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Abstract: Monitoring slow-moving landslides is a crucial task for socioeconomic risk prevention
and/or mitigation. Persistent scatterer interferometric synthetic aperture radar (PS-InSAR) is an
advanced remote sensing method for monitoring ground deformation. In this research, PS-InSAR
time series derived from COSMO-SkyMed (descending orbit) and Sentinel-1 (ascending orbit) are
analyzed for a region in Central Apennines in Italy. The sequential turning point detection method
(STPD) is implemented to detect the trend turning dates and their directions in the PS-InSAR time
series within areas of interest susceptible to landslides. The monthly maps of significant turning
points and their directions for years 2018, 2019, 2020, and 2021 are produced and classified for
four Italian administrative regions, namely, Marche, Umbria, Abruzzo, and Lazio. Monthly global
precipitation measurement (GPM) images at 0.1◦ × 0.1◦ spatial resolution and four local precipitation
time series are also analyzed by STPD to investigate when the precipitation rate has changed and
how they might have reactivated slow-moving landslides. Generally, a strong correlation (r ≥ 0.7) is
observed between GPM (satellite-based) and local precipitation (station-based) with similar STPD
results. Marche and Abruzzo (the coastal regions) have an insignificant precipitation rate while
Umbria and Lazio have a significant increase in precipitation from 2017 to 2023. The coastal regions
also exhibit relatively lower precipitation amounts. The results indicate a strong correlation between
the trend turning dates of the accumulated precipitation and displacement time series, especially for
Lazio during summer and fall 2020, where relatively more significant precipitation rate of change
is observed. The findings of this study may guide stakeholders and responsible authorities for risk
management and mitigating damage to infrastructures.

Keywords: central Italy; COSMO-SkyMed; global precipitation measurement (GPM); PS-InSAR time
series; Sentinel-1; slow-moving landslides; sequential turning point detection (STPD)

1. Introduction

Slow-moving landslides creep from millimeters to meters annually and may continue
creeping for many years [1]. Though these landslides may not cause casualties, they can not
only severely damage infrastructures but can also turn into fast-moving landslides, particu-
larly in mountainous regions. Therefore, it is crucial to detect slow-moving landslides and
continuously monitor them to mitigate the risks associated with them. There are several
factors that control the motion of these landslides, such as precipitation, groundwater,
earthquakes, and human activities [2–4]. For example, Fiolleau et al. [5] showed that reacti-
vation of slow-moving landslides occurred during an intense rainfall event after a 7-month
drought in their study region. Narcisi et al. [6] demonstrated the impact of temperature and

Remote Sens. 2024, 16, 3055. https://doi.org/10.3390/rs16163055 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16163055
https://doi.org/10.3390/rs16163055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5165-1773
https://orcid.org/0000-0001-6320-6071
https://orcid.org/0000-0002-8890-0331
https://orcid.org/0000-0002-0297-842X
https://orcid.org/0000-0002-2917-0324
https://doi.org/10.3390/rs16163055
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16163055?type=check_update&version=1


Remote Sens. 2024, 16, 3055 2 of 22

precipitation trend changes on slow-moving landslides using in situ and remote sensing
instruments in the Piemonte region, Italy.

Interferometric synthetic aperture radar (InSAR) is a satellite remote sensing technique
which allows for studying and evaluating slow-moving landslides in local, regional, and
global scales [3,7–9]. Decorrelation is a phenomenon that occurs in InSAR signals due to
several factors, such as vegetation and atmospheric noise [10,11]. Persistent scatterer InSAR
(PS-InSAR) is a rigorous method that identifies pixels with strong and constant reflection
over a long period and does not have the decorrelation issue [11–13].

Many researchers have studied slow-moving landslides through InSAR, differential
InSAR, and PS-InSAR displacement time series and investigated their potential influential
factors [14–17]. For example, Bontemps et al. [18] showed that slow-moving landslides in
Peru are triggered by a combination of local earthquakes and precipitation. Zocchi et al. [19]
showed the advantage of PS-InSAR time series for investigating the large-scale morpho-
evolution of ground deformation in a region in Colorado, United States. Processing dis-
placement data acquired from various remote sensing satellites, such as COSMO-SkyMed
(CSK) and Sentinel-1, produce a finer spatio-temporal coverage for more effective mon-
itoring. Bayer et al. [20] utilized InSAR data from the X-band of CSK and the C-band of
Sentinel-1 to investigate the temporal deformation response to precipitation in the Northern
Apennines of Italy. They found a linear relationship between displacement and rainfall.

PS-InSAR, like other InSAR techniques, still has several issues, such as discontinuities
and biases due to phase unwrapping and atmospheric noise [21]. However, the displace-
ment time series of PS-InSAR are still very useful and effective for estimating long-term
velocity [11]. The sequential turning point detection (STPD) is a fast and robust method of
estimating trend turning points and their directions (DIRs) in InSAR time series [22]. The
STPD estimates an optimal trend with continuous linear pieces that best fit the time series.
The maximum number of pieces can be selected by users while the algorithm sequentially
estimates the dates when the linear trend gradient changes. The STPD has been applied
to PS-InSAR time series for detecting turning points that may be due to gradual land
subsidence/uplift, or slow-moving landslides, where these types of deformations typically
do not cause significant jumps in displacement time series [22,23]. A turning point in a
time series corresponds to a time when the gradient changes. In slow-moving landslide
studies, the velocity of ground motion is generally considered constant over a long period
until it changes due to potential triggers, such as changes in precipitation patterns.

The latest most important seismic sequence that occurred in Central Apennines was
the Amatrice–Norcia–Campotosto seismic sequence (2016–2017), whose aftershock patterns
were studied by many researchers [24–28]. The mainshocks, which occurred in 2016 in
Central Italy, triggered hundreds of landslides, many of which were studied on the field
and also through remote sensing technology [29]. Many researchers have also studied post-
seismic ground deformation using various measurements. Mandler et al. [30] studied the
post-seismic phase of Amatrice–Norcia–Campotosto using the ground displacement time
series of the global positioning system. Pousse-Beltran et al. [31] found centimeter-level
deformation through Sentinel-1-based InSAR time series after the Norcia earthquake in
the Castelluccio basin and the Norcia surface rupture, where the displacements were more
apparent from ascending orbit than descending orbit. Salvini et al. [32] processed mea-
surements from global navigation satellite systems and observed planimetric movements
toward the northwest–southeast of the complex fault system.

Following this devastating seismic sequence, Central Apennines has experienced many
landslides, including slow-moving landslides that were further triggered by precipitation.
Most of the landslides in this region already existed, some of them were reactivated,
and some others were accelerated [33,34]. Unfortunately, there is a limited number of
weather stations in Central Apennines to conduct a rigorous correlation analysis between
precipitation and displacement in time and space. Fortunately, the satellite-based global
precipitation measurement (GPM) images provide a good approximation for precipitation
measurements, although they have a low spatial resolution. The GPM images are employed
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by many researchers for climate studies and environmental monitoring [35–39]. Estimating
the dates of velocity changes in the slow-moving landslides (the reactivation dates) in
this region and their correlation with precipitation trend change have not been addressed
yet using the recent remote sensing technology. Therefore, the main contributions of this
manuscript are as follows:

• The estimation and mapping PS-InSAR time series trend turning dates and their
directions within areas of interest (AOI) susceptible to landslides after the Amatrice–
Norcia–Campotosto seismic sequence.

• The estimation and mapping of the average, overall velocity, trend turning dates and
their directions for the GPM images covering the entire study region.

• The study of the possible effect of precipitation pattern change on ground deformation
utilizing GPM, local precipitation, and PS-InSAR time series.

Estimating the dates of slow-moving landslide reactivation through PS-InSAR time
series along with estimating their velocity movements and their potential correlations with
precipitation pattern are the main novelties of this research. The remaining of this article
is organized as follows. Section 2 describes the study region, PS-InSAR and precipitation
time series, and STPD. Section 3 demonstrates the results, including the monthly spatial
maps of turning points and their directions. The results of precipitation turning points are
also presented in this section. Potential causes of velocity changes observed in PS-InSAR
time series are discussed in Section 4 in the light of similar studies. Limitations and future
directions are also discussed in this section. Finally, Section 5 concludes this article.

2. Materials and Methods
2.1. Study Region

The study region comprises part of the four Italian administrative regions, namely,
Marche, Umbria, Abruzzo, and Lazio, that were struck by the Amatrice–Norcia–Campotosto
seismic sequence from August 2016 to January 2017 (Figure 1). The boundary of the study
region is defined by Autorità di Bacino Distrettuale dell’Appennino Centrale (ABDAC),
shown in Figure 1a. The current research carefully examines a subset of 255 landslide
bodies, the areas of interest (AOI), interacting with urban planning within the study region,
shown in Figure 1b. These landslides were selected based on the intersection of the hy-
drogeological asset plan (https://aubac.it/piani-di-bacino/piani-di-assetto-idrogeologico,
accessed on 1 August 2024) catalogue and AOI defined by ABDAC’s project for assisting
post-seismic reconstruction activities. While the hydrogeological asset plans catalogue
contains a comprehensive inventory of mapped landslides in the region, the present study
focuses specifically on those that have a direct impact on urban areas and infrastructure
within the scope of ABDAC’s project. These landslide risk areas have a considerable impact
on a broad geographical scope, affecting 102 municipalities distributed across 245 the
identified slopes of interest. The analysis carried out is designed to identify and discern
landslides characterized by a notable differential displacement within their bodies to drive
the development of effective and targeted mitigation solutions. This strategic approach
aims to make earthquake-prone sites more resilient and minimize potential effects on
people and critical infrastructure.

The seismic events impacted a wide range of geological environments across the entire
region, resulting in a complex distribution of ground deformations extending from the epi-
center to distant areas (Figure 1c). The present research investigates the morphoevolution
of landslides occurring on 245 identified slopes of interest, as illustrated in Figure 1c. These
phenomena, recorded in the hydrogeological asset plan inventory and characterized by
high to very high hazard levels, are thoroughly analyzed to evaluate the associated risks of
acceleration or reactivation stages after rainfall-induced triggers.

https://aubac.it/piani-di-bacino/piani-di-assetto-idrogeologico
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Figure 1. (a) The study region in central Italy, (b) areas of interest (AOI) within the small poly-
gons and with the background elevation model at 10 m resolution, by Tarquini et al. [40], and
(c) geological map (scale 1:1,000,000) of the study area (ISPRA: Italian Institute for Environmental
Protection and Research, 2017), where the numbers inside the colored boxes refer to 1. Terraced
alluvial deposits (Pleistocene–Holocene), 2. Deltaic, coastal, and alluvial deposits (Pleistocene–
Holocene), 3. Calcareous marly–calcareous rocks with cherts (Jurassic–Miocene), 4. Limestones and
dolomitic rocks with cherts (Late Triassic–Cretaceous), 5. Cherty limestones and marls (Jurassic),
6. Limestones and dolomitic rocks (Triassic–Jurassic), 7. Detrital and organogenic limestones, marl,
pelites, sands, and conglomerates (Pilocene–Pleistocene), 8. Marly limestone, marls, pelites, and sand-
stones (Messinian–Pliocene), 9. Arenaceous–clayey turbitides (Tortonian–Messinian), 10. Calcareous–
marly, marly–arenaceous, and pelitic turbitides (Tortonian–Messinian), and 11. Calcareous–marly
and marly-arenaceous turbitides (Burdigalian–Tortonian).

From a geological perspective, the region underwent initial tectonic compression dur-
ing the Miocene to Lower Pliocene, with the emplacement of the Umbria–Marche pelagic
basin units onto the Latium–Abruzzi carbonate platform ones, and the subsequent develop-
ment of strike-slip and normal fault systems during the Late Pliocene to Early Pleistocene
extensional phase [41–47]. The eastern and central parts of the study region comprise
calcareous, marly, and dolomitic formations (Umbria–Marche and Latium–Abruzzi suc-
cessions), along with terrigenous turbiditic deposits [48]. This region is characterized by
high relief energy, driving slope processes, such as rockfalls, roto-translational landslides,
debris flows, and, to a lesser extent, complex landslides [49,50]. Moving further towards
the eastern sector, the prevailing lithologies consist mainly of alternating soft and hard
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terrigenous lithotypes (marls and pelitic-arenaceous successions). As relief energy gradu-
ally diminishes towards the Adriatic coast, landslide phenomena such as flows and slides
become more prominent [48]. Eventually, in the periadriatic sector, slopes become gentler,
often featuring a stepped-like morphology resulting from the interplay between softer
pelitic-sandstone lithotypes and stiffer conglomerate layers. Here, the predominant slope
processes primarily involve slides, earth and mud flows [48,51].

2.2. Datasets and Preprocessing

The displacement over the landslide bodies is thoroughly examined using PS data
obtained from the Sentinel-1 and CSK satellites for the period 2017–2022, excluding the
co-seismic deformation due to the 2016–2017 seismic sequence [52]. The multi-temporal
datasets are extracted through the processing of SAR images [11,12]. This extraction is
achieved through the application of an advanced differential InSAR technique that allows
for detailed monitoring of ground deformation with sub-millimetric precision [53]. The
displacement rates obtained from the ascending Sentinel-1 and descending CSK orbital
geometries offer a comprehensive analysis on ground deformations within the identified
landslides [54]:

• Sentinel-1 is a constellation comprising two imaging C-band SAR satellites, namely,
Sentinel-1 A and B. These satellites are under the operation of the European Space
Agency and are part of the Copernicus Program. The constellation offers a revisit
time of 6 days and a ground resolution of 5× 20 m. The ascending PS products are
extracted from 305 images of track 117 taken in interferometric wide swath mode,
with a 250 km swath [55,56].

• COSMO-SkyMed (CSK) is a constellation of X-band SAR satellites developed by the
Italian Space Agency (ASI) with a revisit time of 16 days and a ground resolution of
3× 3 m. The HImage (HI) mode of CSK data, with a 40× 40 km swath, required four
tracks (i.e., HI01, HI03, HI04, HI05) to cover AOI with a total of 309 images [57,58].

The processing technique utilized is the persistent scatterers pair SAR Inferferome-
try [59]. The synergy of CSK products provides high-resolution data, complementing the
insights derived from Sentinel-1. While Sentinel-1 offers extensive coverage and frequent
revisit capabilities, the inclusion of CSK data brings an additional layer of detail and preci-
sion to the overall analysis. By combining the strengths of Sentinel-1’s broad coverage with
CSK’s high-resolution capabilities, this integrated approach enhances the accuracy of the
analysis by providing a more comprehensive understanding of landslide dynamics.

To show possible correlation between precipitation and displacement trend turning
points, four weather locations shown by red squares in Figure 1 are chosen and monthly
accumulated precipitations are calculated for the period 2017–2022. The precipitation data are
provided by 3Bmeteo s.r.l. downloaded from https://www.3bmeteo.com (accessed on 1 June
2024). Due to a limited number of weather stations, monthly GPM images are also employed
for the period 2017–2022 [60]. These images are downloaded using the Google Earth Engine
through the command ee.ImageCollection (“NASA/GPM_L3/IMERG_MONTHLY_V07”).
The images have spatial resolution of 0.1◦ × 0.1◦ (about 10 km) and are generated monthly.
The GPM model calibrates and interpolates all satellite microwave precipitation estimates as
well as microwave-calibrated infrared satellite estimates and precipitation gauge analyses.

2.3. Sequential Turning Point Detection (STPD) Revisited

This section reviews the already established STPD, utilized herein for estimating trend
turning points and their directions. The STPD sequentially estimates a potential turning
point in a segment within a window based on the least-squares fit of a connected linear
trend with two linear pieces [22]. The window translates over time, e.g., year by year,
and the STPD estimates a potential turning point within each window. All the estimated
turning points are re-evaluated at the final step for the entire time series in order to find
an optimal connected linear trend with multiple pieces that fit best the entire time series.

https://www.3bmeteo.com
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Mathematically, let S1 = {y1, . . . , yτ} and S2 = {yτ , . . . , yn} be two sub-segments of a time
series segment of size n, where τ is a potential turning point (1 < τ < n). Let

yi = m1xi + b1 + εi, for 1 ≤ i ≤ τ, (1)

yj = m2xj + b2 + ε j, for τ ≤ j ≤ n. (2)

where m1 and m2 are the gradients, b1 and b2 are the intercepts, and εi and ε j are the
error terms. The STPD has a forward estimation and a backward estimation within each
window. In the forward estimation, m1 and b1 in Equation (1) are estimated by the ordinary
least-squares method (OLS) [61], and m2 in Equation (2) is estimated by OLS, where b2 is
replaced by b̂2 = m̂1xτ + b̂1 with xj ← xj− xτ , τ ≤ j ≤ n. The residual series, the estimated
linear trend with turning point at τ subtracted from the entire segment, is computed for
each τ, 1 < τ < n. The potential turning point τforward, 1 < τforward < n, is the one
minimizing the L2 norm of the residual series. In the backward estimation, time series
segment is flipped, and the forward estimation process is performed to estimate the linear
trend with a potential turning point. Then the linear trend is flipped to obtain the turning
point τbackward, 1 < τbackward < n. Finally, a potential turning point in the time series
segment exists if |τforward − τbackward| is zero. In practice, if 0 < |τforward − τbackward| ≤ 3,
then the potential turning point may also be the one minimizing the L2 norm of residuals.

After a maximum one statistically significant turning point is estimated within each
window, the turning points are re-evaluated based on normalized difference residual index
(NDRI), defined as

NDRI =
∥⃗r1∥ − ∥⃗r2∥
∥⃗r1∥+ ∥⃗r2∥

(3)

where ∥ · ∥ is the L2 norm, and r⃗1 and r⃗2 are the residual series of the first and second time
series segments with turning point at tτ , respectively, i.e., r⃗1 is {yi − m̂1xj − b̂1, 1 ≤ i ≤ τ}
and r⃗2 is {yj − m̂2xj − b̂2, τ ≤ j ≤ n}. The smaller the absolute value of NDRI, the more
likely the estimated turning point is a true turning point and vice versa [22]. Next, if there
are two consecutive turning points that are close to each other, e.g., less than one year
apart, then the one whose location is farther away from the center of its corresponding
window will be eliminated. Finally, using all the remaining turning points, a linear trend
with connected pieces is estimated for the entire time series. Suppose that τ1, . . . , τk are the
turning points of a time series, and m̂0, m̂1, . . . , m̂k are their estimated gradients in the same
sequential order. For each ℓ (1 ≤ ℓ ≤ k), the direction (DIR) of turning point τℓ is defined
as DIR = m̂ℓ − m̂ℓ−1.

In the present work, only non-increasing or non-decreasing PS-InSAR time series
are chosen, following the assumptions by Urgilez Vinueza et al. [62]. Then only the
time series whose turning points are statistically significant at 99% confidence level and
satisfy the conditions |NDRI| < 0.3 and |DIR| > 0.2 mm/year are considered, where
| · | denotes the absolute value. Ghaderpour et al. [22], through an extensive simulation
experiment, demonstrated that the threshold 0.3 for |NDRI| can effectively distinguish
jumps from turning points, see ([22], Figure 6). The advantages of STPD over other popular
methods, such as Pettitt’s and running slope difference in terms of root mean square
error, have also been demonstrated in [22]. Through an extensive simulation experiment,
Ghaderpour et al. [22] also showed that the overall accuracy of STPD for detecting turning
points was approximately 83% while Pettitt’s overall accuracy for detecting a change point
was 65%. The thresholds for |NDRI| and |DIR| have also shown to be effective for reliable
turning point estimations in other studies, e.g., [23]. The workflow of the present study is
illustrated in Figure 2.
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Figure 2. Workflow of this research. Acronyms GPM, STPD, NDRI, and DIR mean global precipitation
measurement, sequential turning point detection, normalized difference residual index, and turning
point direction, respectively.

3. Results
3.1. The STPD Results of PS-InSAR Time Series within AOI

Figure 3 illustrates the spatial maps of calendar months when the gradients of the
linear trends in PS-InSAR time series with the subset of 255 landslide bodies changed
significantly. Years 2017 and 2022 are the margins of the windows in STPD, and so no
turning point is estimated for these two years due to significant annual and seasonal noise,
making the trend change results less reliable [22]. Note that the same input parameters in
STPD for analyzing PS-InSAR time series in [22] are used in the present study for processing
PS-InSAR time series that have a five-year-long window size and one-year-long step size
and minimum time interval between turning points. These selections are based on extensive
simulation, spectral analysis, and the nature of slow-moving landslides as demonstrated
in [22]. The bar charts of distributions of turning points through calendar months during
2018–2021 in the four Italian administrative regions are shown in Figure 4, obtained by
counting the number of turning points displayed in Figure 3 within each calendar month
and each region. From Figure 4, relatively more turning points are detected in the summer
season (summer 2019 in Marche, summers of 2018 and 2020 in Umbria, summer 2018 in
Abruzzo, and summer 2020 in Lazio). The dashed red boxes highlight some of the most
significant turning points whose directions are more than 4 mm/year. From the statistical
point of view, all the estimated turning points are significant at the 99% confidence level.

Figure 5 illustrates the spatial maps of the directions of the gradient changes at the
turning dates shown in Figure 3. The frequency bar charts of directions of turning points
through ten classes for the four regions are displayed in Figure 6, derived from Figure 5 by
counting the number of turning points within each DIR class and each region. It is clear
from Figure 6 that the directions of the majority of turning points are in classes [−4,−2)
and (2, 4] mm/year for both ascending and descending orbits.
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Figure 3. The spatial maps of turning points for ascending and descending PS-InSAR time series.

Figure 4. The bar charts of turning points for ascending and descending PS-InSAR time series for
(a) Marche, (b) Umbria, (c) Abruzzo, and (d) Lazio. The red dashed boxes show the dates of some of
the most significant turning points likely triggered by precipitation trend change. As an example,
eight PS-InSAR time series whose trend turning dates are within these boxes are demonstrated
in Figure 7.
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Figure 5. The spatial maps of directions of turning points for ascending and descending PS-InSAR
time series.

Figure 6. The bar charts of directions of turning points for ascending (in red) and descending (in blue)
PS-InSAR time series for (a) Marche, (b) Umbria, (c) Abruzzo, and (d) Lazio.
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Figure 7. The STPD results of four pairs of PS-InSAR time series near the weather stations shown
in Figure 1. The geographic locations of each pair of PS-InSAR time series, i.e., corresponding to
ascending (ASC) and descending (DESC) orbital geometries, are less than 50 m. The left and right
panels, respectively, show examples of Sentinel-1-ASC and CSK-DESC time series for (a,b) Tolentino
in Marche, (c,d) Spoleto in Umbria, (e,f) Teramo in Abruzzo, and (g,h) Rieti in Lazio. The blue
lines are the STPD estimated linear trends with multiple connected linear pieces. NDRI is short for
normalized difference residual index. A DIR or a turning point direction is the slope of the fitted
linear piece after a turning point minus the slope of the fitted linear piece before the turning point.
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The details of the number of PS-InSAR time series before and after applying the thresh-
olds are also provided in Table 1. Only 13.5% and 6.9% of the ascending and descending
PS-InSAR time series have passed all the conditions written in the caption of Table 1 for
having at least one significant turning point, respectively. Note that the turning points and
DIRs of only these PS-InSAR time series are shown in Figures 3 and 5, respectively.

Table 1. Information about the PS-InSAR time series for ascending and descending orbits within
AOI, i.e., the subset of 255 landslide bodies. The thresholds are |NDRI| < 0.3, |DIR| > 0.2 and only
non-increasing or non-decreasing time series.

Geometry Number of PS Number of PS with Turning Points Number of PS with Turning Points after Applying
All the Thresholds

Ascending 158,759 117,985 (74.3%) 21,506 (13.5%)
Descending 864,408 532,901 (61.6%) 59,792 (6.9%)

3.2. The STPD Results of Station-Based Accumulated Precipitation Time Series

To better understand and visualize how the linear trends are estimated for PS-InSAR
time series and how precipitation might have triggered the velocity changes, four pairs of
ascending and descending PS-InSAR time series are selected in four AOI polygons near the
local weather stations. Each pair of ascending and descending time series is shown by a
blue star, and the weather stations are shown by red squares in Figure 1b. The geographic
locations of the ascending and descending PS-InSAR time series are within 50 m from each
other and within 20 km away from the weather stations. Figure 7 shows these time series
along with their STPD results. Note that the estimated turning points and DIRs highlighted
by red arrows in these plots are displayed in Figures 3 and 5.

The STPD results of precipitation for locations shown in Figure 1 are illustrated in
Figure 8. A significant amount of precipitation was recorded in May 2019 after several
drier months, see D2 ≈ −640 and D3 ≈ 165 mm/year in Figure 8 (Tolentino). This may
justify the relatively higher number of turning points during summer of 2019 in Marche
(Figure 3) and the detected turning points in PS-InSAR time series shown in Figure 7a,b.
The summer of 2020 was much wetter than 2019 where the gradient of accumulated
precipitation significantly changed, see D2 ≈ −713 and D3 ≈ 1494 mm/year in Figure 8b
(Spoleto). This may explain the relatively large number of turning points in the summer of
2020 in Umbria and the detected turning points with large DIRs in PS-InSAR time series in
the summer of 2020, see Figures 4b and 7c,d. The gradient of accumulated precipitation
for Teramo increased significantly in 2018 compared to 2017, see D1 ≈ 505 mm/year in
Figure 8, where May and June of 2018 were relatively much wetter. This may indicate the
increased number of turning points in May, June, and July of 2018 in Abruzzo and the
velocity change observed in Figure 7e,f, see the turning points detected in the summer of
2018. Likewise, the turning points detected in Figure 7g,h are likely due to the significant
precipitation increase during late 2020, see D3 ≈ 1568 mm/year in Figure 8d (Rieti).

3.3. The STPD Results of GPM Time Series

Firstly, to evaluate how monthly GPM and local precipitation measurements are
correlated, four per-pixel GPM time series are extracted from the stack of monthly GPM
images, each including the location of gauging stations highlighted by red square in
Figure 1b. The STPD results of the accumulated GPM time series for these four pixels are
displayed in Figure 9, showing similar patterns with more or less the same trend turning
dates and directions as the station-based accumulated precipitation time series displayed
in Figure 8. In particular, there exist turning points with positive directions in 2017 and
2020 for both GPM and station-based time series for all the four towns. The Pearson
correlation analysis is also performed to estimate the linear dependency between these
sets of measurements, see [63] (Equation (5)) for the formula. The correlation results are
illustrated in Figure 10, showing a strong linear dependency for Tolentino, Spoleto, and
Rieti with r ≥ 0.7 and a moderate fuzzy linear dependency for Teramo. From the estimated
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linear trend lines displayed in blue in Figure 10, the GPM values are generally lower than
the station-based values. However, note that the spatial resolution of GPM data is about
10 km, providing a rough estimate for a larger area.

Figure 8. The STPD results of accumulated precipitation for (a) Tolentino in Marche, (b) Spoleto in
Umbria, (c) Teramo in Abruzzo, and (d) Rieti in Lazio. The bars in cyan show monthly precipitations.
The dark blue circles are cumulative monthly precipitation. The red lines are the STPD estimated
linear trends with multiple connected linear pieces, and “D” denotes the direction amount of turning
points in mm/year. The locations of the weather stations are displayed in Figure 1.

Figure 9. The STPD results of accumulated GPM time series for (a) Tolentino, (b) Spoleto, (c) Teramo,
and (d) Rieti; see caption of Figure 8 for more details.
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Figure 10. The Pearson correlation (r) between monthly GPM and station-based monthly precipitation
measurements for (a) Tolentino, (b) Spoleto, (c) Teramo, and (d) Rieti. The blue line is the estimated
linear trend while the dashed line indicates the ideal match.

Secondly, to study the overall average monthly precipitation across the study region,
the average of precipitations in all calendar months during the period 2017–2022 is cal-
culated for each spatial pixel, and the resulting map is illustrated in Figure 11a. From
this figure, it is clear that the coastal sub-regions (Marche and Abruzzo) have relatively
lower amounts of monthly average precipitation than Umbria and Lazio. The monthly
precipitation rate is also estimated for each per-pixel GPM time series from 2017 to 2023 by
the ordinary least-squares method, and the resulting velocity map is depicted in Figure 11b.
From this figure, an insignificant precipitation velocity is observed across Marche and
Abruzzo while there exists a significant positive monthly precipitation velocity in Umbria
and Lazio. Note that four of the per-pixel time series for which the average and velocity
through the best fitting lines are estimated are displayed by bars (in cyan) in Figure 9.

Finally, the turning points and their directions are estimated for each per-pixel time
series with the same input parameters (two-year-long window size and half-year-long
step size and minimum time interval between turning points) as for the station-based
precipitation time series, and the results are illustrated in Figure 12. Panel (a) in Figure 12
clearly shows that Marche and Lazio have a significant turning point direction in the
summer of 2017, while panel (b) shows that part of Abruzzo has a positive direction in
2019, and panel (c) shows that Lazio has the strongest precipitation trend change (highest
positive direction) compared to other sub-regions in 2020. Overall, as one can observe
from Figure 12d, most of turning points with positive directions are in the summer of 2017,
spring of 2019, and summer and fall of 2020. Note that positive direction means that the
precipitation velocity is increased after the turning point.
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Figure 11. (a) The average map, and (b) the velocity map of the monthly GPM precipitation time
series from 2017 to 2023.

Figure 12. The direction map of turning points in per-pixel monthly GPM time series from 2017 to
2023 for (a) Summer of 2017, (b) Winter and Spring of 2019, (c) Summer and Fall of 2020, and (d) the
bar chart of all the turning points. The frequency on the y-axis is the number of GPM pixels.
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4. Discussion

This study is dedicated to estimating the reactivation times and velocities of slow-
moving landslides in areas affected by the Amatrice–Norcia–Campotosto seismic sequence
(2016–2017) through analyzing PS-InSAR time series. Note that the physical concept of
a turning point in InSAR time series is based on displacement trend pattern change due
to slow-moving landslide reactivation or gradual land subsidence/uplift [22,23]. The
geospatial maps showing the dates when the velocities of the displacement time series
change are produced for years 2018, 2019, 2020, and 2021, see Figure 3. From Figure 6, one
can observe that the majority of turning points have directions with absolute values of less
than 4 mm/year, fortunately not in an alarming rate but still significant. On one hand,
landslides during the weeks immediately after the seismic sequences are studied by field
survey and remote sensing methods by many researchers [29,50,64]. On the other hand, the
potential impact of precipitation pattern change on landslide reactivation for the affected
regions are investigated well after the seismic sequences in the present research. In the
following subsections, potential triggering factors of slow-moving landslides are discussed,
and the limitations of the present study as well as future work are mentioned.

4.1. Potential Triggering Factors of Displacement Turning Points

The present results show that precipitation trend change pattern is one of the triggering
factors of landslide reactivation in the affected areas. For example, Figure 7c,d for Spoleto
and Figure 7g,h for Rieti show that the displacement time series of Sentinel-1-ASC and CSK-
DESC have turning points during the summer of 2020 with an increasing rate, likely due to
positive precipitation rate change during the summer of 2020 as observed in Figure 8b,d
(see D3 with DIR of about 1500 mm/year). The analysis of GPM images also confirms
the positive precipitation rate change (DIR > 0) during the summer of 2020 as observed
in Figure 9b,d for Spoleto and Rieti, respectively. Moreover, Figure 12c shows significant
positive turning point direction for the entire Umbria and Lazio sub-regions during the
summer and fall of 2020, explaining the relatively large number of turning points detected
in the displacement time series in these seasons and sub-regions as shown in Figure 4b,d,
see the red dashed boxes. From Figure 12b, one can see that almost half of the Abruzzo sub-
region has positive DIR, explaining the relatively large number of turning points during
the winter and spring of 2019 as observed in Figure 4c. Figure 12a also shows that the
entire ABDAC region has positive precipitation rate change during the summer of 2017,
especially for Marche, whose increasing precipitation rate continues in the following years
for the most part. This together with heavy rainfalls in May 2019 may explain the relatively
large number of turning points during the summer of 2019 as shown in Figure 4a.

Global and local warming and human activities in recent years have contributed to ex-
treme weather events, such as high winds, heatwaves, and short-duration and heavy precip-
itation, which have changed the frequency of landslides [29,65–67]. Ghaderpour et al. [63]
observed significant daytime warming trends for September, November, and December,
and significant nighttime warming trends for February, July, August, September, November,
and December during the period 2000–2023 in Central Italy, linked to forest expansion in
recent decades. Extreme precipitation events due to land cover and climate change have
become frequent in recent years following drier periods, reactivating landslides [37,38,68].
For example, Luppichini et al. [69] demonstrated that global warning has caused a de-
cline in precipitation amount mainly in the dry season followed by intense and heavy
precipitation events in north-central Italy.

The present results agree with the ones by Tichavský et al. [70], who demonstrated
that the main triggering factor of landslides in Central Europe is heavy precipitation
after dry periods. Moreover, Ghaderpour et al. [22] observed a similar correlation in
the province of Frosinone in Central Italy. Martino et al. [71] scrutinized the potential
causes of recent landslides in Molise region in Central Italy and concluded that heavy
rainfalls and seismic events were the main triggering factors of landslides in Molise region.
(Ghaderpour et al. [37], Figure 5) also found a strong positive correlation between vegetation
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and land surface temperature and a weak negative correlation between satellite-based
precipitation and vegetation in Apennines.

The potential of Sentinel-1 and CSK data for landslide detection and monitoring
in Italy has been thoroughly studied in literature [72,73]. Barra et al. [15] performed a
manual data analysis and interpretation for landslide mapping in Molise, Italy, using
Sentinel-1 data. However, they neither developed nor implemented any robust algorithm
to automatically estimate the dates and velocities of landslides. Antonielli et al. [74] showed
the potential of InSAR time series based on CSK for mapping and monitoring slow-moving
landslides in Lombardy Region in Italy. They showed that a single acquisition geometry is
effective for preliminary investigation of many landslides. However, they recommended to
combine both ascending and descending acquisition geometries to better capture ground
movement for various physical and morphological features, such as land cover/use, slope,
and aspect angles.

The Sentinel-1- and CSK-based PS-InSAR time series utilized in the present study are
all inside the AOI polygons, shown in Figure 1. The PS-InSAR time series that have turning
points are also classified based on the information from the landslide inventory map and
geological survey. The classification results are shown in Table 2, where it can be seen that
most of the turning points belong to the sliding class.

Table 2. Classification of the estimated turning points using the information from the landslide
inventory map and geological field survey. The second and third columns show the number of PS
with turning points.

Landslide Class Sentinel-1 CSK

Sliding 2722 10,067
Complex 799 3181

Flow 340 1262
Deep Gravitational Deformations 27 15

Quantitative analysis of estimating landslide reactivation times and their velocities
and considering the uncertainties in measurements as well as spatiotemporal coverage are
topics of current interest [75–78]. The present study provides an insight on how robust
data analytics methods and remote sensing technology (e.g., use of STPD and PS-InSAR
data) can be integrated to map and monitor landslides and study their triggering factors
in more depth than before. The findings of this research can help policymakers and
stakeholders in decision-making processes and building risk-mitigation measures. These
tasks may include slope stabilization works in landslide-prone areas showing an increase
displacement rate change, household relocation in more hazardous regions showing more
significant displacement rate change, and ordinary maintenance work, such as repairing
cracks and painting in flatter regions with smaller deformation rate [79,80].

4.2. Limitations and Future Work

The non-increasing or non-decreasing assumption of trend component in this research
(see Figure 2) limits the results to the places where the ground is always moving toward the
same downslope direction with respect to satellite line-of-sight. Urgilez Vinueza et al. [62]
pointed out that this assumption is reasonable as there is not a clear geophysical justification
on how the sign of line-of-sight direction can switch from negative to positive or vice versa.
They assumed that the switching gradient from positive to negative or vice versa could be
due to sensor or phase unwrapping errors, which could be plausible for steep slopes. In
regions with relatively flat terrain, changing sign in displacement gradients could be due
to land subsidence/uplift, correlated with groundwater level fluctuation (e.g., in industrial
regions [23]). Table 1 shows that applying this assumption and enforcing the thresholds
for NDRI and DIR eliminated about 60% of PS. However, the remaining PS-InSAR time
series demonstrated pretty good results, many of which are randomly examined by visual
interpretation and QGIS software (an open-source quantum geographic information system



Remote Sens. 2024, 16, 3055 17 of 22

software [81,82]) and from field knowledge. Loosening the conditions potentially brings
in time series with more uncertain turning points that may be due to measurement errors,
phase unwrapping, atmospheric noise, etc.

In summary, the limitations of this study include the lack of adequate spatial coverage
of PS-InSAR time series, particularly in non-urban regions, uncertainties in PS-InSAR
measurements due to atmospheric noise, errors caused during phase unwrapping and
sensor errors, and a lack of adequate meteorological stations. In the present research, due
to a limited number of weather stations, satellite-based precipitation measurements are
also utilized. The correlation analysis demonstrated in the current study signifies a good
linear dependency between ground-based and satellite-based precipitation measurements;
however, the distance of weather stations from the PS-InSAR locations and coarse spatial
resolution of GPM images bring yet another uncertainty for investigating how precipitation
and displacement rate changes are correlated. Integrating optical and radar data acquired
from various sensors, such as MODIS, Landsat, Sentinel, and PlanetScope, along with
hydro-meteorological data using machine learning models could be beneficial for a better
understanding of landslide activities and their triggering factors in the study region, which
is the subject of future investigation. Depending on the type of time series and noises
involved, the parameters of STPD, such as window and step sizes and the minimum time
interval between turning points, must be tuned to optimize the model’s performance. In
the present study, like the earlier study by the authors [22] through an extensive simulation,
a five-year-long window size and a one-year-long step size with a minimum of one-year
difference between turning points are identified to be optimal for the purpose of detecting
slow-moving landslides that occur slowly in nature. Therefore, users need to be cautious
when applying STPD to other applications as tuning parameters are very important. Lastly,
the STPD utilized herein can be applied to other regions across the world for studying the
relationships between precipitation and ground deformation trend changes. Intense rainfall
after dry periods appear to be triggering landslides in the affected regions in Central Italy,
confirming the earlier results for province of Frosinone and Central Europe [22,70,83]. Apart
from precipitation, earthquakes, volcanic activities, snowmelt, water-induced soil erosion,
changes in groundwater, and human-caused disturbances are also other potential triggering
factors of landslides that need to be investigated. Therefore, although generalization of
the results presented herein to other regions may sound logical, other factors triggering
landslides must also be studied carefully alongside precipitation.

5. Conclusions

This research presents a multifaceted approach for analyzing slow-moving deforma-
tion in the landslide-prone areas of Central Apennines, Italy, utilizing PS-InSAR time series
data from CSK and Sentinel-1 satellites. The study’s primary contribution lies in its innova-
tive application of STPD for the precise detection of dates of significant velocity changes
in landslide displacement. This application enabled the identification of trend changes
to facilitate the generation of spatial maps illustrating both the timing and magnitude of
these changes and providing a comprehensive view of landslide dynamics across the study
area. A key advancement of this research is the application of STPD to investigate the
interconnection between precipitation patterns and slow-moving landslides, establishing
a validated approach to scrutinizing trend changes due to intense rainfall. This analysis
revealed significant correlations that have been challenging to quantify in previous studies.

The results of this research uncovered that extreme precipitation events, particularly
when followed by extended dry periods, play a crucial role in reactivating slow-moving
landslides within the area of interest. This discovery contributes substantially to the
understanding of the complex interplay between climate variability and landslide activity.
Furthermore, this research identified a trend of gradual warming and increasingly dry
seasons, expected to escalate the frequency of extreme precipitation events. This observation
highlights the potential for increased landslide reactivation in Central Italy, emphasizing the
urgent need for adaptive strategies in landslide risk management to mitigate socioeconomic
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risks and damages in the face of current and future climate change. By combining satellite-
based displacement data with climate analysis, this study provides an innovative and
holistic understanding of landslide behavior over time and space, representing a significant
advancement in landslide monitoring and prediction methodologies in the context of
changing climate patterns. Future research should build upon these findings to develop
more accurate predictive models and risk assessment tools, incorporating the temporal
and spatial patterns of landslide activity identified in this study. The methodologies
developed here have the potential for application in other landslide-prone regions globally,
contributing to improved landslide risk management strategies worldwide and enhancing
resilience in vulnerable regions. Some of the main findings of the present research are
summarized as follows:

• Relatively more turning points in the PS-InSAR time series inside the landslide-prone
polygons were detected during the summers of 2019 and 2020 for the Marche and
Lazio sub-regions, respectively.

• More than 80% of detected turning points in the PS-InSAR time series had a direction
between −4 to 4 mm/year.

• Ground-based and satellite-based (GPM) monthly precipitation time series generally
had a strong correlation (r ≥ 0.7) with similar turning points and directions.

• The coastal sub-regions of Marche and Abruzzo were drier than the Umbria and Lazio
sub-regions with an insignificant precipitation rate during 2017–2022.

• Most of the turning points in the accumulated GPM precipitation time series were
during the summers of 2017 and 2020 with positive directions, potentially reactivating
many slow-moving landslides across the affected areas.
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