
ar
X

iv
:2

30
2.

03
63

8v
1 

 [
gr

-q
c]

  7
 F

eb
 2

02
3

Loop Quantum Cosmology of non-diagonal Bianchi models

Matteo Bruno∗

Physics Department, Sapienza University of Rome, P.le A. Moro 5, 00185 Roma, Italy

Giovanni Montani†

ENEA, C.R. Frascati (Rome), Italy Via E. Fermi 45, 00044 Frascati (Roma), Italy and
Physics Department, Sapienza University of Rome, P.le A. Moro 5, 00185 Roma, Italy

The non-diagonal Bianchi models are studied in the loop framework for their classical and quantum
formulation. The expressions of the Ashtekar-Barbero-Immirzi variables and their properties are
found to provide a loop quantization of these models. In the special case of Bianchi I Universe, it
is shown that the geometrical operators result invariant from the diagonal description. Hence, the
kinematical Hilbert space of the non-diagonal Bianchi I model has similar features to the diagonal
one.

I. INTRODUCTION

One of the most natural arenas to test quantum
gravity proposals [18, 36] is provided by the Bianchi
Universes [10, 28], in particular, by the simplest Bianchi
I model [25, 37], which is characterized by a zero spatial
curvature.
The canonical quantization of the Bianchi I Universe
has been faced in the metric approach in [12, 26] and
its classical singular nature has been preserved via
the quantum dynamics, as soon as the behaviour of
localized wave packet is concerned (for the possibility to
implement a quantum bounce see [22]).
The implementation of Loop Quantum Gravity to the
Bianchi I dynamics has been pursued in [3, 5, 6, 8] and a
bouncing cosmology picture emerged as a consequence of
the discrete nature of the geometrical operator spectrum.
This procedure of quantization has been criticized in
[19], see also [20, 21], comparing the structure of the
SU(2) symmetry of the general case with the theory
emerging from the homogeneity constraint. The same
bouncing behaviour of the Bianchi I cosmology has been
also observed in the metric approach when the polymer
quantum mechanics is implemented in the cosmological
configurational space [2, 23, 29–31].

However, the standard formulation of the Bianchi
models which is addressed for quantum analyses is the
so-called diagonal case, i.e. when the three independent
directions of space are governed by three different scale
factors and no off-diagonal contributions emerge (in
this case the super-momentum constraint results to
be identically vanishing). A different, non-diagonal,
approach to classical Bianchi cosmologies has been
discussed in [34], see also [9], where the implications of
dealing with off-diagonal terms have been extensively
studied both from the point of view of a Hamiltonian and
field equation formulation. These studies clarify how the

∗ matteo.bruno@uniroma1.it
† giovanni.montani@enea.it

non-diagonal Bianchi Universes have a more complicated
configurational structure, in which additional infinite
walls came out in the standard spatial curvature terms
when the singularity is approached.
An interesting generalization of the Bianchi models, as
viewed in the framework of the Loop quantization, in
correspondence to a non-zero Gauss constraint has been
discussed in [13–15, 17], defining a kinetical construction
for the Hilbert space of the theory which accounts for
the real SU(2) symmetry of the general formulation.

Here, we considered an intermediate scenario for the
quantization of the Bianchi I cosmology, never addressed
before, which consists of starting from a metric formula-
tion of a non-diagonal Bianchi I model, up to arriving at
a kinematical formulation of the quantization procedure
in terms of Ashtekar-Barbero-Immirzi variables.
We start with a metric representation similar to the
one in [9, 34] and, then, we construct first the standard
Hamiltonian formulation. Subsequently, we translate
our analysis in terms of the Ashtekar-Barbero-Immirzi
variables.
The peculiarity of our representation is that we deal
with three diagonal connection-like variables and three
Euler angles, accounting for the non-diagonal nature of
the model, i.e. for the rotation in time of the spatial
directions, along which the connections are referred. It
is worth noting that also in this non-diagonal setting,
the Gauss constraint identically vanishes so that the
SU(2) symmetry can not be regarded as the driving
structure in constructing the kinematical Hilbert space.

As one of the main results of the present analysis, we
are able to demonstrate that, via a suitable rotation,
we can lead back to a diagonal representation of the
fluxes which appears as isomorphic to that one of the
diagonal case. This fact suggests that the quantization
procedure can be separated into two different parts, one
corresponding to three diagonal connections and the
other one involving the three angles.
This point of view is enforced by the possibility to
introduce a positive definite scalar product at fixed
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values of the angle in a given state. So, we arrive at
defining a kinematical Hilbert space for the model, which
resembles the Bohr compactification procedure for the
connection-like variables and a standard orthonormality
request for states, corresponding to different angles.

Then, in the second part of the manuscript, we search
for a more axiomatic formulation of the kinematical
Hilbert space, based on a U(1)3 representation of the
fundamental quantization algebra and an extension to
a U(1)6 representation. Both approaches appear to be
not completely viable but offer an interesting theoretical
and physical point of view on how the quantum features
of the non-diagonal Bianchi I model can emerge starting
from different settings of the configurational quantum
space.
The U(1)3 formulation applies the Bohr compactification
procedure to the connection-like variables only but finds
the difficulty that the angles unavoidable enter in the
almost-periodic functions, so preventing a rigorous and
conclusive construction of a kinematical Hilbert space.
The analysis based on the symmetry U(1)6 is in-
stead constructed by a “natural” extension of the
almost-periodic functions’ space to match it with the
correct numbers of independent variables, all the six
configurational coordinates are associated with a Bohr
compactification procedure.
This formulation emulates that one in [17], replacing the
SU(2) with the U(1)3 and U(1)6 symmetry. However,
the different nature of the quantum numbers emerging
in the two approaches prevents a complete parallelism,
which could provide a natural kinematical Hilbert space.

We conclude that the physical relevance of quantizing
a non-diagonal Bianchi I model relies on the classical
notion that, such a morphology is naturally induced
when the matter is introduced, for instance in the form
of a perfect fluid not at rest with the synchronous
reference frame.
On a classical level, the effect of the matter has been
shown to induce a “slow” rotation of the so-called Kasner
axes, i.e. the independent directions to which the scale
factors are referred. This rotation effect is not able to
alter some properties of the Bianchi models, like the
chaotic nature of the Bianchi VIII and IX cosmologies
near enough to the singularity.
To some extent, the present construction of a kinematical
Hilbert space, in which the angles are not affected by a
Bohr compactification scenario and they trivially enters
the scalar product between two states, can be regarded
as a pre-dynamical construction which is inspired by the
classical behaviour of a non-diagonal model, discussed
above.

The paper is structured as follows.
In Sec.II we recap some mathematical aspects of the clas-
sical approach to Bianchi models. Moreover, we present
the loop quantization procedure for the diagonal Bianchi

I model that will be the base for the quantization of the
non-diagonal one.
In Sec.III we present some calculations of classical quan-
tities for the non-diagonal Bianchi models. In particular,
we find the ADM Lagrangian and the Ashtekar-Barbero
variables for any non-diagonal Bianchi universes.
In Sec.IV we restrict our classical analysis to Bianchi I
models. We compute the constraints and verify the good
properties of their algebra.
In Sec.V we study the features of the holonomy in non-
diagonal Bianchi models. Furthermore, we propose a
quantization based on the quantum geometry, that al-
lows us to quantize the theory in a similar way to the
diagonal case.
In Sec.VI we want to analyze an alternative approach to
quantize the theory, more similar to the canonical Loop
Quantum Gravity. It is based on the representation of
the holonomy group, which, in our setting, is commuta-
tive. We use the groups U(1)3, in analogy with the other
works on Loop Quantum Cosmology, and U(1)6. Despite
the construction of the kinematical Hilbert space is in-
duced from the one for SU(2), these theories have some
issues in the physical interpretations.

II. HOMOGENEOUS UNIVERSES AND

BIANCHI MODELS

In this section, we will summarize the known aspects
of the Bianchi models and their quantization, with par-
ticular attention to the diagonal anisotropic Bianchi I
model.
In a homogeneous model, the space-time is a manifold
M = R × Σ, where Σ is a three-dimensional homoge-
neous space. We also require that the group of isometries
S acts freely on Σ, thus Σ can be identified with S. On
such a space, exists a basis of left-invariant one-form ωI

that satisfies the Maurer-Cartan equation

dωI +
1

2
f IJKω

J ∧ ωK = 0 (1)

Moreover, the left-invariant vector fields on Σ define a Lie
algebra s. A basis for this algebra is given by the dual
of the ωI , such vectors ξI satisfy ωJ(ξI) = δJI , θMC =
∑

I ω
IξI , where θMC in the Maurer-Cartan one-form on

S, and

[ξI , ξJ ] = fKIJξK . (2)

The Riemannian metric h induced on Σ by the space-time
metric g can be decomposed as

h = ηIJω
I ⊗ ωJ (3)

where ηIJ is a constant symmetric tensor on Σ.
Moreover, the homogeneous connection A on Σ can be
written as A = φ ◦ θMC , where φ : s → su(2) is a linear
map [17].
Using coordinates (t, xi) adapted to the ADM formalism,
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where xi are a set of coordinates on Σ, the Ashtekar’s
variables can be written as

Aai = φaIω
I
i , Eia = |det(ωIa)|pIaξiI . (4)

Bianchi I models are characterized by null structure
constants fKIJ = 0. In this case, S = R3 and the space-
time is topologically R4. Moreover, Σ is flat;, in fact,
it exists a set of coordinates in which ωIi = δIi (since
[ξI , ξJ ] = 0), thus hi,j(t, x) = ηIJδ

I
i δ
J
j is constant on Σ.

A. Loop quantization of the Bianchi I universe

The diagonal Bianchi I model allows a quantization
of the universe in the loop quantization program. This
quantization was provided by A.Ashtekar and E. Wilson-
Ewing in [8]. The tensor ηIJ is diagonal in diagonal mod-
els, such as the connection and the densitized triads. The
metric can be written as

h = −Ndt2 + a21(dx
1)2 + a22(dx

2)2 + a23(dx
3)2, (5)

where ai are the scale factors in each direction. While
the Ashtekar’s variables read

Aai = ca(La)−1ωai , Eia = |det(ωIa)|LaV0 =−1 paξ
i
a. (6)

These variables are fully characterized by ca, pa, and the
following Poisson brackets hold

{ca, pb} =
8πGγ

c3V0
δab , (7)

where γ is the Barbero-Immirzi parameter, V0 is the fidu-
cial volume of the fiducial cell V (i.e. V0 =

∫

V
ω1 ∧ ω2 ∧

ω3 = L1L2L3, where LI is the fiducial length of the I-th
edge). The diagonal components of the Ashtekar’s vari-
ables can be written in terms of scale factors

pI = sgn(aI)aJaKLJLK with ǫIJK = 1, (8)

cI =
γLI
N

daI
dt

(9)

The quantum theory presents basis states |p1, p2, p3〉,
which are eigenstates of the quantum geometry. In the
state |p1, p2, p3〉 the face σi of the fiducial cell V orthogo-
nal to the axis xi has area |pi|. Moreover, the elementary
operators act on this basis as

p̂1|p1, p2, p3〉 = p1|p1, p2, p3〉, (10)

̂exp(iλc)|p1, p2, p3〉 = |p1 − kγ~λ, p2, p3〉 (11)

where k = 8πG
c3 is the gravitational constant.

From the quantum geometry in LQG, we know that, to
have the best coarse grained, the state |p1, p2, p3〉 is re-
produced by an LQG state associated with a spin net-
work that intersects the surface σ3 with N3 edges, each

one carrying a quantum of area 4πγ
√
3ℓ2P . Hence, N3 is

given by

4πγ
√
3ℓ2PN3 = |p3| (12)

Consider the rectangle of minimal area pierced by exactly
one edge. We refer to it as the plaquette �1,2 whose area

is 4πγ
√
3ℓ2P . The fiducial length of its edges is µ̄1L1 and

µ̄2L2. Since the fiducial area on the surface is L1L2, we
obtain

N3µ̄1L1µ̄2L2 = L1L2. (13)

Equaling the two previous equations, we have

µ̄1µ̄2 = 4πγ
√
3
ℓ2P
|p3|

(14)

Repeating this procedure for the faces σ1 and σ2, we can
characterize the µ̄i

µ̄i =

√

4πγ
√
3

|pi|
|pjpk|

with ǫijk = 1. (15)

Thus, the quantization of the geometry characterizes the
states of the kinematical Hilbert space. Moreover, it gives
us a natural choice of the plaquette for calculating the
curvature operator, which is necessary for describing the
quantum dynamics.

III. NON-DIAGONAL MODELS IN THE

METRIC VARIABLES

In a non-diagonal Bianchi model, the hypersurface Σ
has a metric

hij(t, x) = ηIJ (t)ω
I
i (x)ω

J
j (x). (16)

Following Belinski’s approach to non-diagonal metric in
[9], we want to factorize ηIJ in a diagonal matrix similar
to it via a rotation. Since ηIJ (t) is a symmetric matrix
depending C∞ on one parameter, it always has three
eigenvalues {a2(t), b2(t), c2(t)}, that can be chosen con-
tinuously differentiable on the whole interval [33]. More-
over, if the continuous eigenvalues are such that no two
of them are equal at any t ∈ R if they are not equal for
all t ∈ R. Then all the eigenvalues and all the eigen-
vectors can be chosen C∞ in t [1]. Hence, ηIJ can be
decomposed as

ηIJ = ΓABR
A
I R

B
J with ΓAB =





a2 0 0
0 b2 0
0 0 c2



 (17)

and R a rotation matrix depend on the parameter t and
it is infinitely differentiable. The eigenvalues are posi-
tive because ηIJ are the components of the Riemannian
metric h in basis ωI , therefore, it is a positive definite,
symmetric matrix.



4

The rotation introduces three new variables: the angles.
Using the Euler angles {θ, ψ, ϕ} the rotation reads

R = exp(θj3) exp(ψj2) exp(ϕj3) (18)

where j2 and j3 are the generators of SO(3), as matrices:

j2 =





0 0 −1
0 0 0
1 0 0



 j3 =





0 1 0
−1 0 0
0 0 0





These angles can be interpreted as a physical rotation of
the left-invariant vector fields and they are C∞ functions
of t.

A. Calculation of the ADM Lagrangian

To construct a Hamiltonian theory, one can choose as
configuration variables the three scale factors and the
three Euler angles {a, b, c, θ, ψ, ϕ}, from now, these vari-
ables are called metric variables. The Lagrangian can be
calculated from the ADM formalism

LADM = N
√
h
(

R̄+
1

4N2
hrihsj(ḣij −Ni;j −Nj;i)

× (ḣrs −Nr;s −Ns;r)+

− 1

4N2
hijhrs(ḣij −Ni;j −Nj;i)

× (ḣrs −Nr;s −Ns;r)
)

. (19)

A sketch of the calculation is presented below and passes
through four terms. We rewrite the Lagrangian as the
sum of four terms (excluding the scalar curvature R̄)

LADM = N
√
h

(

R̄+
1

4N2

(

hrihsj ḣij ḣrs

+ hrihsj(Ni;j +Nj;i)(Nr;s +Ns;r)

− hrihsj ḣij(Nr;s +Ns;r)− hrihsj ḣrs(Ni;j +Nj;i)

− hijhrs(ḣij −Ni;j −Nj;i)(ḣrs −Nr;s −Ns;r)
)

)

.

For the first term, we simply factorize the metric hij as
in Eq.(16) and (17).

hrihsj ḣij ḣrs = ΓdcΓgh(Γ̇dh + Γa′hṘ
a′

b Λbd + Γdb′Ṙ
b′

f Λ
f
h)

× (Γ̇cg + Γg′gṘ
g′

a Λ
a
c + Γch′Ṙh

′

e Λeg)

= ΓacΓbdΓ̇abΓ̇cd − 4Γac ˙Γab(RΛ̇)
b
c

+ 2ΓabΓcd(RΛ̇)
d
a(RΛ̇)

c
b + 2(RΛ̇)bc(RΛ̇)

c
b

(20)

where Γab is the inverse of Γab and Λ is the inverse matrix
of R. Recalling that, since R is a rotation, Λ = Rt ,
therefore, the following properties hold

(a) ṘΛ +RΛ̇ = ΛṘ+ Λ̇R = 0

(b) (RΛ̇)t = ṘΛ = −RΛ̇ (21)

(c) tr(RΛ̇) = 0

The property (21a) follows from the Leibniz rule. The
(21b) can be proved using (21a) and it shows the skew-

symmetry of RΛ̇, so it implies (21c). Thus, in (20) one
term vanishes and the first term reads

hrihsj ḣij ḣrs =ΓACΓBDΓ̇ABΓ̇CD

+ 2ΓABΓCD(RΛ̇)
D
A (RΛ̇)

C
B

+ 2(RΛ̇)BC (RΛ̇)
C
B .

For the other terms, it is useful to recall the Maurer-
Cartan equation in local coordinates

∂ωIi
∂xj

−
∂ωIj
∂xi

= f IJKω
J
i ω

K
j . (22)

We are interested to compute a common factor to all the
remaining terms (Ni;j +Nj;i).
Before this, we need to compute the Christoffel symbols

Γ̄kijNk =
1

2
hkl(hil,j + hjl,i − hij,l)Nk

=
1

2
(Ni,j +Nj,i) +

1

2
N lηIJ

(

ωIi ω
J
l,j

+ ωIjω
J
l,i − (ωIi ω

J
j ),l
)

. (23)

After some tedious calculations, the structure constants
emerge using Eq.(1). In fact, the factor reads

(Ni;j +Nj;i) = (Ni,j +Nj,i − 2Γ̄kijNk)

= −N lηIJ
(

ωIi ω
J
l,j + ωIjω

J
l,i − (ωIi ω

J
j ),l
)

= −N l
(

ηIJω
I
i (ω

J
l,j − ωJj,l) + ηIJ(ω

I
jω

J
l,i − ωIi,lω

J
j )
)

.

For symmetry of ηIJ and the Maurer-Cartan equation,
we get

(Ni;j +Nj;i) = −N l
(

ηIJω
I
i f

J
KLω

K
l ω

L
j + 2ηIJω

I
jω

J
[l,i]

)

= 2NKηIJf
J
KLω

I
(iω

L
j).

We recall that the shift vector N i on a homogeneous
space can be factorized as N i(t, x) = N I(t)ξiI(x), where
N I = N iωIi depends on the time only.
For the second term, we find

hrihsj(Ni;j +Nj;i)(Nr;s +Ns;r) =

=2NANB(f IAJf
J
BI + ηIJηKLf

K
AIf

L
BJ) (24)

The third term is the double product, it is trivial that

hrihsj ḣij(Nr;s +Ns;r) = hrihsj(Ni;j +Nj;i)ḣrs

since one can obtain one from another, via renaming i↔
r, j ↔ s. This term can be easily calculated in a similar
way to the second term

hrihsj ḣij(Nr;s +Ns;r) = −2NKηIJ η̇JLf
L
KI . (25)

The fourth term appears quadratically in the Lagrangian,
it is

hij(ḣij −Ni;j −Nj;i) = ηIJ η̇IJ + 2NKfJKJ . (26)
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Recalling that for Bianchi A class models fJKJ = 0, this
term does not depend on the shift vector. To complete
the decomposition, it remains to write ηIJ and its inverse
ηIJ in terms of diagonal and rotation matrices. As matrix
η = ΛΓR, then,

η−1η̇ = ΛΓ−1RΛ̇ΓR+ ΛΓ−1Γ̇R+ ΛṘ,

and, from properties (21), tr(η−1η̇) = tr(Γ−1Γ̇).
The ADM Lagrangian can be written in terms of scale
factors and rotation matrices

LADM =N |det(ωIi )|
√

det(ΓAB)

(

R̄+
1

4N2

(

ΓACΓBDΓ̇ABΓ̇CD + 2ΓABΓCD(RΛ̇)
D
A (RΛ̇)

C
B

+ 2(RΛ̇)BC (RΛ̇)
C
B + 2NANB(f IAJf

J
BI + ηIJηKLf

K
AIf

L
BJ) + 4NKηIJ η̇JLf

L
KI − ΓIJ Γ̇IJΓ

KLΓ̇KL

)

)

. (27)

The Lagrangian can be further manipulated. First of all,
the scalar curvature can be written in terms of structure
constant and η only [24]. Moreover, Γ can be written
explicitly as a diagonal matrix ΓAB = a2(A)δAB, where

a1 = a, a2 = b, a3 = c are the scale factors, hence,
√

det(ΓAB) = |abc|.
Furthermore, we can bring out |det(ωIi )| from the integra-
tion on the space-time to compute the Einstein-Hilbert
action SEH , because it is the only term that depends on
the point of the hypersurface. It means

SEH = − c3

16πG

∫

dt d3xLADM (t, x)

= − c3

16πG

∫

dtL(t)
∫

Σ

d3x |det(ωIi )|

= − c3

16πG
V0

∫

dtL(t). (28)

Hence, one can consider a Lagrangian that depends only
on time L(t), which is defined as the homogeneous part
of the Lagrangian defined in (27).
The Lagrangian is complex and its writing in terms of
elementary functions is quite difficult to read, an imme-
diate simplification is to consider the Bianchi I model in
which the structure constants vanish. Notice that, in this
case, all terms which contain the shift vector vanish.

B. Ashtekar’s variables

The loop approach requires computing the densi-
tized dreibein and the Ashtekar-Barbero variables. The
dreibein vectors are pretty simple and they follow from
the metric

hij = ηIJω
I
i ω

J
j = δabe

a
i e
b
j (29)

using the decomposition of ηIJ in Eq.(17), it easy to check

eai = a(a)R
a
Iω

I
i a is not summed, (30)

where a1 = a, a2 = b, a3 = c. Its dual reads

eia = 1
a(a)

ΛIaξ
i
I a is not summed. (31)

The proof that one is the dual of the other is trivial

eai e
i
b =

a(a)
a(b)

RaIω
I
iΛ

J
b ξ
i
J =

a(a)
a(b)

RaIΛ
I
b =

a(a)
a(b)

δab = δab .

From this, the densitized dreibein is defined as

Eia =
√
heia = |det(ωIi )|

|a1a2a3|
a(a)

ΛIaξ
i
I

=|det(ωIi )|sgn(a(a))|abac|ΛIaξiI with ǫabc = 1. (32)

Notice that Λ is not a pure gauge rotation but it is a
physical rotation, applied on the left-invariant vectors,
necessary to have a non-diagonal metric.
To compute the connection we use the definition Aai =
Γai + γKa

i . First of all, the extrinsic curvature is calcu-
lated

Ka
i = Kije

ja =
1

2N
(ḣij −Ni;j −Nj;i)h

jkeak

=
1

2N
a(a)R

a
L

(

ηLJ η̇JI +NAηLKηIJf
J
AK +NAfLAI

)

ωIi .

(33)

For the spin part Γai = 1
2ǫ
a
bcω

bc
i , the spin connection is

evaluated

ωabi =
1

2

a(b)
a(a)

ΛIaR
b
Jf

J
IKω

K
i − 1

2

a(a)
a(b)

ΛIbR
a
Jf

J
IKω

K
i +

−1

2
1

a(a)a(b)
ηLKΛIaΛ

J
b f

L
JIω

K
i . (34)

One can check that this expression is skew-symmetric in
a, b. Hence, for the spin term we obtain

Γci =
1

2
ǫcab abaaΛ

I
aR

b
Jf

J
IKω

K
i − 1

4
ǫcab 1

aaab
ηLKΛIaΛ

J
b f

L
JIω

K
i .

(35)
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The connection Aai is now expressed in terms of scale
factor, rotation matrices and structure constants

Aai =
(1

2
ǫabc acabΛ

J
bR

c
Kf

K
JI −

1

4
ǫabc 1

abac
ηIJΛ

K
b ΛLc f

J
LK

+
γ

2N
a(a)R

a
L

(

ηLJ η̇JI +NAηLKηIJf
J
AK +NAfLAI

)

)

ωIi

(36)

As the Lagrangian, the expression in terms of elementary
functions is not easy to read. However, this calculation
shows explicitly that the connection is linearly dependent
on the left-invariant one-form, as one expects from (4).

Finally, one wants to find the dependence of pIa and φaI
on the scale factors and Euler angles. Since the depen-
dence of Aai on the left-invariant one-form is made ex-
plicit in Eq.(36), the components of the linear morphism
φ can be easily written

φaI =
1

2
ǫabc acabΛ

J
bR

c
Kf

K
JI −

1

4
ǫabc 1

abac
ηIJΛ

K
b ΛLc f

J
LK

+
γ

2N
a(a)R

a
L

(

ηLJ η̇JI +NAηLKηIJf
J
AK +NAfLAI

)

.

(37)

While pIa can be computed from the metric

hij = ΓabR
a
IR

b
Jω

I
i ω

J
j = |det(pIa)|pcIpcJωIi ωJj

from which, one obtains

√
h = ē = |abc||det(ωIi )| =

√

|det(pIa)||det(ωIi )| (38)

Recalling that the formula for the densitized dreibein is

Eia =
√
heia = |det(ωIi )|

|a1a2a3|
a(a)

ΛIaξ
i
I

Hence, pIa reads

pIa = sgn(a(a))|abac|ΛIa with ǫabc = 1. (39)

The classical theory presents eight disconnected cases,
one for each choice of signs for a, b, c, in fact, the eigen-
values of the metric cannot vanish. Furthermore, con-
sidering all three eigenvalues different from each other at
any t, if they can be ordered in the whole interval then
ηIJ can be decomposed as in Eq.(17). Thus, without
loss of generality, one can consider a > b > c > 0 ∀ t,
in the vierbein representation this choice means that the
densitized dreibein has the same orientation as the left-
invariant vectors.

IV. THE BIANCHI I CASE

In the non-diagonal Bianchi models, the Lagrangian
and the connections have a long and difficult expression,
so the study with respect to the scale factors and Euler
angles is too complicated. The Bianchi I model provides
a huge simplification of the formulae. In such a model
many terms in the Lagrangian and the connection vanish
and they come out very simplified.
Considering the Bianchi I model with a metric as in (17),
the ADM Lagrangian is derived by (27) and it reads

L =
1

4N

√

det(ΓAB)

(

ΓACΓBDΓ̇ABΓ̇CD

+ 2ΓABΓCD(RΛ̇)
D
A (RΛ̇)

C
B

+ 2(RΛ̇)BC (RΛ̇)
C
B − ΓIJ Γ̇IJΓ

KLΓ̇KL

)

. (40)

Notice that the Bianchi I hypothesis coincides with a
gauge fixing in the ADM formalism: on a generic Bianchi
model, imposing the vanishing of shift vector, results
in the same Lagrangian. As seen before, the structure
constant is always coupled with the shift vector, then,
fKIJ = 0 and N i = 0 remove the same terms. This is not
valid for the connection, in which some terms depend on
the structure constants only, which emerge from the spin
connection.
Since the spin connection Γai vanishes in the Bianchi I
model, the connection has a really simple expression

φaI =
γ

2N
a(a)R

a
Lη

LJ η̇JI . (41)

However, its expression as a matrix function of scale fac-
tors and Euler angles remains difficult to read. Never-
theless, we can do some manipulation, considering the
decomposition of η, we can rewrite the connection as

φaI =
γ

2Na(a)
ΛJa η̇JI . (42)

Moreover, the diagonal case can be obtained considering
RaI = δaI . From the previous expression, we get

φaI =
γ

N
ȧ(a)δ

a
I ,

from which, in the isotropic case, given by a1 = a2 =
a3 = a, the connection reads

φaI =
γ

N
ȧδaI ,

that is the same in [7].

Unlike the connection, we can write the Lagrangian
explicitly in terms of the metric variables
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L =
1

2Nabc

(

− 4abc
(

aḃċ+ bȧċ+ cȧḃ
)

− 2a2b2c2
(

2θ̇ϕ̇ cosψ + θ̇2 + ψ̇2 + ϕ̇2
)

+ a4
(

b2(cos θ ψ̇ + sin θ sinψ ϕ̇)2 + c2(θ̇ + cosψ ϕ̇)2
)

+ b4
(

a2(cos θ sinψ ϕ̇− sin θ ψ̇)2 + c2(θ̇ + cosψ ϕ̇)2
)

+ c4
(

a2(cos θ sinψ ϕ̇− sin θ ψ̇)2 + b2(cos θ ψ̇ + sin θ sinψ ϕ̇)2
))

. (43)

The reduction to the diagonal case can be implemented
considering the Euler angles constant and null, thus, only
the first term remains

Ldiag = − 2

N

(

aḃċ+ bȧċ+ cȧḃ
)

,

hence, for the isotropic case, the Lagrangian is propor-
tional to the scalar curvature in the flat FLRW model,
at least of a total derivative

Liso = − 6

N
aȧ2.

From the Lagrangian L we can compute the momenta
conjugate to the metric variables. Clearly, we have the
momenta

∂LADM
∂ȧ

= − 2

N
(cḃ+ bċ),

∂LADM
∂ḃ

= − 2

N
(cȧ+ aċ),

∂LADM
∂ċ

= − 2

N
(bȧ+ aḃ).

The conjugate momenta to the scale factors are the usual
ones of the diagonal case. Instead, the conjugate mo-

menta to the angles have a slightly difficult expression.

∂LADM
∂θ̇

=
c

Nab
(a2 − b2)2(θ̇ + cosψ ϕ̇),

∂LADM
∂ψ̇

=
1

Nabc

(

a4b2
(

cos2 θ ψ̇ + sin θ cos θ sinψ φ̇
)

+ b4a2
(

sin2 θ ψ̇ − sin θ cos θ sinψ φ̇
)

+ c4
(

a2
(

sin2 θ ψ̇ − sin θ cos θ sinψ φ̇
)

+ b2
(

cos2 θ ψ̇ + sin θ cos θ sinψ φ̇
)

)

+

− 2a2b2c2 ψ̇

)

,

∂LADM
∂ϕ̇

=
1

Nabc

(

a4
(

b2 sin θ sinψ(cos θ ψ̇ + sin θ sinψ ϕ̇)

+ c2 cosψ(θ̇ + cosψ ϕ̇)
)

+ b4
(

a2 cos θ sinψ(cos θ sinψ ϕ̇− sin θ ψ̇)

+ c2 cosψ(θ̇ + cosψ ϕ̇)
)

+ c4
(

a2 cos θ sinψ(cos θ sinψ ϕ̇− sin θ ψ̇)

+ b2 sin θ sinψ(cos θ ψ̇ + sin θ sinψ ϕ̇)
)

+

− 2a2b2c2(θ̇ cosψ + ϕ̇)

)

.

A. Contraints and their algebra for the Bianchi I

model

The Bianchi I model simplifies the expression of the
connection with respect to the metric variables. Further-
more, the constraints referred to the Ashtekar’s variables,
presented in [13] for a homogeneous model, read more
simply

Ga = ǫ c
ab φ

b
Ip
I
c ,

DI = Gbφ
b
I , (44)

S = − 1

γ2|det(pKc )|
(

pIaφ
a
Ip
J
b φ

b
J − pIaφ

a
Jp

J
b φ

b
I

)

,

where Ga and S are the Gauss and the scalar constraint
respectively. Notice that the Diffeomorphism constraint
DI does not play any role. It is a linear combination of
the Gauss constraint, then it weakly vanishes DI ≈ 0.
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In general, the Diffeomorphism constraint is not relevant
for homogeneous models [17].
The algebra of the constraints is easy to find in the phase
space (φIa, p

b
J). Despite DI being a linear combination of

the other constraints, it can give a non-trivial contribu-
tion to the algebra of the constraints. It is convenient to
introduce a new scalar constrain S ′ = γ2|det(pKc )|S, it
is well define because |det(pKc )| is always strictly greater
than zero.
Furthermore, the Poisson brackets of the constraint with
the phase space variables read

{Ga, pIb} = kγ′ ǫ c
ab p

I
c

{Ga, φbI} = kγ′ ǫabcφ
c
I

{DI , pJa} = kγ′ ǫ c
ba φ

b
Ip
J
c + kγ′Gaδ

J
I

{DI , φaJ} = kγ′ ǫbacφ
b
Iφ

c
J

{S ′, pIa} = −2kγ′
(

pIap
J
b φ

b
J − pJap

I
bφ
b
J

)

{S ′, φaI} = 2kγ′
(

φaIp
J
b φ

b
J − φaJp

J
b φ

b
I

)

where k = 8πG
c3 is the gravitational constant and γ′ =

γ/V0. One can compute the Poisson brackets between
the constraints. For the Gauss constraint, we get

{Ga, Gb} = kγ′ ǫ d
bc

(

ǫaceφ
e
Ip
I
d + ǫ e

ad p
I
eφ
c
I

)

= kγ′ (δcbδad − δcaδdb)φ
d
Ip
I
c = kγ′ ǫcdeǫ

e
baφ

d
Ip
I
c ,

while for the scalar constraint, we obtain

{Ga,S ′} =kγ′ ǫ c
ab p

I
c

(

2φbIp
J
dφ

d
J − 2φbJp

J
dφ

d
I

)

+

− kγ′ ǫ c
ab φ

b
I

(

2pIcp
J
dφ

d
J − 2pJc p

I
dφ
d
J

)

=2kγ′Gap
J
dφ

d
J − 2kγ′ ǫ c

ab p
I
cφ
b
Jp

J
dφ

d
I+

− 2kγ′Gap
J
dφ

d
J + 2kγ′ ǫ c

ab φ
b
Ip
J
c p

I
dφ

d
J = 0.

The Poisson brackets with DI are proportional to the
other constraints, then, at least they weakly vanish.
Hence, the algebra generated from the Gauss constraint
and the scalar constraint reads

{Ga, Gb} = kγ′ ǫabcGc ≈ 0

{Ga,DI} = 0

{Ga,S ′} = 0 (45)

{DI ,S ′} = Gb{φbI ,S ′} ≈ 0.

The algebra is closed and all the constraints are first-
class. It is also evident from the Poisson brackets
that the Gauss constraint is the generator of the
gauge transformation: it rotates the internal index
with the su(2) structure constant, while it leaves in-
variant the scalar quantities and the coordinate indices I.

Using Eq.(41) e (39), the constraints can be written in
terms of metric variables. For the scalar constraint, we
obtain

Sph =
1

2N2abc

(

− 4abc
(

aḃċ+ bȧċ+ cȧḃ
)

− 2a2b2c2
(

2θ̇ϕ̇ cosψ + θ̇2 + ψ̇2 + ϕ̇2
)

+ a4
(

b2(cos θ ψ̇ + sin θ sinψ ϕ̇)2 + c2(θ̇ + cosψ ϕ̇)2
)

+ b4
(

a2(cos θ sinψ ϕ̇− sin θ ψ̇)2 + c2(θ̇ + cosψ ϕ̇)2
)

+ c4
(

a2(cos θ sinψ ϕ̇− sin θ ψ̇)2 + b2(cos θ ψ̇ + sin θ sinψ ϕ̇)2
))

, (46)

while the Gauss constraint vanishes identically

Gph
a = 0. (47)

The vanishing of the Gauss constraint implies, due to
the Theorem I.2.1 in [35], that the other constraints are
exactly the ADM ones. One can check that Sph is the
super-Hamiltonian H obtains from the ADM Lagrangian
in (43).
The vanishing of the Gauss constraint is due to the set of
variables chosen, the set {a, b, c, θ, ψ, ϕ} is a set of metric
variables, while the Gauss constraint is associated with a
gauge transformation. Thus, without the gauge freedom,
as in this case, the Gauss constraint vanishes identically.

V. QUANTIZATION OF THE NON-DIAGONAL

BIANCHI I MODEL

The non-diagonal Bianchi I model is strongly linked to
the diagonal one. In fact, we will show that the geomet-
rical information is contained in some “diagonal” quanti-
ties and the quantization of the non-diagonal model fol-
lows the one proposed in [8] for diagonal Bianchi I mod-
els. These considerations suggest that the angles do not
play any role in the kinematical quantization. We can
find a justification in the classical description: a constant
rotation of the left-invariant vectors does not affect the
description; in fact, a linear combination of left-invariant
vectors is a left-invariant vector and it is always possible
to lead back to a diagonal metric, i.e. the rotation can
be absorbed in ωI . Considering a time dependant rota-
tion, the linear combination remains in the Lie algebra
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of the homogeneous space and for each fixed time the
previous consideration holds, hence, in each surface at a
fixed time it is possible to have a diagonal metric. At
the quantum level, it means that the angles do not affect
the kinematics and they contribute only to the dynamics
of the theory. Thus, it is possible to use the kinemat-
ical Hilbert space of the diagonal theory as the core of
the Hilbert space that describes the kinematics of the
non-diagonal theory.

A. Holonomy operator

The holonomy is the fundamental operator of the ap-
proach with loops. In LQC, the peculiar symmetries of
the holonomy due to a simpler phase space are useful to
quantize the Hamiltonian and they enable to define of a
suitable kinematical Hilbert space that renounces to the
SU(2) construction to adopt an abelian one. We want
to verify if the properties of the pointwise homogeneous
holonomy, studied in the diagonal case, hold in the non-
diagonal models.
First of all, we want to find the usual expression of
the holonomy in terms of trigonometric functions as in
Eq.(3.1) in [8]. Considering the holonomy along an edge
eI with length lI

exp

(∫

eI

ds ċiAai τa

)

= exp (lIφ
a
Iτa) . (48)

In order to do the expansion, the Taylor series of the
exponential is considered

exp (lIφ
a
I τa) =

∞
∑

n=0

1

n!
(lIφ

a
I τa)

n

=

∞
∑

n=0

1

(2n)!
(lIφ

a
I τa)

2n

+
∞
∑

n=0

1

(2n+ 1)!
(lIφ

a
Iτa)

2n+1. (49)

To proceed we need to evaluate the square of the argu-
ment

(lIφ
a
Iτa)

2 = l2Iφ
a
Iτaφ

b
Iτb = l2Iφ

a
Iφ

b
I

(

− 1
4δab +

1
2ǫabcτc

)

= − l
2
I

4

γ2

4N2

δab
cacb

ΛKa ΛLb η̇KI η̇LI

= − l
2
I

4

γ2

4N2
ηKLη̇KI η̇LI .

It is useful to define cII = γ
2N

√

ηKLη̇KI η̇LI . In such a
way the argument of the series reads

(lIφ
a
Iτa)

2n =
(

− 1
4 l

2
Ic

2
II

)n
= (−1)n

(

1
2 lIcII

)2n

(lIφ
a
Iτa)

2n+1 = (−1)n
(

1
2 lIcII

)2n
(lIφ

a
Iτa)

= (−1)n
(

1
2 lIcII

)2n+1 (2φaIτa)

cII
.

Hence, the Taylor series reads

exp (lIφ
a
I τa) =

∞
∑

n=0

1

(2n)!
(lIφ

a
I τa)

2n

+

∞
∑

n=0

1

(2n+ 1)!
(lIφ

a
Iτa)

2n+1

=
∞
∑

n=0

(−1)n

(2n)!

(

1
2 lIcII

)2n

+

∞
∑

n=0

(−1)n

(2n+ 1)!

(

1
2 lIcII

)2n+1 (2φaI τa)

cII

= cos
(

1
2 lIcII

)

+
(2φaIτa)

cII
sin
(

1
2 lIcII

)

.

(50)

It is evident that the issue is the factor of the sine,
which is not present in the isotropic and diago-
nal cases. However, we can check easily that, if
φaI = c(a)δ

a
I , then cII = cI , where cI are the diagonal

variables (cf. II A). Thus, we find the usual expression
exp (lIφ

a
Iτa) = cos

(

1
2 lIcI

)

+ 2τI sin
(

1
2 lIcI

)

presented in
[8].

With this expansion, we can derive some properties
of the pointwise holonomy in the non-diagonal Bianchi
I model. First of all, the commutation relations are
enounced in the following theorem.

Theorem 1. Considering SU(2) represented in its fun-
damental representation, i.e 2× 2 unitary matrices asso-
ciated to spin j = 1

2 , the usual matrix commutator reads

[ exp (lIφ
a
Iτa) , exp (lJφ

a
Jτa)]SU(2)⊂M(2,C) =

=
4

cIIcJJ
F cIJτc sin

(

1
2 lIcII

)

sin
(

1
2 lJcJJ

)

Proof. Fixed the representation j = 1
2 means that the

generators of the algebra are proportional to the Pauli
matrices τa = − i

2σa, then the commutator defined in
M(2,C) still holds. The calculation follows from the ex-
pansion (50), where the terms proportional to the iden-
tity are neglected because they do not contribute to the
commutator

[ exp (lIφ
a
Iτa) , exp (lJφ

a
Jτa)]M(2,C) =

=

[

(2φaI τa)

cII
sin
(

1
2 lIcII

)

,
(2φbJτb)

cJJ
sin
(

1
2 lJcJJ

)

]

M(2,C)

=
(2φaI )

cII
sin
(

1
2 lIcII

) (2φbJ)

cJJ
sin
(

1
2 lJcJJ

)

[τa, τb]su(2)

=
4

cIIcJJ
ǫabcφ

a
Iφ

b
Jτc sin

(

1
2 lIcII

)

sin
(

1
2 lJcJJ

)

This is a completely generic formula valid for any ho-
mogeneous holonomy in Bianchi I. It is evident that, for
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I = J , the skew-symmetry of F cIJ assures the vanish-
ing of the commutator of holonomy along the same edge.
Moreover, it holds also in the diagonal case in a slightly
simplified expression

[ exp (lIcIτI) , exp (lJcJτJ )] =

= 4 ǫIJkτk sin
(

1
2 lIcI

)

sin
(

1
2 lJcJ

)

.

Instead, the isotropic case is a different one. Due
to the isotropy, one is unable to distinguish different
directions of the space, then the holonomy along each
edge must commute each other and the commutator
always vanishes. Thus, the abelian approach in the
isotropic case finds its reason in the group of isotropic
holonomies that is abelian, further the identical null
Gauss constraint.

In an analogous way, it is possible to derive another
formula for the commutation property. It was originally
derived by M.Bojowald in [14] for the diagonal case, but
it is possible to generalize it to any homogeneous connec-
tion and to prove that it holds for SU(2).

Lemma 1. Let g, h ∈ SU(2) in the fundamental repre-
sentation. Then

gh = hg + h−1g + hg−1 − tr(hg−1) (51)

Proof. There are two ways to prove the lemma: using
(50) or with the quaternions. To prove it for the whole
SU(2) the quaternions give a more general formalism.
Considering the isomorphism between SU(2) and the
unit quaternions

F :SU(2) → H
(

α β
−β̄ ᾱ

)

7→ q = α+ βj α, β ∈ C

Recalling the quaternions algebra ij = k, jk = i, ki = j
and i2 = j2 = k2 = ijk = −1. It is possible to define the
complex conjugation as the change of the sign of i, j, k
and for unit quaternions q−1 = q̄. Notice that, using the
fundamental representation of SU(2), there is a link be-
tween trace and real part: tr(g) = 2ℜ(F (g)) = 2ℜ(α).
Thus, it is enough to prove the formula for the unit
quaternions, so the problem is reduced to doing some
simple algebra. Let q1 = a + bi + cj + dk and q2 =
w + xi + yj + zk, the single terms are computed

q1q2 − q2q1 = 2(cz − dy)i+ 2(dx− bz)j + 2(by + cx)k

q−1
2 q1 = (aw + bx+ cy + dz) + (bw − ax+ cz − dy)i

+ (cw − ay + dx− bz)j + (dw − az + by − cx)k

q2q
−1
1 = (aw + bx+ cy + dz) + (−bw + ax+ cz − dy)i

+ (ay − cw + dx− bz)j + (az − dw + by − cx)k

Where the real parts are evident. From which

q1q2 − q2q1 − q−1
2 q1 − q2q

−1
1 =

= −2(aw + bx+ cy + dz) = −2ℜ(q2q−1
1 ).

Where ℜ indicates the real part.

Using the expansion (50), after some tedious calcula-
tions, we find that the formula by M.Bojowald is a sub-
case of this Lemma. This can be proved by the compari-
son between the formulas. There is no evident symmetry
in Bojowald’s hypothesis for which tr(hg) = tr(hg−1),
but it is easy to check this equivalence from the expan-
sion in the diagonal case

tr(hg±1) = tr(eaτI e±bτJ ) =

= 2 cos(a/2) cos(b/2)∓ 2δIJ sin(a/2) sin(b/2) a, b ∈ R.

Since I 6= J is required in Bojowald’s Lemma, the sign
does not contribute.

The curvature operator follows the usual definition of
the canonical LQC but the choice of the plaquette must
be different. Recalling that

F aij = 2 lim
Ar�IJ→0

(

h�IJ − 1

Ar�IJ
τa

)

ωIi ω
J
j (52)

where �IJ is the plaquette, i.e. a rectangular closed path
with the edges along ξI and ξJ . The limit does not exist,
so we need to consider the plaquette with the minimal
area, as in IIA. We want to emulate the procedure for
the diagonal model and find a natural choice of the pla-
quette from which to compute the curvature.
In the non-diagonal case, pIa is not diagonal but with a
correct choice of the plaquette, we can bypass the prob-
lem and find three fluxes that are the same as the diag-
onal case. Considering the vectors

ζa = ΛIaξI , (53)

they are elements of the Lie algebra of Σ and it is easy
to check that [ζa, ζb] = 0. Moreover, along these vectors,
the densitized dreinbein vectors are diagonal

Eia = |det(ωIi )|
|a1a2a3|
a(a)

ΛIaξ
i
I = |det(ωIi )|p(a)ζia, (54)

where the expression of pa can be derived by Eq.(39)

pa = sgn(aa)|abac| with ǫabc = 1. (55)

Hence, since the choice of the plaquette for the regular-
ization of the curvature is completely arbitrary, we choose
the plaquette �ab as a rectangular closed path with edges
along ζa and ζb, that lies in the plane I-J rotated.
The pointwise holonomy along the edge ζa can be easily
computed

exp

(∫

ζa

ds ċiAai τa

)

= exp
(

laζ
i
aφ

b
Iω

I
i τb
)

= exp
(

λaφ̊
b
aτb

)

(56)

where φ̊ba is defined as φ̊ba = LaΛ
I
aφ

b
I . La is the fiducial

length of the a-th edge of the rotated fiducial cell, which
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is equal to the canonical fiducial cell La = LI if δaI = 1.
In fact, the fiducial metric is invariant

(

0q−1
)ij

= δIJξiIξ
j
J = δIJRaI ζ

i
aR

b
Jζ

j
b = δabζiaζ

j
b . (57)

Notice that φ̊ba has an explicit expression in terms of met-
ric variables

φ̊ba =
γL(a)

2Na(b)
ΛJbΛ

I
a η̇JI . (58)

Writing φ̊ba, an interesting property becomes evident

φ̊ba =







L1c1
γL2

2N
b2−a2

a ω3
γL3

2N
a2−c2

a ω2
γL1

2N
b2−a2

b ω3 L2c2
γL3

2N
c2−b2

b ω1
γL1

2N
a2−c2

c ω2
γL2

2N
c2−b2

c ω1 L3c3






(59)

where c1, c2, c3 are the diagonal components of the con-
nection as in the diagonal case

ca =
γ

N

daa
dt

, (60)

and ω1, ω2, ω3 are defined as

ω1 = cos θ sinψ ϕ̇− sin θ ψ̇,

ω2 = sin θ sinψ ϕ̇+ cos θ ψ̇,

ω3 = θ̇ + cosψ ϕ̇.

The connection is composed of a diagonal part that is
exactly the connection of the diagonal case and out-of-
diagonal terms, which depend on angles and linearly in
their conjugate momenta. Notice that for a constant
rotation the connection is diagonal. Thus, since the
holonomies are diagonal, one leads back to the diagonal
case for both the kinematical and the dynamical theory.

B. Quantum geometry

In the previous section, with a suitable choice of the
plaquette, the link with the diagonal case emerges. The
role of the diagonal variables in quantum geometry of the
non-diagonal Bianchi I model will be examined in depth.
With the choice of the plaquette �ab as above, one of the
densitized dreibein vectors is orthogonal to the plaque-
tte and its diagonal component can represent the area,
so the argument for the diagonal case can be emulated
also in the non-diagonal one. Moreover, the flux of the
electric field over the face σ̃a of the rotated fiducial cell
is proportional to pa.
Recalling that the fiducial length is invariant under rota-
tion of the edges, let’s introduce new variables via rescal-
ing p̃a = LbLcpa with ǫabc = 1, to be coherent with the
notation in IIA.

Lemma 2. The area of σ̃a is |p̃a|

Proof. Considering the face σ̃3 on the rotated fiducial
cell. Let {xi} local coordinates in which ξia = δia. Since
[ζa, ζb] = 0, then exist local coordinates {x̃i} such that
ζia = δia.
We can write the metric on Σ in these new coordinates
h = a21(dx̃

1)2 + a22(dx̃
2)2 + a23(dx̃

3)2. Let ι : σ̃3 −→ Σ
the inclusion map and F : Σ → Σ a rotation such that
F∗ξ1 = ζ1 and so on for 2 and 3.
For σ̃3 we have:

1. σ̃3 = F (σ3), where σ3 is the face of the fiducial cell.

2. The metric on the surface σ̃3 is q = ι∗h =
a21(dx̃

1)2 + a22(dx̃
2)2. Hence, the volume form is

Volq = |a1a2|dx̃1 ∧ dx̃2 = |p3|dx̃1 ∧ dx̃2.

Thus, the area of σ̃3 reads

Ar(σ̃3) =

∫

σ̃3

|p3|dx̃1 ∧ dx̃2 = |p3|
∫

F (σ3)

dx̃1 ∧ dx̃2

= |p3|
∫

σ3

F ∗(dx̃1 ∧ dx̃2) = |p3|
∫

σ3

ω1 ∧ ω2

= |p3|L1L2 = |p̃3|.

The same procedure can be repeated for the other two
faces.

Considering also rescaled connection variables c̃a =
Laca, the couple (c̃a, p̃b) is exactly the one of the
diagonal case. Hence, we can choose the phase-
space {p̃1, p̃2, p̃3, θ, ψ, ϕ, c̃1, c̃2, c̃3, πθ, πψ, πϕ} with (non-
vanishing) Poisson brackets

{c̃a, p̃b} = kγ′δab ,

{θ, πθ} = 1,

{ψ, πψ} = 1,

{ϕ, πϕ} = 1.

Considering the quantum states |p̃1, p̃2, p̃3, θ, ψ, ϕ〉,
these states are eigestates of quantum geometry. For the
Lemma 2, in such a state the face σ̃3 in the plane ζ1, ζ2
of the rotated fiducial cell has area |p̃3|. Furthermore,
the classical volume has the same expression as the diag-
onal one, just like the volume operator. We obtain the
classical expression

Vol =

∫

d3x

√

∣

∣

∣

1
6ǫ
abcǫijkEiaE

j
bE

k
c

∣

∣

∣

= V0

√

∣

∣

1
6ǫ
abcǫIJKpIap

J
b p

K
c

∣

∣

= V0

√

∣

∣

1
6ǫ
abcǫIJKΛIaΛ

J
bΛ

K
c papbpc

∣

∣

= V0
√

|p1p2p3| =
√

|p̃1p̃2p̃3| (61)

Thus, all the geometry information is contained in the
“diagonal” variables p̃a, which represent the fluxes, with
their conjugate momenta c̃a. Hence, as in the diagonal
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case, the couple (p̃a, c̃b) can be quantized in the loop
formalism and their action on the states is

ˆ̃p1|p̃1, p̃2, p̃3, θ, ψ, ϕ〉 = p̃1|p̃1, p̃2, p̃3, θ, ψ, ϕ〉, (62)

̂exp(iλc̃1)|p̃1, p̃2, p̃3, θ, ψ, ϕ〉 = |p̃1 − kγ~λ, p̃2, p̃3, θ, ψ, ϕ〉,
(63)

and similarly for ˆ̃p2 and ˆ̃p3.

Since ˆ̃pa is well-defined as an operator, the quantiza-
tion of the volume is trivial. On the previously defined
states, the volume operator acts as

V̂ |p̃1, p̃2, p̃3, θ, ψ, ϕ〉 =
√

|p̃1p̃2p̃3||p̃1, p̃2, p̃3, θ, ψ, ϕ〉
The information about quantum geometry is wholly
encoded by the fluxes p̃a. The angles θ, ψ, ϕ represent
how much non-diagonal is the state, i.e. greater the
values more the dreibein is rotated with respect to the
left-invariant vectors, which is important in the choice
of a suitable plaquette on which compute the curvature
operator. As already seen, this choice is arbitrary and
we can choose the plaquette whose area is proportional
to p̃a. Furthermore, without any ambiguity, the volume
depends only on momenta. At a quantum level, the
Volume operator has the same eigenstates of the fluxes
and eigenvalues that depend only on the eigenvalues of
the fluxes.

The kinematical states of the theory are linear combi-
nations of |p̃1, p̃2, p̃3, θ, ψ, ϕ〉, in which p̃a are quantized
in the loop framework. About the angles, it is possible to
use the Weyl quantization. The fundamental operators
read

eiξθ̂|p̃1, p̃2, p̃3, θ, ψ, ϕ〉 = eiξθ|p̃1, p̃2, p̃3, θ, ψ, ϕ〉, (64)

eiηπ̂θ |p̃1, p̃2, p̃3, θ, ψ, ϕ〉 = |p̃1, p̃2, p̃3, θ + η, ψ, ϕ〉, (65)

and similarly for ψ and ϕ.
In this vector space, a norm can be defined such that it
is the same as the diagonal case. The diagonal states
are the ones with null angles |p̃1, p̃2, p̃3, 0, 0, 0〉. Thus, is
always possible to write any state as a linear transforma-
tion of a diagonal one

|p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3〉 =
= eiϕ1π̂θeiϕ2π̂ψeiϕ3π̂ϕ |p̃1, p̃2, p̃3, 0, 0, 0〉.

To define a kinematical Hilbert space, we need to equip it
with a scalar product. From the quantization properties,
the scalar product must induce a norm on the basis of
states that have to satisfy

|||p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3〉||2 =

= 〈p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3|p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3〉
= 〈p̃1, p̃2, p̃3, 0, 0, 0|e−iϕ3π̂ϕe−iϕ2π̂ψe−iϕ1π̂θ×

× eiϕ1π̂θeiϕ2π̂ψeiϕ3π̂ϕ |p̃1, p̃2, p̃3, 0, 0, 0〉
= 〈p̃1, p̃2, p̃3, 0, 0, 0|p̃1, p̃2, p̃3, 0, 0, 0〉
:= |||p̃1, p̃2, p̃3〉||2diag = 1,

in which || · ||diag is the norm of the state in the diagonal
theory.
The property of leading back the scalar product to the di-
agonal one holds not only for the norm. In fact, consider
a generic scalar product between two states

〈p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3|p̃′1, p̃′2, p̃′3, ϕ′
1, ϕ

′
2, ϕ

′
3〉 =

= 〈p̃1, p̃2, p̃3, 0, 0, 0|ei(ϕ1−ϕ
′

1)p̂θei(ϕ2−ϕ
′

2)p̂ψ×
× ei(ϕ3−ϕ

′

3)p̂ϕ |p̃′1, p̃′2, p̃′3, 0, 0, 0〉
= 〈p̃1, p̃2, p̃3, 0, 0, 0|p̃′1, p̃′2, p̃′3, ϕ1 − ϕ′

1, ϕ2 − ϕ′
2, ϕ3 − ϕ′

3〉.

If ϕr = ϕ′
r, we find the scalar product between diagonal

states. So, the scalar product between equally rotated
states is imposed to be

〈p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3|p̃′1, p̃′2, p̃′3, ϕ1, ϕ2, ϕ3〉 =
〈p̃1, p̃2, p̃3|p̃′1, p̃′2, p̃′3〉diag = δp̃1p̃′1δp̃2p̃′2δp̃3p̃′3 .

This is coherent with our interpretation of the quantum
kinematics of the angles.
There is no unique choice of a scalar product that in-
duces the properties above. However, we require that
|p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3〉| are orthonormal states then, in ac-
cording with the quantization procedure, we are allowed
to choose as the scalar product

〈p̃1, p̃2, p̃3, ϕ1, ϕ2, ϕ3|p̃′1, p̃′2, p̃′3, ϕ′
1, ϕ

′
2, ϕ

′
3〉

:= δp̃1p̃′1δp̃2p̃′2δp̃3p̃′3δ(ϕ1 − ϕ′
1)δ(ϕ2 − ϕ′

2)δ(ϕ3 − ϕ′
3)

(66)

The kinematical Hilbert space of the theory is equipped
with the scalar product (66) and it has an orthonor-
mal basis {|p̃1, p̃2, p̃3, θ, ψ, ϕ〉}. In the kinematical Hilbert
space, the angles do not play any role, hence, the kine-
matical theory reflects the properties of the geometric
operators.

VI. REPRESENTATION QUANTIZATION

The quantization of homogeneous models was already
implemented by M.Bojowald in his work ’Mathematical
Structure of Loop Quantum Cosmology: Homogeneous
Models’ [17], in which the same procedure of the full
theory is used to find the kinematical Hilbert space and
the fundamental operators: pointwise holonomy and the
momenta operator. The theory is similar to the LQG
but it is described in terms of the homogeneous part of
the connection φaI instead of the full one. Nevertheless,
in the IVA, the cosmological theory of the non-diagonal
Bianchi I model emerges naturally with a null Gauss con-
straint. Moreover, the holonomy has the same commuta-
tion relation of the diagonal case by Theorem 1. Hence,
we want the theory to be expressed as a U(1)3 theory
instead of SU(2), as in the usual approach to diagonal
models. To do that, we implement the kinematical quan-
tization procedure shown in [17] in our case, imposing
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that the states are representations of U(1)3. This formu-
lation seems to be more general than the one proposed in
VB, as it holds for any Bianchi models, but it presents
some issues and problems with physical interpretation.

A. U(1)3-holonomy

The choice of the Ashtekar variables c1, c2, c3 for the
cosmology, seems to be the only reasonable one. How-
ever, in the non-diagonal case, there is ambiguity. These
variables do not emerge naturally from the geometry but
they are useful to show the relation with the diagonal
case. We are interested in looking for a more natural set
of variables. To do that the expansion in (50) can be
useful, we can choose the argument of the trigonometric
functions as the configuration variables

cII =

√

∑

a

φaIφ
a
I . (67)

The square root exists because the argument is a sum
of squares (in this Section we do not use the Einstein
summation convention).
Moreover, it is possible to find the conjugate momenta in
terms of connection and dreibein. Considering a function
F J , imposing the invariance of the Poisson brackets

kγ′δJI = {cII , F J}φa
I
,pIa

= kγ′
1

cII

∑

K

δKI φ
c
K

∂F J

∂pKc
, (68)

we obtain

∂F J

∂pKc
∝ (φ−1)Jc ,

Hence, the momenta read

pI = cII
∑

a

(φ−1)Iap
I
a. (69)

Notice that also

F J =
1

cJJ

∑

a

pJaφ
a
J

give us the correct Poisson bracket but the first one will
result more useful in the next Section.

For the quantisation, the procedure proposed by
M.Bojowald in [17] is implemented in the U(1)3 case.
In particular, to adapt the formalism to the original pa-
per, rescaled variables are considered

c̃II = LI

√

∑

a

φaIφ
a
I , p̃I = LJLKp

I with ǫIJK = 1.

(70)
The holonomy-flux algebra is implemented considering
representations of holonomies as kinetic states of the

theory with quantum number n label of representation.
Thus, a state reads ρλ,n(gI) = (exp(iλc̃II))

n, with λ ∈ Q
and n ∈ N.
The binary operations have really simple expressions, the
multiplication reads

ρλ1,n1(gI) · ρλ2,n2(gI) :=ρz,n1(gI)
N1ρz,n2(gI)

N2

= ρz,N1n1+N2n2(gI) (71)

with z maximal rational such that λ1 = N1z and λ2 =
N2z. While multiplication between two elements with
I 6= J is the tensor product. The star operator is
ρλ,n(gI)

∗ = ρλ,−n(gI). For the inner product, the Haar
measure on U(1) is required. It can be defined by

µH(S) =
1

2π
m(f−1(S)),

for each S ⊂ U(1), where f is the function f : [0, 2π] →
U(1), t 7→ (cos(t), sin(t)) and m is the usual Borel mea-
sure on the real line. Hence, the measure for the inner
product is

∫

U(1)

dµH(exp(zλc̃II)) =
1

2π

∫ 2π/z

0

d(zc̃II). (72)

From this, we can define the inner product as

(ρλ1,n1(gI), ρλ2,n2(gJ)) :=

:=
1

(2π)3

∏

K

∫ 2π/z

0

d(zc̃KK)ρλ1,−n1(gI) · ρλ2,n2(gJ).

(73)

Notice that for I 6= J the inner product vanishes unless
λ1n1 = 0 = λ2n2. If I = J one obtains

(ρλ1,n1(gI), ρλ2,n2(gI))

=
1

2π

∫ 2π/z

0

d(zc̃II) ρλ1,−n1(gI) · ρλ2,n2(gI)

=
1

2π

∫ 2π

0

dx ρN2n2−N1n1(e
ix) =

{

0 if λ1n1 6= λ2n2

1 if λ1n1 = λ2n2

All the definitions above are coherent with the isotropic
case studied in [17].
Recalling that ρn(τI) = i for the U(1) representations,
the momentum operator can be derived from the general
case,

ˆ̃pIρλ,n(gJ ) = 8πγℓ2Pλδ
I
Jρλ,n(gJ) (74)

With multiplication operator ρλ,n(gI) and momentum

operator ˆ̃pI one now can compute the commutators act-
ing on a state ψ(gI) = ρλ2,n2(gI) (for J 6= I is the
same since J-terms does not contribute), the calculation
is pretty simple and one obtains

[ρλ,n(gI), ˆ̃p
I ] = −8πγℓ2Pλρλ,n(gI). (75)
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There is no reordering operator R̂I , then the commutator
is exactly the quantization of the Poisson bracket. It is
possible to show that the reordering operator vanishes in
the abelian theory

R̂I(ρλ1,n1(gI) · · · ρλN ,nN (gI))

= iz

N
∑

l=1

Nlρλ1,n1(gI) · · · ρz,nl(gI)Nl · · · ρλN ,nN (gI)+

− i

N
∑

l=1

λl ρλ1,n1(gI) · · · ρλN ,nN (gI) = 0

with z maximal rational such that λl = zNl. The
reason is that refinement does not exist in the abelian
theory; in fact, the action of ρλ,0(gI) as multiplication
operator is trivial. In the SU(2) theory, the reordering
operator reads RIa = −(8πγiℓ2P )

−1p̃Ia(ρz,0 − 1), but in
the abelian theory the term in the parenthesis acts as a
null projector on every state, then R̂I = 0.

This Hilbert space is isomorphic to the LQC’s usual
one: the space of functions on the Bohr compactification
RBohr of the real line (i.e. almost periodic functions).
It exists a map between the abelian states and almost
periodic functions B : ρλ,n(gI) 7→ exp(iλnc̃II).
This map is a ∗-algebra morphism and commutes with
the action of ˆ̃pI [17]. The map is surjective: given any
exp(iac̃II) is is always possible to find ρλ,n(gI) such that
λn = a and so, to satisfy B(ρλ,n(gI)) = exp(iac̃II). B is
also injective [32] because of Lemma 3.

Lemma 3. Two elements ρλ1,n1(gI) and ρλ2,n2(gI) such
that λ1n1 = λ2n2 are the same point in the Hilbert space
with the scalar product defined in (73).

Proof. Let ρλ1,n1(gI) and ρλ2,n2(gI) such that λ1n1 =

λ2n2. Recalling that (ρλ1,n1(gI), ρλ2,n2(gI)) = 1 if
λ1n1 = λ2n2.
We want to compute the distance between these two el-
ements

||ρλ1,n1(gI)− ρλ2,n2(gI)||2

= ||ρλ1,n1(gI)||2 + ||ρλ2,n2(gI)||2+
− (ρλ1,n1(gI), ρλ2,n2(gI))− (ρλ2,n2(gI), ρλ1,n1(gI))

= 2− 2ℜ((ρλ1,n1(gI), ρλ2,n2(gI))) = 0

In fact, the previous Lemma says us that the preimage
of an element under B consist of a point only.

The Hamiltonian can be implemented in the theory
considering the expression showed in [15]. In Bianchi I
model the Hamiltonian is given by the Euclidean term
only and it reads

Ĥ =
4i

kγ2ℓ2P

∑

I,J,K

ǫIJKtr(hIhJh
−1
I h−1

J hK [h−1
K , V̂ ]). (76)

It is a really useful formula because it gives the right or-
dering of the terms in the Hamiltonian operator. More-
over, the expansion provides it in terms of trigonometric
functions of c̃II . The computation is quite tedious. First
of all, one can separate the two terms of the commu-
tator. The first term vanishes due to the symmetry of
tr(hIhJh

−1
I h−1

J ). In fact in the fundamental representa-
tion, the trace of any SU(2) matrix is real, then

tr(hIhJh
−1
I h−1

J ) = tr((hIhJh
−1
I h−1

J )†) = tr(hJhIh
−1
J h−1

I ).

The second term can be computed using the expansion
(50) and the Lemma 1 (the Einstein’s summation conven-
tion holds for the indices a, b, c in the following formula)

∑

IJK

ǫIJKtr(hIhJh
−1
I h−1

J hK V̂ h
−1
K ) =

∑

IJK

ǫIJK

(

4

(

cos(12 c̃II) sin(
1
2 c̃II) sin

2(12 c̃JJ )

c̃II

(

φ̃aI −
˜c2IJ
c2
JJ

φ̃aJ
)

− term (I ↔ J)

)

×
(

cos(12 c̃KK)V̂
φ̃aK
c̃KK

sin(12 c̃KK)− φ̃aK
c̃KK

sin(12 c̃KK)V̂ cos(12 c̃KK)
)

+4
(

cos(12 c̃II) cos(
1
2 c̃JJ )−

c̃2IJ
c̃II c̃JJ

sin(12 c̃II) sin(
1
2 c̃JJ)

) φ̃aI φ̃
b
J

c̃II c̃JJ
sin(12 c̃II) sin(

1
2 c̃JJ)×

×ǫabc
(

cos(12 c̃KK)V̂
φ̃cK
c̃KK

sin(12 c̃KK)− φ̃cK
c̃KK

sin(12 c̃KK)V̂ cos(12 c̃KK)
)

+

(

cos(12 c̃II) sin(
1
2 c̃II) sin

2(12 c̃JJ )

c̃II

(

φ̃aI −
˜c2IJ
c2
JJ

φ̃aJ
)

− term (I ↔ J)

)

ǫabc
φ̃bK
c̃KK

sin(12 c̃KK)V̂
φ̃cK
c̃KK

sin(12 c̃KK)

+4
(

cos(12 c̃II) cos(
1
2 c̃JJ)−

c̃2IJ
c̃II c̃JJ

sin(12 c̃II) sin(
1
2 c̃JJ)

) φ̃aI φ̃
b
J

c̃II c̃JJ
sin(12 c̃II) sin(

1
2 c̃JJ )ǫabf ǫfcd

φ̃cK
c̃KK

sin(12 c̃KK)V̂
φ̃dK
c̃KK

sin(12 c̃KK)

)

.

The problems of this Hamiltonian are evident. Further the complexity, linear terms in the connection appear.
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An operator for the connection does not exist and it can-
not be expressed in terms of c̃II and p̃I . The same prob-
lem holds for the volume operator V̂ .
If one restricts in the diagonal case, the expression sim-
plifies and we obtain

∑

IJK

ǫIJKtr(hIhJh
−1
I h−1

J hK V̂ h
−1
K ) = (77)

=
∑

IJK

ǫIJK
(

4 ǫIJK cos(12cI) cos(
1
2cJ) sin(

1
2cI) sin(

1
2cJ)

×
(

cos(12cK)V̂ sin(12cK)− sin(12cK)V̂ cos(12cK)
)

)

.

So, it is easy to show that the Hamiltonian is the same
as presented in [16] (for details cf. Appendix ).
Despite the good properties of the Hilbert space and the
holonomy-flux algebra, this approach is not useful. In
particular, it fails in the implementation of angles in the
kinematical states, that are dependent on only three vari-
ables c̃II . It does not have a separable Hamiltonian, nei-
ther it provides proof of the independence of the geome-
try from the angles.
The same approach along the edges ζa can be consid-
ered. Still, it is not possible to find suitable conjugate

momenta to the variables c̊aa = (
∑

b φ̊
b
aφ̊

b
a)

1
2 because in

this formulation φaI and pIa are mixed.

B. U(1)6-holonomy

The previous approach can be slightly modified consid-
ering as multiplication operator its “natural extension”
in a symmetric matrix (still Einstein summation conven-
tion is not adopted)

cIJ =

√

∑

a

φaIφ
a
J . (78)

Also, the momenta are the “generalization” of ones found
before

pIJ = cIJ
∑

a

pIa(φ
−1)Ja . (79)

It is not trivial to check that the conjugate momenta are
symmetric. Considering the expression of the connection
and of the dreibein as matrices

φ = − γ

2N
C−1Rη̇

p = ΓΛC−1

with C = diag(a, b, c) and Γ =
√

det(Γab). The conju-
gate momenta read

pIJ ∝ φ−1pt ∝ η̇−1ΛCC−1R = η̇−1, (80)

where η is symmetric, then pIJ is symmetric too.
In these variables the classical scalar constraint S ′ can

be written in a simple way

S ′ =
∑

IJ

(pIJcIJ)
2 −

∑

IJKL

pIL

cIL
c2LJ

pJK

cJK
c2KI . (81)

While if we implement the Thiemann’s trick for the
Hamiltonian we obtain exactly the same Hamiltonian
shown in the previous Section because it comes from a
general approach.
This formalism seems to adapt better to the problem
than the only cII due to the natural emergence of
six variables, but the quantisation program has sev-
eral issues. To emulate the Hilbert space defined in
Sec.VIA, we want to use as states the representations
of U(1)6-holonomy. In such a Hilbert space, the same
properties of the U(1)3-formulation hold. However,
U(1)6-holonomy has no physical meaning. In canonical
LQC the power of U(1) is due to the different directions
in the space, hence 6 holonomies can not have the usual
interpretation as holonomy along an edge and do not
have one.
A possible way to find a “geometry+angles” interpre-
tation from this approach can be to diagonalize the
matrix cIJ and consider as variables the eigenvalues and
the angles of the change-of-basis matrix. Unfortunately,
the conjugate momenta are difficult to find and the
Hamiltonian does not seem to simplify further.

In conclusion, the construction of a Hilbert space anal-
ogous to the one in the general homogeneous case and iso-
morphic to the space of functions on the Bohr compacti-
fication of the real line is not the correct way in which to
proceed. In the last two Sections, it is shown that many
issues emerge in the quantisation of the Hamiltonian and
in the definition of the kinematical states. Thus, the lin-
ear term in the connection can not be ignored and one is
not legitimate to consider almost-periodic functions de-
rived from the expansion of the holonomy.
ou

VII. CONCLUDING REMARKS

We analyze the formulation of the non-diagonal
Bianchi I model in terms of the Ashtekar-Barbero-
Immirzi variables, searching for the construction of a
suitable kinetical Hilbert space.
This representation, in principle extendible to a generic
Bianchi Universe, must be regarded as an intermediate
step between the standard diagonal case, developed in
[8, 16] and that one proposed in [17], where the reduced
variables keep all the required degrees of freedom to be
associated with a non-zero Gauss constraint and the
SU(2) internal symmetry is properly recovered.

In our model, the Gauss constraint identically vanishes
and, therefore, the procedure to construct a kinematical
Hilbert space had to deal with essentially the U(1)3
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symmetry, but now three additional degrees of freedom
come into the problem, corresponding to the three Eu-
ler angles, responsible for the Kasner axis rotation [9, 34].

Three different proposals for a viable Hilbert space
have been formulated. The most interesting approach
was, from a physical point of view, the possibility to
achieve, via a proper rotation, three diagonal fluxes,
resembling exactly those of the diagonal case (see
Lemma 2). This result allowed us to introduce a suitable
scalar product, in which the diagonal components
are still interpretable as eigenstates of the quantum
geometry, while the three angles are associated with a
natural orthonormality condition.
This picture has significant physical content since it is
a sort of “adiabatic kinematics” of the Euler angles,
reflecting their classical adiabatic dynamics [10, 11, 27].

The attempt to construct a U(1)3 representation for
the connection variables we want to transfer to the
U(1)3 group some of the issues obtained in [17] for the
SU(2) representation. This approach is equivalent to
the Bohr compactification one. It had to deal with the
non-trivial question that the angles are always involved
in the argument of the almost periodic functions and
a linear term appeared in the sine expansion of the
holonomy. Therefore, a construction in terms of Bohr
compactification of the real line was forbidden.

Finally, the idea to associate a U(1)6 symmetry, which
regards connections and angles on the same flooring, was
investigated. This perspective is actually promising, but
the identification of the suitable state labelling quantum
numbers could not directly follow from a reduction of the
spin-network structure. Moreover, the implementation
of the Hamiltonian operator presents some points.

The relevance of the present study relies on the pos-
sibility to implement the BKL conjecture [11, 12] (see
also [4]) on the quantum sector. This scenario would
correspond to implementing, point by point in space, a
non-diagonal (locally homogeneous) dynamics. In fact, in
the case of a generic inhomogeneous cosmological model,
the concept of a diagonal representation has to be left.
Of course, we could infer that, for a such general pic-
ture, the Loop Quantum Gravity theory holds without
restrictions, but the validity of the BKL conjecture (de
facto freezing the spatial gradient dynamics) could allow
the description of the quantum dynamics via a point-like
extension of the present formulation, at least when the
spatial curvature can be treated as a small contribution.

Appendix: Hamiltonian operator in the diagonal

case

The diagonal case can be derived by imposing the con-
nection to be diagonal φ̃aI = c̃Iδ

a
I . So, c̃II = c̃I . The

expression of the Hamiltonian, in this case, results in a
more simple form. The last two terms vanish due to the

presence of a factor ǫabcφ̃
b
K φ̃

c
K that, in the diagonal case,

in null due to the anti-symmetry of the Levi-Civita sym-
bol. Moreover, we have φ̃aI/c̃II = δaI and c̃IJ = 0. Hence,
the reads

∑

IJK

ǫIJKtr(hIhJh
−1
I h−1

J hK V̂ h
−1
K ) =

∑

IJK

ǫIJK

(

4

(

cos(12 c̃I) sin(
1
2 c̃I) sin

2(12 c̃J)

c̃I
c̃Iδ

a
I − (I ↔ J)

)

×
(

cos(12 c̃K)V̂ δaK sin(12 c̃K)− δaK sin(12 c̃K)V̂ cos(12 c̃K)
)

+ 4 cos(12 c̃I) cos(
1
2 c̃J)δ

a
I δ
b
J sin(

1
2 c̃I) sin(

1
2 c̃J)ǫabc×

×
(

cos(12 c̃K)V̂ δcK sin(12 c̃K)− δcK sin(12 c̃K)V̂ cos(12 c̃K)
)

)

=
∑

IJK

ǫIJK

(

4

(

cos(12 c̃I) sin(
1
2 c̃I) sin

2(12 c̃J)δIK×

×
(

cos(12 c̃I)V̂ sin(12 c̃I)− sin(12 c̃I)V̂ cos(12 c̃I)
)

− (I ↔ J)

)

+ 4 cos(12 c̃I) cos(
1
2 c̃J) sin(

1
2 c̃I) sin(

1
2 c̃J)×

× ǫIJK

(

cos(12 c̃K)V̂ sin(12 c̃K)− sin(12 c̃K)V̂ cos(12 c̃K)
)

)

Due to the presence of δIK , the first term vanishes. Thus,
we obtain the formula in Eq.(77)

∑

IJK

4ǫIJK cos(12 c̃I) cos(
1
2 c̃J) sin(

1
2 c̃I) sin(

1
2 c̃J)×

× ǫIJK

(

cos(12 c̃K)V̂ sin(12 c̃K)− sin(12 c̃K)V̂ cos(12 c̃K)
)

.

The presence of two Levi-Civita symbol gives us the sum
of the non-null pairs I, J associated with the same index
K. Hence, this formula can be rewritten as

∑

ǫIJK=1

8 cos(12 c̃I) cos(
1
2 c̃J) sin(

1
2 c̃I) sin(

1
2 c̃J)×

×
(

cos(12 c̃K)V̂ sin(12 c̃K)− sin(12 c̃K)V̂ cos(12 c̃K)
)

.

From this, we can expand the summation and the Hamil-
tonian reads

Ĥ =
32i

kγ2ℓ2P
cos(12c1) cos(

1
2c2) sin(

1
2c1) sin(

1
2c2)

×
(

cos(12c3)V̂ sin(12c3)− sin(12c3)V̂ cos(12c3)
)

+ cos(12c3) cos(
1
2c1) sin(

1
2c3) sin(

1
2c1)

×
(

cos(12c2)V̂ sin(12c2)− sin(12c2)V̂ cos(12c2)
)

+ cos(12c2) cos(
1
2c3) sin(

1
2c2) sin(

1
2c3)

×
(

cos(12c1)V̂ sin(12c1)− sin(12c1)V̂ cos(12c1)
)

That is the same Hamiltonian presented in [16].
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