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ABSTRACT
Sentinel-2 spectral configurations, S2-10m and S2-20m, were eval-
uated for retrieving essential crop biophysical and biochemical
parameters and their effect on the performance of three machine
learning regression algorithms (MLRAs) in two African semi-arid
sites. The results were benchmarked against all spectral bands
(S2-All). The results show that the S2-20m was more robust in
retrieving Leaf Area Index (LAI) (RMSEcv: 0.58m2 m�2, 0.47m2

m�2), while the S2-10m provided optimal retrievals Leaf
Chlorophyll aþ b (LCab) (RMSEcv: 6.89mg cm�2, 7.02mg cm�2) for
the two sites, respectively. In contrast, S2-20m performed better
in retrieving Canopy Chlorophyll Content (CCC) in Bothaville to an
RMSEcv of 35.65mg cm�2, while S2-10m yielded relatively lower
uncertainties (RMSEcv of 26.84mg cm�2) in Harrismith. Moreover,
various MLRAs were sensitive to the various spectral configura-
tions, and performance varied by site. GPR and XGBoost were
more robust, and thus have the most potential for crop biophys-
ical and biochemical parameter retrieval in both sites. Based on
the benchmark results, the two configurations can be used inde-
pendently. The results obtained here are relevant for the rapid
development of essential crop biophysical and biochemical
parameters for precision agriculture using Sentinel-2’s 10m or
20m bands, without the need for resampling.
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Introduction

Food and nutrition security improvement has been the principal mandate for every nation
within the Sustainable Development Goals (SDGs) framework for alleviating hunger and
poverty in the light of population growth (Mango et al. 2017), with the most significant
growth constituted by developing countries (Walker 2016). These countries are currently
affected by a marginal mismatch between the demand for food and agricultural production
(Godfray and Garnett 2014). For instance, southern Africa is facing massive urbanization,
income, and population growth which are constantly and increasingly hurling up the
demand for food and emerging challenges presented by climate change and natural resour-
ces constraints. Meanwhile, agriculture is still the mainstay of many economies in southern
Africa contributing a gross domestic product of 35%, employing between 70% and 80%,
and producing �30% of foreign exchange while also sustaining about 70% of the small-
holder farmers’ livelihoods (Mango et al. 2017). Although South Africa produces surplus
food, household and individual food insecurities are still glaring especially in the rural com-
munities. The agricultural sector plays an invaluable role, and therefore, the sector needs to
be optimised to bridge the gap between national and household food insecurities. There is a
need for time-efficient monitoring frameworks grounded on spatially explicit technologies
for near real-time monitoring of crop production indicators. Crop production indicators
and attributes include the extent of cropland, irrigated cropland, crop structure and growth
parameters (i.e. chlorophyll, leaf area index, biomass) and yield (Delegido et al. 2011).

Traditional in-situ, lab-based and empirical point-based sampling techniques have been
used to assess crop productivity. These field-based techniques are highly accurate. However,
they are laborious, time-consuming, and inadequate in spatially and temporally characteris-
ing plant productivity. Therefore, they are not suitable for assessing expansive croplands.
Remote sensing has emerged mainly as a non-invasive, resource-efficient method of moni-
toring crop productivity elements through time and space in a spatially-explicit manner
(Lawley et al. 2016). Specifically, the premise of monitoring crops using remotely sensed
data is based on the spectral signatures or properties of crops which tend to vary with
growth stage, health state and type of crop. Through time, remote sensing of crops has
developed from airborne systems in the 1970s (Maxwell 1976; Collins 1978) to more sophis-
ticated satellite-based sensors such as Landsat, which offered an efficient means to repeat-
edly monitor agricultural crop productivity at larger scales. Although Landsat missions have
been successfully used to estimate crop productivity elements in previous studies (Gitelson
et al. 2012; Gao et al. 2017; Ma et al. 2018; Croft et al. 2020), these sensors do not cover all
the critical sections such as red-edge section of the electromagnetic spectrum that is instru-
mental in characterising crop productivity and widely associated with chlorophyll content
and Leaf Area Index (LAI) variability (Chemura et al. 2017). In the recent past, the earth
observation community witnessed the launching of the Sentinel-2 Multi-Spectral Instrument
(MSI) closes this gap, making it more suitable for crop productivity elements mapping.

The MSI sensors onboard Sentinel-2 2A and 2B satellites provide 13 spectral bands
covering the visible (VIS), red-edge (RE), near-infrared (NIR), and shortwave infrared
(SWIR) spectrums. Their revisit frequency of 5 days and the spatial resolutions of 10m
and 20m present better prospects in crop biophysical and biochemical retrieval (Delegido
et al. 2011). The traditional broad (i.e. 30–115 nm) VNIR bands are available at 10m (S2-
10m), while the strategically-located narrow (15–20 nm) RE and NIR bands, as well as
SWIR bands have 20m resolution (S2-20m). In this regard, data fusion techniques such
as Super-Resolution for Multispectral Multiresolution Estimation (SupReMe) (Lanaras
et al. 2017) and DSen2 (Lanaras et al. 2018) have been proposed for improving the spatial
resolution of S2-20m bands to match the relatively high resolution of S2-10m without
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compromising the spectral consistency. Although the highest spatial resolution is often
desired, Kganyago et al. (2020) show that the difference in LAI accuracy between
Sentinel-2 MSI bands resampled to 10m and 20m spatial resolutions is negligible.
Nonetheless, the spatial resolutions of up to 20m, are regarded as sufficient for precision
agriculture applications (Mulla 2013).

While numerous studies show that LAI, Leaf Chlorophyll Content (LCab) and Canopy
Chlorophyll Content (CCC) can be retrieved with the entire spectral coverage of Sentinel-
2 MSI (Xie et al. 2019; da Silva et al. 2020; Kobayashi et al. 2020; Segarra et al. 2020),
others (Delegido et al. 2013; Verrelst et al. 2016; Clevers et al. 2017) show that only a few
bands are necessary for achieving high accuracies. Clevers et al. (2017), for example,
found that vegetation indices constructed using S2-10m (i.e. VNIR) were better at retriev-
ing LAI, LCab, and CCC of Potato crops, while Delegido et al. (2013) found that the
exclusion of S2-20m RE bands resulted in systematic errors in the retrieval of LAI and
CCC for multiple crops with simulated Sentinel-2 data. In other studies, (Verrelst et al.
2015; Chrysafis et al. 2020; Kganyago et al. 2021) Sentinel-2 SWIR bands were identified
among the most influential variables in various machine learning models for LAI, LCab,
and CCC retrieval. Therefore, it is essential to evaluate the individual performance of the
different sentinel-2 spectral configurations at 10m, i.e. characterised by broad VNIR
bands (hereafter, S2-10m), and 20m, i.e. characterised by RE-NIR-SWIR bands (hereafter,
S2-20m) spectral bands in biophysical and biochemical parameter retrieval to demystify
these inconsistencies. This is a worthy endeavour especially since various biophysical and
biochemical traits affect the various regions of the electromagnetic spectrum differently.

Meanwhile, the literature also underscores the importance of Machine Learning
Regression Algorithms (MLRAs) in building models for characterising the spatial distribution
of crop productivity elements. Generally, MLRAs are categorised into three according to
their architectural designs, i.e. tree-based or tree ensembles (e.g. Random Forest, RF), kernel-
based (e.g. Support Vector Machines, SVM), and deep learning (e.g. Artifical Neural
Networks, ANN) (Rivera-Caicedo et al. 2017). Among these, tree-based and kernel-based
MLRAs are often applied for estimating crop BVs in previous studies because they are rela-
tively less complicated, computationally fast, have good accuracy and require relatively few
intuitive hyperparameters when compared to deep learning MLRAs (Wang et al. 2018; Shah
et al. 2019; Kganyago et al. 2021). For example, (LI et al. 2017) found R2 of 88% and an
RMSE of 0.195m2 m�2 in retrieving grassland LAI using RF, and Landsat Enhanced
Thematic Mapper (TMþ) and operational Land Imager (OLI) data. Others (Camps-Vails
et al. 2009; Verrelst et al. 2011, 2012, 2013, 2016; Camacho et al. 2021) show that kernel-
based algorithms such as Gaussian Regression Process (GPR) outperform other popular algo-
rithms of the same family such as SVM and Kernel Ridge Regression (KRR) as well as ANN
and therefore offer better prospects for biophysical and biochemical retrieval due to its
superior accuracy and unique capability to provide uncertainty estimates of the response
variable. These uncertainty estimates allow the assessment of the robustness of the retrievals
for operational applications. Despite the optimal performance of these MLRAs, the literature
also states that no algorithm is suitable for all contexts (Ndlovu et al. 2021). Thus, their per-
formance varies by crop conditions and types, environments and sensors (according to their
spectral and spatial configurations) (Delloye et al. 2018). Related studies (Delloye et al. 2018;
Verrelst et al. 2012) were conducted in the Temperate maritime and Mediterranean climate,
using simulated data, and compared complex, unexplainable, i.e. ‘black box’, algorithms such
as ANN and Kernel Ridge Regression (KRR). In this regard, there is still a need to compare
and identify relevant and effective algorithms (including less complex, robust and explainable
algorithms) for specific contexts such as crop biophysical and biochemical parameters
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retrieval in semi-arid environments. Therefore, the objectives of this study were: (1) to evalu-
ate the performance of the Sentinel-2 spectral configurations, i.e. S2-10m (VNIR), and S2-
20m (RE-NIR-SWIR), benchmarked against all spectral bands (S2-All), in estimating crop
biophysical and biochemical parameters; and (2) to determine the effect of Sentinel-2 spectral
configurations on the performance of three MLRAs, i.e. Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Gaussian Process Regression (GPR), in retrieving LAI,
LCab and CCC. These MLRAs were chosen based on their competitive accuracy achieved in
previous studies as well as well as other advantages such as their robustness, low complexity,
and require only a few hyperparameters (Verrelst et al. 2015, 2016; Rivera-Caicedo et al.
2017; Est�evez et al. 2020; Mansaray et al. 2020; Pathy et al. 2020; Amin et al. 2021;
Kganyago et al. 2021). The study was conducted over Maize (Zea mays L.), Beans (Phaseolus
vulgaris), and Peanuts (Arachis hypogaea L) characterised by contrasting physiological path-
ways, leaf and canopy structures and architectures, thus offering generic models that may be
widely applicable. The generic models are critical in African contexts where intercropping
and mixed crop management practices are dominant. The contribution of this study is in
elucidating the optimal Sentinel-2 configuration and MLRA combinations for estimating spe-
cific crop BVs in semi-arid areas. The results could inform future satellite-based product
development and operational solutions for precision agriculture.

Materials and methods

The flowchart summarising the methods followed in the current study is presented in
Figure 1.

Experimental sites

This study was conducted in two experimental sites located in Bothaville and Harrismith
in Free State province, South Africa (Figure 2). The experimental sites are situated in the
main agricultural production zone of the country, i.e. Free State, with more 3 million Ha

Figure 1. Summary of the methods followed in the study.
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of land cultivated. Bothaville—used as a test site in this study—is located at latitudes:
27�1300ʺS to 28�800ʺS, and longitudes: 26�000ʺE to 27�0500ʺE, while Harrismith—used as a
validation site in this study—borders Lesotho in the South via Drakensberg Mountains
and is located at latitudes: 28�000ʺS to 29�000ʺS and longitudes: 28�000ʺE to 29�800ʺE. The
two-experience warm and wet summers, with mean temperatures of �18 �C and �19.2 �C
and annual mean rainfall of �584mm and 115mm, respectively. The summer season rep-
resents the main cropping season (i.e. from December to May or June). Free State prov-
ince is dominated by medium- to large-scale commercial farming, with an average field
size of 2 336Ha (http://www.ard.fs.gov.za/wp-content/uploads/2019/10/APP-FINAL-2019-
22.pdf), where the typical main crops are Maize, Sunflower, and Groundnuts in Bothaville
and Maize, Soybeans, and Dry beans in Harrismith. The crops in Bothaville are grown on
sandy to sandy-loamy soils on generally flat slopes, while Harrismith soils are clay-loamy
with higher water-retention capacities on undulating slopes.

Data

In-situ data
The in-situ LAI and LCab and CCC data were collected in the field from 15th to 26th of
March 2021 in Harrismith and from 11th to 23rd of April 2021 in Bothaville. LAI and
LCab measurements were collected non-destructively within 40m� 40m plots, selected
along randomly transects. TrimbleVR TDC600 handheld Data Collector, with global navi-
gation satellite systems (GNSS) accuracy of 1.5m, was used to Geo-tag the centroid of
each plot and take plot pictures. Each plot consisted of an average of six to eight random
measurements for each of the main crops at each site, i.e. Maize (Zea mays L.), Beans
(Phaseolus vulgaris), Peanuts (Arachis hypogaea L) in Bothaville and Maize and Beans in

Figure 2. Land cover types and locations of Bothaville (orange), and Harrismith (red), in Free State province (dark
grey), South Africa. Study area map adopted from Kganyago et al. (2021).
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Harrismith. These crop types, therefore, allowed the development of generic MLRA mod-
els (i.e. with a potential for wide application) since they have contrasting physiological
pathways, leaf and canopy structures and architectures. For LAI measurements, we used
LiCor 2200c Plant Canopy Analyzer (Li-Cor, Inc., Lincoln, NE, USA) in both field cam-
paigns, with a 180� view cap to shield the influence of the operator and unequal sky con-
ditions on the measurements. In contrast, LCab measurements were an internal average of
eight to nine sun-exposed leaves at each sampling point and were collected with MC-100
Chlorophyll Concentration Meter (Apogee Instruments, Inc., Logan, UT, USA). The MC-
100 is calibrated to measure chlorophyll concentration in absolute units, i.e. mmol m�2,
achieved through crop-specific and generic calibration coefficients which are applied to
the measured ratio of transmission at 931 nm to 653 nm (Parry et al. 2014). To be consist-
ent with previous studies, the chlorophyll concentration values in mmol m�2 were con-
verted to mg cm�2. The canopy chlorophyll content (CCC) for each plot was estimated as
a product of LCab and LAI (LCab � LAI) (Jacquemoud et al. 2009). Since our aim was
not to develop crop-specific biophysical and biochemical parameters retrieval models, the
field data for all crops found at each site were combined. The descriptive statistics of the
field data in Bothaville and Harrismith are displayed in Table 1.

Remotely sensed data
Sentinel Hub Cloud API for Satellite Imagery (Sinergise Laboratory for geographical
information systems, Ltd., Ljubljana, Slovenia) was used to retrieve the Sentinel-2 Multi-
Spectral Imager (MSI) reflectance image (granule: 35JMK), acquired on the 14th of April
2021 over Bothaville and 22nd of March 2021 (granule: 35JPJ) over Harrismith. These
acquisition dates coincided with the dates of field data collection at each experimental
site. Sentinel-2A and 2B conjunctively provide a 5-days revisit period and carry the identi-
cal MSI sensors. MSI sensors acquire images in 13 bands at 10m (i.e. Band 2:490 nm,
Band 3:560 nm, Band 4:665 nm, and Band 8:842 nm), 20m (i.e. Band 5:705 nm, Band
6:740 nm, Band 7:783 nm, Band 8A:865 nm, Band 11:1610 nm, and Band 12:2190 nm),
and 60m (i.e. Band 1:443 nm, Band 9:945 nm, and band 10:1375 nm) spatial resolution.
The bands at 60m were dedicated for atmospheric correction and cloud screening using
Sen2cor (Drusch et al. 2012). Sen2cor is a Sentinel-2 dedicated atmospheric correction
(including cirrus clouds and terrain correction) processor. The algorithm uses the
libRadtran database of look-up tables (LUTs) generated for a wide variety of atmospheric
conditions, solar geometries, and ground elevations to convert the Level-1C Top-of-
Atmosphere (TOA) image data to Bottom-of-Atmosphere (BOA) reflectance. The image
data was corrected using parameters: atmospheric model ‘Mid-latitude summer’, aerosol
type ‘Rural’ and two-band water volume retrieval (i.e. 940 nm and 1130 nm). Further
details on Sen2Cor can be obtained from Mueller-Wilm (2016) and Louis et al. (2016).
For further analysis, the spectral bands were grouped according to their native spatial res-
olutions, i.e. S2-10m (i.e. B2, B3, B4, and B8) and S2-20m (i.e. B5, B6, B7, B8A, B11, and
B12). S2-All bands consisted of the 10m bands and 20m bands resampled bands to 10m
using the nearest neighbour resampling technique in SNAP software v8.0 (Sentinel

Table 1. Descriptive statistics of measured LAI (m2 m�2), LCab (mg cm�2) and CCC (mg cm�2) at the two sites.

Bothaville Harrismith

n Min Mean Max SD n Min Mean Max SD

LAI 172 1.78 3.37 5.75 0.90 179 1.16 3.54 6.17 0.88
LCab 172 3.32 29.09 63.62 14.75 179 10.77 27.71 56.83 10.57
CCC 172 7.87 104.25 339.09 71.23 179 20.44 96.81 282.54 43.68
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Application Platform, http://step.esa.int) because of its ability to maintain the spectral
fidelity of the data.

Crop and green-vegetation masking

A crop mask derived from the National Crop Boundaries Dataset
(CropEstimatesConsortium 2017) was used to mask non-croplands on the Sentinel-2
bands. However, this dataset did not necessarily represent the active crop fields during
the period of the current study (i.e. March and April 2021) since it is generated from
SPOT 5 and 6 data acquired in 2014 and 2015. Therefore, a vegetation mask generated
from the NDVI (calculated from each respective image), was used to mask non-vegetated
pixels (i.e. those with NDVI < 0.2) from further analysis. This constrained further ana-
lysis to the planted crop fields in the 2021 summer growing season.

Machine learning regression algorithms

The MLRAs used in this study were chosen based on their good accuracy achieved in pre-
vious studies (Verrelst et al. 2015, 2016; Rivera-Caicedo et al. 2017; Est�evez et al. 2020;
Mansaray et al. 2020; Pathy et al. 2020; Amin et al. 2021; Kganyago et al. 2021).

Random Forest
Random Forest (Breiman 2001) is an ensemble tree-based machine learning algorithm for
classification and regression and an improvement of Classification and Regression Trees
(Breiman et al. 1984). In contrast to Classification and Regression Trees (CART),
Random Forest (RF) uses bagging (or bootstrapping) to iteratively and independently
build a large number of decision trees (ntree) based on a random subset of training sam-
ples created by resampling with replacement from the original sample (Fawagreh et al.
2014; Breiman 2001). Then, for each bootstrap sample, a decision tree is fit using ran-
domly selected features (mtry), which are used to split each node in the tree (i.e. binary
partitioning). Therefore, the trees grown from different and random subsets ensure
increased diversity of decision trees and reduced bias of the regression (Pal 2005; Gislason
et al. 2006; Rodriguez-Galiano et al. 2012). The final regression output is obtained as an
average across all trees (Pal 2005; Gislason et al. 2006). The remaining training samples
from each created random sample by bagging are called out-of-bag (OOB) data and are
used for regression evaluation (Gislason et al. 2006). The optimal RF hyperparameters
(i.e. mtry and ntree) for each configuration and response variable (i.e. LAI, LCab, and
CCC) were tuned using the Grid-search strategy, and the optimal models were selected as
those that have the lowest RMSEcv. The mtry ensures that the trees in the ensemble have
low bias, high variance and are less correlated; and thus, preventing over-fitting
(Loggenberg et al. 2018). On the other hand, while the prediction accuracy will generally
improve with increasing ntree up to a certain point, previous studies show that this par-
ameter has low impact on the accuracy and can be as high as possible (Du et al. 2015;
Guan et al. 2013).

Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016) is an improved imple-
mentation of Gradient Boosting Machines (GBM), also known as Gradient Boosted
Regression Trees (GBRT) (Friedman 2001), bringing several additional features and
advantages. It uses gradient boosted decision trees and a more regularised formalisation
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to avoid over-fitting, handles missing values (or sparse data) more efficiently, employs
parallel and distributed computing for rapid tree construction and building of large mod-
els, respectively, and can fit new data added to the trained model. Thus, XGBoost is com-
putationally effective and often outperforms other algorithms (Chen and Guestrin 2016;
Beltran et al. 2019). Provided with the training dataset containing predictor and response
variables, XGBoost generally works as follows:

1. Sort the predictors and search for the optimal node splits,
2. Choose an optimal split from the predictor that optimizes the objective function,

which consists of the loss function (d) and a regularisation term (b) (see Eq. (1)).

X hð Þ ¼
Xn
i¼1

dðyi, ŷiÞ þ
XK
k¼1

bðfkÞ (1)

where ŷi is the predictive value, n is the number of instances in the training data, K is
the number of trees, fk is a tree from the ensemble of trees. In this study, the Mean
Squared Error (MSE, Eq. (2)) was used as the loss function.

MSE ¼ ðyi � ŷðt�1Þ
i Þ2 (2)

Repeat steps 1 and 2 until the most extreme tree depth is achieved,
Assign the prediction scores to the leaves, and prune any negative nodes using a bottom-
up approach,

Repeat the above steps in a value adding manner until the predetermined number of iter-
ations is reached.

The XGBoost algorithm requires parameterisation of several parameters, which include
the following pertinent ones for the tree booster: learning rate (eta, shrinks the feature
weights and prevents overfitting), maximum tree depth (max_depth, controls the com-
plexity of the model where a higher value result in a complex and deep tree), minimum
sum of instance weight (min_child_weight, controls the partitioning of trees below which
further tree partitioning would terminate), sampling ratio per tree (subsample, helps to
prevent overfitting), minimum loss reduction (gamma, controls further partitioning of the
tree leaf nodes where the larger value will result in a conservative model), and L1 and L2
regularisation terms on weights (alpha and lambda, respectively). The optimal hyper-
parameters were selected using the lowest Root Mean Squared Error of cross-validation
(RMSEcv) based on the 10-fold Cross Validation (CV) resampling strategy. We refer the
interested readers to excellent mathematical descriptions of XGBoost, which can be found
in the original publication, Chen and Guestrin (2016), and others (Ayumi 2017) and
(Gupta et al. 2016).

Gaussian process regression
The Gaussian process regression (GPR) (Rasmussen 2003) is a kernel-based probabilistic
approach that establishes a relation between explanatory variables (e.g. spectral bands)
and the output variable (e.g. LAI). To infer an unknown functional relationship from a
training dataset, GPR elicits a prior GPR to constrain the possible form of the unknown
function. Then, it updates the prior GPR in the light of training samples to generate the
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posterior GPR as the final functional model (Williams and Rasmussen 2006). A scaled
Gaussian kernel is commonly used, which required hyperparameters, signal ðv, rbÞ and
noise rn, i.e. h ¼ fv, rb, rng: These hyper-parameters h combats model overfitting and
are typically selected by Type-II Maximum Likelihood, using the analytical marginal likeli-
hood (also called evidence) of the observations (Verrelst et al. 2016). Often, the derivatives
of the log-evidence are also analytical; thus, conjugated gradient ascent is typically used
for optimisation (Camps-Vails et al. 2009). The GPR has recently gained popularity due
to its competitive accuracy and capability to provide uncertainty estimates of the response
variables (Camps-Vails et al. 2009; Verrelst et al. 2012a, 2013, 2016; Camacho et al. 2021).
It was selected in the current study because of its high accuracy, robustness to overfitting
and rapid training speeds. The GPR hyperparameters for this study were automatically
optimised in ARTMO software (Available online: https://artmotoolbox.com/, accessed: 27
October 2021) based on the training data, using 10-fold CV, where the optimal combin-
ation of hyperparameters used for training the models was selected as the one that mini-
mised the prediction error (RMSEcv). For detailed account of GPR in remote sensing, we
refer the reader(s) Camps-Valls et al. (2016) and others that applied it for biophysical and
biochemical retrieval (Verrelst et al. 2012a, 2013; Delegido et al. 2015; Verrelst et al. 2015,
2016; Est�evez et al. 2020; Amin et al. 2021).

Model training and validation

For training and validation, this study used k-fold cross-validation, i.e. k¼ 10 for this
study, to ensure that all data are used for both training and validation instead of the trad-
itional split into 70% training vs 30% validation (Snee 1977; Verrelst et al. 2015; Shah
et al. 2019). Prior to model training and validation, average pixel values were extracted
from the intersecting image pixels within plot blocks of 40m � 40m. During the k-fold
cross-validation (cv), the dataset is randomly divided into equal k sub-datasets. Then, a
training dataset is formed by k� 1 sub-datasets, while a validation dataset is formed by a
one k sub-dataset. The final estimation value is a combination of the iterative validation
steps, i.e. k times, using one of the k sub-datasets each time.

The prediction accuracies of each MLR model and the experimental scenario were
assessed using 10-fold cross-validation (cv) with the coefficient of determination (R2),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Normalised RMSE
(NRMSE) (Eqs. (1)–(4)) as recommended by Richter et al. (2012).

R2 ¼
Pð yni � yiÞ2Pð yi � yiÞ2

, (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðxi � yiÞ2
s

, (2)

MAE ¼ 1
n

Xn
i¼1

jxi � yij, (3)

NRMSE ¼ 100 � RMSE
ymax � ymin

� �
, (4)

where yi and yi in Eq. (1) denote the biophysical or biochemical predictions and mean of
the observed (or measured) biophysical or biochemical parameter (e.g. LCab), respectively,
while xi and yi in Eqs. (2)–(3) denote the observed and predicted biophysical or
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biochemical parameter (e.g. LCab), respectively, and n is the number of samples. ymax

and ymin in Eq. (4) denote the maximum and minimum values of the observed values.
All model building, prediction accuracy assessment, and biophysical and biochemical

parameter mapping were performed in MATLAB based software application, i.e. ARTMO
version 3.29 (Available online: https://artmotoolbox.com/, accessed: 27 October 2021),
using MLRA Toolbox (Camps-Valls et al. 2013).

Results

This study evaluated the performance of the various Sentinel-2 configurations, i.e. S2-10m
(VNIR) and S2-20m (RE-NIR-SWIR), in estimating LAI, LCab, and CCC using three
Machine learning regression algorithms, i.e. RF, XGBoost, and GPR. The resulting accura-
cies for each crop biophysical and biochemical parameter were benchmarked against all
spectral bands (S2-All) resampled to 10m—the highest spatial resolution available from
Sentinel-2.

Crop biophysical and biochemical parameter retrieval accuracies using MSI
configurations

The two Sentinel-2 MSI configurations, i.e. S2-10m and S2-20m, showed varying perform-
ances for different biophysical and biochemical parameters (Tables 2 and 3). For LAI, S2-
20m resulted in consistently superior performance between the two sites, where the high-
est RMSEcv of 0.58 and 0.47m2 m�2 were achieved for Bothaville and Harrismith, respect-
ively. Consistently, S2-20m explained the greatest variability, i.e. 58% and 72%, when
compared to S2-10m, which explained only 52% and 64% for two sites, respectively. A
benchmark against the full MSI spectral data (i.e. S2-All) indicated consistently similar
performances with S2-20m between the two sites.

The results for LCab (also shown in Tables 2 and 3) showed that S2-10m was superior
to S2-20m in Bothaville, with RMSEcv of 6.89mg cm�2 (R2: 0.79), while S2-20m only
achieved RMSEcv of 7.34 mg cm�2 (R2: 0.75). However, in Harrismith, the two configura-
tions resulted in equivalent retrieval accuracies, with RMSEcv � 7.0 mg cm�2 (R2 � 0.55).
When benchmarking S2-10m LCab results (in Bothaville) with S2-All, the results show
that it outperforms S2-All, while in Harrismith, S2-All slightly outperformed both S2-10m

Table 2. The performance of S2-10m (VNIR), S2-20m (RE-NIR-SWIR), S2-All (all) spectral bands for estimating LAI (m2

m�2), LCab (mg cm�2), and CCC (mg cm�2) with three MLRAs in Bothaville.

S2-10m S2-20m S2-All

RF XGBoost GPR RF XGBoost GPR RF XGBoost GPR

LAI R2 0.52 0.52 0.52 0.58 0.57 0.54 0.55 0.59 0.52
RMSEcv 0.62 0.63 0.62 0.58 0.59 0.61 0.60 0.58 0.63
MAEcv 0.41 0.43 0.44 0.38 0.41 0.42 0.40 0.42 0.44
NRMSEcv 15.72 15.78 15.66 14.80 14.93 15.44 15.22 14.67 15.75

LCab R2 0.77 0.79 0.77 0.74 0.75 0.75 0.75 0.75 0.75
RMSEcv 7.08 6.89 7.11 7.50 7.47 7.34 7.36 7.38 7.30
MAEcv 5.48 5.40 5.46 5.66 5.66 5.53 5.51 5.63 5.61
NRMSEcv 11.74 11.42 11.78 12.44 12.39 12.18 12.21 12.24 12.10

CCC R2 0.69 0.73 0.70 0.74 0.76 0.70 0.73 0.74 0.72
RMSEcv 39.57 37.66 38.92 36.54 35.65 39.17 36.88 36.84 37.67
MAEcv 26.71 26.73 26.66 25.23 25.32 26.52 25.31 26.48 25.71
NRMSEcv 11.95 11.37 11.75 11.03 10.76 11.83 11.14 11.12 11.37

The bold formatted numbers indicate the lowest RMSEcv achieved for each biophysical and biochemical parameter
and spectral configuration.
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and S2-20m. Lastly, S2-20m resulted in the most robust estimates of CCC in Bothaville,
with RMSEcv of 35.65mg cm�2 and explained 76% of CCC variability when compared to
S2-10m (RMSEcv: 37.66mg cm�2; R2: 0.73). However, contradictory results were found in
Harrismith, where S2-20m was relatively worse, achieving RMSEcv of 28.17mg cm�2 (R2:
0.58) when compared to the relatively better estimates of S2-10m (RMSEcv: 26.84mg
cm�2; R2: 0.62). The benchmarking (i.e. S2-All) results were worse than those obtained
for Bothaville with S2-20m and Harrismith with S2-10m. Overall, both spectral configura-
tions (i.e. S2-10m and S2-20m) also achieved NRMSEcv of <20%, with the highest
NRMSEcv, i.e. �11%, being achieved for LAI and CCC in Bothaville, and all biophysical
and biochemical parameters in Harrismith.

Comparison of MLRAs accuracies under various spectral configurations

The three MLRAs, i.e. Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and
Gaussian Process Regression (GPR), were evaluated for their retrieval accuracy under vari-
ous Sentinel-2 MSI spectral configurations, i.e. S2-10m, S2-20m, and S2-All. This was par-
ticularly crucial for elucidating the effect of various Sentinel-2 MSI spectral configurations
on the performance of these MLRAs. The results for Bothaville (Table 2) showed that all
the MLRAs considered here performed proportionately in estimating LAI with S2-10m,
achieving RMSEcv � 0.62m2 m�2 and equivalent R2 of 0.58. The analysis in Harrismith
(Table 3)—performed to confirm the consistency in the performance of MLRAs under the
same spectral configurations—generally showed similar patterns to Bothaville, showing
that the retrieval accuracy between MLRAs was marginal with a maximum RMSEcv differ-
ence of 0.07m2 m�2.

When the MLRAs were evaluated under the S2-20m and S2-all configurations, the
results showed similar patterns to the S2-10m results, especially in Bothaville where the
RMSEcv differences between MLRAs were only up to 0.02m2 m�2 and 0.03m2 m�2,
respectively (see Table 2). In Harrismith (Table 3), the same is observed between RF and
XGBoost, with both configurations (i.e. S2-20m and S2-All) achieving RMSEcv differences
of only 0.01m2 m�2 and 0.02m2 m�2, respectively. Conversely, there were marked differ-
ences between GPR and RF with RMSEcv differences of 0.15m

2 m�2 and 0.10m2 m�2 for
the S2-20m and S2-All, respectively. Overall, the S2-20m-RF and S2-All-XGBoost models
were equivalently the best models for the retrieval of LAI in Bothaville with RMSEcv of

Table 3. The performance of S2-10m (VNIR), S2-20m (RE-NIR-SWIR), S2-All (all) spectral bands for estimating LAI (m2

m�2), LCab (mg cm�2), and CCC (mg cm�2) with three MLRAs in Harrismith.

S2-10m S2-20m S2-All

RF XGBoost GPR RF XGBoost GPR RF XGBoost GPR

LAI R2 0.54 0.55 0.64 0.54 0.54 0.72 0.61 0.59 0.71
RMSEcv 0.59 0.60 0.53 0.60 0.61 0.47 0.56 0.58 0.48
MAEcv 0.45 0.47 0.40 0.39 0.46 0.31 0.43 0.45 0.32
NRMSEcv 11.89 12.00 10.52 11.98 12.14 9.31 11.26 11.56 9.51

LCab R2 0.55 0.54 0.56 0.53 0.53 0.57 0.55 0.57 0.57
RMSEcv 7.09 7.14 7.03 7.21 7.29 7.02 7.10 6.96 6.92
MAEcv 5.53 5.50 5.48 5.63 5.69 5.32 5.48 5.37 5.29
NRMSEcv 15.40 15.52 12.25 15.65 15.82 15.24 15.42 15.11 15.03

CCC R2 0.60 0.61 0.62 0.58 0.57 0.57 0.59 0.61 0.59
RMSEcv 27.41 27.46 26.84 28.17 28.81 28.71 27.95 27.55 28.08
MAEcv 20.12 20.44 19.93 20.93 21.44 20.85 20.99 20.64 20.62
NRMSEcv 10.46 10.48 10.24 10.75 10.99 10.96 10.67 10.51 10.71

The bold formatted numbers indicate the lowest RMSEcv achieved for each biophysical and biochemical parameter
and spectral configuration.
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0.58m2 m�2 (R2: 0.58), while S2-20m-GPR and S2-All-GPR models offered the best per-
formances in Harrismith with RMSEcv of 0.47–0.48m

2 m�2 (R2: 0.72–0.71).
In general, the retrieval of chlorophyll content at the leaf level (i.e. LCab) and canopy

level (i.e. CCC) with RF, XGBoost, and GPR showed no superior single MLRA across dif-
ferent MSI configurations and sites. The results showed marginal differences, i.e. <1 mg
cm�2 in RMSEcv between MLRAs across all MSI configurations and sites, except for the
CCC-XGBoost model in Bothaville which exhibited higher RMSEcv differences between all
MLRAs with a magnitude of 1.91mg cm�2 when using S2-10m and 3.52 mg cm�2 between
XGBoost and GPR when using S2-20m. For LCab, the best retrieval accuracies across all
configurations were achieved with the S2-10m-XGBoost model (RMSEcv: 6.89 mg cm�2;
R2: 0.79) and S2-All-GPR model (RMSEcv: 6.92mg cm�2; R2: 0.57) in Bothaville and
Harrismith, respectively. In contrast, for CCC, S2-20m-XGBoost (RMSEcv: 35.65 mg cm�2;
R2: 0.76) and S2-10m-GPR (RMSEcv: 26.84mg cm�2; R2: 0.62) were the best models across
all configurations in Bothaville and Harrismith, respectively.

In summary, the optimal MLRAs for retrieving crop biophysical and biochemical
parameters in Bothaville (Figure 3) and Harrismith (Figure 4) were achieved with
XGBoost and GPR, respectively. In Bothaville, the MSI spectral configurations for optimal
LAI, LCab, and CCC retrievals were S2-All, S2-10m, and S2-20m, respectively, achieving

Figure 3. Scatterplots of the best MLRAs for each of the spectral configurations, i.e. S2-10m (a, d, g), S2-20m (b, e, h)
and S2-All (c, f, i) in Bothaville. (a), (b), and (c) show the best LAI results obtained by GPR using S2-10m, RF using S2-
20m, and XGBoost using S2-All, respectively. (d), (e), and (f) show the best LCab results obtained by XGBoost using
S2-10m, GPR using S2-20m and S2-All, respectively. Lastly, (g), (h), and (i) show the best CCC results obtained by
XGBoost using S2-10m, S2-20m, and S2-All, respectively.
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RMSEcv of 0.58m
2 m�2, 6.89 mg cm�2 and 35.65mg cm�2. In Harrismith, S2-20m, S2-All,

and S2-10m were the optimal MSI configurations, providing RMSEcv of 0.47m2 m�2,
6.92 mg cm�2 and 26.84 mg cm�2 for the three biophysical and biochemical parameters,
respectively. These models (consisting of optimal MSI configurations and MLRAs) were
applied to map the biophysical and biochemical parameters at the two sites (see Figures 5
and 6). Across all the evaluated MLRAs and MSI spectral configurations, NRMSEcv for
LAI, LCab and CCC were generally below 16%.

Spatial distribution maps for optimal MSI spectral configurations and MLRA models

The spatial distribution maps of LAI, LCab and CCC from S2-10m and S2-20m and the
best MLRA models (i.e. corresponding to the scatter plots above) at the two sites are given
in Figure 5, while the best GPR models and their associated uncertainty layers (i.e. coeffi-
cient of variation, CV) are presented in Figure 6. Figure 5(a) shows the detailed within-field
LAI spatial variations achieved by the S2-10m-GPR-LAI model. As shown in Figure 6(d),
higher LAI values (i.e. >4m2 m�2) over circular irrigated fields had lower uncertainties, i.e.
CV < 20%, while the surrounding regular (usually rainfed fields) had relatively higher
uncertainties, i.e. 20%>CV < 40%. In contrast, the S2-20m-RF-LAI results, i.e. Figure 5(d),
display relatively less within-field variability. In Harrismith, the S2-10m-GPR-LAI model,

Figure 4. Scatterplots of the best MLRAs for each of the spectral configurations, i.e. S2-10m (a, d, g), S2-20m (b, e, h)
and S2-All (c, f, i) in Harrismith. The best LAI (a–c) and LCab results (d–f) were by GPR for all MSI configurations, i.e.
using S2-10m, S2-20m, and S2-All. (g), (h), and (i) shows the best CCC results obtained by GPR using S2-10m, RF using
S2-20m, and XGBoost using S2-All, respectively.
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i.e. Figure 5(g), shows relatively low LAI values, while the S2-20m-GPR-LAI model, i.e.
Figure 5(j), show relatively high values for most fields. The S2-20m-GPR-LAI model which
achieved the best RMSE, i.e. Figure 6(j), shows uncertainties similar to Bothaville, where
higher LAI values (i.e. >4m2 m�2) exhibited lower uncertainties, i.e. CV <20%, while LAI
values of �3 to 4m2 m�2 had a CV of between 20 and 40% (see Figure 6j). These uncer-
tainties were mainly due to the presence of senescent (brown) leaves at the time of the field
measurements, associated with the physiological maturity stage, while other fields were
almost completely senescent. These fields may have had higher NDVI values than the
threshold used to mask green vegetation, i.e. 0.2.

The spatial distribution of LCab between the two configurations was different, with S2-
20m showing higher values over irrigated (circular) fields (Figure 5e), while S2-10m values
over the same fields were relatively lower (Figure 5b). The rainfed (regular) fields also
exhibited relatively lower LCab values. The Bothaville results using the S2-20m configur-
ation were achieved with GPR, while the S2-10m results were obtained with XGBoost.
Generally, the same patterns can be observed in Harrismith using both configurations and
GPR. The uncertainty maps obtained with the best GPR models only, i.e. Figure 6(e) and
6(k), also show higher uncertainties (i.e. 20%>CV < 40%) where LCab values are rela-
tively low (<20mg cm�2), and better uncertainties (CV <20%) over irrigated fields with
relatively high LCab values (> 40 mg cm�2).

The spatial distribution maps of CCC obtained with XGBoost for both S2-10m and S2-
20m configurations, in Bothaville, show no obvious differences (Figure 5c and 5f). In
Harrismith, some differences between the two configurations are evident particularly over

Figure 5. Maps generated by the best models with S2-10m and S2-20m data in Bothaville (a–f) and Harrismith (g–l).
(a) and (d) show the best LAI (m2 m�2) results using GPR (S2-10m) and RF (S2-20m), (b) and (e) show the best LCab
(mg cm�2) results using XGBoost (S2-10m) and GPR (S2-20m), and (c) and (f) show the best CCC (mg cm�2) results
using XGBoost for both S2-10m and S2-20m in Bothaville. (g) and (j) show the best LAI model using GPR for both S2-
10m and S2-20m, (h) and (k) show best LCab model results using GPR with both S2-10m and S2-20m, and (j) and (l)
show the best CCC results using GPR (S2-10m) and RF (S2-20m), respectively.
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rainfed fields with relatively low CCC values (Figure 4i and 4l), which can be two attrib-
uted to the fact that they were generated by two different algorithms and spectral configu-
rations. The GPR uncertainties, which were applicable for Harrismith only (Figure 6l),
show CV over 60% in some parts of the rainfed fields. While the spatial resolution was
not of interest here, it may have played a role in the variations in spatial distributions of
the retrieved biophysical and biochemical parameters. S2-10m provided finer details with
greater within-field variability than S2-20m.

Discussion

The advent of Copernicus Sentinel-2 twin-satellites has provided prospects to improve crop
biophysical and biochemical retrieval accuracy as well as the frequency and level of detail
relevant for precision agriculture and crop monitoring needs. Its improved spectral config-
uration, i.e. with new RE-bands, centred at 705 nm, 740nm, and 783nm, has increased
interest in their utility for crop biophysical and biochemical parameters retrieval using vari-
ous methods. Of interest here, is the performance of the two Sentinel-2 spectral configura-
tions, i.e. providing four standard multispectral bands in the VNIR region at 10m spatial
resolution (i.e. S2-10m) and six bands in the RE-NIR-SWIR regions at 20m spatial reso-
lution (i.e. S2-20m), in retrieving LAI, LCab and CCC using three robust MLRAs in two
semi-arid agricultural sites, i.e. Bothaville and Harrismith. The two configurations were
benchmarked against the full MSI spectral data (S2-All), consisting of 10 bands, covering
VIS, RE, NIR, and SWIR spectral regions all resampled to a spatial resolution of 10m.

Figure 6. Biophysical and biochemical parameters maps generated by the best GPR models with S2-10m and S2-20m
data in Bothaville (a–b) and Harrismith (e–g). (c), (d), (h)–(j) are the pixel-wise uncertainties coefficient of variation
(CV, %).
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Performance of MSI configurations for crop biophysical and biochemical
parameters retrieval

The VNIR spectral region of the electromagnetic spectrum (i.e. 350 nm–649 nm), sampled
by S2-10m spectral bands, contains the fundamental vegetation absorption regions that
have allowed image-based vegetation characterisation for decades (Tucker 1979; Pinty and
Verstraete 1992; Myneni and Williams 1994; Myneni et al. 2002; Brown et al. 2006; Zhu
et al. 2013). Sentinel-2 B2:490 nm and B4:665 nm coincide with the widely known intense
absorption by pigments such as xanthophyll, anthocyanin, chlorophyll, and carotenoid,
while B8:560 nm exhibits a high scattering effect caused by the canopy structure, spongy
mesophyll cells, and water content in leaves (Jensen 1983; Blackburn 1998). Therefore, it
is not surprising that VNIR bands are one of the predominant predictors of biophysical
and biochemical parameters in various retrieval approaches and environmental settings,
despite the spectral resolution, range and number of bands of the input dataset (Delegido
et al. 2011; Verrelst et al. 2016). For example, Delegido et al. (2011) found that a normal-
ised difference index (NDI) constructed with CHRIS (Compact High-Resolution Imaging
Spectroscopy) hyperspectral bands centred at 674 nm (i.e. near S2-B4:665 nm) and 712 nm
(i.e. near S2-B5:705 nm) were not only the best predictors of LAI but were also portable
to a simulated Sentinel-2 image, resulting in uncertainty (i.e. RMSE) of 0.6m2 m�2. In
the current study, the S2-10m configuration—characterised by broad bandwidth bands
(i.e. B2:490 nm, B3:560 nm, B4:665 nm and B8:842 nm)—resulted in comparable LAI
uncertainty (i.e. RMSEcv) of between 0.62m2 m�2 and 0.53m2 m�2 in Bothaville and
Harrismith, respectively. Consistently, Verrelst et al. (2016) found that the bands centred
at 462 nm (blue) and 1327 nm (NIR) were among the four optimal bands (of the 125
HyMap spectral bands) for LAI retrieval at low uncertainties (i.e. RMSEcv of 0.37m

2 m�2

and R2 of 0.95). However, as shown, their results were significantly better than the ones
obtained here because they used hyperspectral data with narrow bandwidths (i.e. 11 nm
and 21 nm) and two of the four optimal bands (i.e. centred at 708 nm and 723 nm) are
positioned in the red-edge region. Although the utility of hyperspectral data has been
shown extensively demonstrated in the literature (Zhao et al. 2011; Yi et al. 2014; Yu
et al. 2017; Wen et al. 2020), the lack of operational space-based sensors hinders its prac-
tical application.

Sentinel-2’s narrow bands, i.e. B5:705 nm, B6:740 nm, B7:783 nm, and B8A:865 nm at
20m spatial resolution, are therefore a good compromise and essential for the detailed
(field-level) characterisation of essential biophysical and biochemical parameters for agro-
nomic applications. The contribution of the red-edge bands is shown in the results of the
S2-20m configuration (in this study)—characterised by the three red-edge bands, one nar-
row NIR band and two SWIR spectral bands (i.e. B11:1610 nm and B12:2190 nm)—which
were robust in consistently retrieving LAI with relatively low uncertainties (RMSEcv) of
0.58m2 m�2 and 0.47m2 m�2 in Bothaville and Harrismith, respectively. The S2-20m
LAI uncertainties were slightly better than those obtained with S2-10m at both sites.
Therefore, the results show a combined effect of chlorophyll content, plant structure, and
foliar moisture content—which control the reflectance in the RE, NIR, and SWIR
regions—were more influential in the retrieval of LAI. The RE region is sensitive to
changes in chlorophyll, thus averting the saturation effect caused by this pigment in the
VIS region. For example, VNIR data often saturates and fails to accurately characterise
medium (i.e. �3m2 m�2) to high (i.e. >5m2 m�2) LAI values, while the inclusion of RE
bands improves the dynamic range of these biophysical and biochemical parameters
(Peng and Gitelson 2011). A benchmark of S2-20m’s performance to S2-All showed
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proportionate performance, which implies that broadband VNIR can be discarded in the
retrieval of LAI.

These results are comparable to Campos-Taberner et al. (2016) who found similar uncer-
tainties over Mediterranean Rice in Spain, i.e. RMSE: 0.39m2 m�2 and 0.51m2 m�2, and
Italy, i.e. 0.38m2 m�2 and 0.47m2 m�2, using Landsat and SPOT-5 data, respectively.
Therefore, this also shows that the Sentinel-2 SWIR bands, which are similar to those of
Landsat and SPOT data, were also essential in achieving low uncertainties with S2-20m in
this study. The contribution of SWIR bands (B11:1610nm and B12:2190nm) to LAI accur-
acy is mostly because they are affected by foliar moisture content, which plays an important
role in the critical developmental (vegetative and productive) stages of crops, hence control-
ling the abundance of biophysical and biochemical traits such as canopy structure and
chlorophyll content (Curran 2001; Verrelst et al. 2015). Essentially, the availability or defi-
ciency of water determines the productivity and yield of an agricultural system. When crops
reach physiological maturity (as in our case), moisture content declines steadily, thus caus-
ing a decline in leaf chlorophyll content and loss of greenness, while LAI may remain mod-
erately high. In a related study utilising the entire Sentinel-2 spectral data (resampled to
20m) in Bothaville (Kganyago et al. 2021), B11:1610nm and B12:2190 nm were in the top
five most influential bands in the LAI model, helping achieve a comparable (to the current
study) RMSE of 0.5m2 m�2 using RF algorithm. Consistently, Verrelst et al. (2015) also
found that Sentinel-2 SWIR bands were among the relevant spectral bands for retrieving
LAI with the Variational Heteroscedastic GPR (VH-GPR) model with RMSEcv of 0.44m2

m�2 and R2 of 0.90. In the current study, the benchmarking results using S2-All further
ascertained the relative contribution of RE, NIR and SWIR bands, leading to the assump-
tion that the location, bandwidth, and spectral regions where the bands were sampled (i.e.
the spectral configuration) was more important than spatial resolution for LAI retrieval.
This is consistent with Kganyago et al. (2020) who found no significant difference between
Sentinel-2 resolutions in retrievals of LAI using a pre-trained hybrid Radiative Transfer
Model (RTM) and Artificial Neural Networks (ANN) model.

The results also showed that LCab could be retrieved with relatively low uncertainties of
6.89mg cm�2 and 7.02mg cm�2 with S2-10m at the two sites, respectively. This finding is
consistent with Clevers et al. (2017) who found that vegetation indices constructed from
VNIR (i.e. S2-10m) spectral bands such as the Weighted Difference Vegetation Index
(WDVI), Green Chlorophyll Index (CIgreen), and Chlorophyll Vegetation Index (CVI) were
more robust than those computed from red-edge (i.e. S2-20m) spectral bands such as Red-
edge Chlorophyll Index (CIred-edge), the ratio of Transformed Chlorophyll in Reflectance
Index and Optimised Soil-adjusted Vegetation Index (TCARI/OSAVI) in retrieving LAI,
LCab, CCC for Potato crops. Moreover, using GPR-BAT (GPR-based band analysis tool) on
the field hyperspectral data, Verrelst et al. (2016) found that LCab could be accurately esti-
mated with bands centred at 482 nm (blue), 500 nm and 564nm (i.e. green peak), 710 nm
and 714 nm (red edge) and a region between 878–980 nm (NIR) with NRMSEcv < 10%.
The red-edge spectral bands in Verrelst et al. (2016), i.e. 710 nm and 714nm, are closer to
Sentinel-2 B5:705nm, which was found to be one of the most influential bands alongside
B3:560 nm, B4:665 nm, B11:1610nm, B12: 2190nm, in the MLRA retrieval of LCab, achiev-
ing uncertainties of 7.57mg cm�2 (Kganyago et al. 2021). In the current study, the contribu-
tion of these spectral bands (i.e. S2-20m) in the retrieval of LCab was evident, achieving
equivalently lower uncertainties as S2-10m, i.e. 7.02mg cm�2, in Harrismith.

The benchmark results, using S2-All, did not result in any significant variations in esti-
mates in relation to S2-10m, demonstrating the usefulness of VNIR bands. The results
imply that spectrally limited datasets such as those from SPOT 6/7, PlanetScope Doves
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and low-cost UAV platforms can be used for crop nitrogen management since studies
established that LCab is highly correlated with N-content (Jia et al. 2013; Vincini et al.
2016). This also means that small crop damage due to biotic (e.g. pests and diseases) and
abiotic (e.g. water, temperature, and nutrients) stress factors can be detected early (i.e.
before it becomes widespread) due to the high detail provided by these systems, thus
potentially providing better prospects of early crop stress mitigation and high yields.
However, as shown by the results (Tables 2 and 3), S2-20m and S2-All also provided
equally good results; therefore, where RE, NIR and SWIR spectral bands are available,
they should be used to reduce systematic errors and improve the range of retrieved values
in line with previous studies (Verrelst et al. 2012; Vincini et al. 2016). For CCC, the best
configurations were different at the two sites, where S2-20m was better in Bothaville
(RMSEcv: 35.65mg cm�2) and S2-10m was better in Harrismith (i.e. RMSEcv: 26.84mg
cm�2). The inconsistencies may be due to slightly different conditions at the two sites,
where CCC (a product of LAI and LCab) in Harrismith was mainly influenced by chloro-
phyll content than the one in Bothaville, where plant structure and water content played
a major role. This is reasonable since fieldwork dates between Harrismith and Bothaville
were slightly different, i.e. March and April, respectively. Since the crop calendar is the
same for both sites, Bothaville had relatively lower LCab, and its influence on CCC was
relatively minimal when compared to LAI. Using S2-All did not improve the CCC results
by S2-20m (in Bothaville) and S2-10m (in Harrismith), implying that either 10m or 20m
MSI spectral bands can be applied without the need to use all resampled bands. The
results of S2-20m and S2-10m achieved here, are slightly better than those found in a
related previous study (Kganyago et al. 2021), where CCC retrieval with resampled
Sentinel-2 bands to 20m achieved RMSE of 39.49mg cm�2.

The utility of S2-10m and S2-20m for various parameters is essential for the rapid assess-
ment of the crop biophysical and biochemical parameters, without delays caused by add-
itional pre-processing steps such as downsampling the S2-10m or upsampling the S2-20m
spectral bands, and applying super-resolving techniques (Zhang et al. 2019), before retrieval;
thus, the results from this study have operational significance. In our study, upsampling to
10m caused 7min and 17.787 s delay for a single Sentinel-2 tile consisting of width and
height of 10,980 pixels on an IntelVR CoreTM i7-8700 CPU and 64GB RAM. Moreover, S2-
10m results obtained here are significant for informing biophysical and biochemical param-
eter retrieval using other sensors such as Planet Doves or low-cost UAVs, which only have
VNIR bands and higher or flexible temporal resolution. However, all configurations had a
rather relatively lower R2 in Harrismith, explaining the variability of between 54% to 72%,
53% to 57%, and 57% to 62%, for LAI, LCab, and CCC, respectively. In contrast, only LAI
in Bothaville achieved a similar accuracy (R2) of 52% to 58%, while the variability of LCab

and CCC was relatively well-explained by the two configurations, with R2 of 75% to 79%
and 69% to 76%, respectively. The lower R2 may be linked to the diverse structural forms
within the same area emanating from different crop types and planting times. Nonetheless,
all R2 were above 50%, while NRMSEcv was below 20%, thus within limits recommended
by the Global Climate Observing System (GCOS) (GCOS 2011).

Effect of various MSI configurations on the performance of MLRAs

The above results were achieved with three state-of-art MLRAs, i.e. RF, XGBoost and
GPR. As shown by the results (Figures 3 and 4), the MLRAs considered here were gener-
ally sensitive to various Sentinel-2 MSI configurations, i.e. S2-10m (i.e. four bands),
S2-20m (i.e. six bands), and S2-All (10 bands), out-competing each other for each
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configuration and biophysical and biochemical parameter. Although RF and XGBoost had
similar performances—attributed to their similar tree-based origin—XGBoost was superior
in most cases in retrieving crop biophysical and biochemical parameters in both
Bothaville and Harrismith and using all Sentinel-2 configurations. While RF uses bagging,
randomly selected variables at each split, and many trees for predictions. In contrast,
XGBoost introduces gradient boosted decision trees and computational efficiency for
thousands of trees, thus having better flexibility, efficiency avoiding overfitting and is
sparsity-aware (Chen and Guestrin 2016). The slightly better performance of XGBoost
found here, is consistent with previous studies (Bahrami et al. 2021; Zhang et al. 2021).
Generally, tree-based algorithms are attractive because they are simple to understand,
transparent and explainable, i.e. tree structure, splitting points and variables for each deci-
sion, and influential variables can be interrogated to understand how they operate in dif-
ferent scenarios. However, the results showed that GPR was more robust in most cases
(see Figures 3 and 4), resulting in better estimates even when only four bands (S2-10m)
were used. Despite its ‘black-box’ nature, GPR strength lies in providing the per-pixel
uncertainty estimates, which can be used to decide an uncertainty threshold in operational
settings (Amin et al. 2021). In previous studies, GPR uncertainty measures, i.e. standard
deviation and coefficient of variation, had been used to also exclude uncertainty from fal-
low and non-crop areas (Verrelst et al. 2013). Overall, MLRAs evaluated here, showed
sensitivity to different datasets (i.e. S2-10m, S2-20m, and S2-All) and experimental sites
(Bothaville and Harrismith). This implies that it is essential to evaluate various MLRAs,
before choosing the optimal one for specific spectral configuration, application and crop
conditions. Consequently, software tools such as ARTMO Machine Learning Regression
Algorithm (MLRA) toolbox (Rivera et al. 2014; Verrelst et al. 2012)—which provide an
intuitive platform for rapidly and simultaneously computing multiple MLRAs—are essen-
tial to achieving improved crop biophysical and biochemical parameters and their rapid
dissemination to users. Recent studies show the integration of ARTMO generated coeffi-
cients with satellite data cloud APIs such as Google Earth Engine (GEE) to enable rapid
upscaling of crop biophysical and biochemical parameters such as LAI (Pipia et al. 2021;
Est�evez et al. 2022). Therefore, it would be interesting to extend the results obtained here,
i.e. with different Sentinel-2 configurations, to other areas. In such a case, hybrid models
(e.g. RTM-MLRA) should be considered, since experimental data are limited to the meas-
ured crop types and conditions and affected by prevailing climatic and environmen-
tal conditions.

Although comparable with previous studies, our results for the S2-10m configuration
were likely impacted by the Sentinel-2 B2:490 nm, which is known to exhibit residual
atmospheric effects that may have introduced uncertainties in the crop biophysical and
biochemical retrievals using MLRAs. Another source of uncertainty may be the high cor-
relation between the B2:490 nm and B4:665 nm, which may have introduced collinearity
due to their similar vegetation spectral response in these bands (i.e. pronounced absorp-
tion), as well as saturation due to chlorophyll absorption. Nonetheless, the usefulness of
the blue band has been demonstrated in the Enhanced Vegetation Index (EVI) formula-
tion to account for atmospheric effects and avoid the saturation effect of NDVI at high
(i.e. 6m2 m�2) and low (i.e. <2m2 m�2) LAI values. Moreover, it featured prominently
in the biophysical and biochemical parameters retrieval models in recent studies (Verrelst
et al. 2016; Kganyago et al. 2021). Therefore, the sensitivity of the MLRA retrieval models
to B2:490 nm effects must be evaluated in greater detail, in tandem with the efforts to
quantify the magnitude of these residual errors from various atmospheric correction tech-
niques (i.e. including Sen2Cor used here). Lastly, although there was a fair balance
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between Maize (i.e. 63.94% and 62.01%) and Beans (i.e. 32.56% and 49.72%) at the two
sites, respectively, Peanuts (i.e. present in Bothaville only) were the least represented, i.e.
3.49%. Beside the machine learning algorithms being renowned for robustness to imbal-
anced training samples, we cannot eliminate the possibility that this may have had an
effect on performance of the MLRA models. Crop-specific models will be considered in
our future works.

Conclusions

This study assessed the utility of the two Sentinel-2 spectral configurations that provide
four standard multispectral bands in the VNIR region at 10m spatial resolution (i.e.
S2-10m) and six bands in the RE-NIR-SWIR regions at 20m spatial resolution (i.e. S2-
20m), in retrieving crop biophysical and biochemical parameters, i.e. LAI, LCab and CCC,
using three robust MLRAs in two semi-arid agricultural sites, i.e. Bothaville and
Harrismith. The results were compared to those obtained with all spectral bands (S2-All).
In summary, the results showed that the S2-20m configuration—with four narrow bands
and two SWIR bands—was more robust, when compared to S2-10, in retrieving LAI with
low uncertainties (i.e. RMSEcv: 0.58m

2 m�2 and 0.47m2 m�2) in the two sites, respect-
ively. In contrast, the S2-10m configuration was relatively better in retrieving LCab in
both sites (RMSEcv: 6.89 mg cm�2 and 7.02 mg cm�2). However, S2-20m was equally robust
in Harrismith, in achieving equivalent uncertainties as S2-10m, i.e. RMSEcv: 7.02mg cm�2.
This shows the relevance of red-edge bands in biophysical and biochemical parameters
retrieval as shown by previous studies (Mutanga and Skidmore 2007; Verrelst et al. 2012).
However, the results in the current study showed that VNIR bands could perform better
than red-edge bands when it comes to retrieving LCab. Regarding CCC, the performance
of the two configurations was not consistent in the two sites, where S2-20m performed
better in Bothaville with RMSEcv: 35.65mg cm�2, but not in Harrismith, where S2-10m
yielded relatively lower uncertainties with RMSEcv of 26.84mg cm�2. The obtained results
are slightly better than those of a related study utilising resampled Sentinel-2 bands at
20m (Kganyago et al. 2021). Moreover, all the configurations yielded accuracies that were
slightly better or equivalent to the benchmark dataset consisting of resampled bands to
10m, i.e. S2-All. The better performance of S2-10m in the retrieval of LCab and CCC
found here, may inform biophysical and biochemical parameters retrieval from similar
high-resolution data with VNIR data from SPOT 6/7, PlanetScope Doves and low-cost
UAV platforms, essential for crop nitrogen management at field-level. However, it should
be noted that the S2-10m results obtained here, may have been affected by the inclusion
of the blue band (i.e. B2), which contains residual atmospheric effects, correlated to the
red band (i.e. B4) due to similar vegetation spectral response, and saturation effects in the
red band due to the high chlorophyll content. Future studies should assess the sensitivity
of the MLRA retrieval models to the blue band effects in greater detail. The results imply
that both Sentinel-2 configurations can be used independently since there was no marked
difference between all configurations (i.e. S2-10m and S2-20m) and the resampled bands
(S2-All). Further analyses in other areas are required to ascertain the findings in the cur-
rent study since the biophysical and biochemical retrieval models developed here used
experimental data, which are limited to the measured crop types and conditions and
affected by prevailing climatic and environmental conditions. While GPR was robust in
most cases, RF and XGBoost were also robust in others, thus indicating that all MLRAs
evaluated here are sensitive to various spectral configurations and study areas. Therefore,
it becomes essential to evaluate various MLRAs, before choosing the optimal one for
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specific biophysical and biochemical parameters. Overall, the results inform future
retrieval of essential crop biophysical and biochemical parameters from the two Sentinel-2
configurations to support time-sensitive precision agronomic applications.
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