary conditions, a specific factor is
introduced in our method to augment the polynomial degree. As a result, the ultimate polynomial
degree is calculated as a composite of two components: n = l + (m− 1), where m denotes the count
of boundary conditions and l signifies the number of independent variables. By leveraging inverse
dynamics, the control required to follow the approximated trajectory can be determined as a linear
function of independent variables l. As a result, the optimization function, which is represented
by the integral of the square of the control, can be formulated as a QUBO problem and the QA is
employed to find the optimal binary solutions.

Keywords: trajectory optimization; polynomial approximation; inverse dynamics; QUBO formulation;
quantum annealing

1. Introduction

Trajectory optimization plays a pivotal role across various domains, including space
exploration and satellite missions, where finding the most efficient trajectories is essential
for mission success, fuel conservation, and resource optimization. Recent advancements in
optimization techniques have been propelled by emerging artificial intelligence technolo-
gies, notably Genetic Algorithms (GA) and Neural Networks (NN).

In the field of satellite constellations, Savitri et al. employed GA in [1] to optimize
trajectories, maximizing coverage while minimizing revisit time. Rughani et al. in [2]
utilized GA to optimize orbital trajectories for spacecraft swarms, facilitating collaborative
tasks in space and collision avoidance. Particle Swarm Optimization demonstrated its
prowess in [3], addressing real-time guidance for autonomous lunar landings and hazard
avoidance, with promising experimental results. In [4], Particle Swarm Optimization
was exploited to maximize asteroid surface coverage using hopping trajectories in low-
gravity environments. Application to asteroids Itokawa and Bennu showed significant
surface coverage improvement. A comprehensive overview of genetic algorithms was
presented in [5], providing insights into established algorithms, their implementations,
and associated pros and cons. Neural Network techniques have also made significant
contributions. Federici et al. applied reinforcement learning in [6] to autonomously guide
a spacecraft during a mission to impact a binary asteroid, utilizing neural networks for
optical observation processing and achieving a high success rate despite uncertainties.
Scorsoglio et al. in [7] leveraged reinforcement meta-learning, combining hazard detection
and avoidance with image and radar data to ensure safe landing points. Addressing
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challenges in asteroid exploration, Jiang et al. in [8] proposed the use of hopping rovers
and explored deep reinforcement learning for 3D terrain path planning. Gaudet et al.
in [9] focused on optimizing an asteroid hovering controller through reinforcement meta-
learning, enabling stable positioning even with less precise asteroid data. Combination of
these methods can yield advantageous outcomes, as seen in [10,11], where frameworks
synergized particle swarm optimization for trajectory optimization and extreme learning
machines for precise gravitational acceleration approximation from asteroids.

The advancements in this field have unlocked the potential for more advanced and
efficient trajectory optimization methods, emphasizing the role of computational efforts in
realizing these breakthroughs. As a result, the importance of computer processing power
has become paramount in the field of trajectory optimization.Especially the computational
limitations have become a significant challenge in handling complex trajectory design
problems. Traditional computational resources struggle to handle the massive calculations
required for optimal trajectory design, especially for scenarios involving intricate navigation
through varying gravitational fields and orbital constraints.

Quantum Computing (QC) has demonstrated the ability to outperform classical and
more commonly used optimizers in specific cases [12]. Some problems where QC provides
an advantage over classical algorithms are factorization of prime numbers [13], unstruc-
tured database search [14],linear systems of equations [15], and simulation of quantum
systems [16–18]. Research is active, with many algorithms proposed in many different
areas, such as differential equations [19], artificial intelligence and machine learning [20,21]
and optimization [22,23].

While the aforementioned literature focuses primarily on gate-based quantum comput-
ing, which operates by applying a series of gates to manipulate qubits, similar to classical
computers, another notable quantum computing model is QA. QA exploits and guides
the natural evolution of a quantum system to solve combinatorial optimization problems.
During QA, the system gradually transitions from an initial state to a low-energy state,
similar to the cooling process in metallurgy, hence the term “annealing”. QA promises more
efficient optimization solutions, especially for large-scale and complex problems [24,25].
In particular, current quantum annealers can handle computations with about an order
of magnitude higher number of qubits than gate-based quantum machines. Proposed
applications of QA include factorization of prime numbers [26], systems of polynomial
equations [27], and differential equations [28,29].

The research is also exploring the application of quality control to practical engineering
challenges, despite the limitations of current quantum annealers. In aerospace engineering,
some applications have been proposed, such as addressing some artificial intelligence
problems framed as combinatorial tasks [30], optimizing aircraft trajectories to prevent
conflicts [31] and allowing agile planning of the Earth observation maximization of image
acquisition [32].

The goal of this study is to explore the cutting-edge capabilities of QA and its poten-
tial applications. Although QA has garnered considerable attention in the optimization
community, its potential in the specific context of space trajectory optimization has yet to
be fully explored. The paper presents a transcription procedure that converts trajectory
optimization problems into equivalent binary optimization problems using the QUBO
representation. This versatile procedure can be applied to a wide range of optimal con-
trol problems, encompassing dynamic, boundary, and path constraints. Specifically, the
trajectory is discretized and approximated using polynomials for each component. By
employing inverse dynamics, the required control to follow the approximated trajectory
can be determined. Consequently, the optimization function becomes the system’s energy,
represented by the integral of the square of the control. As this function depends on the
form of the polynomial, the focus lies on optimizing the polynomial itself. This novel ap-
proach demonstrates significant potential for efficiently exploring extensive solution spaces,
making it particularly promising for addressing complex trajectory design challenges in
fields like space exploration and satellite missions.
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This paper is organized as follows. With the purpose of providing the appropriate
context and establishing the necessary nomenclature, Section 2 provides a brief descrip-
tion of the basic principle behind Quantum Annealig. Section 3 presents an overview
of the transcription procedure for trajectory optimization, elucidating the mathematical
formulation of the problem, including the cost function and various types of constraints.
Moving on to Section 4, the lunar landing and rendezvous problems and their simplifi-
cations are reported. The results of the transcription procedure for this specific problem
are discussed in Section 5, with an emphasis on specific considerations and limitations.
Finally, in Section 6, conclusions and potential future research directions in the field of QA
for trajectory optimization are presented.

2. Quantum Annealing Optimization

The fundamental principle behind QA is to encode the optimization problem into the
energy states of a quantum system. For this purpose, let us briefly recall some fundamental
concepts of quantum physics: a quantum system can have discrete levels of energy, among
which the one with minimum energy is called the ground state. The energy of a quantum
system is represented by its Hamiltonian operator H, which is closely related to the time
evolution of the system through the famous Schrödinger Equation [33]. It is also possible
to write a so-called eigenvalues problem of the Hamiltonian, as shown in Equation (1); this
equation is sometimes called the Time Independent Schrödinger Equation. |ψn〉 (written
here in the Dirac notation |·〉, used to indicate quantum states) are called eigenvectors (or
eigenstates) of H, and En are the eigenvalues that correspond to the energy values that
the system can assume for n = {0, 1, 2, . . .}. Therefore, an optimization problem encoded
into the Hamiltonian of a quantum system has the possible values of the cost function
corresponding to the energy values En of the Hamiltonian, with E0, the ground state, being
the global minimum of the cost function.

H|ψn〉 = En|ψn〉. (1)

Quantum annealers are typically represented by a network of qubits, for which the
Hamiltonian assumes the form of a matrix. Qubits are the quantum equivalent of classical
bits, but unlike classical bits, which can only represent zero or one, qubits can exist in
the superposition of both states simultaneously. This allows QA exploration of multiple
possible solutions to the optimization problem simultaneously. The optimization process
in QA involves the adiabatic theorem from quantum mechanics, which states that a system
in the ground state, whose Hamiltonian is slowly time-varying, remains in the ground
state of the instantaneous Hamiltonian. Therefore, for every instant of time t from zero to
annealing time T, the following equation holds:

H(t)|ψ0(t)〉 = E0(t)|ψ0(t)〉. (2)

The optimization procedure starts by preparing the system in the ground state of a
simple Hamiltonian, called driver Hamiltonian (HD); the optimization problem is instead
encoded in the energy eigenvalues of a problem Hamiltonian, HP; then, the system is
evolved adiabatically from HD to HP [30] in such a way that the system state at the end of
the evolution is the ground state of the problem Hamiltonian. At this point, to obtain the
solution, we need to only operate a measurement of the qubtis [34]. Equation (3) shows
a generic transition between the Dirver and Problem Hamiltonian, where A(t/T) and
B(t/T) are arbitrary functions such that A(0) = 1, B(0) = 0 and A(1) = 0, B(1) = 1. In
Equation (4), the state of the system is shown by the eigenvalues equation at the start and
at the end of the annealing process, where ψ0,D stands for the ground state of the Driver
Hamiltonian and ψ0,P is the ground state of the Problem Hamiltonian, the solution of the
optimization problem.

H(t) = A(t/T)HD + B(t/T)HP, (3)
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HD|ψ0,D〉 = E0,D|ψ0,D〉
t=[0,T]−−−−→ HP|ψ0,P〉 = E0,P|ψ0,P〉. (4)

To be solved by QA, an optimization problem must have a precise structure given by
the Ising or QUBO formulations [35], which are described below.

• Ising Formulation revolves around determining the minimum energy configuration
of a system of interacting spins. Let us consider an Ising model with n spins denoted
as σ = (σ1, σ2, . . . , σn), where each spin can be in one of two states: +1 (up) or −1
(down). The energy of the Ising model is expressed by the following equation:

JI(σ) = ∑
i

aiσi + ∑
i<j

bijσiσj. (5)

In Equation (5), ai represents the linear coupling coefficients for individual spins,
while bij represents the coupling coefficients for pairs of spins. The first sum accounts
for the energy associated with the individual spin states, whereas the second sum
reflects the energy due to interactions between spins.

• QUBO Formulation is a powerful representation of optimization problems using a
quadratic function of binary variables. We consider a problem with n binary variables
denoted as x = (x1, x2, . . . , xn), where each xi can take either zero or one. The objective
is to minimize the following quadratic function:

Jq(x) = xTQx. (6)

In Equation (6), xT represents the transpose of the binary variable vector x, and
Q is an n × n matrix of coefficients. The goal is to find the assignment of binary
values to x that minimizes quadratic function Jq(x). This formulation is widely used
in QA to transform complex optimization problems into a format compatible with
quantum systems.

The Ising and QUBO formulations are closely related through a simple transformation
that maps Ising spins (σi) to binary variables (xi). In the Ising Formulation, the linear
coupling coefficients (ai) are transformed into the diagonal components of matrix Q in the
QUBO Formulation, while the coupling coefficients for pairs of spins (bij) are represented
by the off-diagonal components. It is important to recognize that these formulations
are mathematical abstractions designed to conveniently express optimization problems
in a general format. When implementing an optimization problem on a real quantum
annealer, the possible mismatch between the logical lattice of the problem (how the variables
mathematically interact with each other) and the physical connectivity pattern (how the
qubits are actually connected with each other in the annealer) must be taken into account. In
fact, quantum annealers are built with a specific graph topology that dictates which qubits
are physically connected with other qubits. If the logical graph of the problem does not
match the physical graph of the machine, a procedure called embedding must be employed
to adapt the first to the second. The embedding works by creating chains of qubits in the
physical graph that are forced to behave as a single variable, always assuming the same
value; through these chains, it is possible to connect qubits not physically connected in
the annealer topology and crafting an embedded optimization problem equivalent to the
starting one.

As an extremely simple schematic to illustrate the concept, in Figure 1,a logical graph
is shown where three variables (represented as circles) interact as follows: Variable 1
interacts with Variables 3 and 4. On the other hand, the physical graph, on the right, does
not provide a connection between Qubits 1 and 4. Therefore, a possible embedding is to
create a chain including Qubits 2 and 4, such that Connection 1–4 can now be implemented
exploiting Connections 1–2 and 2–4. We notice that, although the logical problem includes
three variables, the embedded problem must use four qubits; therefore, the embedding
procedure comes at the cost of increasing the number of qubits needed to tackle the problem.
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As a consequence, a problem that requires embedding could require an annealer with a
number of qubits much larger than the number of variables.

Figure 1. Scheme of a simple embedding procedure.

Moreover, utilizing longer chains in the embedding can increase susceptibility to
noise and errors. Longer chains may become fragile, leading to potential disruptions that
adversely affect the quality and reliability of the solution. Addressing these challenges is
critical to unlocking the full potential of QA for solving complex optimization problems
and realizing the transformative power of quantum computing.

One company that has made significant contributions in this area is D-Wave Systems,
which is a leading company specializing in QA. Their quantum processors, known as quan-
tum processing units (QPUs), are designed to perform QA computations with fully quan-
tum systems (for more details, please refers to the following link: https://www.dwavesys.
com/media/htjclcey/advantage_datasheet_v10.pdf, accessed on 6 November 2023). D-
Wave’s QPUs are used in various research and commercial applications to tackle real-
world optimization challenges. D-Wave solvers are constantly being improved to ad-
dress the limitations of quantum computing, and future advancements will likely in-
clude more sophisticated algorithms and improved processing capabilities to enable more
efficient optimization.

3. Transcription Procedure

The goal of trajectory optimization is to find the optimal control inputs (u(t)) that steer
a system to the desired final state (x f ) while considering the trade-offs between achieving
the objective and minimizing the associated cost. Thus, given an initial condition (x0) and a
control input trajectory defined over finite interval t ∈ [t0, t f ], the cost function (J) in the
Bolza form can be computed as follows:

J = χ(x(t0), x(t f )) +
∫ t f

t0

L(x(t), u(t), t)dt, (7)

where χ(x(t0), x(t f )) is the cost component depending on initial state x(t0) and final state

x(t f ) of the system, and
∫ t f

t0
L(x(t), u(t), t)dt represents the integral of the instantaneous

cost function L over the entire trajectory, which depends on state x(t), control input u(t),
and time t. Moreover, the trajectory optimization problem must align with the underlying
dynamics of the system. In the proposed method, the dynamic systems considered are
linear or linearized; thus, the trajectory optimization problem can be expressed in the
following comprehensive form:

https://www.dwavesys.com/media/htjclcey/advantage_datasheet_v10.pdf 
https://www.dwavesys.com/media/htjclcey/advantage_datasheet_v10.pdf 
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min
u(t)

χ(x(t0), x(t f )) +
∫ t f

t0

L(x(t), u(t), t) dt

subject to ẋ(t) = Ax(t) + Bu(t), ∀t ∈ [t0, t f ]

x(t0) = x0, x(t f ) = x f .

(8)

Equation (8) provides a concise representation of the trajectory optimization problem,
encapsulating the goal of reaching a desired final state while considering the cost incurred
along the trajectory, subject to the system’s dynamic behavior and initial condition. In
particular, x = [s(t), ṡ(t)]T represents the state vector, resulting in a total of six components.
This vector is composed of both position (s(t) = [x, y, z]T) and velocity (ṡ(t) = [vx, vy, vz]T)
along the three trajectory components.

The proposed transcription procedure aims to map the common trajectory opti-
mization problem (Equation (8)) into a binary optimization problem in a QUBO form
(Equation (6)), which can be effectively addressed using QA techniques. Central to the
transcription procedure is the discretization of the trajectory by representing the state
variable and its derivatives through polynomial functions across finite interval t ∈ [t0, t f ].
In contrast to the usual practice of determining the polynomial degree (n) based on the
number of boundary conditions, our method increases the polynomial degree by a specific
factor. Consequently, the ultimate polynomial degree is obtained as the combination of two
components: n = l + (m− 1), where m represents the number of boundary conditions and
l signifies the count of independent variables. These independent variables are essentially
the coefficients of the polynomials that play a crucial role, acting as pivotal crossing points
capable of altering the trajectory’s shape. This core concept forms the foundation of the
proposed optimization approach, where both the trajectory and its derivatives can be
expressed as functions of l independent variables. In our procedure, we chose to minimize
the number of variables, thus selecting l = 1, leading to polynomial degree n being simply
equal to m. The decision to set l = 1 was primarily dictated by a desire to keep the approach
simple and practical, making it easier to convert to the QUBO format. Moreover, it is worth
noting that in other works, a similar choice was made to set “L” to 1 [3,36]. This approach
is commonly adopted in trajectory optimization research for its practical advantages. Thus,
the main goal of the article is not to add complexity to the underlying mathematics, but
rather to test QA with entirely new challenges, such as trajectory optimization for space
applications. Consequently, this work aims to take the initial step in exploring QA with an
entirely novel method, and the first results are definitely promising.

By leveraging the polynomial approximations, the state vector and its derivatives can
be explicitly written as a linear function of the free coefficient parameter:

s(t) = αmtm +
m−1

∑
i=0

αiti,

dks(t)
dtk =

k−1

∏
j=0

(m− j) · αmt(m−k) +
m−1

∑
i=1

(
k−1

∏
j=0

(i− j)) · αit(i−k).

(9)

Vector αi = [αix , αiy , αiz ]
T corresponds to the i-th set of fixed polynomial coefficients,

while αm = [αmx , αmy , αmz ]
T represents the vector containing three independent parame-

ters that influence the trajectory’s components. By imposing the boundary conditions in
Equation (9), we can obtain a system of m equations, where αi are considered unknowns
and αm is considered a free parameter. As a consequence, all αi can be expressed as a linear
function of αm and boundary conditions. By substituting the obtained expression αi in
Equation (9), it becomes possible to obtain a linear expression as the one in Equation (10),
where αm is isolated, and M(t) and N(t) are the expressions of two generic matrices as a
function of time.



Appl. Sci. 2023, 13, 12853 7 of 18

s(t, αm) = M(t)αm + N(t),

dks(t, αm)

dtk =
dk M(t)

dtk αm +
dk N(t)

dtk .
(10)

By using the general expression linear dynamical in Equation (8), it becomes feasible
to derive control input u(t):

ẋ(t) =
[

ṡ
s̈

]
=

[
0 I
Λ H

][
s
ṡ

]
+

[
0
I

]
u. (11)

Control vector u(t) appears only in the second term of Equation (11), where I rep-
resents the identity matrix, while Λ and H are constant matrices. These matrices are
typically specific to the dynamics of the problem at hand, but in the current discussion, they
are considered as generic expressions without specific values or definitions. The explicit
expression of u(t) can be formulated as follows:

u(t) = (s̈− Hṡ−Λs). (12)

Then, by substituting Equation (10) in Equation (12), control input u(t) is expressed
as a linear function of αm. However, from this point on, variable αm is represented with
symbol α to simplify the notation.

u(t) = Pα + R,

where:

{
P = (M̈(t)− HṀ(t)−ΛM(t))
R = (N̈(t)− HṄ(t)−ΛN(t)),

(13)

where P and R are functions of variables M, N, L, and H, and their expressions depend
on both the system’s dynamics and the specific polynomial chosen to approximate the
trajectory. As of now, they are represented in a general form, but in practical applications,
these variables are given explicit expressions tailored to the specific problem at hand. Let
us suppose now that our cost function aims to minimize control, and we discretize the
trajectory by generating vector of d time points t = (t0, t1, . . . , ti, . . . , td−1, td). As a result,
the cost function transforms into a summation of the square of the control for each time
instant, and it can be expressed as follows:

J =
d

∑
i=0

u(ti)
Tu(ti) =

d

∑
i=0

(Piα + Ri)
T(Piα + Ri),

= αT(
d

∑
i=0

PT
i Pi)α + 2(

d

∑
i=0

RT
i Pi)α + (

d

∑
i=0

RT
i Ri).

(14)

Value (∑d
i=0 RT

i Ri) can be safely disregarded since it remains constant. Its presence
in a cost function is, therefore, inconsequential, as adding or subtracting a constant value
from a cost function has no impact on the result. Then, by substituting Ptot = (∑d

i=0 PT
i Pi)

and Vtot = (∑d
i=0 RT

i Pi) in Equation (14), the cost function can be succinctly formulated as

J = αT Ptotα + 2Vtotα. (15)

The next step to achieve the QUBO Formulation is to express each real variable in α by
a number of nb binary variables. In executing this, the fixed-point binary representation
is sought such that the maximum and minimum real values it can represent correspond
to the boundaries of α. Indeed, referring to Equation (16), the real variable α is equal to
α = αmin when every zk = 0, and α = αmax, every zk = 1.

α = αmin + Gz with z = {0, 1}, (16)
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G =
1

2nb − 1

(∆ax · g) 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 (∆ay · g) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 (∆az · g)

, (17)

where αmin and αmax are the upper and lower boundaries, respectively, matrix G has the size
of nreal × nbnreal (nreal = 3), g has the size of nb and represents the binary vector used for
the binary form representation of integers, defined as g = (20, 21, . . . , 2nb−1). Additionally,
∆ai = amaxi − amini (where i = x, y, z) denotes the difference between the upper and lower
limits of the coefficient for each respective component. By substituting Equation (16) into
Equation (15), an expression of the cost function in terms of binary variables z is achieved
(Equation (18)), where L is the matrix of quadratic terms, m̄ is the vector of linear terms,
and N is a constant. By exploiting the fact that, for binary variables, zTz = z, the linear
term is included into the quadratic matrix, leading to the formulation on the right hand
side of Equation (18), with Q = Q̄ + diag(L); furthermore, constant N can be ignored for
the purpose of optimization.

J = zTQ̄z + Lz + N ⇒ J = zTQz,
Q̄ = GT PiG
L = 2

(
αT

minPtot + Vtot
)
G

N = αT
minPtotαmin + 2Vtotαmin

.
(18)

The above-described methodology allows to formulate a linearized trajectory opti-
mization as a QUBO problem, with the objective of minimizing the control employed and
including the dynamical and boundaries constraints. The proposed approach offers a
versatile and comprehensive solution for addressing a wide spectrum of linear optimal
control problems. By transcending specific case limitations, it introduces a unified strategy
that is adaptable to diverse challenges.

4. Lunar Landing and Rendezvous Applications

The main objective of both of these mission applications is to navigate the spacecraft
in such a way that it can be safely and accurately landed or docked at a specified prede-
termined location. In achieving this goal, it is crucial that the spacecraft reaches this final
position with specific attributes simultaneously satisfied. These attributes include having
both zero relative velocity and zero relative acceleration. This ensures a controlled and
precise touchdown or a docking operation, minimizing the potential for any sudden or
undesirable movements during the final phases of the mission. This objective can be cast in
the form of a boundary condition problem. Notably, a total of five boundary conditions
(m = 5) prove sufficient to comprehensively define the entirety of this problem:

s(t0) = s0 ṡ(t0) = ṡ0

s(t f ) = s f ṡ(t f ) = 0 s̈(t f ) = 0
. (19)

Consequently, the trajectory can be approximated by a fifth-degree polynomial (as
elaborated in Section 3).

s(t) = α0 + α1t + α2t2 + α3t3 + α4t4 + α5t5. (20)

In (20), five coefficients of each component are explicitly determined, while one coeffi-
cient (for each component) remains unconstrained and serves as the adjustable parameter
(in this instance, α2 = [α2x , α2y , α2z ]), representing the variable to be optimized through QA.
By including Equation (19) in Equation (20), the coefficient values can be expressed as a
function of boundary conditions and the free parameters:
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α0 = s0

α1 = ṡ0

α3 = (10∆s− 6ṡ0t f − 3α2t2
f ) / t3

f

α4 = (−15∆s + 8ṡ0t f + 3α2t2
f ) / t4

f

α5 = (6∆s− 3ṡ0t f − α2t2
f ) / t5

f

, (21)

where ∆s = s f − s0 represents the difference between the terminal and initial vector
positions of the trajectory. By including Equation (21) into Equation (20), the spacecraft’s
trajectory can be explicitly represented as a function of α2.

s(t, α2) = Mα2 + N̂TT = Mα2 + N,

where:



M =

DTT 0 0
0 DTT 0
0 0 DTT


T =

[
1 t t2 t3 t4 t5

]T

D =

[
0 0 1 − 3

t f
3
t2

f
− 1

t3
f

]T

N̂ =

[
s0 ṡ0 0

10∆s−6ṡ0t f

t3
f

−15∆s+8ṡ0t f

t4
f

6∆s−3ṡ0t f

t5
f

]T

. (22)

4.1. Lunar Landing Problem

The mathematical expressions governing the dynamics of a lunar lander can be derived
using Newton’s law in the context of no central forces. In this context, the gravitational
influence and the propulsive thrust produced by the propulsion system act as the only
forces of motion [37]. Furthermore, a flat ground is considered, thus obtaining linear
dynamics. This preference is logically valid, since the present study limits its analysis
to only the terminal phase of the landing trajectory. Accordingly, the formulation of the
dynamics can be written as follows:

s̈(t) = gM + u(t), (23)

where the unvarying gravitational acceleration vector of the Moon, gM = [0, 0,−gM]T ,
exclusively acting along the z-axis (gM = 1.62509 m/s2), along with control thrust and
acceleration vectors T and u, respectively, contribute to the movement. Upon obtaining the
second derivative of Equation (22), it becomes evident that solely time vector T undergoes
differentiation, while the other terms remain held constant. The resulting s̈(t, α2) can be
included in Equation (23) to find the expression of control vector u:

u(t) = s̈(t, α2)− gM = M̈α2 + N̈ − gM = Pα2 + R, (24)

where R = N̈ − gM represents the component that remains independent of the variable
optimization. Then, by following the steps reported from Equation (15) to Equation (18)
the QUBO problem can be derived.

4.2. Rendezvous Problem

The Clohessy–Wiltshire equations are a set of linearized equations commonly used in
orbital mechanics to describe the relative motion between two objects in close proximity
during a rendezvous or docking maneuver. These equations provide an approximation
of the relative dynamics in a simplified form, making it easier to analyze and plan ma-
neuvers [38]. The Clohessy—Wiltshire equations are particularly useful when the relative
distances between the two objects are small compared to the orbital distances. They are
derived by linearizing the equations of motion around a reference orbit. The equations are
typically used for missions where the spacecraft is performing relatively short-duration
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maneuvers, such as rendezvous, docking, or formation flying. The basic form of the
Clohessy–Wiltshire equations is as follows:

s̈(t) =

 0 2n 0
−2n 0 0

0 0 0

ṡ(t) +

3n2 0 0
0 0 0
0 0 −n2

s(t) + u(t)

= Hṡ(t) + Λs(t) + u(t),

(25)

where n =
√

µ/R is the mean motion of the reference orbit, R is the radius of the target
body’s circular orbit, and µ is the standard gravitational parameter. In this application,
the motion is around the Earth, thus µ = 398,600 km3/s2. From Equation (22), the poly-
nomial approximation and its derivatives can be included in the dynamical formulation
(Equation (25)) to find the expression of control vector u:

u(t) = s̈(t, α2)− Hṡ(t, α2)−Λs(t, α2)

= M̈α2 + N̈ − H(Ṁα2 + Ṅ)−Λ(Mα2 + N)

= (M̈− HṀ−ΛM)α2 + (N̈ − HṄ −ΛN)

= Pα2 + R.

(26)

The control vector (in Equation (26)) is a linear function of variable Bα2 and it has the
same form as provided in Equation (10). Thus, by following the transposition procedure
from Equation (14) to Equation (18), once again, the QUBO Formulation of the problem
can be derived.

5. Results

In this section, the empirical results obtained using the D-Wave Advantage 4.1 QPU
through the D-Wave cloud service “Leap” are presented. This quantum annealer adheres to
a topology named Pegasus, featuring a pool of approximately 5000 qubits for computational
tasks. Within this topology, each qubit establishes connections with fifteen others, resulting
in a total of around 35,000 interconnections. The main objective is to assess the QA’s
performance in terms of computational time and optimized cost function. This evaluation
is carried out through a comparative analysis with established optimization techniques.
Specifically, the Quantum Annealer’s performance is compared with the Interior-Point (IP)
optimization method provided by the “fmincon” function in MATLAB R2022b. Addition-
ally, a comparison is made with the genetic algorithm, Particle Swarm Optimization (PSO),
which is implemented using the “particleswarm” function on MATLAB [39]. Both the IP
and the PSO method are implemented on a workstation equipped with 32 GB of RAM, an
Intel Core i7-12700H 2.70 GHz CPU from the 12th Generation, and an NVIDIA GeForce
RTX 3080 Ti GPU with 16 GB of dedicated RAM (manufactured by Intel and NVIDIA
Corporation, Santa Clara, CA, USA).

The parameters used to set the simulations are provided in Table 1.

Table 1. Parameters to set the QUBO problem.

Final Time (t f ) Step Parameters (3 × nb) Upper Limit (αmax) Lower Limit (αmin)

LL 100 s 0.1 s 96 qubit [10, 10, 10] −[10, 10, 10]
RV 320 s 0.1 s 96 qubit [10, 10, 10] −[10, 10, 10]

We note that the variables within the problem being examined are considerably
fewer in number than what the physical constraints demand. Indeed, by choosing to
use 32 bits to convert the three real components into binary, the number of variables of
the problem are kept very low: 3 × 32, which amounts to 96 variables, while the non-zero
components of the matrix Q count 1488. Regarding the embedding procedure, it is carried
out automatically by the built-in algorithms of D-Wave. The resulting embeddings are
easily found and have chain lengths of eight components at maximum. As a result, the
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question of embedding does not arise as a concern and is resolved indirectly through
the application of a substantially smaller-sized problem. The decision to limit the qubit
count to 32 is not arbitrary but based on a systematic analysis of the cost functions in the
context of both Lunar Landing and Rendezvous applications. Indeed, the number of qubits
directly impacts the precision of conversion from real to binary numbers, as indicated
in Equation (17). The outcomes of this analysis are showcased in Figure 2, where the
cost functions are plotted against the base-2 logarithm of the number of qubits (log2(nb)).
This visualization simplifies the presentation of results and underscores that a plateau is
reached for both applications when log2(nb) equals five, corresponding to nb = 32. As such,
pursuing a greater number of variables proves to be superfluous.

Figure 2. Lunar Landing and Rendezvous Cost Functions as a function of Number of Quibit.

In addition, a Monte Carlo simulation is carried out for each test case, utilizing
10,000 samples to provide a comprehensive evaluation of QA in comparison to IP and
PSO, with a focus on assessing the achieved cost function and computational time. This
extensive analysis allows for a thorough understanding of the relative performance of the
methods in terms of optimization quality and efficiency.

5.1. Lunar Landing Results

In Table 2, the lunar landing parameters are provided. Specifically, the initial position
is selected to uphold the validity of the approximation applied to the dynamics equations,
which assumes the lunar surface to be flat. As a result, the spacecraft is situated at an
altitude of 3 km. This initial configuration is based on a previously published works from
2022 [36,40], ensuring a consistent and valid reference point for our analysis.

Table 2. Parameters to set the Lunar Landing problem.

Position (m) Velocity (m/s) Acceleration (m2/m)

Initial Condition [0, 0, 3000] [0, 50, −10] Unconstrained
Final Condition [3000, 2000, 0] [0, 0, 0] [0, 0, 0]

The QPU results are shown in Figure 3, in terms of position, velocity, and acceleration.
The figures readily demonstrate that boundary conditions are fully met; notably, the final
position is reached with zero velocity and acceleration. This implies that the QA successfully
yields an optimal solution for the problem at hand.
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Figure 3. Solution of Lunar Landing by QPU.

The trajectory profiles and the control law are visually presented in Figures 4 and 5,
featuring a comparative analysis with trajectories and control generated using MATLAB’s
PSO and IP methods, respectively. In both figures, the substantial overlap between tra-
jectories offers compelling evidence of the quality of QA’s solutions. Additionally, on the
right side of both figures, the alignment of QA’s control trajectory with those of the IP
and PSO methods is illustrated, further affirming their striking similarity. This robustly
demonstrates QA’s effectiveness in tackling these specific problems.
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Figure 4. Comparison of trajectory and control law for Lunar Landing application between Quantum
Annealing (blue line) and Particle Swarm Optimization (red line).
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Figure 5. Comparison of trajectory and control law for Lunar Landing application between Quantum
Annealing (blue line) and Interior Point (gree line).

Furthermore, a Monte Carlo simulation is executed employing 10,000 samples to
comprehensively evaluate QA’s performance in contrast to IP and PSO methods. The Monte
Carlo comparison results are visually represented in Figure 6, encompassing computational
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time and cost function optimization. In particular, the upper row reports the comparison
between QA and PSO, while the bottom row reports the comparison between QA and IP
methods. An insightful observation can be made when analyzing the results presented
in Figure 6. Although the average value of the cost function is similar to those of QA
(approximately −362.19), the PSO method (approximately −362.13), and the IP method
(approximately −362.11), the QA method seems to exhibit a slightly better performance.
Moreover, there is less data dispersion in QA’s results. This indicates a more deterministic
outcome compared to those of the other two methods. A significant difference is evident
in terms of computational efficiency. Notably, the computational time required for QA
(0.015 s) is an order of magnitude smaller than that of PSO (approximately 0.30 s) and IP
methods (approximately 0.62 s).

Figure 6. Comparison of Monte Carlo results for Lunar Landing application between QA (blue), PSO
(red), and IP methods (green) in terms of computation time and cost function.

5.2. Rendezvous Results

Table 3 provides the parameters for the rendezvous scenario. Notably, the final
conditions are uniformly set to zero, given the utilization of equations that pertain to
relative motion. It is worth noting that this scenario was taken from the study detailed
in [41], where the same polynomial approximation method is used to address a rendezvous
problem. This ensures consistency and aligns with the methodology established in the
scientific literature. In particular, the radius of the target spacecraft orbit is set to 773 km.

Table 3. Parameters to set the Rendezvous problem.

Position (m) Velocity (m/s) Acceleration (m2/m)

Initial Condition [−10, −45, 3] [0, 0, 0] Unconstrained
Final Condition [0, 0, 0] [0, 0, 0] [0, 0, 0]

The outcomes in terms of position, velocity, and acceleration are showcased in Figure 7.
Similar to the previous application, the rendezvous scenario successfully achieves the
targeted boundary conditions, with all values equating to zero.

Figures 8 and 9 provide a comparative analysis with trajectories and control laws
generated using MATLAB’s IP and PSO methods, respectively. Once again, it is evident
that the results obtained from QA are highly comparable to the outcomes achieved through
IP and PSO methods.
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Figure 7. Solution of Rendezvous by QPU.
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Figure 8. Comparison of trajectory and control law for Rendezvous application between Quantum
Annealing (blue line) and Particle Swarm Optimization (red line).
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Figure 9. Comparison of trajectory and control law for Rendezvous application between Quantum
Annealing (blue line) and Interior Point (gree line).

Additionally, a Monte Carlo simulation is conducted using 10,000 samples to thor-
oughly assess QA’s performance in comparison to that of IP and PSO methods. The Monte
Carlo comparison results, presented in Figure 10, encompass computational time and cost
function optimization. Specifically, the upper row presents the comparison between QA
and PSO, while the bottom row provides the comparison between QA and the IP method.
Once again, the average values of the cost function are remarkably consistent across all
three methods, with QA yielding approximately −0.370, IP yielding −0.361, and PSO
yielding −0.361.
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Figure 10. Comparison of Monte Carlo results for Rendezvous application between QA (blue), PSO
(red), and IP methods (green) in terms of computation time and cost function.

Furthermore, there is notably less data dispersion in the results obtained using the QA
method, indicating a higher degree of determinism compared to the other two approaches.
Moreover, QA demonstrates an impressively low computational time of 0.023 s, even when
applied in the context of the Rendezvous scenario. This computational efficiency is notably
superior, being an order of magnitude lesser than that of the IP and PSO methods, which
require approximately 0.141 and 0.226 s, respectively.

Upon analyzing the results presented across different scenarios, a consistent trend
emerges. While the average cost function values for QA and fmincon demonstrate compa-
rability, a remarkable supremacy of QA in terms of computational efficiency emerges.

6. Conclusions

This methodology leverages QA through a QUBO Formulation, translating trajectory
optimization problems into the binary optimization domain. The proposed procedure
presents a general approach that can be applied to optimization problems with linear
dynamics. Its strength lies in its versatility, making it suitable for a wide range of scenarios
within the realm of linear applications. Although it is designed for linear systems, its adapt-
ability to different problems is a noteworthy advantage. Future research endeavors might
focus on developing methods to tackle optimization challenges posed by nonlinear systems.
Moreover, while the applications explored in this study may appear straightforward, a
notable advantage in computational time is already discernible with the QA. This early
advantage lays the groundwork for a deeper exploration of the potential harbored by this
novel technology. The significance of the computational time disparity is indeed striking.
The QA demonstrates a remarkable level of computational efficiency, evident through its
computational time, which is orders of magnitude smaller than that of IP and PSO methods.
This discrepancy in computation time may be a very important finding that could highlight
an innate advantage of quantum computing in its ability to efficiently address optimization
challenges. By exploiting the principles of quantum mechanics, QA is able to explore
solution spaces in a parallel and probabilistic manner, enabling it to navigate through a vast
number of potential solutions more quickly. In contrast, classical optimization methods
often rely on iterative and sequential procedures that require greater computational efforts.

Nevertheless, it is worth noting that due to the polynomial-based approximation of
the system state, an optimally exact solution might not be achieved. This approach strikes a
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balance between optimizing for fuel consumption and computational efficiency. Opting for
higher-degree polynomials could offer more flexibility for optimization, potentially yield-
ing more accurate outcomes. However, this decision introduces a trade-off by potentially
prolonging computational time, a factor undesirable in applications requiring swift com-
putations. Hence, the selected approach reflects a compromise between result optimality
and computational efficiency. Another limitation is that the flight time, ∆t f , has to be fixed.
This is, again, due to the need for reducing the optimization into a QUBO form. Indeed, if
t f were a variable, it would introduce a multiplication factor with α in Equation (10). Con-
sequently, non-linear terms would emerge, potentially reaching higher than second-degree
terms within the cost function. This intricacy would render the transcription into a QUBO
problem infeasible.

Given these encouraging outcomes and the numerous achievements in recent times,
quantum computation has undeniably demonstrated its potential. Future research could
enhance the methodology by exploring advanced trajectory approximation techniques to
achieve greater precision while maintaining computational efficiency, such as B-Spline or
Neural Network. In addition, the development of methods to handle nonlinear systems and
to include time as a problem variable could expand the applicability of the methodology.
Lastly, it might also be of interest to investigate the use of hybrid optimizers that combine
quantum and classical optimization techniques, which could provide better solutions.
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