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A B S T R A C T

In this work we approach attractor neural networks from a machine learning perspective: we look for optimal
network parameters by applying a gradient descent over a regularized loss function. Within this framework,
the optimal neuron-interaction matrices turn out to be a class of matrices which correspond to Hebbian
kernels revised by a reiterated unlearning protocol. Remarkably, the extent of such unlearning is proved to be
related to the regularization hyperparameter of the loss function and to the training time. Thus, we can design
strategies to avoid overfitting that are formulated in terms of regularization and early-stopping tuning. The
generalization capabilities of these attractor networks are also investigated: analytical results are obtained for
random synthetic datasets, next, the emerging picture is corroborated by numerical experiments that highlight
the existence of several regimes (i.e., overfitting, failure and success) as the dataset parameters are varied.
1. Introduction

The Hopfield model is probably the best-known example of attractor
neural network (Amari, 1972; Hopfield, 1982; Little, 1974): this is
constituted by a set of 𝑁 binary units, referred to as neurons, that
interact pairwise and whose state is iteratively updated by a non-
linear activation function, in such a way that the new state of neuron 𝑖
depends on the signal acting on 𝑖 and stemming from the neighboring
neurons. A suitable choice of the neuron interaction matrix, denoted
as 𝑱 ∈ R𝑁×𝑁 , should ensure the attractivity of a number of patterns,
that we want to store and retrieve. More precisely, one initializes the
neural configuration by setting the values of the units close to a pattern
𝝃1 ∈ {−1,+1}𝑁 , this configuration represents the input supplied to the
machine and may correspond to a corrupted version of 𝝃1; repeated
updates of neurons are then performed until convergence to a fixed
point and, if this matches 𝝃1, this state is interpreted as the retrieval of
the information codified by 𝝃1. The same is expected to occur for any
target pattern, say 𝝃𝜇 , with 𝜇 = 1,… , 𝑃 .

∗ Corresponding author at: Dipartimento di Matematica ‘‘Guido Castelnuovo’’, Sapienza Università di Roma, Italy.
E-mail address: agliari@mat.uniroma1.it (E. Agliari).

1 These include, for instance, the presence of biases or vacancies in pattern entries (see e.g., Agliari, Barra, Galluzzi, Guerra, & Moauro, 2012; Agliari, Leonelli,
& Marullo, 2022; Amit, Gutfreund, & Sompolinsky, 1987), generalizations of the Hebbian kernel to include temporal correlations among patterns (see e.g., Agliari,
Barra, De Antoni, & Galluzzi, 2013; Agliari, Fachechi, & Marullo, 2020; Cugliandolo, 1993) or synaptic noise (see e.g., Agliari, Alemanno, Barra, Centonze, &
Fachechi, 2020; Agliari & De Marzo, 2020; Camilli, Contucci, & Mingione, 2022), non-trivial underlying architectures (see e.g., Agliari, Annibale, Barra, Coolen, &
Tantari, 2013; Agliari, Migliozzi, & Tantari, 2018; Wemmenhove & Coolen, 2003), or high-order interactions (see e.g., Agliari, Alemanno, Barra, & Fachechi, 2020;
Baldi & Venkatesh, 1987; Krotov & Hopfield, 2016). Although these aspects are not directly related to the current work, it is worth stressing the long-standing,
broad interest attracted by the model, further, the current approach can be extended to include such features.

The popularity of the Hopfield model is also due to the fact that
it is feasible of an analytical treatment and, in particular, it can be
recognized as a spin-glass, in such a way that it can benefit from a
broad collection of techniques developed to address disordered systems.
Indeed, in the last decades, the model has been intensively investi-
gated, and countless variations on the theme have also been accounted
for.1 Remarkably, a significant fraction of these works spotlighted
the structure of the neural interaction matrix: in the standard Hop-
field model this is based on the so-called Hebb’s rule (Hebb, 1949)
𝑱 = 𝝃⋅𝝃𝑇

𝑁 and suitable revisions of this rule can give rise to better
performances of the model in terms of number of storable and retriev-
able patterns (Amit, 1989). A successful class of these revisions apply
unlearning protocols (see e.g., Benedetti, Ventura, Marinari, Ruocco,
& Zamponi, 2022; Del Giudice, Franz, & Virasoro, 1989; Dotsenko,
Yarunin, & Dorotheyev, 1991; Fachechi, Agliari, & Barra, 2019; Franz,
Amit, & Virasoro, 1990; Hopfield, Feinstein, & Palmer, 1983; Kanter &
Sompolinsky, 1987; Marinari, 2019; Plakhov, Semenov, & Shuvalova,
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1995; Serricchio et al., 2023), whose aim is to impair the attractiveness
of configurations that do not correspond to any of the stored patterns
(the convergence to those configurations, sometimes referred to as
spurious states, is interpreted as a mistake of the machine). More
recently, Hebb’s rule has also been revised to make it closer to a
learning algorithm: the ‘‘reality’’ that we want to retrieve is now not
accessible, instead, a corrupted sample, say {𝝃𝜇,1, 𝝃𝜇,2,…} is available
and used to build 𝑱 (see e.g., Agliari, Alemanno, Barra, & De Marzo,
2022; Aquaro, Alemanno, Kanter, Barra, & Agliari, 2023; Fontanari,
1990; Negri, Lauditi, Perugini, Lucibello, & Malatesta, 2023). This way,
the available sample of data can be interpreted as a training set and the
Hopfield model can be employed for generalization tasks. The bridge
between a retrieval scenario and a machine learning setting has also
been strengthened by leveraging the equivalence between Hopfield
model and Boltzmann machines (see e.g., Agliari & Marullo, 2021;
Barra, Bernacchia, Santucci, & Contucci, 2012; Cocco, Monasson, &
Sessak, 2011; Fachechi, Barra, Agliari, & Alemanno, 2022; Leonelli,
Agliari, Albanese, & Barra, 2021; Mézard, 2017). However, a full map-
ping allowing for the role of regularization parameters, the emergence
of overfitting or underfitting phenomena is still under construction (see
e.g., Barbier, Camilli, Mondelli, & Saenz, 2023; Camilli, Tieplova, &
Barbier, 2023; Ventura, Cocco, Monasson, & Zamponi, 2023; Zamri,
Azhar, Mansor, Alway, & Kasihmuddin, 2022; Zamri et al., 2024).

In this paper, we try to contributed in filling this gap, focusing on
an unsupervised reconstruction problem: the dataset is made of a set
of items belonging to different classes (the label being veiled) and we
introduce a loss function for the neuron interaction matrix. The solution
of our problem corresponds to a Hebbian kernel subjected to a certain
amount 𝑡𝑑 of unlearning iterations and we prove that 𝑡𝑑 is related to
the regularization hyperparameter, which, in turn, can be related to the
training time in the un-regularized version of the problem. This frame-
work allows us to inspect the emergence of overfitting phenomena and
therefore to conceive recipes for an optimal training time. Specifically,
the system stores each pattern as a minimum of the Lyapunov function
associated to the neural dynamics (this can be interpreted as a cost
function or as an energy function); minima corresponding to the same
class form a cluster, and – when the number of examples per class is
large enough – these minima do coalesce into a single minimum. In
this scenario, there emerge both intra-class and inter-class correlations
and we find that the role of 𝑡𝑑 (or, equivalently, of the regularization
r of the training time) is to disentangle such correlations starting
rom the lowest ones: as 𝑡𝑑 is increased, the minima corresponding to
ifferent classes are shifted, their overlap is reduced and the system
ets able to generalize from examples; by further increasing 𝑡𝑑 , minima
orresponding to patterns belonging to the same classes get shifted too
nd the system starts to overfit.

In what follows, we detail these results by first introducing the
oss function associated with our problem and showing that the neural
nteraction matrix that minimizes the loss function corresponds to
he revised Hebbian kernel studied in Agliari, Alemanno, Barra, and
achechi (2019), Fachechi et al. (2019) (Section 2). Subsequently,
e find a relation between regularization, training time and unlearn-

ng time, and we present numerical experiments on structureless and
tructured datasets (Section 3). These results constitute the premises
or a thorough discussion on the emergence of overfitting phenomena
Section 4) and a corroboration by numerics (Section 5). Lastly, we
onclude our paper by offering a concise outlook and final remarks
Section 6). Technical details are collected in the Appendices.

. From the stability condition to the minimization problem

The basic principle underlying an attractor neural network is that
ach pattern making up the set 𝝃 = {𝝃𝜇}𝑃𝜇=1 and encoding relevant
nformation is associated to an attracting fixed point for the network
ynamics. We assume that patterns are 𝑁-dimensional binary vectors
nd that the network units 𝝈 = (𝜎 ,… , 𝜎 ) ∈ {−1,+1}𝑁 interact
2

1 𝑁
pairwise as specified by the symmetric2 coupling matrix 𝑱 , then, we
set up the network evolution as

𝝈(𝑡 + 1) = sgn[𝝋(𝝈(𝑡))], (2.1)

here 𝜑𝑖(𝝈(𝑡)) ≡
∑

𝑗≠𝑖 𝐽𝑖𝑗𝜎𝑗 (𝑡) represents the signal reaching unit 𝑖 at
ime 𝑡 and the sign function acts component-wise. This dynamics is
pplied sequentially and exhibits the following Lyapunov function (see
.g., Coolen et al., 2005)

(𝝈) = −1
2
∑

𝑖,𝑗
𝜎𝑖𝐽𝑖𝑗𝜎𝑗 . (2.2)

n this work, we will retain a deterministic3 evolution and, for the
moment, we take 𝑱 as quenched and we exclude the presence of biases.
In this framework, the stability condition for a retrieval configuration,
e.g., 𝝈(𝑡) = 𝝃𝜇 without loss of generality, reads as

𝜉𝜇𝑖 𝜑𝑖(𝝃𝜇) ≥ 0, ∀𝑖 = 1,… , 𝑁, (2.3)

in such a way that, if at time 𝑡 the system is prepared or occurs to be
precisely in that state, it will be there trapped for all 𝑡′ ≥ 𝑡. Of course,
the fulfillment of (2.3) implies that 𝑱 must be a suitable functional
of 𝝃. More generally, one is interested in assessing the convergence
o a retrieval configuration even when the input quality is relatively
ow, namely, even when the initial configuration is relatively far (in
amming sense) from the target pattern. In this case, one asks for a

tronger condition, that is
𝜇
𝑖 𝜑𝑖(𝝃𝜇) ≥ 𝜅 > 0, ∀𝑖 = 1,… , 𝑁, (2.4)

hich means that, although 𝝈(𝑡) displays some discrepancies with
espect to 𝝃𝜇 , the dynamics (2.1) is still ensured to converge to 𝝃𝜇 .
n this inequality (corresponding to the basic requirement in Gardner’s
heory Gardner, 1988; Gardner & Derrida, 1989; Personnaz, Guyon,

Dreyfus, 1985), 𝜅 controls the width of the attraction basins, that
s, if 𝝈 belongs to a Hamming ball (𝝃𝜇 , 𝑅(𝜅)) centered in 𝝃𝜇 with
adius 𝑅(𝜅), the network response will be 𝑓 (𝝈) = 𝝃𝜇 , with 𝑓 being
he transfer function 𝑓 (𝝈) = lim𝑛→∞  𝑛(𝝈) and  (𝝈) = sgn(𝜑𝑖(𝝈)) the
-step dynamics. Increasing 𝜅, the stability criterion will be satisfied in
ball with larger and larger radius 𝑅(𝜅) surrounding the patterns, but

his goes at cost of a smaller amount of storable information vectors,
esulting in a lower storage capacity. In particular, for symmetric
etworks (𝑱 = 𝑱 𝑇 ) the largest number of patterns that can be retrieved

is 𝑁 (Gardner, 1988).
In order to satisfy the inequality constraint (2.4), we can impose a

(stronger) equality condition requiring that, given 𝛾 ≥ 𝜅,

𝜉𝜇𝑖
∑

𝑗≠𝑖
𝐽𝑖𝑗𝜉

𝜇
𝑗 = 𝛾, ∀𝑖 = 1,… , 𝑁, (2.5)

with 𝛾 being the same for all the patterns. The latter point could appear
a rather strong assumption, but – at least in the random theory, where
patterns are all equivalent, as their entries are i.i.d. – it is reasonable.
The requirement (2.5) has important technical consequences. First, if
the patterns are Boolean, it can be rewritten in a more transparent form
as ∑𝑗≠𝑖 𝐽𝑖𝑗𝜉

𝜇
𝑗 = 𝛾𝜉𝜇𝑖 , which is nothing but the Personnaz et al.’s stability

2 The symmetry constraint on the coupling matrix is traditionally adopted
o that, in the statistical mechanical approach, detailed balance principle holds
nd this directly implies the stochastic relaxation to an equilibrium distribution
n Boltzmann–Gibbs form, see e.g., Coolen, Kühn, and Sollich (2005).

3 Stochastic realizations of the dynamics (2.1) work in similar ways, apart
rom the fact that the system is not fixed in the precise configuration given by
he 𝜇-th pattern, but it is free to explore (at some level given by the degree of
tochasticity) the associated attraction basin. This is strictly true if two condi-
ions hold: 𝑖. the initial configuration is close (in the Hamming sense) to the
arget pattern and 𝑖𝑖. in the thermodynamic limit, where ergodicity breaking

occurs (in the finite-size case, the transition between different attractors is

exponentially small in the system size but non-vanishing).
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criterion (Kanter & Sompolinsky, 1987; Personnaz et al., 1985). Fur-
ther, we can remove the constraint on the absence of self-interactions
and allow for 𝑗 = 𝑖 in the last sum,4 thus recasting the previous
xpression as an eigenvalue problem as 𝑱 ⋅𝝃𝜇 = 𝛾𝝃𝜇 ; this means that the
oupling matrix is designed so that the patterns are eigenvectors with
egenerate eigenvalue 𝛾.

In the general case, we can add an external field by replacing the
ocal internal field in (2.4) with the total field, i.e., 𝜑𝑖(𝝈) →

∑

𝑗 𝐽𝑖𝑗𝜎𝑗+ℎ𝑖.
he previous arguments still hold and, for 𝜇 = 1,… , 𝑃 , our problem
akes the form
{

𝑱 ⋅ 𝝃𝜇 + 𝒉 = 𝛾𝝃𝜇

𝑱 = 𝑱 𝑇 .
(2.6)

Therefore, in this context, training a network implies finding an
rrangement for 𝑱 and 𝒉, such that (2.6) holds and this can be recast
nto the minimization of a Mean-Squared Error (MSE) of the form
𝑱 ⋅ 𝝃𝜇 + 𝒉 − 𝛾𝝃𝜇)2, in such a way that we can set up the minimization
rocedure for a loss function reading as5

𝝃 (𝑱 ,𝒉) =
1
2𝑃

∑

𝑖,𝜇

(

∑

𝑗
𝐽𝑖𝑗𝜉

𝜇
𝑗 + ℎ𝑖 − 𝛾𝜉𝜇𝑖

)2

+ 1
2𝑃

∑

𝑗,𝜇

(

∑

𝑖
𝐽𝑖𝑗𝜉

𝜇
𝑖 + ℎ𝑗 − 𝛾𝜉𝜇𝑗

)2
+ 𝜖𝐽

∑

𝑖,𝑗
𝐽 2
𝑖𝑗 + 𝜖ℎ

∑

𝑖
ℎ2𝑖 , (2.7)

with 𝜖𝐽 , 𝜖ℎ ∈ [0,+∞]. The second term in the r.h.s. is obtained start-
ing from the first one and reverting the roles of 𝑖 and 𝑗; these two
contributions account for the stability criterion and the symmetry
constraint6 in a non-rigid way. The successive two contributions are 𝐿2-
regularization terms for, respectively, 𝑱 and 𝒉, that protect the norms of
these parameters from divergence during training as they are confined
by the quadratic potentials.

The explicit form of the solution of the constrained system (2.6) can
be achieved via gradient descent method 𝑱̇ = −∇𝑱𝝃 and 𝒉̇ = −∇𝒉𝝃 ,
which yields

−𝑱̇ = 𝑱𝜴 +𝜴𝑱 + 𝒉𝝃̄𝑇 + 𝝃̄𝒉𝑇 − 2𝛾𝜴 + 2𝜖𝐽𝑱 , (2.8)

−1
2
𝒉̇ = 𝑱 + 𝑱 𝑇

2
𝝃̄ + (1 + 𝜖ℎ)𝒉 − 𝛾 𝝃̄, (2.9)

where

𝛺𝑖𝑗 ≡
1
𝑃

∑

𝜇
𝜉𝜇𝑖 𝜉

𝜇
𝑗 , 𝜉𝑖 ≡

1
𝑃

∑

𝜇
𝜉𝜇𝑖 ,

re, respectively, the Hebbian kernel7 and the mean value of the 𝑖th
entry over patterns. Notice that the matrices 𝑱 and 𝑱 𝑇 satisfy the same
differential equation (2.8) since 𝜴 is symmetric, thus, if we consider
initial conditions such that 𝑱 (0) = 𝑱 (0)𝑇 , the symmetry is preserved for
any 𝑡 > 0 by uniqueness arguments. Hence, we can safely replace 𝑱 to
its symmetric part in (2.9). The convergence condition of the discrete
form of these dynamical equations is discussed in Appendix A.

Before concluding this Section, it is worth highlighting that, as
standard, the neural relaxation (2.1) and the training dynamics (2.8)–
(2.9) operate on different time scales, the former being much faster.
Biologically, this is motivated by the fact that synaptic plasticity is
much slower than neural activation and, in artificial neural networks,

4 This has quantitative effects on the estimate of the critical storage
apacity, that can be neglected here as the focus is rather on the generalization
apabilities in an unsupervised scenario, see e.g. Kanter and Sompolinsky
1987).

5 The case without self-interactions can be recovered by adding a contribu-
ion ∑

𝑖 𝜃𝑖𝐽𝑖𝑖 in the loss functions, where 𝜃𝑖 are Lagrange multipliers ensuring
hat the diagonal entries are set to zero.

6 We recall that the symmetry constraint for the coupling matrix 𝑱 is
introduced for consistency with the statistical mechanics picture and to ensure
that the sequential dynamics (2.1) exhibits fixed points.

7 With respect to the standard notation here the prefactor 1∕𝑁 is replaced
ith 1∕𝑃 .
3

T

by the fact that the machine is first trained and later used for task
accomplishment. For consistency with (2.1) one should therefore write
𝑱̇ = 𝑑𝑱

𝑑𝑡 𝜏
−1
𝐽 and 𝒉̇ = 𝑑𝒉

𝑑𝑡 𝜏
−1
ℎ , with 𝜏𝐽 ,ℎ ≫ 1. However, under this adiabatic

ypothesis, we can consider the network parameters 𝑱 ,𝒉 as planted
uring the neural dynamics and separate the two dynamical problems
n such a way that, when focusing on the synaptic evolution, 𝜏𝐽 ,ℎ can
e set as unitary without ambiguity.

. Dreaming as regularization, regularization as early-stopping

The global minimum for 𝝃 (𝑱 ,𝒉) in (2.7) can be obtained by re-
uiring the stability conditions 𝑱̇ = 𝟎 and 𝒉̇ = 𝟎 in Eqs. (2.8)–(2.9) that
ive

𝜴 +𝜴𝑱 + 𝒉𝝃̄𝑇 + 𝝃̄𝒉𝑇 − 2𝛾𝜴 + 2𝜖𝐽𝑱 = 0, (3.1)
𝑱 𝝃̄ + (1 + 𝜖ℎ)𝒉 − 𝛾 𝝃̄ = 0, (3.2)

hose solution reads as

𝒉 = 1
1 + 𝜖ℎ

(𝛾𝟏 − 𝑱 )𝝃̄, (3.3)

= 1
𝑃
𝝃̂ 𝛾
𝑰𝜖𝐽 + 𝑪

𝝃̂𝑇 , (3.4)

here

̂𝜇
𝑖 ≡ 𝜉𝜇𝑖 −

(

1 −
√

𝜖ℎ
1 + 𝜖ℎ

)

𝜉𝑖, 𝐶𝜇𝜈 ≡
1
𝑃

∑

𝑖
𝜉𝜇𝑖 𝜉

𝜈
𝑖 .

By inspecting Eq. (3.3) one can see that the external field stems
from the presence of biases in the input data, i.e. 𝜉𝑖 ≠ 0, in such a
way that re-centering the patterns by 𝜉𝜇𝑖 → 𝜉𝜇𝑖 − 𝜉𝜇𝑖 results in 𝒉 = 𝟎.
Thus, as long as data are pre-processed in this way, external fields
are not needed. Further, by looking at Eq. (3.4), one can see that
our solution recovers the interaction matrix of the ‘‘Dreaming Hopfield
model’’ (DHM) (Agliari et al., 2019; Fachechi et al., 2019, 2022)

𝑱 (𝐷) ≡ 1
𝑃
𝝃

𝑡𝑑
𝑰 + 𝑪𝑡𝑑

𝝃𝑇 , (3.5)

pon setting 𝛾 = 1 and identifying 𝑡𝑑 as the inverse of the hyperpa-
ameter 𝜖𝐽 ,8 that is, 𝑡𝑑 = 𝜖−1𝐽 . More precisely, in the DHM, the kernel
eads as 𝑱̃ (𝐷) ≡ 1

𝑁 𝝃 𝑡𝑑+1
𝑰+𝑪𝑡𝑑

𝝃𝑇 and it was obtained from the standard
Hebbian kernel by iteratively applying an unlearning protocol based
on an interplay of remotion and consolidation mechanisms inspired by
those occurring during sleep in mammals’ brain Crick and Mitchison
(1983), Hopfield et al. (1983); because of this analogy the time 𝑡𝑑 ,
which measures the number of unlearning iterations, is referred to as
‘‘dreaming time’’. The critical storage of the DHM has been shown to
increase monotonically with 𝑡𝑑 , reaching, in the 𝑡𝑑 → ∞ limit, the
theoretical upper bound known for symmetric networks and corre-
sponding to a number of retrievable patterns equal to the number of
neurons, i.e., 𝑃 = 𝑁 . Also, the DHM has been proved to outperform
the standard Hopfield model as for generalization abilities (Agliari,
Alemanno, Aquaro, Barra, Durante, & Kanter, 2024). The difference
between 𝑱 (𝐷) and 𝑱̃ (𝐷) just lays in a pre-factor 𝑃∕𝑁 and in a shift

8 The minimization of the regularized-MSE as defined in (2.7) is a special
etting of the usual setup of ridge regression theory (Hoerl, 1962; Hoerl & Ken-
ard, 1970), with the target response of the network being the multiplication
f the input vectors 𝝃𝜇 by the constant 𝛾. Neglecting the bias vector, the ridge

estimator minimizing the loss-function does coincide with the coupling matrix
𝑱 (𝐷), where 𝑡𝑑 plays the role of Tichonov regularization parameter (Tikhonov

Arsenin, 1977). Ridge regression, together with their generalization to non-
inear regression problems with kernel techniques (Schölkopf & Smola, 2002;
apnik, 1998; Vovk, 2013), is a central topic in statistical learning theory,

ocusing in particular on the role of the corresponding hyper parameter (see
.g. Alberti, De Vito, Lassas, Ratti, & Santacesaria, 2021; Meanti, Carratino,
e Vito, & Rosasco, 2022; Wu & Xu, 2020) as well as the implicit regularization
henomena emerging in high-dimensional statistics (Bartlett, Long, Lugosi, &
sigler, 2020; Hastie, Montanari, Rosset, & Tibshirani, 2022).
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𝑡𝑑 → 𝑡𝑑 + 1 which, as long as they are finite and non-vanishing, yield
only a quantitative correction.9

Moreover, for 𝑡𝑑 → ∞ (or, equivalently, for 𝜖𝐽 → 0), we recover
Kohonen’s projector matrix (Kohonen, 1984) 𝑱 (𝑃 ) ≡ 1

𝑃 𝝃𝑪
−1𝝃𝑇 .

Let us now move forward and notice that the solution 𝑱 (𝐷) obtained
by a fully-trained (𝑡 → ∞) 𝐿2-regularized (𝜖𝐽 ≠ 0) process can be
related to the solution of an unregularized (𝜖𝐽 = 0) process which is
run up to a finite time 𝑡∗; as we will see, this relation allows us to map
the dreaming time 𝑡𝑑 into the training time and therefore interpret the
dreaming mechanism as a training. In order to establish this relation,
we resume the dynamical problem with recentered patterns, in such a
way that the inferred field is vanishing10 and Eq. (2.8) simply reads as

−𝑱̇ = 𝑱 (𝜴 + 𝜖𝐽 𝟏) + (𝜴 + 𝜖𝐽 𝟏)𝑱 − 2𝛾𝜴. (3.6)

This can be recast in the basis of the eigenvectors of 𝜴 (denoting with
𝑎, 𝑏 = 1,… , 𝑁 the corresponding indices) as

−𝐽̇𝑎𝑏 =
(

𝜆𝑎 + 𝜆𝑏
)

𝐽𝑎𝑏 + 2𝜖𝐽𝐽𝑎𝑏 − 2𝛾𝜆𝑎𝛿𝑎𝑏, (3.7)

where 𝐽𝑎𝑏 is the element of 𝑱 in the current basis and 𝜎(𝜴) = {𝜆𝑎}𝑁𝑎=1
is the 𝜴 spectrum. By solving Eq. (3.7) we find that the non-diagonal
terms asymptotically go to zero as 𝐽𝑎𝑏 ∼ exp[−𝑡(𝜆𝑎 + 𝜆𝑏 + 2𝜖𝐽 )] for
any initial condition, in such a way that, at the equilibrium point, the
coupling matrix is diagonal. Here, we choose to prepare the system
in a configuration where no information is stored, i.e., a tabula rasa
setting 𝑱 (𝑡 = 0) = 0, in this way the off-diagonal entries remain stuck
at zero at any time 𝑡. Remarkably, the diagonal structure of 𝑱 (𝑡), when
expressed in the basis of the eigenvectors of 𝜴, implies that the two
matrices share the same eigenvectors. As for the entries on the principal
diagonal, given the above-mentioned initial condition, the solution of
the associated differential equation is

𝐽𝑎𝑎(𝑡) =
𝛾𝜆𝑎

𝜖𝐽 + 𝜆𝑎

{

1 − exp
[

−2𝑡(𝜆𝑎 + 𝜖𝐽 )
]

}

. (3.8)

As expected, in the limit of large training-time, we recover 𝑱 (𝐷), that is

𝐽𝑎𝑎(𝑡) =
𝑡→∞

𝛾𝜆𝑎
𝜆𝑎 + 𝜖𝐽

= 𝐽 (𝐷)
𝑎𝑎 , (3.9)

while, expanding at small 𝑡, we get

𝑎𝑎(𝑡) =
𝛾𝜆𝑎

𝜖𝐽 + 𝜆𝑎

{

1 − exp
[

−2𝑡(𝜆𝑎 + 𝜖𝐽 )
]

}

≈
𝑡≪1

2𝑡𝛾𝜆𝑎 (3.10)

which corresponds to 𝑱 ≈ 2𝑡𝛾𝜴: this means that, despite the blank
initial condition, at the very start of the training, the kernel 𝑱 is close
to an Hebbian structure.

9 In particular, the two models exhibit statistical- mechanics equiv-
lence as the partition function of the present model 𝑍𝛽 (𝑱 (𝐷)) ∶=

∑

{𝝈} exp
(

−𝛽
∑

𝑖,𝑗 𝐽
(𝐷)
𝑖𝑗 𝜎𝑖𝜎𝑗

)

can be turned into that of the original DHM by

escaling 𝛽 → 𝑃
𝑁

1+𝑡𝑑
𝑡𝑑

𝛽, where 𝛽 tunes the degree of stochasticity in the system,
hat is, it tunes the broadness of the distribution of the neural configurations
r, in a physical jargon, it plays as the inverse temperature.
10 Equivalently, we can choose to work without rescaling the patterns, thus
lso including the external fields. In this case, we can simplify the analysis of
he dynamical problem by requiring that 𝜏𝐽 𝑱̇ = −∇𝑱 and 𝜏ℎ𝒉̇ = −∇𝒉, and
onsider the case 𝜏ℎ ≪ 𝜏𝐽 . Under this assumption, the variation of the external
ields is much faster than the typical evolution of the coupling matrix, so –
hen dealing with the temporal behavior of the latter – the fields do relax

nstantaneously towards their fixed point at fixed 𝑱 (𝑡):

∞[𝑱 (𝑡)] = 1
1 + 𝜖ℎ

(𝛾𝟏 − 𝑱 (𝑡))𝝃̄.

s a consequence, the synaptic dynamics is described by the equation

𝑱̇ = 𝑱 (𝜴̂ + 𝜖𝐽 𝟏) + (𝜴̂ + 𝜖𝐽 𝟏)𝑱 − 2𝛾𝜴̂,

ith 𝛺̂𝑖𝑗 = 𝛺𝑖𝑗 −𝑀𝑖𝑗 = 𝑃 −1 ∑
𝜇 𝜉

𝜇
𝑖 𝜉

𝜇
𝑗 and 𝑀𝑖𝑗 = (1+𝜖ℎ)−1𝜉𝑖𝜉𝑗 . When dealing with

structured patterns, we will preserve the inferred field in order not to alter the
graphical appearance of the data; this is of course completely irrelevant when
4

dealing with a zero-mean dataset.
On the other hand, by setting 𝜖𝐽 = 0 in Eq. (3.8), we find that the
iagonal terms evolve as

𝑎𝑎(𝑡) = 𝛾[1 − exp(−2𝜆𝑎𝑡)]. (3.11)

ow, we compare the two explicit forms of the coupling matrix, i.e. the
egularized one at 𝑡 → ∞ (3.9) and the 𝑡-dependent one with 𝜖𝐽 = 0
3.11), and search for the characteristic time 𝑡∗ at which the latter is as
lose as possible to the former. To do this, let us consider the quantity

(𝜆, 𝑡, 𝜖𝐽 ) = 𝛾2
[ 𝜆
𝜆 + 𝜖𝐽

− 1 + exp(−2𝑡𝜆)
]2
,

measuring the squared difference between the components in the two
realizations at fixed eigenvalue 𝜆. Then, we take the average over the
𝜴 spectrum, i.e.

𝛿(𝑡, 𝜖𝐽 ) = ∫ 𝑑𝜆 𝛿(𝜆, 𝑡, 𝜖𝐽 )𝜌𝐸 (𝜆),

where 𝜌𝐸 (𝜆) =
1
𝑁

∑

𝜆𝑎∈𝜎(𝜴) 𝛿(𝜆−𝜆𝑎) is the empirical spectral distribution
f 𝜴. Notice that 𝛿 is nothing but the squared Frobenius distance
etween the Dreaming kernel and the unregularized coupling matrix.
his quantity is minimized for the following
∗(𝜖𝐽 ) = argmin

𝑡
𝛿(𝑡, 𝜖𝐽 ). (3.12)

his relation provides an expression for the time 𝑡∗ at which the
nregularized gradient descent over 𝝃 (𝑱 ,𝒉) should be interrupted if
e want a coupling matrix close to 𝑱 (𝐷) corresponding to the fully-

elaxed, regularized gradient-descent. The equivalence between the
wo scenarios is validated for synthetic, MNIST (Deng, 2012) and
ashion-MNIST (Xiao, Rasul, & Vollgraf, 2017) datasets as reported in
ig. 1.

The functional relation between 𝑡𝑑 = 𝜖−1𝐽 and 𝑡∗ highlighted in
q. (3.12) is depicted in Fig. 2. The logarithmic behavior is justified an-
lytically in Appendix C, where, by expanding (3.12) around the mean
igenvalue, we obtain a first-order approximation of the early-stopping
ime 𝑡∗(𝜖𝐽 ) which depends on 𝑡𝑑 and on the trace of 𝜴.

Another way to see the equivalence between regularization and
arly-stop is the following. Starting from Eq. (3.9), we notice that 𝜖𝐽
rovides a natural scale as

(𝐷)
𝑎𝑎 ≈

⎧

⎪

⎨

⎪

⎩

𝛾
(

1 − 𝜖𝐽
𝜆𝑎

)

if 𝜆𝑎 ≫ 𝜖𝐽
𝛾𝜆𝑎
𝜖𝐽

if 𝜆𝑎 ≪ 𝜖𝐽 .

Therefore, in the regularization approach, the parameter 𝜖𝐽 prevents
the saturation of all the diagonal entries of 𝑱 (𝐷) to the value 𝛾 (cor-
responding to Kohonen’s projector 𝑱 (𝑃 )Kanter & Sompolinsky, 1987;

ohonen, 1984; Kohonen & Ruohonen, 1973; Personnaz et al., 1985);
n fact, as long as 𝜖𝐽 > 0 (or 𝑡𝑑 finite), only the entries corresponding
o the top eigenvalues of 𝜴 get close to this limiting value, while
he others remain close to the initial condition (i.e., 𝐽𝑎𝑎 = 0 for any
= 1,… , 𝑁). On the other hand, the early-stop dynamically accounts

or such a filtering, since the time 𝑡∗ at which we stop the training is
hosen so that only a subset of the diagonal entries saturate to the fixed
oint 𝐽 (𝐷)

𝑎𝑎 = 𝛾 of the dynamical system (3.6), while all the others are
ot changed in a substantial way w.r.t. the initial condition; in fact,
s highlighted by (3.11), the characteristic time for saturation is entry-
ependent and given by (2𝜆𝑎)−1, thus entries corresponding to large

eigenvalues of 𝜴 are faster.
What we presented so far does apply to a general set of Boolean

vectors, as the coupling matrix 𝑱 naturally arises as the fixed point
of a gradient descent algorithm, the only hypothesis that we made
on the vectors 𝝃, that we want to store as attractors for the neural
dynamics, being that they are of the same length and that they share the
same ‘‘importance’’ 𝛾. In particular, the dataset items could represent
(noisy) realizations of some unknown ground-truth patterns to which
we have no direct access. In this context, regularization – preventing
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Fig. 1. Retrieval performance of dreaming kernel versus early-stopping. The three panels show a comparison between the fully-trained solution (3.4) with 𝜖𝐽 ≠ 0 and the
solution of the early-stopped training procedure with 𝜖𝐽 = 0; for the latter the final training time is chosen according to (3.12). In the leftmost panel, the dataset 𝝃 is made of 𝑃

ademacher vectors that naturally display zero mean, while in the central and in the rightmost panels the dataset 𝝃 is made of 𝑃 items randomly drawn from, respectively, the
NIST and the Fashion-MNIST datasets, and these vectors were pre-processed by Otsu method (Otsu, 1979) to make them binary. The items in these datasets were used to build

p the interaction matrices 𝑱 (𝐷) and 𝑱 (𝑡∗). For the random dataset 𝑁 = 200 and 𝛾 = 1, whereas for the MNIST and Fashion-MNIST 𝑁 = 784 and 𝛾 = 1, also, different values of the
atio 𝑃∕𝑁 are considered as reported in the common legend. The performance of the system is measured in terms of the normalized Hamming distance 𝑑(𝝃𝜇 ,𝝈(∞)) between the
arget pattern 𝝃𝜇 and the final configuration 𝝈(∞), reached by initializing the system in a corrupted version of 𝝃𝜇 (obtained by flipping the pattern entries with probability 0.1)
nd iterating (2.1) up to convergence. By averaging over all the 𝑃 patterns we get 𝑑(𝝃,𝝈(∞)) = 1

𝑃

∑

𝜇 𝑑(𝝃
𝜇 ,𝝈(∞)), which is plotted versus the dreaming time. We refer to Appendix B

or further details on numerics.
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Fig. 2. Stopping time as a function of dreaming time. The plot shows the early-
stopping time 𝑡∗ as a function of the dreaming time 𝑡𝑑 , obtained by a numerical estimate
(solid line) from Eq. (3.12) and by a fit (dashed line) based on the functional relation
𝑡∗(𝑡𝑑 ) = 𝑎 log(1 + 𝑏 𝑡𝑑 ), suggested by the analytical findings presented in Appendix C.
The network parameters for the three cases are 𝛾 = 1, 𝑁 = 784, and 𝑃∕𝑁 = 0.2. The
couple of coefficients (𝑎, 𝑏) estimated via linear least-squares are (𝑎 = 0.66, 𝑏 = 0.54), (𝑎 =
.11, 𝑏 = 3.25), (𝑎 = 0.19, 𝑏 = 1.67) for the random, MNIST and Fashion-MNIST datasets,
espectively.

he network parameters from acquiring large norms during learning –
lso allows for a reduction of the model specialization on the training
et. The relation 𝑡𝑑 = 𝜖−1𝐽 therefore suggests that overfitting issues may
rise for too large 𝑡𝑑 , as we are going to discuss in more details in
ection 4. Further, the dreaming time 𝑡𝑑 can be related, through 𝑡𝑑 =
−1
𝐽 and Eq. (3.12), to the stopping time 𝑡∗ in unregularized versions
f the gradient descent algorithm. This relation is consistent with
he previous remark since early-stop techniques are indeed designed
or avoiding overfitting11 and, again, recalling the monotonic relation
etween 𝑡𝑑 and 𝑡∗, we expect that overfitting issues may arise for too
arge 𝑡𝑑 . In the next section we will make use of the framework outlined
n this section and, specifically, of the optimal interaction matrix 𝑱 (𝐷),
n order to address the generalization capabilities of such models or,
onversely, the emergence of overfitting.

11 This is executed by following the behavior of training and validation
osses, abruptly stopping the training procedure when the latter exhibits a
eneral growing behavior, see e.g. Bös (1998).
5

r

4. Emergence of generalization and overfitting in Hopfield-like
models

4.1. A synthetic dataset

The results derived in Sections 2 and 3 were obtained without
making specific assumptions on the binary vectors {𝝃𝜇}𝑃𝜇=1, however,
n order to go further in the analytical investigations, some additional
ypothesis are in order. In fact, in theoretical studies one usually
ssumes that pattern entries are extracted according to a prescribed
robability distribution that allows working out a controllable theory.
or instance, when dealing with the Hopfield model, a common choice
s to take pattern entries as i.i.d. Rademacher random variables, and
hus treat the patterns as ground truths to be reconstructed starting
rom a corrupted version of them. However, in practical applications,
ne has no direct access to the ground-truth patterns, but only to
mpirical realizations constituting the dataset from which we want
o extract information. In a supervised scenario, one knows a priori
ow the different items making up the dataset are partitioned between
lasses, so that it is possible to define class archetypes (for instance,
he average of examples belonging to the same category) which are
aken as representative of the ground vectors, see e.g., Agliari et al.
2022), Aquaro et al. (2023), Fontanari (1990). In the unsupervised
ase, this clearly cannot be done, and the simplest way to proceed is to
nclude all the examples, homogeneously, in the treatment. This is the
ath that shall be pursued in this section and hereafter we detail this
nsupervised setting by considering a synthetic dataset.

Let {𝜻𝜇}𝐾𝜇=1 ∈ {−1,+1}𝑁×𝐾 be the ground patterns to which we
ave access only through empirical realizations referred to as 𝝃𝜇,𝐴 with
= 1,… ,𝑀 for each 𝜇. We assume that the examples in this training

ataset are obtained from the ground patterns with a multiplicative
oise, that is, 𝝃𝜇,𝐴 = 𝝌𝜇,𝐴𝜻𝜇 (with entry-wise multiplication), with

rob[𝜒𝜇,𝐴
𝑖 = ±1] = 1 ± 𝑟

2
,

where 𝑟 ∈ [0, 1] is the parameter quantifying the quality of the example
i.e., it measures the correlation between the example and the corre-
ponding ground-pattern). Our training dataset is therefore constituted
y the set  = {𝝃𝜇,𝐴}𝐴=1,…,𝑀

𝜇=1,…,𝐾 and we distinguish two loads: 𝛼 ∶=
𝑀∕𝑁 , i.e., the ratio between the number of examples in the training

et and the network size, and 𝜂 ∶= 𝐾∕𝑁 ≤ 1, i.e., the ratio between
he number of classes in the dataset (which is in principle unknown)
nd the network size. With this kind of available information, we want
o train the system in order to make it able to generalize, namely to

𝜇
econstruct the hidden ground-truths 𝜻 , starting from an input data
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Fig. 3. Schematic representation of training points, spurious combinations and
ground-pattern. The figure sketches the organization of attracting configurations
within each class in the dataset. The class is represented by a ground-pattern 𝜻 (the
red dot in the center), while the training points are located at distance (1 − 𝑟)∕2
from it (i.e., they have correlation 𝑟). Spurious combinations of training points are
themselves attracting points, and their correlation 𝑐𝐿(𝑟) increases with the number 𝐿
of training points involved in the combination. For large enough 𝑀 , the resulting
landscape consists in many local minima very close to each other, so that they coalesce
and form flat valleys around the ground pattern.

𝝈(0) that is a corrupted representation of 𝜻𝜇 . Since we have no direct
access to the ground-truths, a direct error minimization procedure is
not feasible in this case. However, we can include each single item
in our loss function and take advantage of emergent phenomena in
Hopfield-like models: as we will see, for a sufficiently large dataset,
a plethora of spurious states appear and, depending on the control
parameters of the system, these can favor the appearance of a gener-
alization phase. In this scenario, regularization mechanism plays a key
role, preventing the solution of the system to trivialize or overspecialize
on the training set. In this unsupervised setting, the interaction matrix
is therefore obtained by plugging in (3.5), that is still solution of the
gradient descent Eq. (2.6), the empirical realization of the Hebbian
kernel with entries 𝛺𝑖𝑗 =

1
𝑃
∑

𝜇,𝐴 𝜉𝜇,𝐴𝑖 𝜉𝜇,𝐴𝑗 , and the empirical correlation
matrix, whose size is (𝐾𝑀) × (𝐾𝑀) and whose entries are 𝐶(𝜇𝐴),(𝜈𝐵) =
1

𝐾𝑀
∑

𝑖 𝜉
𝜇,𝐴
𝑖 𝜉𝜈,𝐵𝑖 .

To evaluate the performance of the network, we generate a test set
̃ = {𝝃̃𝜇,𝐴}𝐴=1,…,𝑀

𝜇=1,…,𝐾 , sampled in the same way as the training set, and
initialize the network with the configurations of the test set, say 𝝈(0) =
𝝃̃𝜇,𝐴, the latter being, by construction, a noisy version of 𝜻𝜇 with quality
𝑟. Next, we check whether the network response is 𝑓 (𝝈(0)) = 𝜻𝜇 , an
outcome that we interpret as a correct generalization; conversely, the
retrieval of one of the training items, say 𝑓 (𝝈(0)) = 𝝃𝜇,𝐴, is interpreted as
overfitting. In the following subsection, we discuss the role of spurious
states in the emergence of generalization and overfitting.

4.2. Spurious states of training data enable generalization

In the classical Hopfield setup, spurious states (i.e., configurations
that are combinations of stored data) are known to impair the retrieval
capabilities of the model and should be suitably treated in order to
reduce their attractiveness, see e.g., Agliari et al. (2019), Christos
(1996), Crick and Mitchison (1983), Dotsenko et al. (1991), Fachechi
et al. (2019, 2022), Hopfield et al. (1983), Plakhov et al. (1995). In
fact, the dreaming mechanisms mentioned in Section 3 are precisely
aimed at this purpose and their implementation improves the retrieval
capabilities of the network. On the other hand, when dealing with a
dataset made of unlabeled examples, the situation is quite different, and
spurious attractors can be helpful for the emergence of generalization
capabilities of the network, as we are going to discuss.
6

Let us suppose that the training set is made of a large number 𝑀 of
data for each class, and let us consider a spurious configuration given
by a symmetric combination of 𝐿 examples pertaining to the same class,
that is,

𝝃𝜇𝐿 = sgn
(

𝐿
∑

𝑙=1
𝝃𝜇,𝐴𝑙

)

, (4.1)

being 𝐴1,… , 𝐴𝐿 ∈ {1,… ,𝑀} the indices of the examples that we are
mixing. Denoting with 𝑐𝐿(𝑟) ∶= 𝝃𝜇𝐿 ⋅ 𝜻𝜇∕𝑁 the correlation between 𝝃𝜇𝐿
and the related ground truth, we notice that, as long as 𝐿 is relatively
large, 𝝃𝜇𝐿 displays a correlation with the ground pattern 𝜻𝜇 that is
larger than the correlation 𝑟 displayed by any training item, that is
𝑟 < 𝑐𝐿(𝑟) →

𝐿≫1
1, see Appendix D for more details.

Now, spurious configurations of the form (4.1) in Hopfield-like mod-
els can be stable attractors, so that running the dynamics (2.1) we could
end in one of these minima and reach a relatively fair retrieval. Indeed,
each of these configurations originates as a combination of attractors
associated to stored vectors. In our scenario, increasing 𝑀 , would result
in an increasing number of intra-class spurious configurations which,
as 𝐿 is increased, do exhibit larger and larger correlation with the
corresponding ground-truths as sketched in Fig. 3. For sufficiently large
𝑀 , it is then reasonable to expect that minima of training examples
and spurious configurations coalesce together, so that the resulting
landscape consists in a wide minima centered in the ground-truth 𝜻𝜇 ,
favoring the reconstruction of the hidden patterns.

Given such a landscape, which is the role of 𝑡𝑑 (or, equivalently,
of 𝜖𝐽 )? As recalled at the beginning of this subsection, in a Hopfield
model where we store ground patterns, dreaming mechanisms reduce
(and ultimately remove, if the load is not too high) the stability of
spurious mixtures between independent patterns and this is obtained
by shrinking and lifting the attraction basins associated to the pat-
terns. Moving to an unsupervised setting, we realize that there are
two kinds of mixtures, according to whether they involve examples
belonging to different classes or examples belonging to the same class;
the former, just like in the Hopfield model, impair retrieval and should
be removed, while the latter, as mentioned above, can be beneficial
for generalization. Therefore, in this case, the dreaming mechanism
should operate in removing only the first type of correlation. In fact,
by increasing 𝑡𝑑 we are disentangling the minima corresponding to
the stored patterns and this process affects progressively minima with
larger and larger overlap. Inter-class correlation is typically smaller
than intra-class correlation – their extents being related to, respectively,
𝐾∕𝑁 and 𝑟 – and relatively small values of 𝑡𝑑 can be sufficient to
detach the attraction basins related to different ground-patterns. Yet,
if we let the dreaming mechanism operate for too long, the mélange of
intra-class minima can be separated as well and they get fragmented
in many energetic minima, each associated to a single example. As a
consequence, we cannot retrieve spontaneously-formed archetypes, but
only the single examples: the system is specialized over the training
set, thus ending in an overfitting regime. This picture is corroborated
by the numerical results reported in Fig. 4, where we focus on the
behavior of the system when prepared in the neighborhood of a training
example or of an intra-class spurious configuration. First, we notice
that, for low enough 𝑡𝑑 , even when the system is initialized in a
configuration consisting in a mild perturbation of one of the stored
examples (𝐿 = 1), the neural dynamics will drive it towards a final
configuration with the relative distance w.r.t. the reference example
being (1 − 𝑟)∕2 (precisely the distance between the stored examples
and the corresponding ground-truth). For spurious states, the situation
is similar, with the relative distance between the final state and the
reference mixture getting lower and lower as 𝐿 is increased (as the
correlation 𝑐𝐿(𝑟) with the ground-truth increases monotonically with
𝐿). A moderately larger 𝑡𝑑 yields a larger attractivity of the ground
patterns. This picture is consistent with our claim about the coalescence
of the population of attraction basins in a wide minima centered at 𝜻𝜇 .
By further increasing 𝑡 , the training points get attractive, with a basin
𝑑
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Fig. 4. Relaxation to fixed points from perturbed training examples and spurious states. The plots show the retrieval capabilities of the model initialized in a configuration
consisting in a perturbed version of the training examples (i.e., 𝐿 = 1) or in an intra-class spurious configuration 𝝃𝐿 (as given by Eq. (4.1)). The network size is fixed to 𝑁 = 500,
the number of classes is 𝐾 = 10, and the quality of the dataset is 𝑟 = 0.8, while different values of dreaming time (from left to right 𝑡𝑑 = 0.1, 2, 10) and of load (from top to bottom
𝛼 = 0.4, 0.6, 0.8, that is, 𝑀 = 20, 30, 40) are considered. The analysis is performed by taking a reference configurations 𝝃𝐿 (with for 𝐿 = 1, 3, 5, 20, as explained by the legend) and
applying a perturbation that consists in randomly flipping a fraction 𝑞 of the entries; preparing the system in this configuration 𝝈(0), we update the network up to convergence
towards the fixed point 𝝈(∞). Then, we compare the average distances 𝑑(𝝃𝐿 ,𝝈(0)) and 𝑑(𝝃𝐿 ,𝝈(∞)) between the reference configurations and, respectively, the initial and the final
onfigurations. The dashed black lines correspond to the distance between the training examples used to build 𝑱 (𝐷) and the associated ground-truths. The results are averaged over
0 different realizations of the dataset.
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idth depending on the number of examples per class. This signals that,
ccording to the setting, the dreaming mechanism can either enhance
eneralization or favor overfitting.

. Numerical experiments

In this Section, we provide numerical evidences to our theoretical
indings. We first inspect the regions in the space of parameters (𝛼, 𝑡𝑑 , 𝑟)
here the system equipped with the interaction matrix 𝑱 (𝐷) can suc-

essfully generalize, that is, when tested with examples not included in
he training set (but sharing with them the same underlying statistics),
t is able to fairly reconstruct the ground pattern. Next, we corroborate
his picture by applying a clustering algorithm to the network outputs
nd showing that, in the region of the parameter space where the
ystem is expected to generalize (resp. overfit), the number of classes
s nicely estimated (overestimated). Details on numerics are collected
n Appendix B.

.1. Generalization diagrams

In the first part of the numerical experiments we consider both
tructureless and structured datasets, to confirm and check the ro-
ustness of our theoretical results. The structureless datasets are built
ynthetically as follows: we initially generate a set of 𝐾 Rademacher
round patterns  = {𝜻𝜇}𝜇=1,…,𝐾 , whence we obtain a set of training
xamples  = {𝝃𝜇,𝐴}𝐴=1,…,𝑀

𝜇=1,…,𝐾 (characterized by a quality 𝑟 as specified in
ection 4.1), which are used to build 𝑱 (𝐷), according to Eq. (3.5). Next,
e generate a test set ̃ = {𝝃̃𝜇,𝐴}𝐴=1,…,𝑀

𝜇=1,…,𝐾 , applying the same procedure
sed for the training set, that is, each item 𝝃̃𝜇,𝐴 exhibits a quality
w.r.t. the related ground pattern 𝜻𝜇 . For structured datasets, we

onsider the MNIST (Deng, 2012) and the Fashion-MNIST (Xiao et al.,
7

017) benchmarks and define the ground patterns as the class averages,
hen, the training and the test sets are made of 𝑀 items, drawn from
he whole datasets (overall made of, respectively, 60000 and 10000
nstances), in such a way that the two sets have null intersection.

Whatever the dataset, we initialize the system in a configuration
(0) belonging to the test set, we run the dynamics (2.1) and collect

he final configuration 𝝈(∞) = 𝑓 (𝝈(0)). In other words, 𝝈(0) and 𝝈(∞)

represent, respectively, the input and the output of the system. Next,
we evaluate the following quantities:

𝑑𝜉 = min
𝝃∈

𝑑(𝝃,𝝈(∞)), (5.1)

𝑑𝜁 = min
𝜻∈

𝑑(𝜻 ,𝝈(∞)), (5.2)

where 𝑑 ∶ {−1,+1}𝑁 × {−1,+1}𝑁 → [0, 1] is the normalized Ham-
ming distance, measuring the fraction of misaligned entries among
the two configurations that are compared. We stress that, despite not
highlighted in Eqs. (5.1)–(5.2), these quantities depend on the initial
configuration as 𝝈(∞) does depend on 𝝈(0). These distances are then
averaged over the sample ̃, to get, respectively, 𝑑𝜉 and 𝑑𝜁 .

In Fig. 5, we compare the behavior of 𝑑𝜉 and 𝑑𝜁 versus 𝑡𝑑 , for
different choices of 𝑀 , while 𝐾 is fixed. We find that, in any case, 𝑑𝜉
and 𝑑𝜁 are monotonically decreasing with 𝑡𝑑 as long as 𝑡𝑑 is relatively
small, next, their behavior depends on 𝑀 . In particular, for the random
dataset, when 𝑀 is small, we always have 𝑑𝜉 < 𝑑𝜁 that evidences
poor generalization capabilities; when 𝑀 is larger we can leverage
𝑡𝑑 to enhance the generalization capabilities and get 𝑑𝜁 < 𝑑𝜉 , yet
when 𝑡𝑑 is too large the curves cross; finally, when 𝑀 is large, at
intermediate dreaming time, 𝑑𝜉 and 𝑑𝜁 exhibit a plateau and at large
values of 𝑡𝑑 they grow, the height of the plateau (respectively, ≈ (1−𝑟)∕2
and ≈ 0) suggests that there the final configuration is close to the
ground pattern, while the final growth suggests a possible harmful
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Fig. 5. Retrieval on synthetic and structured datasets. The retrieval performance is measured in terms of the normalized Hamming distance 𝑑 between the final configuration
(∞) and the nearest training example 𝝃 (dotted curve, see Eq. (5.1)) and the nearest ground-truth 𝜻 (solid curve, see Eq. (5.2)); the results presented have been averaged over

he 𝐾 ×𝑀 different initial configurations which constitute the test set (see Appendix B for further details). The network parameters for the random dataset are 𝑁 = 200, 𝐾 = 10
nd 𝑟 = 0.8, whereas for the structured datasets they are 𝑁 = 784, 𝐾 = 10. For all the datasets, we reported results for different choices of 𝛼 = 0.1, 0.2 and 0.8, retaining 𝜂 = 𝐾∕𝑁
ixed, therefore, recalling that 𝛼 = 𝐾𝑀∕𝑁 , we varied 𝛼 by increasing 𝑀 .
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ffect of a large dreaming time. As for structured datasets, 𝑑𝜁 exhibits
minimum at intermediate values of 𝑡𝑑 , corresponding to an optimal

eneralization performance and, again, for large dreaming times, 𝑑𝜁
rows. In particular, for the MNIST dataset, for relatively small (resp.
arge) values of 𝑡𝑑 , we get 𝑑𝜁 < 𝑑𝜉 (resp. 𝑑𝜁 > 𝑑𝜉), suggesting good
impoverished) generalization capabilities. Before proceeding, we also
mphasize that, for all the datasets considered, when 𝑡𝑑 ≫ 1 and when

is relatively large, both 𝑑𝜁 and 𝑑𝜉 grow. This is due to the fact
hat the number of examples is relatively large to give rise to spurious
ttractors, but not large enough to make these attractors close to the
round truths; this point is further examined in the following.

We now focus on the synthetic dataset and summarize the infor-
ation processing capabilities of the system into ‘‘phase diagrams’’. To

his aim, we distinguish between different outcomes as follows:

• Success: this corresponds to 𝑑𝜁 < 𝑑𝜉 and 𝑑𝜁 < 1−𝑟
2 . The first

requirement ensures that the system relaxes in a configuration
which is more correlated with the ground pattern than with the
training points; the second condition, instead, guarantees that
the dynamics ends up within the Hamming ball centered in the
ground-truth with radius (1 − 𝑟)∕2 and therefore that the system
has moved closer to the ground-truth.

• Overfitting: this corresponds to 𝑑𝜁 ≥ 𝑑𝜉 and 𝑑𝜉 < 1−𝑟
2 . The

first condition states that the final configuration is closer to one
of the training points than to the ground; the second condition,
guarantees that, this time, the dynamics ends up within the
Hamming ball centered in the nearest training points with radius
(1 − 𝑟)∕2 and therefore that the system has moved closer to a
specific training item.

• Failure: otherwise. In this case the system is neither sufficiently
close to a ground-pattern nor to a training item.
8

a

For a given choice of 𝐾 and 𝑟, moving within the (𝛼, 𝑡𝑑 ) plane, we thus
depict the generalization diagrams for synthetic datasets. The results
are reported in Fig. 6 and discussed hereafter.

Starting from panel 𝑎 (𝐾 = 10 and 𝑟 = 0.7), we find that, at
ery low 𝑡𝑑 , the system is always in a failure regime. This is not
urprising since, there, the interaction matrix is very close to the
ebbian prescription and, for this choice of the dataset parameters,

nterferences among examples are significant enough for the system to
e likely to end up in inter-class spurious states, thus we expect that
quilibrium configurations are non-retrieval states. Increasing 𝑡𝑑 , such
nterferences are (possibly) removed. If the load parameter 𝛼 is low
meaning that the number of examples is low), the system enters in
n overfitting regime because the minima corresponding to examples
re sparse enough to be easily disentangled. On the other hand, by
ncreasing 𝛼 (namely by increasing the number of examples per class),
he attractors coalesce and configurations corresponding to the ground
atterns become more and more attractive, in such a way that the
ystem starts to well-generalize. When 𝑡𝑑 ≫ 1, as 𝛼 is increased,
he transition from overfitting to success is no longer direct as, for
ntermediate values of 𝛼, we can end up into spurious states that are still
oo sparse to ensure a sound generalization; this region can be shrunk
y enhancing the dataset quality. In fact, by increasing the dataset
uality as in panel 𝑏 (𝐾 = 10 and 𝑟 = 0.8), the qualitative picture is
he same, with just an expansion of the success region due to the fact
hat intra-class examples are now closer to each other. Next, we move
o panels 𝑐 and 𝑑, where a larger 𝜂 (namely, a larger number of classes

= 30, with fixed 𝑁) benefits the failure region, since in this case
he clusters of minima associated to each class are closer and clusters
f minima corresponding to different classes now present non-trivial
verlaps, in such a way that the relaxation of the system could end far

way from the class from which the initial condition was generated.
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Fig. 6. Generalization diagrams. The four diagrams show the generalization outcomes of the neural network where the interaction matrix 𝑱 (𝐷) is built on a sample of random,
synthetic examples {𝝃𝜇,𝐴}𝐴=1,…,𝑀

𝜇=1,…,𝐾 with 𝑁 = 200 and 𝑀 tunable (𝑀 = 𝛼𝑁∕𝐾). In the (𝛼, 𝑡𝑑 ) plane, for various values of 𝐾 and 𝑟, we outline three regions: success (S), overfitting
(O), failure (F). In any case the initial conditions 𝝈(0) are taken as perturbed versions of the ground-truths sampled with the same quality 𝑟 as the training examples.
5.2. An analogy with a clustering algorithm

In this section, we use another approach to check the emergence
of overfitting and generalization regime as the system parameters are
tuned. The idea is to use an unsupervised clustering algorithm to par-
tition the final configurations 𝝈(∞) obtained by applying the dynamics
(2.1) to the test configurations; here unsupervised refers to the fact that
the clustering algorithm is unaware of the number of effective clusters.

We start the experiment by generating a random synthetic dataset
 made of 𝐾 Rademacher ground patterns, hence we build a training
set  and a test set ̃, both characterized by a quality 𝑟 and a size
𝑀 . We use the former to construct 𝑱 (𝐷) and the latter to initialize the
neural configuration. We collect the final configurations 𝝈(∞) obtained
by iterating the neural dynamics and we expect that, if the network
correctly generalizes, the clustering algorithm applied to the final
configurations will return an estimated number of clusters 𝐾̂ which is
(approximately) 𝐾 and each cluster contains a number of items which
is (approximately) 𝑀 . Conversely, if the network overfits, we expect
that 𝐾̂ > 𝐾. In order to quantify the likelihood of these outcomes we
introduce the accuracy 𝑀̂

𝑀×𝐾 ∈ [0, 1], where 𝑀̂ is the total number of
examples correctly clustered by the algorithm. The unsupervised clus-
tering algorithm considered here is based on the Disjoint Set Union data
structure (Yadav, Shokeen, & Yadav, 2021), which works as follows.
Initially, it associates to each item 𝝈(∞) a different class, in such a way
that, at this stage, the number of estimated classes is 𝑀 ×𝐾. Next, we
consider all the

(𝑀
2

)

couples of configurations 𝝈(∞) and check whether
their normalized Hamming distance is smaller than a threshold 𝑑∗(𝑟)
and, if so, the two items are merged in the same class. Once all the
couples have been examined the algorithm stops. The threshold value
9

is chosen equal to the minimum of the normalized Hamming distance
between all pairs of examples belonging to the test set:

𝑑∗(𝑟) = min
(𝝈1 ,𝝈2)∈̃×̃

𝝈1≠𝝈2

𝑑(𝝈1,𝝈2).

The idea underlying this choice is that, after applying the dynamics to
the test examples, if the network performs well, the examples belonging
to the same class get closer to the common ground pattern, their
distance is reduced and expected to be smaller than 𝑑∗(𝑟); on the other
hand, for two examples belonging to different classes the distance is
expected not to vary significantly and remain larger than 𝑑∗(𝑟).

The results of this experiment, repeated for different loads and
different dreaming times, are reported in Fig. 7. The panels in the
first row show the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (left axis) and the difference between 𝐾̂
and the true number of classes 𝐾 (right axis) as a function of 𝑡𝑑

1+𝑡𝑑
,

while the panels in the second row show the average distances 𝑑𝜁 and
𝑑𝜉 between 𝝈(∞) and, respectively, the ground truth and the nearest
example, as a function of 𝑡𝑑

1+𝑡𝑑
. The colors in the background correspond

to the different regimes of the network and we used the same colormap
previously adopted in Fig. 6, to highlight the consistency. In fact,
in the failure region the accuracy is low and the number of clusters
is underestimated; in the success region the accuracy is unitary and
𝐾̂ = 𝐾; in the overfitting region the accuracy is suboptimal and the
number of clusters is overestimated. Further, these outcomes are nicely
mirrored by the behavior of 𝑑𝜁 and 𝑑𝜉 : the transition from failure to
success corresponds to an abrupt decrease of 𝑑𝜁 that leaves 𝑑𝜉 behind;
the transition between success to overfit corresponds to 𝑑𝜉 outpacing
𝑑𝜁 .

We stress the clustering procedure described here acts on the dataset
items by grouping those with a smaller Hamming distance, in such
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Fig. 7. Clustering of the test set. Application of the clustering algorithm in case of a random synthetic dataset with parameters 𝐾 = 10, 𝑟 = 0.8, 𝑁 = 200 for two different load
values: 𝛼 = 0.15 and 𝛼 = 0.3 keeping fixed the number of ground-truths 𝐾. In the simulation with 𝛼 = 0.15 the overfitting region occurs when 𝑑𝜉 is overcome by 𝑑𝜁 , in this region
the clustering algorithm is no longer able to correctly cluster the examples and the number of clusters estimated starts to grow. In the simulation with 𝛼 = 0.3, the number of
examples per ground truth in the training set is double that of the previous simulation, 𝑑𝜁 is always lower than that of the nearest training example 𝑑𝜉 and the overfitting region
is no longer present.
Fig. 8. Emergence of fixed points for a system trained without supervision. This schematic picture shows the evolution of the landscape generated by 𝑱 (𝐷) as 𝑡𝑑 is varied.
When 𝑡𝑑 is relatively low (left), the mélange of minima has been partially disentangled: the weak inter-class interference is removed, while the minima corresponding to examples
of the same class are still clustered; when 𝑡𝑑 is relatively large (right) the interference among training examples has been completely shifted. This picture is compatible with our
numerical results reported in Fig. 4.
a way that the items belonging to the same cluster are arranged
around the related centroid. Therefore, this procedure turns out to
be effective when a clustering based on the notion of distance be-
tween items is meaningful. In structured datasets (such as MNIST
and Fashion-MNIST), this does not necessarily identifies the ‘‘natural’’
clusters (i.e., those corresponding to the ten digits, or to the different
fashion categories).
10
6. Conclusions

The main results obtained in this work are listed hereafter:

• We introduced a regularized loss function, whose minimum pro-
vides the interaction matrix 𝑱 of an associative neural network;
according to the dataset provided, the neural network equipped
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with the solution 𝑱 is able to retrieve a set of stored ground
patterns or to generalize starting from a corrupted version of
unknown ground patterns.

• We proved that the solution 𝑱 of the loss function corresponds to
a Hebbian-like kernel 𝑱 (𝐷), known as dreaming Hebbian kernel
and parametrized by the ‘‘dreaming time’’ 𝑡𝑑 , as long as 𝑡𝑑 is
identified with the inverse of the regularization parameter 𝜖𝐽 .

• In the absence of regularization (𝜖𝐽 = 0) the solution 𝑱 (𝐷) can
be recovered by applying an early-stop strategy to the gradient
descent over the loss function. This suggests that 𝑡𝑑 (or, equiva-
lently, 𝜖𝐽 = 0) plays a role in preventing overspecialization on the
training set.

• Focusing on the case of a training set made of corrupted versions
of some unknown ground patterns, we found robust numerical
evidence that relatively large values of 𝑡𝑑 and relatively sparse
training sets can yield overfitting.

• The emergence of overfitting is related to the structure of the
Lyapunov function associated to the neural dynamics and this
picture allowed us to speculate on optimal settings for the loss
hyperparameters and/or for the training time. This picture is
sketched in Fig. 8.

To conclude, our results highlight the relevant mechanism allow-
ing for the emergence of generalization capabilities of Hopfield-like
networks: this is identified as the coalescence of attractors associated
to training points giving rise to wide minima around the underlying
ground truths (which is, indeed, a crucial ingredient for general models
exhibiting robust generalization properties, see for example Baldassi,
Lauditi, Malatesta, Perugini, & Zecchina, 2021; Baldassi, Pittorino, &
Zecchina, 2020 and references therein). In this scenario we give a
comprehensive characterization of generalization and overfitting for
synthetic random datasets. Developments of the present work would re-
quire the extensions to structured data, as well as a statistical mechanics
characterization of relevant collective phenomena.
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Appendix A. Convergence of the gradient descent procedure

The discretization of the dynamical equation (3.6) reads as

𝑱 (𝑛 + 1) = 𝑱 (𝑛) − 𝜖
[

𝑱 (𝑛)(𝜴 + 𝜖𝐽 𝟏) + (𝜴 + 𝜖𝐽 𝟏)𝑱 (𝑛) − 2𝛾𝜴
]

, (A.1)

with initial condition 𝑱 (𝑛 = 0) = 0. For simplicity, we fix 𝛾 = 1
without loss of generality, as it only accounts for a global rescaling of
the coupling matrix. The dynamical equation Eq. (A.1) can be rewritten
as a fixed-point equation:

𝑱 (𝑛 + 1) = 𝐺𝜖(𝑱 (𝑛)),

with

𝐺𝜖(𝑱 ) = 𝑱 − 𝜖(𝑱 (𝜴 + 𝜖𝐽 𝟏) + (𝜴 + 𝜖𝐽 𝟏)𝑱 − 2𝛾𝜴).

Given 𝑱 and 𝑲 two 𝑁 ×𝑁 matrices, we have

𝐺𝜖(𝑱 ) − 𝐺𝜖(𝑲) = 1
2
(𝑱 −𝑲)(𝟏 − 2𝜖(𝜴 + 𝜖𝐽 𝟏)) +

1
2
(𝟏 − 2𝜖(𝜴 + 𝜖𝐽 𝟏))(𝑱 −𝑲).

Taking the (operator) norm of both sides, we have

‖𝐺𝜖(𝑱 ) − 𝐺𝜖(𝑲)‖ ≤ ‖𝑱 −𝑲‖ ⋅ ‖𝟏 − 2𝜖(𝜴 + 𝜖𝐽 𝟏)‖ = ‖𝑱 −𝑲‖(1 − 2𝜖(𝜆1 + 𝜖𝐽 )),

where 𝜆1 is the largest eigenvalue of 𝜴. This means that the function
𝐺𝜖(𝑱 ) is a contraction map, provided that

𝜖 ≤ 1
2(𝜖𝐽 + 𝜆1)

. (A.2)

and, by exploiting Banach Fixed Point Theorem, the algorithm con-
verges to the solution of the system. Further, by exploiting Gershgorin’s
theorem we can get the following bound

𝜆1 ≤
∑

𝑖𝑗
|𝛺𝑖𝑗 |. (A.3)

Thus, for any 𝜖 such that

𝜖 ≤ 1
2(𝜖𝐽 +

∑

𝑖𝑗 |𝛺𝑖𝑗 |)
, (A.4)

the convergence requirement (A.2) is trivially satisfied.

Appendix B. Methods

This appendix is devoted to a detailed description of numerical ex-
periments. We recall that our experiments encompass a training phase,
in which we train the coupling matrix of the network with a training
set, and a reconstruction phase, in which we perform a sequential
dynamics on the neural configuration starting from an item belonging
to a test set. Training and test sets are described in Sections 4.1 and
5: synthetic (Rademacher ground patterns) and benchmark (MNIST
and Fashion-MNIST) datasets are considered. To facilitate the repro-
ducibility of the research, here we present algorithms and pseudocodes
of the numerical experiments (Appendix B.1) along with the per-
formance metrics to evaluate the quality of the final neuron states
(Appendix B.2); further evidence on the emergence of overfitting is
also provided (Appendix B.3). Moreover, we point out that all the
simulations were carried out using the high-performance, dynamic
programming language Julia and were run on a personal computer with
an Intel Core i7 processor.

B.1. Training design and parameters assignment

In the training phase we find the expression of the coupling matrix
𝑱 and of the external field 𝒉 which minimize the loss function 𝝃 (𝑱 ,𝒉)
given in Eq. (2.7) via gradient descent method. The parameters ap-
pearing in the loss function are summarized and described in Table 1.
Specifically, 𝑁 is the size of the input and is equal to the length of
the training patterns, 𝑃 is the size of the training set (or total number
of training patterns), 𝜖𝐽 is the regularization constant for the coupling
matrix, 𝜖 is the regularization constant for the field 𝒉 and, finally, 𝑡 is
ℎ
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Table 1
Training parameters.

Parameter Description

𝑁 Size of the input
𝑃 Size of the training set
𝜖𝐽 𝐿2-regularization term for 𝑱
𝜖ℎ 𝐿2-regularization term for 𝒉
𝑡 Training time

Algorithm 1 Training of the coupling matrix 𝑱
Input : Training set 𝝃 = {𝝃𝜇}𝑃𝜇=1 ∈ {−1,+1}𝑁×𝑃 , stopping time 𝑡,

regularizator 𝜖𝐽
Settings for 𝑡 and 𝜖𝐽 :

𝐿2-regularization: 𝑡 = ∞ and 𝜖𝐽 > 0
Early-stop regularization: 𝑡 = 𝑡∗ as given by (3.12) and 𝜖𝐽 = 0

Output : 𝑱 (𝑡),𝒉(𝑡)
1: 𝑱 (𝟎) = 𝟎𝑁,𝑁 inizialization of the coupling matrix
2: 𝝃𝜇 = 𝝃𝜇 − 1

𝑃
∑𝑃

𝜇=1 𝝃
𝜇 pattern centering

3: 𝜴̂ = 1
𝑃 (𝝃̂ ⋅ 𝝃̂

𝑇 ) computation of the Hebbian kernel
4: 𝛥𝑡 =

1
2 [𝜖𝐽 +

∑𝑁
𝑖,𝑗=1 |𝛺̂𝑖𝑗 |]−1 discretization time as given by (A.4)

5: 𝑖𝑡𝑒𝑟𝑠 =
⌈

𝑡
𝛥𝑡

⌉

number of iterations to be run
6: n=0
7: repeat
8: 𝑱 = 𝑱 − 𝛥𝑡

(

2𝜖𝐽𝑱 + 𝑱 ′𝜴̂ + 𝜴̂′𝑱 − 2𝛾𝜴̂
)

9: 𝑛 = 𝑛 + 1
0: until 𝑛 = 𝑖𝑡𝑒𝑟𝑠 or 𝑱 has reached a fixed point.
1: return 𝑱 ,𝒉 = (𝛾𝟏 − 𝑱 ) 1𝑃

∑𝑃
𝜇=1 𝝃

𝝁

the training time. In the simulations with structured datasets such as
MNIST and Fashion-MNIST, since we want to reconstruct the original
dataset and not its centered version, we preserve the field 𝒉 in the
ynamics and, for the sake of convenience and simplicity we set 𝜖ℎ =
in all the simulations. The pseudo-code presented in Algorithm 1

ighlights the steps followed to train the model.
If we run Algorithm 1 up to convergence, the resulting interaction

atrix recovers the dreaming kernel, denoted as 𝑱 (𝐷) and reported in
q. (3.5), as long as we set 𝜖𝐽 = 𝑡−1𝑑 and 𝛾 = 1. Thus, if we are interested
n the regularized, full-trained model, we can directly pose 𝑱 = 𝑱 (𝐷)

without the need of running the training procedure.

B.2. Formulation of the performance metrics

Once the training is over and we have the desired expression of
the coupling matrix 𝑱 , the retrieval capabilities of the machine are
investigated. The initial configuration 𝝈(0) is taken as a corrupted
version of one of the training patterns (with a fraction of flipped entries
w.r.t. the reference configuration) or as an item of a test set (whose
elements are statistically analogous to the training patterns, but were
not involved in the training procedure); in general, we denote with 
the sample of initial configurations. Then, the system relaxes according
to the evolution rule introduced in Eq. (2.1) and reported hereafter in
a discrete-time notation

𝜎(𝑛+1)𝑖 = sgn(
∑

𝑗
𝐽𝑖𝑗𝜎

(𝑛)
𝑗 + ℎ𝑖𝜎

(𝑛)
𝑖 ). (B.1)

The pseudo-code for the dynamics can be found in Algorithm 2. After
the relaxation towards an equilibrium configuration 𝝈(∞), we check its
proximity to a specific configuration 𝝃∗ by exploiting the normalized
Hamming distance as a performance metrics. The latter is the number

1 2 𝑁
12

of misaligned entries between two configurations 𝝈 ,𝝈 ∈ {−1, 1} 𝜴
Algorithm 2 Sequential dynamic
Input : Couplings 𝑱 ∈ R𝑁×𝑁 , fields 𝒉 ∈ R𝑁 , input 𝝈(0) ∈ {−1, 1}𝑁

Output : Final neural configuration 𝝈(∞)

1: Remove the diagonal terms from 𝑱
2: Set 𝑛 = 0
3: repeat
4: sample a random integer 𝑖 uniformly in the set {1, 2,… , 𝑁}
5: update the 𝑖-th spin 𝜎𝑖 according to 𝜎

(𝑛+1)
𝑖 = sgn(∑𝑁

𝑗=1 𝐽𝑖𝑗𝜎
(𝑛)
𝑗 +ℎ𝑖𝜎

(𝑛)
𝑖 )

6: 𝑛 = 𝑛 + 1
7: until 𝝈 has reached a fixed point.

divided by 𝑁 , that is

𝑑(𝝈1,𝝈2) ∶= 1
2𝑁

𝑁
∑

𝑖=1
|𝜎1𝑖 − 𝜎2𝑖 |.

Then, we evaluate 𝑑(𝝈(∞), 𝝃∗), which depends on the initial config-
ration, due to the fact that 𝝈(∞) depends on 𝝈(0). Next, we average
(𝝈(∞), 𝝃∗) over the || different realizations of the initial condition;
hen 𝝈(0) is meant as an item of the test set, this operation corresponds

o a batch average. This way, we get the average distance, defined as

𝝃̄∗ = 1
||

∑

𝝈(0)∈

𝑑(𝝈(∞)(𝝈(0)), 𝝃∗), (B.2)

that is expected to depend on the reference point 𝝃∗ and on the system
arameters.

Finally, we notice that 𝑑(𝝈(∞), 𝝃∗) is nothing but the (normalized)
bsolute error made by the machine outputting 𝝈(∞), when asked to
econstruct 𝝃∗.

.3. Numerical signatures of overfitting

In this section, we will give more numerical indications of over-
itting emergence for the model we are dealing with. Specifically, we
heck that overfitting can take place in the non-regularized training
rocedure. To do this, we follow the evolution of the following learning
nd validation loss functions over training time, in particular the loss
unctions have the following structure

𝝃 (𝑱 (𝑡),𝒉(𝑡)) =
1
2𝑃

∑

𝑖,𝜇
(
∑

𝑗
𝐽𝑖𝑗 (𝑡)𝜉

𝜇
𝑗 + ℎ𝑖(𝑡) − 𝜉𝜇𝑖 )

2

+ 1
2𝑃

∑

𝑗,𝜇
(
∑

𝑖
𝐽𝑖𝑗 (𝑡)𝜉

𝜇
𝑖 + ℎ𝑗 (𝑡) − 𝜉𝜇𝑗 )

2, (B.3)

here

𝑖(𝑡) =
1
𝑃

𝑃
∑

𝜇=1
(𝜉𝜇𝑖 −

𝑁
∑

𝑗=1
𝐽𝑖𝑗 (𝑡)𝜉

𝜇
𝑗 ) (B.4)

In the following numerical simulations, 𝐽𝑖𝑗 (𝑡) evolves according to
Algorithm 1 with parameters 𝜖𝐽 . Eq. (B.3) is the loss given in Eq. (2.7)
of the main text with 𝜖𝐽 = 𝜖ℎ = 0, 𝛾 = 1. The learning and validation
loss functions are obtained by substituting into the previous equations
{𝝃}𝑃𝜇=1 with the features of the training and test dataset respectively.
or the synthetic random dataset and MNIST and Fashion-MNIST cases
e found that, even if the training loss goes to zero, the validation one
o exhibit a global minimum at finite training time, and then it starts to
ncrease, thus signalizing a worsening in generalization performances.
hese results are reported in Fig. 9.

ppendix C. A faster way to compute the early-stopping time

The estimate of the early-stopping time reported in Eq. (3.12) is
ased on the computation of the empirical spectral distribution 𝜌𝐸 of

, which is a 𝑁 × 𝑁 matrix. For high-dimension datasets, this can
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Fig. 9. Training and test losses as a function of the training time. The figure shows the comparison between the training loss function and the validation ones for synthetic
dataset (blue curve), MNIST (orange curve) and Fashion-MNIST (green curve) for a training procedure without regularization term.
Fig. 10. Comparison between early-stopping and dreaming kernel with approximated time. The three plots show the comparison between the retrieval performances of the
Dreaming kernel and the early-stopped training procedure. The content is perfectly specular to Fig. 1, with the only exception that the early-stopping time here is computed with
the first-order approximation (C.1).
k
s

A

t
t

T

𝑐

constitute a bottleneck in the training procedure, so operative criteria
needs to be provided. To do this, we can Taylor expand the quantity
𝛿(𝜆, 𝑡, 𝜖𝐽 ) around the average eigenvalue of the empirical distribution
̄:

(𝜆, 𝑡, 𝜖𝐽 ) =
∞
∑

𝑘=0

1
𝑘!

𝛿(𝜆̄, 𝑡, 𝜖𝐽 )(𝑘)(𝜆 − 𝜆̄)𝑘,

then we take the average over the 𝜴 spectrum, i.e.

𝛿(𝑡, 𝜖𝐽 ) =
∞
∑

𝑘=0

1
𝑘!

𝛿(𝜆̄, 𝑡, 𝜖𝐽 )(𝑘) ∫ 𝑑𝜆
(

𝜆 − 𝜆̄
)𝑘 𝜌𝐸 (𝜆)

=
∞
∑

𝑘=0

1
𝑘!

𝛿(𝜆̄, 𝑡, 𝜖𝐽 )(𝑘)
1
𝑁

ETr (𝜴 − 𝜆̄𝟏)𝑘.

Stopping at the first order in 𝜆 − 𝜆̄ and then solving the minimization
problem, we are left with the prescription

𝑡∗(𝜖𝐽 ) ≈
1

2 1
𝑁 ETr𝜴

log
(

1 + 1
𝜖𝐽𝑁

ETr𝜴
)

. (C.1)

he results are reported in Fig. 10, which shows again a substantial
greement between the early-stopping procedure and the Dreaming
ernel scenario. Notice that this criterion precisely accounts for the
orrect logarithmic dependence of the early-stopping time w.r.t. the
reaming time 𝑡𝑑 . Clearly, this prescription can provide, in the general
ase, a rough estimate of the early-stopping time. In that case, one can
ecide also to work out sub-leading orders in 𝜆 − 𝜆̄: regardless of the
rder at which the computation is performed, the numerical estimate of
∗

13

is based on the computation of low-order moments of the Hebbian
ernel 𝜴, which are far easier to compute than the whole empirical
pectral distribution.

ppendix D. Details on spurious states

In this Appendix, we report some details about spurious configura-
ions of training examples in the synthetic random dataset. We recall
hat 𝝃𝜇,𝐴 = 𝝌𝜇,𝐴𝜻𝜇 (with entry-wise multiplication), with the 𝜒𝜇,𝐴

𝑖
variables extracted as

Prob[𝜒𝜇,𝐴
𝑖 = ±1] = 1 ± 𝑟

2
.

Relevant spurious configurations in this setup are of Hopfield-type, so
that we can consider combination of the form

𝝃𝜇𝐿 = sgn
(

𝐿
∑

𝑙=1
𝝃𝜇,𝐴𝑙

)

. (D.1)

he correlation of this new configuration with the ground-pattern 𝜻𝜇 is

𝐿 = 1
𝑁

∑

𝑖
𝜉𝜇𝐿,𝑖𝜁

𝜇
𝑖 = 1

𝑁
∑

𝑖
sgn

(

𝐿
∑

𝑙=1
𝜉𝜇,𝐴𝑙
𝑖 𝜁𝜇𝑖

)

= 1
𝑁

∑

𝑖
sgn

(

𝐿
∑

𝑙=1
𝜒𝜇,𝐴𝑙
𝑖

)

.

For large 𝐿, the random variable in the sign function is, by central
limit theorem (CLT), Gaussian distributed, with mean 𝑟 and variance
√

(1 − 𝑟2)∕𝐿, thus

𝑐𝐿 ≈ 1 ∑

sgn
(

1 +
√

1 − 𝑟2
2

𝑧𝑖
)

,

𝑁 𝑖 𝐿𝑟
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f

𝑝

with 𝑧 ∼  (0, 1), where we also used 𝑟 > 0. The argument of the sign
unction is positive with probability

∶= 𝑃
(

𝑧𝑖 ≥ −
√

𝐿𝑟2

1 − 𝑟2
)

= 1 − 1
2

erfc
[

√

𝐿𝑟2

2(1 − 𝑟2)

]

.

Thus, the quantity 𝑐𝐿 is nothing but a random walk of unitary steps
with probability 𝑝 to jump on the right. In the large 𝑁 limit, we thus
have

𝑐𝐿(𝑟) =
1
𝑁

∑

𝑖
sgn

(

1 +
√

1 − 𝑟2

𝐿𝑟2
𝑧𝑖
)

≈ 2𝑝 − 1 = erf
[

√

𝐿𝑟2

2(1 − 𝑟2)

]

.

which yields

𝑐𝐿(𝑟) > 𝑟 ⇒ 𝐿 > 2
[erf−1(𝑟)]2(1 − 𝑟2)

𝑟2
.

Now, the r.h.s. of the last inequality ranges in [0, 𝜋∕2], while the
approximated expression for 𝑐𝐿(𝑟) is obtained under the CLT, requiring
𝐿 ≫ 1, which is therefore sufficient for obtaining 𝑐𝐿(𝑟) > 𝑟. For fixed 𝐿
there are

(𝑀
𝐿

)

possible configurations of the form (4.1). Just to give an
example of the magnitudes here involved, for 𝑀 = 50 and 𝑟 = 0.6,
we have 1225 spurious combinations of 𝐿 = 2 examples displaying
a correlation with ground-feature 𝑐2 ≈ 0.8884, we have ∼ 2 ⋅ 106

combinations with 𝐿 = 5 displaying a correlation 𝑐5 ≈ 0.9993, and so
on.
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