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Abstract. 3D point cloud semantic segmentation is fundamental for au-
tonomous driving. Most approaches in the literature neglect an important
aspect, i.e., how to deal with domain shift when handling dynamic scenes.
This can significantly hinder the navigation capabilities of self-driving
vehicles. This paper advances the state of the art in this research field.
Our first contribution consists in analysing a new unexplored scenario
in point cloud segmentation, namely Source-Free Online Unsupervised
Domain Adaptation (SF-OUDA). We experimentally show that state-
of-the-art methods have a rather limited ability to adapt pre-trained
deep network models to unseen domains in an online manner. Our sec-
ond contribution is an approach that relies on adaptive self-training
and geometric-feature propagation to adapt a pre-trained source model
online without requiring either source data or target labels. Our third
contribution is to study SF-OUDA in a challenging setup where source
data is synthetic and target data is point clouds captured in the real
world. We use the recent SynLiDAR dataset as a synthetic source and
introduce two new synthetic (source) datasets, which can stimulate fu-
ture synthetic-to-real autonomous driving research. Our experiments
show the effectiveness of our segmentation approach on thousands of
real-world point clouds. Code and synthetic datasets are available at
https://github.com/saltoricristiano/gipso-sfouda.

Keywords: Online domain adaptation, source-free unsupervised domain
adaptation, point cloud segmentation, geometric propagation.

1 Introduction

Autonomous driving requires accurate and efficient 3D visual scene perception
algorithms. Low-level visual tasks such as detection and segmentation are crucial
to enable higher-level tasks such as path planning [11,35] and obstacle avoidance
[46]. Deep learning-based methods have proven to be the most suitable option to
meet these requirements so far, but at the cost of requiring large-scale annotated
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Fig. 1. Existing methods adapt 3D semantic segmentation networks offline, requiring
both source and target data. Differently, real-world applications urge solutions capable
of adapting to unseen scenes online having access only to a pre-trained model.

dataset for training [29]. Relying only on annotated data is not always a viable
solution. This problem can be mitigated by considering synthetic data, as it
can be generated at low cost with potentially unlimited annotations and under
different environmental conditions [12,23]. However, when a model trained on
synthetic data is deployed in the real world, typically it will underperform due to
domain shift, e.g., caused by varying lighting conditions, clutter, occlusions and
materials with different reflective properties [56]. We argue that a 3D semantic
segmentation algorithm running on an autonomous vehicle should be capable
of adapting online – handling scenarios that are visited for the first time while
driving – and it should do so by only using the newly captured data. A variety
of research works have addressed the adaptation problem in the context of 3D
semantic segmentation. However, most approaches operate offline and assume to
have access to training (source) data [28,61,63,69,72,73]. In this paper, we argue
that these two assumptions are too restrictive in an autonomous driving scenario
(Fig. 1). On the one hand, offline adaptation would be equivalent to performing
model adaptation on the data a vehicle has captured when the navigation has
terminated, which is clearly a sub-optimal solution for autonomous driving [30].
On the other hand, having to rely on source data may not be a viable option, as
it requires the method to store and query potentially large amount of data, thus
hindering scalability [33,36].

To overcome these limitations, in this paper we explore the new problem of
Source-Free Online Unsupervised Domain Adaptation (SF-OUDA) for semantic
segmentation, i.e., that of adapting a deep semantic segmentation model while a
vehicle navigates in an unseen environment without relying on human supervision.
Specifically, in this work we first implement, adapt and thoroughly analyze
existing adaptation methods for the 3D semantic segmentation problem in a
SF-OUDA setup. We experimentally observe that none of these methods provides
consistent and satisfactory performance when employed in a SF-OUDA setting.
However, there are elements of interest that, when carefully combined and
extended, can be generally applicable. This leads us to move toward and design
GIPSO (Geometrically Informed Propagation for Source-free Online adaptation),
the first SF-OUDA method for 3D point cloud segmentation that builds upon
recent advances in the literature, and exploits geometry information and temporal
consistency to support the domain adaptation process. We also introduce two new
synthetic datasets to benchmark SF-OUDA in two different real-world datasets,
i.e. SemanticKITTI [3,13,14] and nuScenes [4]. We validate our approach on these
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new synthetic-to-real benchmarks. Our motivation for creating these datasets
is to make evaluation more comprehensive and to assess the generalization
ability of different techniques to different experimental setups. In summary, our
contributions are:
– A thorough experimental analysis of existing domain adaptation methods for

3D semantic segmentation in a SF-OUDA setting;
– A novel method for SF-OUDA that exploits low-level geometric properties

and temporal information to continuously adapt a 3D segmentation model;
– The introduction of two new LiDAR synthetic datasets that are compatible

with the SemanticKITTI and nuScenes datasets.

2 Related work

Point cloud semantic segmentation. Point cloud segmentation methods can
be classified into quantization-free and quantization-based architectures. The
former processes the input point clouds in their original 3D format. Exam-
ples include PointNet [43] that is based on a series of multi layer perceptrons.
PointNet++ [44] builds upon PointNet by using multi-scale sampling and neigh-
bourhood aggregation to encode both global and local features. RandLA-Net [21]
extends PoinNet++ [44] by embedding local spatial encoding, random sam-
pling and attentive pooling. These methods are computationally inefficient when
large-scale point clouds are used. The latter provides a computationally efficient
alternative as input point clouds can be mapped into efficient representations,
namely range maps [39, 60, 61], polar maps [67], 3D voxel grids [8, 16, 17, 70]
or 3D cylindrical voxels [71]. Quantization-based approaches can be based on
sparse convolutions [16,17] or Minkowski convolutions [8]. We use the Minkowski
Engine [8] as it provides a suitable trade off between accuracy and efficiency.
Unsupervised domain adaptation. Offline UDA can be performed either
using source data [20,37,48,72] or without using source data (source-free UDA) [33,
36,49,62]. Online UDA can be used to adapt a model to an unlabelled continuous
target data stream through source domain supervision [58]. It can be employed
for classification [40], image semantic segmentation [58], depth estimation [55,68],
robot manipulation [38], human mesh reconstruction [19] and occupancy mapping
[54]. The assumption of unsupervised target input data can be relaxed and applied
for online adaptation in classification [31], video-object segmentation [57] and
motion planning [53]. Recently, test-time adaptation methods have been applied
to online UDA in classification by using supervision from source data [50, 52, 59].
We tackle source-free online UDA for point cloud segmentation for the first time.
Domain adaptation for point cloud segmentation. Domain shift in point
cloud segmentation occurs due to differences in (i) sampling noise, (ii) structure of
the environment and (iii) class distributions [26,61,63,69]. The domain adaptation
problem can be formulated as a 3D surface completion task [63] or addressed with
ray casting system capable of transferring the target sensor sampling pattern to
the source data [28]. Other approaches tackle the domain adaptation problem in
the synthetic-to-real setting (i.e., point cloud in the source domain are synthetic,
while target ones are collected with LiDAR sensors) [60,61,69]. Attention models
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Table 1. Comparison between public synthetic datasets and Synth4D in terms of
sensor specifications, acquisition areas, number of scans, number of points, presence of
odometry data, and whether the semantic classes are all or partially shared.

Specifications
Areas Scans Points Odometry

Shared semantic classes
Name Sensor FOV S-KITTI [3] nuScenes [4]

SinthCity [18] MLS 360◦ city 1 367M no no
GTA-LiDAR [61] HDL64E 90◦ town 121087 - partial no
PreSIL [23] HDL64E 90◦ town 51074 3135M partial no

SynLiDAR [2] HDL64E 360◦
city, town

198396 19482M all no
harbor, rural

Synth4D (ours)
HDL64E

360◦
city, town 20000 2000M

✓ all all
HDL32E rural, highway 20000 2000M

can be used to aggregate contextual information with large receptive fields at
early layers of the model [60, 61]. Geodesic correlation alignment and progressive
domain calibration can be also used to further improve domain adaptation
effectiveness [61]. Authors in [69] argue that the method in [61] cannot be trained
end-to-end as it employs a multi-stage pipeline. Therefore, they propose an
end-to-end approach to simulate the dropout noise of real sensors on synthetic
data through a generative adversarial network. Unlike these methods, we focus
on SF-OUDA and propose a novel adaptation method which invokes geometry
for propagating reliable pseudo-labels on target data.

3 Datasets for synthetic-to-real adaptation

Autonomous driving simulators enable users to create ad-hoc synthetic datasets
that can resemble real-world scenarios. Examples of popular simulators are GTA-
V [64] and CARLA [12]. In principle, synthetic datasets should be compatible
with their real-world counterpart [3, 4, 14], i.e., they should share the same
semantic classes and the same sensor specifications, such as the resolution (32
vs. 64 channels) and the horizontal field of view (e.g., 90◦ vs. 360◦). However, this
is not the case for most of the synthetic datasets in literature. The SynthCity [18]
dataset contains large-scale point clouds that are generated from collections of
several LiDAR scans, making it unsuitable for online domain adaptation as no
odometry data is provided. PreSIL [23] and GTA-LiDAR’s [61] point clouds are
captured from a moving vehicle using a simulated Velodyne HDL64E [34], as
that of SemanticKITTI, however they are rendered with a different field of view,
i.e., 90◦ as opposed to 360◦ of SemantiKITTI. SynLIDAR’s [2] point clouds are
obtained using a simulated Velodyne HDL64E with 360◦ field of view, as in
SemantiKITTI. However, the odometry data is not provided, i.e., point clouds
are all configured in their local reference frame. Therefore, domain adaptation
algorithms that are based on ray-casting like [28] cannot be used.

To enable full compatibility with SemanticKITTI [3] and nuScenes [4], we
present a new synthetic dataset, namely Synth4D, which we created using the
CARLA simulator [12]. Tab. 1 compares Synth4D to the other synthetic datasets.
Synth4D is composed of two sets of point cloud sequences, one compatible with
SemanticKITTI and one compatible with nuScenes. Each set is composed of
20K labelled point clouds. Synth4D is captured using a vehicle navigating in
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Fig. 2. Example of point clouds from Synth4D using the simulated Velodyne (a)
HDL32E and (b) HDL64E.

four scenarios, i.e., town, highway, rural area and city. Because UDA requires
consistent labels between source and target, we mapped the labels of Synth4D
with those of SemanticKITTI/nuScenes using the original instructions given to
annotators [3, 4], thus producing eight macro classes: vehicle, pedestrian, road,
sidewalk, terrain, manmade, vegetation and unlabelled. Fig. 2 shows examples of
annotated point clouds from Synth4D. See Supp. Mat. for more details.

4 SF-OUDA

We formulate the problem of SF-OUDA for 3D point cloud segmentation as
follows. Given a deep network model FS that is pre-trained with supervision
on the source domain S, we aim to adapt FS on the target domain T given an
unlabelled point cloud stream as input. FS is pre-trained using the source data
ΓS = {(Xi

S , Y
i
S)}MS

i=1, where X
i
S is a synthetic point cloud, Y i

S is the segmentation
mask of Xi

S and MS is the number of available synthetic point clouds. Let Xt
T

be a point cloud of our stream at time t and F t
T be the target model adapted

using Xt
T and Xt−w

T , with w > 0. YT is the set of unknown target labels and
C is the number of classes contained in YT . The source classes and the target
classes are coincident.

4.1 Our approach

The input to GIPSO is the point cloud Xt
T and an already processed point cloud

Xt−w
T . These point clouds are used to adapt FS to T through self-supervision

(Fig. 3). The input is processed by two modules. The first module aims to
create labels for self-supervision by segmenting Xt

T with the source model FS .
Because these labels are produced by an unsupervised deep network, we refer to
them as pseudo-labels. We select a subset of segmented points that have reliable
pseudo-labels through an adaptive selection criteria, and propagate them to less
reliable points. The propagation uses geometric similarity in the feature space
to increase the number of pseudo-labels available for self-supervision. To this
end, we use an auxiliary deep network (Faux) that is specialized in extracting
geometrically-informed representations from 3D points. The second module aims
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Fig. 3. Overview of GIPSO. A source pre-trained model FS selects seed pseudo-labels
through our adaptive-selection approach. An auxiliary model Faux extracts geometric
features to guide pseudo-label propagation. Ldice is minimised over the pseudo-labels Y t

T .
In parallel, semantic smoothness is enforced with Lreg over time. (�) frozen parameters.
( �) learnable parameters.

to encourage temporal regularization of semantic information between Xt
T and

Xt−w
T . Unlike recent works [22], where a global point cloud descriptor of the

scene is learnt, we exploit a self-supervised framework based on stop gradient [6]
to ensure smoothness over time. Self-supervision through pseudo-label geometric
propagation and temporal regularization are concurrently optimized to achieve
the desired domain adaptation objective (Sec. 4.2).

Adaptive pseudo-label selection. An accurate selection of pseudo-labels is key
to reliably adapt a model. In dynamic real-world scenarios, where new structures
appear/disappear in/from the LiDAR field of view, traditional pseudo-labeling
techniques [7, 51] can suffer from unexpected variations of class distributions,
producing overconfident incorrect pseudo-labels and making more populated
classes prevail on others [72, 73]. We overcome this problem by designing a class-
balanced adaptive-thresholding strategy to choose reliable pseudo-labels. First,
we compute an uncertainty index to filter out likely unreliable pseudo-labels.
Second, we apply a different threshold for each class based on the uncertainty
index distribution. This uncertainty index is directly related to the robustness
of the output class distribution for each point. Robust pseudo-labels can be
extracted from those points that consistently provide similar output distributions
under different dropout perturbations [27]. We found that this approach works
better than alternative confidence based approaches [72,73].

Given the point cloud Xt
T , we perform J iterations of inference with FS by

using dropout and obtain

 \label {eq:mean} p_\mathcal {T}^t = \frac {1}{J} \sum _{j=1}^J p \left ( F_\mathcal {S} | X_\mathcal {T}^t , d_j \right ), 












 

 (1)
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(a) (b)

Fig. 4. Example of geometric propagation: a) starting from seed pseudo-labels, b)
geometric features are used to expand labels toward geometrically consistent regions.

where ptT is the averaged output distribution of FS given Xt
T and dj , i.e. the

dropout at j-th iteration. We compute the uncertainty index νtT as the variance
over the C classes of ptT as

 \label {eq:uncertainty_index} \nu _\mathcal {T}^t = E\left [\left (p_\mathcal {T}^t - \mu _\mathcal {T}^t \right )^2 \right ],  

 




 (2)

where µt
T = E[ptT ] is the expected value of ptT . Then, we select the least uncertain

points by using a different uncertainty threshold for each class. Let λt
c be the

uncertainty threshold of class c at time t. Since νtT defines the uncertainty for
each point, we group νtT values per class and compute λt

c as the a-th percentile
of νtT for class c. Therefore, at time t and for class c, we select only those pseudo-
labels having the corresponding uncertainty index lower than λt

c and use the
corresponding pseudo-labels as seed pseudo-labels.

Geometric pseudo-label propagation. Typically, seed pseudo-labels are few
and uninformative for the adaptation of the target model – the deep network
is already confident about them. Therefore, we aim to propagate these pseudo-
labels to potentially informative points. This is challenging because the model
may drift during adaptation. We propose to use the features produced by an
auxiliary geometrically-informed encoder Faux to propagate seed pseudo-labels
to geometrically-similar points. Geometric features can be extracted using deep
networks that compute 3D local descriptors [1, 15,41]. 3D local descriptors are
compact representations of local geometries with great generalization abilities
across domains. Our intuition is that, while the propagation in the metric space
may propagate only in the spatial neighborhood of seed pseudo-labels, the use of
geometric features would allow us to propagate to geometrically similar points,
which can be distant from their seeds in the metric space (Fig. 4).

Given a seed pseudo-labeled point x̃t ∈ Xt
T , we compute a set of geometric

similarities as

 \label {eq:geometric_distance} \mathcal {G}_{\tilde {\mathbf {x}}}^t = \lVert F_{aux}(\tilde {\mathbf {x}}^t) - F_{aux}(X^t_\mathcal {T}) \rVert _2, 
 



  (3)

where || · ||2 is the l2-norm and Gt
x̃ is the set that contains the similarity values

between x̃t and all the other points of Xt
T (except x̃t). Then, we select the points

that correspond to top K values in Gt
x̃ and assign the pseudo-label of x̃t to them.

Let Y t
T be the final set of pseudo-labels that we use for fine-tuning our model.

Self-supervised temporal consistency loss. While the vehicle moves, the
LiDAR sensor samples the environment from different viewpoints generating
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point clouds with different point distributions due to clutter and/or occlusions.
As points of consecutive point clouds can be simply matched over time by using
the vehicle’s odometry [4,14], we can reasonably consider local variations of point
distributions as local augmentations with the same semantic information. As
a result, we can exploit recent self-supervised techniques to enforce temporal
smoothness of our semantic features.

We begin by computing the set of corresponding points between Xt−w
T and Xt

T
by using the vehicle’s odometry. Let Tt−w→t ∈ R4×4 be the rigid transformation
(from odometry) that maps Xt−w

T in the reference frame of Xt
T . We define the

set of corresponding point Ωt,t−w as

 \label {eq:odometry_search} \Omega ^{t, t-w} = & \left \{ \{ \mathbf {x}^{t} \in X^{t}_\mathcal {T}, \mathbf {x}^{t-w} \in X^{t-w}_\mathcal {T} \} : \right . \nonumber \\ & \mathbf {x}^{t} = \mathtt {NN} \left ( T_{t-w \rightarrow t} \circ \mathbf {x}^{t-w}, X^t_\mathcal {T} \right ), \nonumber \\ & \left . \lVert \mathbf {x}^{t} - \mathbf {x}^{t-w} \rVert _2 < \tau \right \},

 


 

 

 

  





   

 (4)

where NN(n,m) is the nearest-neighbour search given the set m and the query n,
◦ is the operator that applies Tt−w→t to a 3D point and τ is a distance threshold.

We adapt the self-supervised learning framework proposed in SimSiam [6] to
semantically smooth point clouds over time. We add an encoder network h(·) and
a predictor head f(·) to the target model FT and minimize the negative cosine
similarity between consecutive semantic representations of corresponding points.
Let zt ≜ h(xt) be the encoder features over the target backbone for xt and let
qt ≜ f(h(xt)) be the respective predictor features. We minimize the negative
cosine similarity as

  \mathcal {D}_{t\rightarrow {t-w}}(q^t, z^{t-w}) = - \frac {q^t}{\left \Vert q^t\right \Vert _2} \cdot \frac {z^{t-w}}{\left \Vert z^{t-w}\right \Vert _2} \label {eq:consistency} 
   





(5)

Time consistency is symmetric in the backward direction, hence we use the
corresponding point of xt from Ωt,t−w and define our self-supervised temporal
consistency loss as

 \label {eq:temp_reg} \mathcal {L}_{reg} = \frac {1}{2} \mathcal {D}_{t\rightarrow {t-w}}(q^t, z^{t-w}) + \frac {1}{2} \mathcal {D}_{t-w\rightarrow {t}}(q^{t-w}, z^{t}) 





 





  (6)

where stop-grad is applied on zt and zt−w.

4.2 Online model update

Classes are typically highly unbalanced in each point cloud, e.g., a pedestrian
class may be 1% the number of points of the vegetation class. To this end, we
use the soft Dice loss [25] as we found it works well when classes are unbalanced.
Let Ldice be our soft Dice loss that uses the pseudo-labels selected though Eq. 3
as supervision. We define the overall adaptation objective as Ltot = Ldice +Lreg,
where Lreg is our regularization loss defined in Eq. 6.
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Table 2. Synth4D → SemanticKITTI online adaptation. Source: pre-trained source
model (lower bound). We report absolute mIoU for Source and mIoU relative to Source
for the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.

Model SF UDA O vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 63.90 12.60 38.10 47.30 20.20 26.10 43.30 35.93
Target ✓ ✓ +16.84 +5.49 +8.48 +34.44 +51.92 +45.68 +39.09 +28.85

ADABN [32] ✓ ✓ -7.80 -2.00 -10.20 -18.60 -7.70 +5.80 -0.70 -5.89
RayCast [28] ✓ +3.80 -2.60 -3.10 -0.50 +7.30 +4.50 +0.20 +1.37

ProDA∗ ✓ ✓ ✓ -57.77 -12.34 -37.36 -46.95 -19.97 -25.62 -42.48 -34.64
SHOT∗ ✓ ✓ ✓ -62.44 -12.00 -28.27 -40.20 -20.00 -25.47 -42.55 -32.99
ONDA [38] ✓ ✓ ✓ -13.60 -1.70 -10.60 -20.00 -7.10 +3.90 -5.10 -7.74
CBST∗ ✓ ✓ ✓ -0.13 +0.58 -1.00 -1.12 +0.88 +1.69 +1.03 +0.28
TPLD∗ ✓ ✓ ✓ +0.36 +1.18 -0.76 -0.71 +0.95 +1.74 +1.15 +0.56

GIPSO (Ours) ✓ ✓ ✓ +13.12 -0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31

5 Experiments

5.1 Experimental setup

Source and target datasets. We pre-train our source models on Synth4D
and SynLiDAR [2], and validate our approach on the official validation sets of
SemanticKITTI [3] and nuScenes [4] (target domains). In SemanticKITTI, we
use the sequence 08 that is composed of 4071 point clouds at 10Hz. In nuScenes,
we use 150 sequences, each composed of 40 point clouds at 2Hz.
Implementation details.We use MinkowskiNet as deep network for point cloud
segmentation [8]. We use ADAM: initial learning rate of 0.01 with exponential
decay, batch-size 16 and weight decay 10−5. As auxiliary network Faux, we use the
PointNet-based architecture proposed in [41] trained on Synth4D that outputs a
geometric features (descriptor) for a given 3D point. For online adaptation, we fix
the learning rate to 10−3 and do not use schedulers as they would require prior
knowledge about the stream length. Because we adapt our model on each new
incoming point cloud, we use batch-size equal to 1. We set J=5, a=1, τ=0.3cm
and use 0.5 dropout probability. We set K=10, w=5 on SemanticKITTI, and
K=5, w=1 on nuScenes. Parameters are the same in all the experiments.
Evaluation protocol. We follow the traditional evaluation procedure for online
learning methods [5,65], i.e., we evaluate the model performance on a new incom-
ing frame using the model adapted up to the previous frame. We compute the
Intersection over Union (IoU) [45] and report the average IoU (mIoU) improve-
ment over the source (averaged over all the target sequences). We also evaluate
the online version of our source model by fine-tuning it with ground-truth labels
for all the points in the scene (target). We also evaluate the target upper bound
(target) of our method obtained from the online finetuning of our source models
over labelled target point clouds.

5.2 Benchmarking existing methods for SF-OUDA

Because our approach is the first that specifically tackles SF-OUDA in the context
of 3D point cloud segmentation, we perform an in-depth analysis of the literature
to identify previous adaptation methods that can be re-purposed for SF-OUDA.
Additionally, we experimentally evaluate their effectiveness on the considered
datasets. We identify three categories of methods, as detailed below.
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Batch normalization-based methods perform domain adaptation by consid-
ering different statistics for source and target samples within Batch Normalization
(BN) layers. Here, we consider ADABN [32] and ONDA [38]. ADABN [32] is
a source-free adaptation method which operates by updating the BN statistics
assuming that all target data are available (offline adaptation). ONDA [38] is
the online version of ADABN [32], where the target BN statistics are updated
online based on the target data within a mini-batch. This can be regarded as a
SF-OUDA method. However, these approaches are general-purpose methods and
have not been previously evaluated for 3D point cloud segmentation.
Prototype-based adaptation methods use class centroids, i.e. prototypes,
to generate target pseudo-labels that can be transferred to other samples via
clustering. We implement SHOT [33] and ProDA [66]. SHOT [33] exploits In-
formation Maximization (IM) to promote cluster compactness during offline
adaptation. We implement SHOT by adapting the pre-trained model with the
proposed IM loss online on each incoming target point cloud. ProDA [66] adopts
a centroid-based weighting strategy to denoise target pseudo-labels, while also
considering supervision from source data. We adapt ProDA to SF-OUDA by
applying the same weighting strategy but removing source data supervision.
We update target centroids at each incremental learning step. We refer to our
SF-OUDA version of SHOT and PRODA as SHOT∗ and ProDA∗, respectively.
Self-training-based methods exploit source model predictions to adapt on
the target domain by re-training the model. We implement CBST [72] and
TPLD [51]. CBST [72] relies on a prediction confidence to select the most reliable
pseudo labels. A confidence threshold is computed offline for each target class
to avoid class unbalance. Our implementation of CBST, which we denote as
CBST∗, uses the same class balance selection strategy but updates the thresholds
online on each incoming frame. Moreover, no source data are considered as we
are in a SF-OUDA setting. TPLD [51], originally designed for 2D semantic
segmentation, uses the pseudo-label selection mechanism in [72] but introduces
a pixel pseudo label densification process. We implement TPLD by removing
source supervision and replace the densification procedure with a 3D spatial
nearest-neighbor propagation. Our version of TPLD is denoted as TPLD∗.

Besides re-purposing existing approaches for SF-OUDA, we also evaluate an
additional baseline, i.e. the rendering-based method RayCast [28]. This approach
is based on the idea that target-like data can be obtained with photorealistic
rendering applied to the source point clouds. Thus, adaptation is performed by
simply training on target-like data. While RayCast can be regarded as an offline
adapation approach, we select it as it only requires the parameters of the real
sensor to obtain target-like data from source point clouds.

5.3 Results

Evaluating GIPSO. Tab. 2, 3 and 4 report the results of our quantitative eval-
uation in the cases of Synth4D → SemanticKITTI, Synlidar → SemanticKITTI
and Synth4D → nuScenes, respectively. The numbers in the tables indicate the
improvement over the source model. GIPSO achieves an average IoU improvement
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Table 3. SynLiDAR → SemanticKITTI online adaptation. Source: pre-trained source
model (lower bound). We report absolute mIoU for Source and mIoU relative to Source
for the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.

Model SF UDA O vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 59.80 14.20 34.90 53.50 31.00 37.40 50.50 40.19
Target ✓ ✓ +21.32 +8.09 +11.51 +28.13 +40.46 +33.67 +30.63 +24.83

ADABN [32] ✓ ✓ +3.90 -6.40 -0.20 -3.70 -5.70 +1.40 +0.30 -1.49
RayCast [28] ✓ - - - - - - - -

ProDA∗ ✓ ✓ ✓ -53.30 -13.79 -33.83 -52.78 -30.52 -36.68 -49.29 -38.60
SHOT∗ ✓ ✓ ✓ -57.83 -12.64 -24.80 -46.02 -30.80 -36.83 -49.32 -36.89
ONDA [38] ✓ ✓ ✓ -2.90 -6.40 -2.20 -8.80 -7.60 -1.20 -6.70 -5.11
CBST∗ ✓ ✓ ✓ +0.99 -0.83 +0.55 +0.20 +0.74 -0.07 +0.38 +0.28
TPLD∗ ✓ ✓ ✓ +0.90 -0.48 +0.59 +0.33 +0.84 +0.07 +0.37 +0.37

GIPSO (Ours) ✓ ✓ ✓ +13.95 -6.76 +3.26 +5.01 +3.00 +3.34 +4.08 +3.70

Table 4. Synth4D → nuScenes online adaptation. Source: pre-trained source model
(lower bound). We report absolute mIoU for Source and mIoU relative to Source for
the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.

Model SF UDA O vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75
Target ✓ ✓ +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

ADABN [32] ✓ ✓ +1.23 -2.74 -1.24 +0.14 +0.53 +0.70 +4.03 +0.38
RayCast [28] ✓ -1.36 -9.69 -3.53 -3.42 -2.77 -2.54 -0.91 -3.46

ProDA∗ ✓ ✓ ✓ +0.57 -1.40 +0.73 +0.09 +0.71 +0.40 +0.91 +0.29
SHOT∗ ✓ ✓ ✓ +0.82 -1.77 +0.68 -0.05 -0.70 -0.54 +1.09 -0.07
ONDA [38] ✓ ✓ ✓ +0.34 -1.90 -1.19 -0.62 +0.18 -0.40 +0.58 -0.43
CBST∗ ✓ ✓ ✓ +0.37 -2.61 -1.35 -0.79 +0.19 -0.36 -0.45 -0.71
TPLD∗ ✓ ✓ ✓ +0.65 -1.90 -0.96 -0.39 +0.43 +0.07 +0.86 -0.18

GIPSO (Ours) ✓ ✓ ✓ +0.55 -3.76 +1.64 +1.72 +2.28 +1.18 +2.36 +0.85

of +4.31 on Synth4D → SemanticKITTI, +3.70 on Synlidar → SemanticKITTI
and +0.85 on Synth4D → nuScenes. GIPSO outperforms both offline and on-
line methods by a large margin on Synth4D → SemanticKITTI and Synlidar
→ SemanticKITTI, while it achieves a lower improvement over Synth4D →
nuScenes. On SemanticKITTI, GIPSO can effectively improve road, sidewalk,
terrain, manmade and vegetation. vehicle is the best performing class, which can
achieve a mIoU above +13. pedestrian is the worst performing class on all the
datasets. pedestrian is a challenging class because it is significantly unbalanced
compared to the others, also in the source domain. Although we attempted to
mitigate the problem of unbalanced classes using adaptive thresholding and soft
Dice loss, there are still situations that are difficult to address (see Sec. 6 for
details). On nuScenes, the improvement is minor because at its lower resolutions
makes patterns less distinguishable and more difficult to segment.

Evaluating state-of-the-art methods. We also analyze the performance of
the existing methods discussed in Sec. 5.2. Batch-normalisation based methods
perform poorly on all the datasets, with only ADABN [32] showing a minor
improvement on nuScenes. We argue that non-i.i.d. batch samples arising in the
online setting are playing an important role in this degradation, as they can
have detrimental effects on models with BN layers [24]. SHOT∗ and ProDA∗

perform poorly in almost all the experiments, except on Synth4D → nuScenes
where ProDA∗ achieves +0.29. This minor improvement may be due to the short
sequences of nuScenes (40 frames) making centroids less likely to drift. This



12 C. Saltori et al.

0 500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30
Vehicle
Pedestrian
Road
Sidewalk

Terrain
Manmade
Vegetation

m
Io

U
im

p
r
o
v
e
m

e
n
t

Time

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
10

1

10
0

10
1

Source
SHOT *

ProDA *

Our
Target

D
B
-I
n
d
e
x

Time

(b)

Fig. 5. (a) Per-class improvement of GIPSO over time on Synth4D→SemanticKITTI.
(b) DB-Index over time on Synth4D→SemanticKITTI. The lower the DB-Index, the
better the class separation of the features.

does not occur in SemanticKITTI where the long sequence causes a rapid drift
(see detailed in Sec. 5.4). CBST∗ and TPLD∗ improve on SemanticKITTI and
perform poorly on nuScenes. This can be ascribed to the noisy pseudo-labels that
are selected using their confidence-based filtering approach. Lastly, RayCast [28]
achieves +1.37 on Synth4D → SemanticKITTI, but underperform on Synth4D
→ nuScenes with a degradation of -3.46. RayCast was originally proposed for
real-to-real adaptation, therefore we believe that its performance may be affected
by the large difference in point cloud resolution between Synth4D and nuScenes.
RayCast underperforms GIPSO in the online setup, thus showing how offline
solutions can fail in dynamic domains. Note that RayCast cannot be evaluated
using Synlidar, because Synlidar does not provide odometry information.

5.4 In-depth analyses

Ablation study. Tab. 5 shows the results of our ablation study on Synth4D →
SemanticKITTI. When we use only the adaptive pseudo-label selection (A) we
can achieve +1.07 compared to the source. When we combine A with the temporal
regularization (T) we can further improve by +3.65. Then we can achieve our
best performance through the geometric propagation (P) of the pseudo labels.

Oracle study. We analyze the importance of using a reliable pseudo-label
selection metric. Tab. 6 shows the pseudo-label accuracy as a function of the
points that are selected as the K-th best candidates based on the distance
from their centroids (as proposed in [66]), confidence (as proposed in [72]) and
uncertainty (ours). Centroid-based selection shows a low accuracy even at K = 1,
which tends to worsen as K increases. Confidence-based selection is more reliable
than the centroid-based selection. We found uncertainty-based selection to be
more reliable at smaller values of K, which we deem to be more important than
having more pseudo-labels but less reliable.

Per-class temporal behavior. Fig. 5a shows the mIoU over time for each class
on Synth4D → SemanticKITTI. We can observe that six out of seven classes have
a steady improvement: vehicle is the best performing class, followed by vegetation
and manmade. Drops in mIoU are typically due to sudden geometric variations
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Table 5. Synth4D→SemanticKITTI abla-
tion study of GIPSO: (A) Adaptive thresh-
olding; (A+T) A + Temporal consistency;
(A+T+P) A+T + geometric Propagation.

Source Target A A+T A+T+P

35.95 +28.85 +1.07 +3.65 +4.31

Table 6. Oracle study on Synth4D → Se-
manticKITTI that compares the accuracy
of different pseudo-label selection metrics:
Centroid, Confidence and Uncertainty.

Centroid Confidence Uncertainty

Top-1 38.1 66.7 76.1
Top-10 43.8 61.4 69.7

of the point cloud, e.g., a road junction after a straight road, or a jammed road
after a empty road. pedestrian confirms to be the most challenging class.
Temporal compactness of features. We assess how well points are organized
in the feature space over time. We use the DB Index (DBI) that is typically used
in clustering to measures the feature intra- and inter-class distances [10]. The
lower the DBI, the better the quality of the features. We use SHOT∗ and ProDA∗

as comparisons with our method, and the source and target models as references.
Fig. 5b shows the DBI variations over time. SHOT∗ behavior is typical of a drift,
as features of different classes become interwoven. ProDA∗ does not drift, but it
produces features that are worse than the source model. Our approach is between
source and target models, with a tendency to get closer to target.
Different 3D local descriptors. We assess the effectiveness of different 3D
local descriptors. We test FPFH [47] (handcrafted) and FCGF [9] (deep learning)
descriptors. GIPSO achieves +3.56 mIoU with FPFH, +4.12 mIoU with FCGF
and +4.31 mIoU with DIP. This is inline with the experiments shown in [42],
where DIP shows a superior generalization capability across domains than FCGF.
Performance with global features. We assess the GIPSO performance on
Synth4D→SemanticKITTI when the global temporal consistency loss proposed
in STRL [22] is used instead of our per-point loss (Eq. 5). This variation achieves
+1.74 mIoU, showing that per-point temporal consistency is key.
Qualitative results. Fig. 6 shows the comparison between GIPSO and the
source model on on Synth4D→SemanticKITTI. The first row shows frame 178 of
SemanticKITTI with an improvement of +27.14 mIoU (large). The classes vehicle,
sidewalk and terrain are incorrectly segmented by the source model, we can see
a significant improvement in segmentation on these classes after adaptation. The
second and third rows show frame 1193 and frame 2625 with an improvement
of +10.00 mIoU (medium) and +4.99 mIoU (small). Improvements are visible
after adaptation in the classes vehicle, sidewalk and road. The last row shows a
segmentation drift for road that is caused by incorrect pseudo-labels.

6 Discussions

Conclusions. We studied for the first time the problem of SF-OUDA for 3D
point cloud segmentation in a synthetic-to-real setting. We experimentally showed
that existing approaches do not suffice in coping with domain shift in this
scenario. We presented GIPSO that relies on adaptive self-training and geometric-
features propagation to address SF-OUDA. We also introduced a novel synthetic
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Fig. 6. Results on Synth4D→SemanticKITTI with three different ranges of mIoU
improvements, i.e., large (+27.2), medium (+10.0) and small (+5.1).

dataset, namely Synth4D composed of two splits and matching the sensor setup
of SemanticKITTI and nuScenes, respectively. Experiments on three different
benchmarks showed that GIPSO outperforms state-of-the-art approaches.
Limitations. GIPSO limitations are related to geometric propagation and long-
tailed classes. If objects of different classes share similar geometric structures, the
geometric propagation may be deleterious. This can be mitigated by using another
sensor modality (e.g. RGB) or by accounting for multi-scale signals to exploit
context information. If severe class unbalance occurs, semantic segmentation
accuracy may be affected, e.g. pedestrian class in Tabs. 2-4. This can be mitigated
by re-weighting the loss through a class-balanced term (computed on the source).
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Fabio Galasso3, Giuseppe Fiameni4, Elisa Ricci1,5, and Fabio Poiesi5

1 University of Trento, Trento, Italy
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1 Introduction

We provide supplementary material in support of the main paper. The content is
organized as follows:

– Sec. 2 reports the architecture details of the main modules used in GIPSO;
– Sec. 3 provides additional ablations of GIPSO, analysing the performance

with a different propagation size and time-window length;
– Sec. 4 goes beyond GIPSO and shows that our proposed strategies can be

used to improve baselines in SF-OUDA;
– Sec. 5 reports the class mapping used in our experiments for compatibility

between synthetic and real domains;
– In Sec. 6, additional qualitative results are reported on Synth4D → Se-

manticKITTI, SynLiDAR → SemanticKITTI, and Synth4D → nuScenes.

2 Architecture details

We implemented GIPSO in PyTorch by using minkowski/sparse convolutions
in MinkowskiEngine [?]. For the backbone and segmentation network we used
the existing implementation of MinkUNet18 [?] by setting the dimension of the
input space to D = 3, i.e. the dimensionality of an input point cloud. For the
self-supervised temporal consistency loss (Sec. 4, Eq. 6) we implemented the
encoder h() with two consecutive MinkowskiConvolution layers interleaved by
a ReLU activation function and a batch-normalization layer. The input size of
the first layer is set to 96 - the output feature size of the backbone network -
while the output size is set to 128. The last encoding layer is set to have the
same input and output size of 128. We implemented the predictor f() with the
same structure of h() with the difference that input and output sizes are set to
128. In both h() and f() we used a kernel of size 1, biases activated and D = 3.
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Table 1. Online adaptation on Synth4D → SemanticKITTI with different propagation
size K.
Model K vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source - 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75
Target - +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

Ours 1 +14.18 -1.13 +1.08 +2.11 +2.74 +5.49 +5.39 +4.27
Ours 5 +13.42 -0.51 +0.91 +2.16 +2.66 +5.54 +5.62 +4.26
Ours 10 +13.12 -0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31
Ours 50 +12.01 -1.00 +0.73 +2.01 +3.02 +5.51 +5.66 +3.99
Ours 100 +12.25 -2.49 +0.62 +1.93 +3.39 +5.99 +5.68 +3.91

3 GIPSO components

We provide two additional ablation studies to complement the ablation study
in the main manuscript in Sec. 5.4. We perform an ablation study for different
components of GIPSO on Synth4D → SemanticKITTI. Sec. 3.1 reports the results
when the propagation size K is increased up to 100 for each seed pseudo-label.
Sec. 3.2 reports how GIPSO performs by varying the time window w. Results
report the performance on Source (gray) in absolute mIoU while the others are
reported as relative mIoU improvement over the Source model. Target is the
supervised upper bound of our task in our setting.

3.1 Propagation size

We study the effect of different propagation steps by using our geometry-based
propagation. Tab. 1 shows the results with a K of 1, 5, 10, 50, 100. We can see that
mIoU starts to decrease when a higher number of propagation steps are used, i.e.,
K = 50, whereas we reach the best improvement of +4.31 with K = 10. These
results show that K should be set such that to both preserve pseudo-labelling
accuracy while propagating seed labels towards new informative points.

3.2 Time-window length

We study the effect of different time window length w in our self-supervised
temporal consistency loss. Tab. 2 shows that w should be selected neither too
large (w = 8) nor too small (w = 1) for the best performance. The time window
w should be set based on the sampling rate of the sensor and the overlap between
adjacent frames.

4 Improving state-of-the-art with GIPSO

We show that our proposed modules also improve state-of-the-art methods,
such as CBST [?], ProDA [?] and, TPLD [?], providing additional evidence
that our propositions are steps forward in SF-OUDA not just in GIPSO. First,
we show that our adaptive sampling strategy can be used in state-of-the-art
methods to obtain more reliable pseudo-labels. Second, we propose modifications
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Table 2. Online adaptation on Synth4D → SemanticKITTI with a different time
window w.
Model w vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source - 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75
Target - +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

Our 1 +9.73 -0.63 +0.56 +1.79 +2.86 +4.88 +4.27 +3.35
Our 2 +11.76 -1.09 +0.78 +1.97 +2.50 +5.01 +5.23 +3.74
Our 3 +12.89 -0.37 +0.79 +1.84 +2.70 +5.20 +5.12 +4.02
Our 4 +13.84 -0.84 +0.94 +2.24 +2.57 +5.37 +5.49 +4.23
Our 5 +13.12 -0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31
Our 6 +13.95 -0.48 +0.95 +2.01 +2.77 +5.69 +5.93 +4.40
Our 7 +13.32 -0.90 +1.11 +2.16 +3.14 +5.43 +5.74 +4.28
Our 8 +13.16 -1.16 +0.95 +1.88 +2.67 +5.75 +6.20 +4.21

to further improve baselines performance in SF-OUDA. We propose the following
modifications:

– CBST∗ uses a confidence based sampling strategy to select class-balanced
pseudo-labels. We improve CBST∗ by using our adaptive selection strategy
based on uncertainty;

– TPLD∗ builds upon CBST∗ by increasing pseudo-label number through
densification and voting. We improve TPLD∗ with our more robust adaptive
pseudo-label selection and substitute the spatial nearest neighbor with our
geometrically informed propagation strategy.

– ProDA∗ exploits a centroid-based weighting strategy to denoise pseudo-labels.
Moreover, momentum update is performed between source FS and target
model FT . We improve ProDA∗ in its three main parts. First, we remove
source model momentum update as it promotes domain drift. Second, we
substitute pseudo-labelling with our iterative dropout based pseudo-labeling
strategy. Third, we compute more robust centroids by considering the mean
of point-features in our iterative pseudo-labelling strategy.

Tab. 3 shows that GIPSO components can be used to successfully improve
the performance of existing methods. ProDA∗ improves from −32.63 to +1.48,
we deem this is due to the more robust centroid computation and to the lower
adaptation drift obtained with a non-updated source model. CBST∗ benefits
from a better pseudo-label selection improving from +0.28 to +1.07. TPLD∗

benefits from a better pseudo-labels and the geometrically informed propagation
improving from ∗0.56 to +1.38.

5 Class mapping

In Sec. 5.1 we detail the class mapping to make Synth4D compatible with
SemanticKITTI [?] and nuScenes [?]. In Sec. 5.2 we report the class mapping
used in SynLiDAR [?].
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Table 3. Ablation study on Synth4D → SemanticKITTI reporting the improvement of
state-of-the-art methods by using GIPSO adaptive selection strategy and propagation
strategy.

Model vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75
Target +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

ProDA∗ -58.92 -12.08 -36.74 -45.32 -15.46 -20.69 -39.24 -32.63
CBST∗ -0.13 0.58 -1.00 -1.12 0.88 1.69 1.03 0.28
TPLD∗ 0.36 1.18 -0.76 -0.71 0.95 1.74 1.15 0.56

ProDA∗ (Ours) 2.04 4.40 0.24 0.62 0.29 1.07 1.71 1.48
CBST∗ (Ours) 2.72 -2.53 -0.19 0.56 1.48 3.02 2.46 1.07
TPLD∗ (Ours) 2.81 -2.33 -0.05 0.65 2.30 3.44 2.82 1.38

5.1 Synth4D

Tab. 4 reports the class mapping from Cityscapes [?] format of CARLA [?] to
the classes of Synth4D. Tab. 5 reports the class mapping from SemanticKITTI
to Synth4D. Tab. 6 reports the class mapping from nuScenes to Synth4D.

Tab. 4-6 maps input labels into the eight Synth4D labels: vehicle, pedestrian,
road, sidewalk, terrain, manmade, vegetation and, unlabelled. This class mapping
corresponds to the label intersections between CARLA, SemanticKITTI and
nuScenes. All the classes that do not intersect with other datasets are considered
as unlabelled.

Using the mapping in Tab. 4, the resulting class distributions for Synth4D are
reported in Tab. 7. It is important to notice that class distributions differ among
sensors as they have been acquired with independent runs. During each run, the
simulator is set to randomly initialise the ego-vehicle re-spawn position, agents’
positions (i.e., vehicles and pedestrians) and agents’ trajectories. Therefore, the
same class distribution cannot be ensured.

5.2 SynLiDAR

To make results compatible, we mapped SynLIDAR [?] classes to Synth4D classes.
Tab. 8 reports the class mapping used in our experiments.

6 Qualitative results

We report additional adaptation results of GIPSO in Synth4D→SemanticKITTI
(Fig. 1-2), SynthLiDAR→SemanticKITTI (Fig. 3-4) and, in Synth4D→nuScenes
(Fig. 5-6). In all the cases, we include large and small improvement cases. Large
improvement cases have a positive mIoU improvement over +20.0 mIoU, for
Synth4D→SemanticKITTI and SynLiDAR→SemanticKITTI while over +10.0
mIoU for Synth4D→nuScenes. Small improvement cases have an improvement
lower than +3.0 mIoU on all the adaptation scenarios. For a fair comparison, we
also include the predictions of the source model not adapted (source) and the
ground truth annotations (ground truth).
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Table 4. Class mapping from CARLA [?] format to Synth4D.

CARLA-ID CARLA-Name Synth4D-Name Synth4D-ID

0 unlabelled unlabelled 0
1 building manmade 6
2 fences manmade 6
3 other unlabelled 0
4 pedestrian pedestrian 2
5 pole manmade 6
6 roadlines road 3
7 road road 3
8 sidewalk sidewalk 4
9 vegetation vegetation 7
10 vehicle vehicle 1
11 wall manmade 6
12 trafficsign manmade 6
13 sky unlabelled 0
14 ground unlabelled 0
15 bridge manmade 6
16 railtrack manmade 6
17 guardrail manmade 6
18 trafficlight unlabelled 0
19 static unlabelled 0
20 dynamic unlabelled 0
21 water unlabelled 0
22 terrain terrain 5
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Table 5. Class mapping from SemanticKITTI [?] format to Synth4D.

SemanticKITTI-ID SemanticKITTI-Name Synth4D-Name Synth4D-ID

0 unlabelled unlabelled 0
1 car vehicle 1
2 bicycle unlabelled 0
3 motorcycle unlabelled 0
4 truck unlabelled 0
5 other-vehicle unlabelled 0
6 person pedestrian 2
7 bicyclist unlabelled 0
8 motorcyclist unlabelled 0
9 road road 3
10 parking road 3
11 sidewalk sidewalk 4
12 other-ground unlabelled 0
13 building manmade 6
14 fence manmade 6
15 vegetation vegetation 7
16 trunk vegetation 7
17 terrain terrain 5
18 pole manmade 6
19 traffic-sign manmade 6

Table 6. Class mapping from nuScenes [?] format to Synth4D.

nuScenes-ID nuScenes-Name Synth4D-Name Synth4D-ID

0 unlabelled unlabelled 0
1 barrier unlabelled 0
2 bicycle unlabelled 0
3 bus unlabelled 0
4 car vehicle 1
5 construction-vehicle unlabelled 0
6 motorcycle unlabelled 0
7 pedestrian pedestrian 2
8 traffic-cone unlabelled 0
9 trailer unlabelled 0
10 truck unlabelled 0
11 driveable-surface road 3
12 other-flat unlabelled 0
13 sidewalk sidewalk 4
14 terrain terrain 5
15 manmade manmade 6
16 vegetation vegetation 7
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Table 7. Number of annotated points for each adaptation category for the simulated
Velodyne HDL32E and Velodyne HDL64E. Each sensor setup was acquired in a different
run.

Velodyne
# labels (108)

vehicle pedestrian road sidewalk terrain manmade vegetation

HDL32E 2.52 0.04 4.35 1.07 0.95 1.48 1.24
HDL64E 1.15 0.03 6.09 1.25 1.51 1.11 0.75

Table 8. Class mapping from SynLiDAR [?] format to Synth4D.

SynliDAR-ID SynLiDAR-Name Synth4D-Name Synth4D-ID

0 unlabelled unlabelled 0
1 car vehicle 1
2 pickup vehicle 1
3 truck unlabelled 0
4 bus unlabelled 0
5 bicycle unlabelled 0
6 motorcycle unlabelled 0
7 other-vehicle unlabelled 0
8 road road 3
9 sidewalk sidewalk 4
10 parking road 3
11 other-ground unlabelled 0
12 female pedestrian 2
13 male pedestrian 2
14 kid pedestrian 2
15 crowd pedestrian 2
16 bicyclist unlabelled 0
17 motorcyclist unlabelled 0
18 building manmade 6
19 other-structure unlabelled 0
20 vegetation vegetation 7
21 trunk vegetation 7
22 terrain terrain 5
23 traffic-sign manmade 6
24 pole manmade 6
25 traffic-cone unlabelled 0
26 fence manmade 6
27 garbage-can unlabelled 0
28 electric-box unlabelled 0
29 table unlabelled 0
30 chair unlabelled 0
31 bench unlabelled 0
32 other-object unlabelled 0
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source ours ground truth

Fig. 1. Qualitative adaptation results on Synth4D→SemanticKITTI reporting large
improvement cases. We compare GIPSO predictions during SF-OUDA (ours) with
source model predictions (source) and with ground truth annotations (ground truth).
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source ours ground truth

Fig. 2. Qualitative adaptation results on Synth4D→SemanticKITTI reporting small
improvement cases. We compare GIPSO predictions during SF-OUDA (ours) with
source model predictions (source) and with ground truth annotations (ground truth).
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source ours ground truth

Fig. 3. Qualitative adaptation results on SynLiDAR→SemanticKITTI reporting large
improvement cases. We compare GIPSO predictions during SF-OUDA (ours) with
source model predictions (source) and with ground truth annotations (ground truth).



GIPSO: Geometrically Informed Prop. for Online Adapt. in 3D LiDAR Seg. 11

source ours ground truth

Fig. 4. Qualitative adaptation results on SynLiDAR→SemanticKITTI reporting small
improvement cases. We compare GIPSO predictions during SF-OUDA (ours) with
source model predictions (source) and with ground truth annotations (ground truth).
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source ours ground truth

Fig. 5. Qualitative adaptation results on Synth4D→nuScenes reporting large improve-
ment cases. We compare GIPSO predictions during SF-OUDA (ours) with source model
predictions (source) and with ground truth annotations (ground truth).
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source ours ground truth

Fig. 6. Qualitative adaptation results on Synth4D→nuScenes reporting small improve-
ment cases. We compare GIPSO predictions during SF-OUDA (ours) with source model
predictions (source) and with ground truth annotations (ground truth).


