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Opportunities and Challenges of Spaceborne
Sensors in Delineating Land Surface
Temperature Trends: A Review

M. Razu Ahmed™, Ebrahim Ghaderpour™, Anil Gupta, Ashraf Dewan, and Quazi K. Hassan

Abstract—Understanding the land surface temperature
(LST) trends is crucial for policymakers and stakeholders
to develop adaptation and mitigation strategies suitable for
a sustainable environment coping in the face of climate
change. This article presents a systematic review of the
studies related to delineating spaceborne sensor-based LST
trends, including information on the instruments and constel-
lations of satellites (missions) that provide thermal infrared
(TIR) and passive microwave (PMW) observations. About 99%
of the studies used TIR, where 76% were Moderate Resolution
Imaging Spectroradiometer (MODIS, onboard Terra/Aqua)
observations. Opportunities, challenges, and research gaps
for using the TIR and PMW observations were also explored,
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with instruments onboard either polar-orbiting or geostationary satellites. We identified that the calibrated dataset
(e.g., processed, harmonized, and standardized) is extremely limited for each constellation, with multiple satellites and
instruments, to make it fully useful for the entire mission period. A few problematic methodological concepts were
identified, including using a few images in a longer time series. Using only a few images, acquired on different calendar
months in different years, would not provide the true annual trends over the study period because they can be influenced
by seasonal variations. To estimate the warming or cooling daytime, nighttime, or diurnal LST trends, the use of MODIS
observations could be useful, even though it does not acquire images during the maximum or minimum temperature
in a daily cycle. This article indicated further investigations into those research gaps and recommended directions to

overcome most of these limitations.

Index Terms— Land surface temperature (LST), Moderate Resolution Imaging Spectroradiometer (MODIS), passive

microwave (PMW), thermal infrared (TIR), trend.

. INTRODUCTION

EMPERATURE trends, the spatiotemporal variations of
temperature over a longer period, are the key indica-
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tor of representing climate change [1]. While land surface
temperature (LST) is dependent on the spatial variability of
solar radiation and land—atmosphere heat exchange [2], the
temporal variability of solar might has effects on the Earth’s
climate [3]. Spatiotemporal distributions of LST reflect not
only the variations of climatic factors but also the character-
istics of land surface [4].

It has interdependence among climate, ecosystems, bio-
diversity, and human societies. It can directly or indirectly
impact many aspects of society by potentially disrupting the
normal natural balance and forcing the change of weather
patterns [S]. Increasing temperature trends (warming) and
other associated factors are threatening human existence, eco-
logical communities, and socioeconomic development across
the world [6]. The Intergovernmental Panel on Climate Change
(IPCC) reported that the global mean temperature had risen
(global warming) by about 0.85 (£0.2) °C from 1880 to
2012 [1], [7]. Knowing the magnitude and rate of temperature
change (temperature trend) would guide the formulation of
appropriate levels of mitigation and adaptation strategies.
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It would help minimize the rate magnitude of the changes
to keep our globe a habitable place through a sustainable
environment [5].

In determining the temperature trends, the method of using
in situ measurements of weather stations is the most accurate
approach for the station locations. To represent trends, studies
used interpolation techniques to derive the temperature for
the remaining landscape [8]. The use of interpolation values
in determining the temperature trends has some issues, e.g.,
various interpolation techniques, such as polynomial, nearest
neighbor, and Fourier methods, produce different outputs even
using the same input data [9], [10]. Considering this, another
efficacious alternative is to use spaceborne sensor-derived LST
for estimating temperature trends at regular grids, covering
nearly the entire globe. A review article [11] also indicated the
importance of using spaceborne Earth observational sensors by
quantifying the performances and limitations of different meth-
ods used in the literature for LST trend analysis. In general,
studies in the literature used the Mann-Kendall (MK) test,
Sen’s slope estimator (SSE), and linear regression methods
to determine the trends of LST [12]. The MK test and SSE
have the advantage that they can be applied independent of
data distribution pattern in the time series, in contrast to the
linear regression analysis whose statistical testing depends on
the normality assumption [12]. Because of the nonparametric
characteristic of the LST data, the MK test was mostly used to
detect the trends in time series, including the SSE to determine
the upward or downward directions of trend, i.e., positive or
negative slope, respectively. However, the MK test may fail
for time series with seasonality and may give incorrect results
for shorter time series due to serial correlations [13], see also
Section VII showing a simulation experiment.

Spaceborne remote sensors operating in specific wavelength
ranges, including thermal infrared (TIR, 8-14 pm) and passive
microwave (PMW, 0.8-75 cm or frequency 0.4-35 GHz), are
useful in studying LST trends at a pleasant spatial resolution.
The polar-orbiting satellites can observe both TIR and PMW,
and geostationary satellites only TIR. While the datasets
derived from these platforms have created opportunities for
delineating the LST trends, challenges exist due to lack of long
time series from a single instrument, differences in both spatial
and temporal resolutions among the datasets. Here, the aim
was to understand the opportunities and challenges of using
remote sensing-derived LST data in delineating its trends.
Hence, the specific goals were to: 1) conduct a systematic
review on the LST trends reported in the literature using both
TIR and PMW instruments; 2) opportunities and challenges of
using the LST time series data; and 3) determine research gaps
in the appropriate use of remote sensing data and summarize
future research potentials.

[l. SYSTEMATIC REVIEW
Web of Science (WoS) and Scopus are the two widely
used citation and publication databases. Here, we used the
Scopus database for the search of relevant publications, due
to its broader coverage of publications with 20% more
than WoS [14]. In Scopus, we performed the following
search in Title-Abstract-Keyword on June 24, 2022: (LST)
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Fig. 1. (a) Annual count of articles. (b) Location of the study area
on the continents or greater regional scale. (c) Spatial distribution of
publications. (d) Sensor-wise count of articles.

Thermal Infrared (TIR) Passive Microwave (PMW)

and (“warming trend*” or “cooling trend*” or “temperature
trend*” or “positive trend*” or “negative trend*””) and not
(“ocean” or “lake”). This search returned 174 documents,
including 148 English articles, 12 conference papers, three
book chapters, two review articles, one letter, and eight non-
English articles, where the English articles were analyzed
further. Among these, 31 articles did not use remote sensing
data, and another 21 articles used remote sensing data but
did not perform trend analysis. Therefore, we considered a
total of 96 relevant articles in this study. Note that other
keywords, such as spatiotemporal and cloud computing, were
also searched along with LST and trend, but all results were
captured by the keywords mentioned earlier. The first article
was published in 2004, and the total number of articles
published per year was the highest in the last four years
(2019-2022) [see Fig. 1(a)]. National Oceanic and Atmo-
spheric Administration (NOAA) polar-orbiting environmental
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satellites have been providing LST data since the 1980s, and
thus, a steady increasing trend of using them was observed
in the literature. The trend of publishing the related articles,
started in 2004, may be linked to the cost-free data availability
to scientists around the first decade of this century. It is likely
that the LST trend related works will be published more in the
coming years. Nevertheless, in terms of the location of study
area, the most publications were in Asia (60), followed by
North America (12) and Africa (11) [see Fig. 1(b)]. In Asia,
studies were mostly conducted in China (24), the Tibetan
Plateau (13), South India (14), and Iran (6), and middle eastern
countries (3) [see Fig. 1(c)]. Also, the sensor-wise group of
articles for TIR and PMW instruments onboard polar-orbiting
and geostationary satellites is shown in Fig. 1(c), which is
discussed in Sections III and IV.

I1l. TIR-BASED STUDIES

Fig. 1(d) shows that 95 out of 96 articles used TIR instru-
ments in studying the LST trends, where 92 articles were
derived from polar-orbiting satellites [see Fig. 1(c)]. Among
the polar-orbiting satellites, the sensors included: 1) Moderate
Resolution Imaging Spectroradiometer (MODIS); 2) Landsat
instrument series—Thematic Mapper (TM), Enhanced TM
Plus (ETM+), TIR Sensor (TIRS), and TIRS2; 3) Along
Track Scanning Radiometers (ATSRs) and Advanced ATSR
(AATSR); and 4) Advanced Very High Resolution Radiometer
(AVHRR) instruments.

A. Moderate Resolution Imaging Spectroradiometer
MODIS-derived LST is the most common in the literature
(i.e., 71 articles) to delineate LST trends since 2000. Most of
the studies were conducted in China (~27%), Tibetan Plateau
(~13%), and India (~11%), while two studies were on the
global scale [15], [16]. A good number of studies focused on
LST trends in the landscapes [17], [18], [19], [20], [21], [22],
(23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
along with other trends, such as evapotranspiration [33], [34]
and rainfall and vegetation [35], and water balance com-
ponents, such as precipitation, snow cover, and stream
flows [34]. Studies of MODIS LST trends in urban
areas or cities, especially larger in size, were also found
[36], [37], [38], [39]. In the urban/city, studies focused on
urban heat island (UHI) [40], [41], [42], [43], surface UHI
(SUHI) [44], [45], [46], [47], [48], [49], [50], and urban
expansion [51]. Studies showed the impacts on LST trends
due to the physical changes in wetland [52], [53], [54], land
cover [1], [5], [55], forest cover [56], elevation [29], [57], [58],
[59], and hydroelectric projects [60]. Two very recent pub-
lications also investigated the LST trends over India and
South Asia [1], [5]. Vegetation has demonstrated a significant
role in influencing the cooling or warming trends in many
parts of the world [61], [62], [63], [64], [65], [66], [67],
[68], [69]. Some studies have linked LST trends with changes
in soil moisture [70], drought conditions [71], and desertifica-
tion [72]. Studies have also been conducted finding relation-
ships of temperature trends with wind firms [73], [74], [75],
earthquake impact [76], CO, emission [77], and vector-borne
diseases [78]. Driving factors or causes of warming or cooling

trends were also studied [19], [33], [46], [49], [79], [80], [81].
Most of these studies were conducted using MODIS LST data
with a spatial resolution of 1 km and a few with 5.6 km.
To further improve the spatial resolution of the temperature
trends, a study performed a downscaling (from 1 km to 240 m)
approach using the adaptive random forest regression
method [82]. Some of the studies are summarized in Table 1.

B. Landsat

Landsat was the second most (~18%) instrument to delin-
eate LST trends [see Fig. 1(c)]. Because of the finer spatial
resolutions (30-120 m) compared to MODIS, Landsat-derived
LST was mostly used in urban-related studies using at least
two images. To study the urban impact on LST, 16 images
were used in obo-Dioulasso (Burkina Faso, Sub-Shaharan
Africa) over 22 years (1991-2013) [83], 11 images in the
semiarid city Erbil, Iraq over 21 years (1992-2013) [84],
and two images in Changchun, China, over 12 years
(1993-2005) [85]. Also, an LST trend analysis was performed
in urban areas (cities) in Ghana [86], India [87], Iran [88],
Thailand [89], and USA [90], [91] using variable numbers of
Landsat images in the study periods, i.e., three in six, eight
(two in each year) in 30, four in 30, six in 10, and 53 in
five years, respectively. Other studies performed LST trends
in finding relationships with land use land cover changes
(LULGs) [92], [93], forest cover changes [94], and changes in
normalized difference vegetation index (NDVI) [95], [96], [97]
and green roof [98]. Using 364 images (aggregated for each of
the months) of Landsat time series over the 2000-2010 period,
Reyes et al. [99] showed that urban irrigation suppressed
the LST regimes. Some of the studies using Landsat are
summarized in Table II.

C. Along Track Scanning Radiometer

Three studies, i.e., one ATSR (onboard FEuropean
Remote-Sensing Satellite—ERS) and two AATSR (onboard
ENVISAT—Environmental satellite), used LST time series
from the European Space Agency (ESA) mission [see
Fig. 1(c)]. The ATSR (along with MODIS) LST time series
over 2003-2011 at 1 km was used to determine the monthly
minimum and maximum trends in China [100]. LST time
series datasets of the AATSR instrument at 1 km were utilized
for trends—across elevation changes in the Tibetan Plateau
during 2003-2011 [101] and the Heihe River Basin, China,
during 2002-2012 [102].

D. Advanced Very High Resolution Radiometer

We found two studies that used AVHRR data from the
NOAA mission [see Fig. 1(c)]. Bhatt et al. [103] used
AVHRR-derived LST at 1.1 km from NOAA-7 through
NOAA-18 satellites over the 1982-2015 period to study Arc-
tic tundra vegetation productivity. They showed a positive
trend for 1982-1998 during growing seasons, and 1999-2015
were positive in May—June but slightly negative for July—
August. In another study, Pinheiro et al. [104] delineated
warming and cooling trends over Continental Africa during the
1995-2000 period using a 4-km LST product of daily day and
nighttime NOAA-14 AVHRR/2 instrument.
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TABLE |
SELEGTED PUBLICATIONS ALONG WITH THEIR KEY FINDINGS FOR MODIS-BASED LST TREND ANALYSIS

Ref. Location & Product & Method  Key findings
Period Resolution

[44] Mediterranean MOD11A2-V5 LST is utilized to investigate surface urban heat island in 17 major
cities (2001- 8-day at 1 km Linear Mediterranean cities. Increasing LST trends were observed in most of the
2012) regression cities which were correlated with urban development indicators.

[82] Iran (2001-2019) MOD11A1-V6 Positive and negative LST trends were estimated across Iran during a full

Daily at 1 km year, spring, summer, fall, and winter. An adaptive random forest
regression method was developed for LST downscaling at national scale.

[62] Continental MOD11A2-Vé6 Warming and cooling influenced vegetation growth over the continental
USA (2003-2016) 8-day at 1 km US. About 58% of the continental US showed a positive LST trend more

significantly in the western US. About 35% portion had a negative LST
trend, particularly in the Northern Rockies and Plains and in the Upper
Midwest.

[30] Middle East MOD11A2-V6 Winters in the middle east countries, such as Iran, Israel, and Jordan have
Countries (2001- 8-day at 1 km become milder. Negative trends were observed in the spring LST in
2018) Bahrain and Oman and the summer LST in Bahrain and Qatar. Iraq

showed a positive LST trend.

[27] China (2003- MOD11A2-Vé6 Daytime and nighttime LST trend was reverse in Fall. LST showed an
2019) 8-day at 1 km increasing trend in all seasons except the daytime in Fall. Years 2017 and

2011 exhibited the turning LST trends. Vegetation and air temperature
were the main factors impacting LST.

[58] Andeanregion MODI11A2-V6 Mann- Winter daytime LST depended on elevation with strongest warming at
inS. America  8-day at1km Kendall higher elevations. Winter nighttime LST trend was slightly increasing by
(2000-2017) and Sen’s  altitude

[46] Bangladesh MOD11A2-V6 slope trend Positive daytime LST trend was reported for four major cities in
(2000-2019) 8-day at 1 km analysis ~ Bangladesh, and one city showed a negative nighttime LST trend.

Population, lack of vegetation, and anthropogenic activities were the main
drivers of urban warming.

[12] Canada (2001- MOD11C3-V6 The most significant warming trend in Alberta Canada was observed in
2020) Monthly at 5.6 km May for both daytime and nighttime. In southern and southeastern parts

of Alberta, daytime LST cooling occurred in July and August with slight
nighttime warming in June and August. Significant daytime and nighttime
cooling in November were observed in these regions.

[25] Africa (2003- MOD11C3/MYD1 Northern and western Africa showed more significant warming LST trend
2017) 1C3 than southern and eastern Africa. Winter warming was more significant in

Monthly at 5.6 km the western Africa. The most significant warming was around the equator
and central Africa. In mid-north Africa, the daytime LST had an increasing
trend.

[1] India (2002- MOD11A1-V6.1 LST has a declining trend in winter seasons while nighttime LST had an
2022) Daily at 1 km increasing trend in summer. Regions covered by snow or deserted regions

followed by urban and semi-arid regions had highest daytime LST, while
desert and urban regions had highest nighttime LST followed by semi-arid
and forested regions.

[19] Greenland MOD11A1-Vé6 Summer warming was observed in populated areas. The MODIS LST
(2001-2015) Daily at 1 km trends were generally decreasing across Greenland.

[28] Tibetan Plateau MOD11A1-V6 Daytime and nighttime mean annual surface LST had an increasing trend.

(2000-2017)

Daily at 1 km

Elevation played in significant role in the daytime and nighttime LST,
followed by NDVI in daytime and air temperature in nighttime.
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TABLE Il
SELECTED PUBLICATIONS ALONG WITH THEIR KEY FINDINGS FOR
LANDSAT-DERIVED LST TRENDS, WHERE ALL THE PUBLICATIONS
USED LINEAR REGRESSION FOR TREND ANALYSIS

Ref Location Product & Key findings
& Period  Resolution
[83] Sub- 24 images,  Increased LST and
Shaharan  Landsat-5 urbanization trend were
Africa ™, observed across the study
(1991- Landsat-7  region. Urbanized and
2013) ETM+, built-up lands had a higher
Landsat-8  LST than green
OLI-TIRS,  infrastructure areas.
30-120 m
[87] India- 8 images, LST increased during
Punecity = Landsat-5 summer and decreased
(1990- ™ & during winter seasons since
2019) Landsat-8 1990. Daytime urban cool
OLI-TIRS, island was observed in the
30-120 m Pune city in both summer
and winter as compared to
its surrounding rural areas.
The effect of LULC
dynamics of seasonal LST
was investigated.
[91] USA -Las 16-day LST over new development
Vegas Landsat-5 regions in Las Vegas was
(1990- ™, 30 m decreasing during 1990-
2010) 2010 because of an increase
in vegetation cover in the
form of golf course & parks.
[93] Southeast 14 images,  LST was increasing on bare
Brazil Landsat-5 soil during 1985-2019. LST
(1985- ™ & was negatively correlated
2019) Landsat-8 with moist in the wet
OLI-TIRS,  season. Anthropogenic
30-120 m activity was an influential
factor of warming trend in
the study region.
[95] Southern 3 images, The change in construction
China Landsat-5  materials in urban and
(1991- ™, 30 m vegetation dynamics in
2001) urban and rural areas were

found to be correlated with
LST dynamics. Urban and
built-up lands increased
while agricultural lands
decreased. Urban areas
showed a warming trend
during 1991-2001.

E. Geostationary Instruments

TIR instruments of geostationary satellites, i.e., spinning
enhanced visible and infrared imager (SEVIRI) and visible
infrared spin scan radiometer (VISSR) onboard Geostation-
ary Operational Environmental Satellite (NOAA’s GOES),

European Organisation for the Exploitation of Meteorolog-
ical Satellites (EUMETSAT’s) Meteosat Second Generation
(ESA’s MSG), and GMS-5 (Japanese Geostationary Meteoro-
logical Satellite, Himawari-5), respectively, were used in three
studies in delineating LST trends [see Fig. 1(c)]. Underwood
et al. [105] used GOES images-derived LST time series
to map the evening cooling trends at 4-km spatial resolu-
tion in the Central Valley, USA, during 1997-2000. Oku
et al. [106] used VISSR data at 0.1°x 0.1° for mapping LST
trends in the Tibetan Plateau and identified that the daily
minimum had risen faster than the daily maximum during
1996-2002. Zhu et al. [107] utilized SEVIRI data at 1 km
during 2010-2017 to observe LST variations following an
earthquake in Iran.

IV. PMW-BASED STUDIES

Only one study used PMW instruments to delineate the
LST trends, i.e., Special Sensor Microwave Imager (SSM/I),
onboard polar-orbiting Defense Meteorological Satellite Pro-
gram (DMSP) F-series satellites [108]. They used time series
data over the Tibetan Plateau to quantify standardized LST
anomalies (trends) during 1987-2008 and observed that annual
and monthly LST decreased by 0.5° per decade with the
highest at the Central Plateau.

V. OPPORTUNITIES AND CHALLENGES

Incorporating the variability of solar irradiance in the
LST analysis is challenging, though the absolute value of
total solar irradiance varies by 0.1% over the past two
solar cycles [3], [109]. Performing trend analysis of any
climate-related variables requires a continuous time series
dataset over a longer period (typically 30 years or more).
Some satellite constellations have already developed LST time
series data over 30 years, such as the Landsat series, ESA,
AVHRR, GOES, EUMETSAT, Himawari, and DMSP, except
Terra/Aqua MODIS with 22 years. Though MODIS provides
a bit shorter time series, however, its usages do not require
additional preprocessing in analyzing LST trends. The design
lifetime of a satellite, and its onboard instrument/s, is usually
15 years or much less. Therefore, constellations on different
missions launch satellites with continuously improving instru-
ments for better spatial and temporal coverage compared to
previous generations. While continuity and improvements are
important for a mission, it poses challenges to calibrating the
data acquired by different instruments launched over time.
It is extremely important to preprocess and harmonize the
time series data so that the trends observed in the data will
represent the real trends, not sensor-related or other artifacts.
Due to the calibration-related challenges, we found a few
studies that used observations from multiple instruments of
a single mission or mixed instruments from multiple missions
in delineating LST trends, rather than mostly using data from
the same (or similar) instrument. Sections III and IV discuss
both the opportunity and challenges of using TIR and PMW
observations to delineate LST trends.

A. Polar-Orbiting TIR

In the polar-orbiting constellations, TIR instruments have
the capacity to provide higher spatial resolution data, because
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Fig. 2. (a) AVHRR-derived global LULC map showing six locations
across the world with different climate and land cover characteristics—
P1: mountains in North America; P2: forests in South America;
P3: desert in Australia; P4: city in Asia; P5: mediterranean zone in
Europe; and P6: desert in Africa. (b) Percentages of Landsat 5 TM
scene availability for P1-P6 found in GEE. The cloud scores are
between 0% (clear sky) and 100% (fully cloudy).

of acquiring shorter wavelengths, compared to the PMW
instruments. Besides, TIR instruments onboard polar-orbiting
satellites provide better spatial resolution than the geostation-
ary satellites due to low-altitude orbits. However, atmospheric
conditions, e.g., cloud presence, often pose major challenges
in acquitting LST time series. While TIR is useful for weather
applications such as cloud temperature and optical properties
of clouds [110], cloud-contaminated pixels in the TIR bands
are critical for its application in the LST trend analysis.
Moreover, the availability of cloud-free data is limited for
time series analysis, even in an arid/desert climate. For the
understanding of available cloud-free data, we performed a
search for Landsat 5 TM (the longest lifetime of a Landsat
instrument over 1984-2013) image scenes using the Fmask
algorithm through Google Earth Engine (GEE). The total
numbers of available Landsat 5 TM scenes for six regions—
P1-P6 (in different continents with different climates and land
cover)—were 300, 218, 301, 354, 356, and 432, respectively,
since 1984 (see Fig. 2). Considering the acquisition of a scene
every 16 days during the lifetime of TM instrument, at least
~668 scenes should be available for each location. Moreover,
the cloud-free (clear sky) scenes are much fewer in number
among the available scenes, even in an arid region such as the
Sahara Desert, Africa. Therefore, the limited availability of
cloud-free data creates challenges for spatiotemporal analysis.
Although such data gaps could be filled by applying appro-
priate gap-filling algorithm [111], it is potentially effective
for removing small amount of cloud contamination, not the
cloud-shadow effects. Another approach by NASA is to pro-
vide MODIS land products as LST composites of eight-day
and monthly scales, prepared from the daily observations,

to minimize cloud contamination. However, cloud-shadow
pixels, including some clouds, may not be fully removed
from the composites in many locations of the world. Despite
the opportunities of using MODIS, noise usually affects the
inversion errors strongly when the noise equivalent differential
temperatures are used [112]. For instance, error bars indicated
+2 standard error for a 95% confidence interval in a monthly
land temperature averaged in the Arctic during 2001-2020
from MODIS LST [113]. The good news is that the plankton,
aerosol, cloud, ocean ecosystem (PACE), a NASA Earth-
observing satellite mission, is scheduled to launch in 2024,
where a highly advanced optical spectrometer (PACE’s Ocean
Color Instrument—OCI) will replace the aged MODIS [114].

NOAA’s AVHRR, having the longest data records of the
polar-orbiting TIR since 1979 with consistent spatial (1.1 km)
and temporal (twice/day) resolutions, should probably the best
option. However, we found a very limited number of studies in
the literature since it would be quite challenging to generate
well calibrated and harmonized time series observations of
AVHRR instruments (AVHRR, AVHRR/2, and AVHRR/3) that
were flown on 14 different platforms [115] because AVHRR
sensors, onboard multiple platforms that have been active over
the years, could have sensor degradation, scanline defects,
satellite orbit drift, and channel calibration drift of the dif-
ferent AVHRRSs [115]. Though a study successfully calibrated
the observations of different AVHRR instruments during
1981-2015 over the peninsular Spain and determined the LST
trends [116], however, such calibrated dataset across the globe
is unavailable to our knowledge.

The Landsat series accumulated longer observations of TIR
with a higher spatial resolution (60—120 m) since 1982, which
also provides a better opportunity in delineating LST trends.
The downside of using Landsat is its limited coverage on each
scene (~182 x 185 km) compared to the AVHRR coverage
(~6400 x 2400 km) and its temporal coverage of 16 days.
To perform LST trends for a location, it is hard to find an
appropriate number of cloud-free scenes over a season, even
nearly impossible to get it for the same day in each year for a
longer time series. We did not find, therefore, any global LST
trends using Landsat TIR observations.

Another TIR instrument, namely, NASA’s advanced space-
borne thermal emission and reflection radiometer (ASTER)
has a similar observation period (since 2000) like MODIS with
having 11 times higher spatial resolution (90 m) than MODIS,
was not found in the literature for LST trend studies because
it has: 1) small scene coverage, i.e., 60 x 60 km [117]; 2) not
intended to continuously acquire data, and therefore, archived
data are missing over time and space [117]; and 3) programed
or acquired data were not free of cost from the begin-
ning of the acquisition, which became freely available from
April 1, 2016 [118].

B. Geostationary TIR

Geostationary satellite-based TIR observations have the
opportunity of delineating LST trends at high temporal res-
olution (minutes to hours) with a reasonably high spatial
resolution (2-6.9 km), because of having the longest obser-
vations in the remote sensing history, since 1975. However,
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the challenges are related to cloud contamination issues, and
the observations of each instrument do not cover the entire
globe. Because of the objective of observing a targeted part of
the globe, it became a challenge to delineate the LST trends
from the geostationary TIR on a global scale.

C. Polar-Orbiting PMW
The PMW observations in the longer wavelengths could
be a better choice (in comparison to TIR) for not having
cloud contamination [110], which has been available since
1978 through the Scanning Multichannel Microwave Radiome-
ter (SMMR) instrument onboard Nimbus-7 Pathfinder satellite.
PMW observations have been available from different instru-
ments, such as SMMR (1978-1987), SSM/I (1987-2020),
and SSMIS (since 2004), Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI, onboard TRMM satellite
from 1997 to 2015), Advanced Microwave Scanning Radiome-
ter for Earth Observing System (AMSR-E, onboard Aqua from
2002 to 2011), Advanced Microwave Scanning Radiometer 2
(AMSR2, onboard global change observation mission-water1
(GCOM-W1) satellite since 2012), and Microwave Radiation
Imager (MWRI, onboard FengYun-3 satellite series since
2008) [119]. Data of these satellites are available as brightness
temperature from different data providers, such as SMMR,
SSM/1, and ASMR-E from the National Snow and Ice Data
Center (NSIDC), TMI from EARTHDATA, AMSR2 from
the G-Portal address of Japan Aerospace Exploration Agency
(JAXA), and MWRI from the Chinese National Satellite
Meteorological Center (CNSMC). Combining the continuous
PMW data from the constellations/missions shows a great
opportunity in delineating LST trends at the global scale.
However, LST retrieval from the PMW brightness temperature
is considered quite challenging due to the following reasons.
1) It is hard to attain the atmospheric brightness tem-
perature (downwelling) from the measured brightness
temperature, surface emissivity, and decoupling the LST.
2) Atmospheric correction is challenging due to the strong
variations of emissivity from surface properties (e.g., soil
moisture, surface roughness, and vegetation cover) in the
PMW region.
3) It additionally includes subsurface temperature instead
of surface (skin) temperature only.
4) Validation of LST at the pixel level is difficult to
realize [119].
Moreover, it provides coarser spatial resolution pixels (typ-
ically 25 x 25 km) than TIR data because it requires
more area to cover on the ground in collecting a suffi-
cient amount of low-frequency PMW energy reaching to the
satellite sensors [120]. However, spatial resolution could be
enhanced to all-weather (cloud contamination free) 1 km by a
spatial-seamless PMW and TIR reconstruction method [121].

D. Cloud Computing and GEE

Recently, the feasibility of cloud computing for big data ana-
Iytics through GEE, one of the most popular cloud computing
systems, is explored in several studies (e.g., [1]). GEE has an
interactive Web-based environment, where users can observe,

analyze, or download various datasets. Users can develop their
own code in Python or JavaScript for various applications and
run it through GEE. Techniques, such as data fusion and cloud
masking as well as machine learning algorithms, can also be
performed through GEE, opening an opportunity for users to
explore the available datasets and investigate spatiotemporal
dynamics of LST, vegetation, land cover, and so on [122].
Due to its computing infrastructure, GEE can efficiently and
rapidly handle big data and extensive computations [123].

VI. RESEARCH GAPS

In the annual LST trend analysis, different statistical meth-
ods (e.g., linear regression considering the parametric, and
MK test and SSE for the nonparametric data) were applied
to understand the patterns and magnitudes. These methods are
applicable for any long-term time series data, either observa-
tions of weather stations or remote sensing. However, in the
representation of annual trends, averaging the daily or monthly
data to derive an annual value has an issue because it does
not reflect the seasonal trends, either increasing (warming)
or decreasing (cooling). Literature showed increasing trends
during summer and decreasing trends during winter in many
areas of the world. Once we average the data for a year,
it neutralizes the seasonal patterns and trends and, thus,
misses the true warming or cooling scenario for the area. For
example, an area showed trends of +1 °C (increasing) and
—1 °C (decreasing) during winter and summer, respectively,
that certainly show no change in the annual trend. Therefore,
we need to be cautious about presenting annual trends without
looking into the seasonal trends. Since the issue is pervasive
in nature, researcher should investigate different scenarios.
For example, Shawky et al. [5] utilized the MODIS LST
products and generated time series for each calendar month
since 2000 at both pixel and ecoregion levels, and then, they
applied the MK trend SEE methods to estimate daytime and
nighttime LST gradients over South Asia. In this way, one
can observe how the LST trend is changing for each calendar
month since 2000. On the other hand, at an annual scale,
i.e., the average of monthly LSTs for each year, one can
only observe how the overall annual LST gradient changes
over the years, though it also provides useful information.
To obtain the annual LSTs, all the months should be consid-
ered or at least be estimated in case of missing LST values;
otherwise, the annual LST values may get biased by sea-
sonal variations, failing to provide a reliable annual gradient
estimate.

Several studies reported daytime cooling (decreasing trends)
and nighttime warming (increasing trends) estimated by the
MODIS LST [41], [54], [74], [75] and discussed the possible
rationales. However, the trends were not derived from the time
series of daily maximum or minimum temperature. In a day
cycle, either clear or overcast, the maximum and minimum
LSTs during the daytime and nighttime are not synchronized
with MODIS image acquisition times of 1:30 or 10:30 A.M.
and 1:30 P.M. or 10:30 P.M., respectively. Although the Sun
is at its highest point during noon when the Earth receives the
most direct sunlight (incoming solar radiation), we do not get
the maximum surface temperature at that time. The highest
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Fig. 3.  Example of an erroneous LST trend estimation using three

remote sensing images over a longer period of 1984-2011. The images
were acquired on July 1, 1984, July 16, 1997, and July 31, 2011. The
linear trends were calculated for temperature of the image dates, and
mean temperatures of July and annual in the time series obtained from
the Calgary International Airport site, where the data were available at
free of cost from Environment Canada.

solar energy received and absorbed by the Earth’s surface at
noon starts to emit thermal energy that reaches the maximum
in the afternoon, typically at 3—5 P.M. Inversely, the coldest
time (i.e., the lowest temperature) of a daily cycle occurs
sometime after sunrise when the speed at which the Earth’s
emitted thermal energy is no longer greater than the incoming
solar radiation. Therefore, trends (such as daytime cooling
and nighttime warming) estimated from the MODIS LST may
require further investigation and should be noted with probable
causes and explanations. However, the patterns of LST trends
may not be impacted because the image acquisition time is
consistent in the time series.

Some studies used a very small number of cloud-free images
(e.g., two or three Landsat images) to analyze trends over 20 or
30 years, which may not provide the true trends. It is quite
impossible to get cloud-free Landsat images acquired on the
same day for all the years in a time series (see Fig. 2). There-
fore, in the trend analysis, a very small number of cloud-free
images were mostly used, having different acquisition dates
in different years. One image might be taken in early summer
for a year and others during the middle or end of summer for
another year. Due to the location variability of the Earth toward
the Sun, the changes in the magnitude of LST occur through
the seasons, and even daily and monthly within a season.
Seasons on the Earth are found in the temperate zones only,
which extend from 23° 26’ to 66° 34 latitudes in both northern
and southern hemispheres. In these zones, we usually observe
four seasons, spring, summer, fall (autumn), and winter, where
each season is characterized by variations in temperature,
precipitation, and daylight length [124]. The longer daylight
(i.e., photoperiod) usually causes the contribution of more
energy to the Earth’s surface and thus higher air temperature
and consequently higher LST.

Therefore, considering the variable energy over a season,
LST trends derived from only a few images (acquired in
different dates over a season in different years) could incor-
porate the seasonal change in the magnitude of trends, not the
true temperature trends. An example case of such erroneous
trend is presented in Fig. 3. The temperature trend from
only three images over the period 1984-2011 was estimated
0.08 °C/yr. It was not a true trend for the station location

because in situ observations showed the trends of —0.01 °C/yr
and 0.04 °C/yr for annual and monthly (July), respectively
(see Fig. 3). Hence, it is suggested to use as many images
as possible over the time series, at least one image in every
two to three years, and image dates as close as possible in the
same month of a season.

In addition, it matters where a study area is, whether
in the northern or southern hemisphere. It is because two
hemispheres experience the seasons at different times of the
year, and the daylight length, thus solar insolation (energy),
varies with the latitudes. Therefore, researchers should be
cautious when comparing the LST trends for different regions
located in different hemispheres and latitudes to avoid any
misrepresentation of the trends in LST.

VIlI. FUTURE RESEARCH POTENTIAL

This article can be considered as a scope for conducting
further studies to overcome the limitations and gaps for LST
trend analysis. Research approaches would include develop-
ing methods of preparing a single calibrated dataset, with
consistent data quality, from multiple instruments for the
entire period of each constellation (mission). The seamless
reconstruction of finer spatial resolution all-weather data in the
entire world, using cloud contamination-free PMW at coarse
and TIR at fine spatial resolution [121], would be another
research direction. We could develop data fusion methods
for the TIR observations of NOAA’s AVHRR, MODIS, and
Landsat [125] at the global scale, which would facilitate
the longest time series LST data with an enhanced spatial
resolution. Besides, to develop a consistent and finer spatial
resolution over the history of remote sensing, data fusion of
the observations in variable spatial resolution from different
instruments in a constellation or across the constellations
would be a major research opportunity.

Data fusion of AVHRR and MODIS observations would be
the first choice due to having nearly similar spatial resolutions
and, thus, likely to face less challenges. Furthermore, observa-
tions from the common period of instruments’ operation, same
mission or across missions, could be used for calibration and
validation in developing a longer LST dataset. For example,
ten years of AVHRR/3 observations could be calibrated with
MODIS for a common period of 2000-2010, and observations
(both AVHRR/3 and MODIS) of the remaining recent years
could be used for validation. It would lead to developing
a longer LST dataset since 1979 at 1.1 km from AVHRR
observations. In the case of using a small number of images
(e.g., Landsat scenes) with different acquisition dates for
a longer period, innovative methods could be developed to
standardize (normalize) each image of a year to be used in
the time series.

More advanced trend analysis methods may also bypass the
data availability limitation up to a certain level. For exam-
ple, Ghaderpour et al. [126] and Ghaderpour [127] showed
that the simultaneous season-trend fit models based on the
least-squares spectral analysis has the potential of estimating
trends more accurately in the presence of uncertainties due
to atmospheric noise and missing data or gaps. For example,
if LST data are available in certain months but limited in other
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Fig. 4. Simulated LST time series with the trend fit results using linear
regression, SSE, and ALLSSA. Note that ALLSSA also simultaneously
estimated the seasonal component. All the trends are statistically signif-
icant at a 99% confidence level, and the actual slope is 0.1 °C/yr.

months, then the simultaneous season-trend fit model can bet-
ter estimate the season and trend components, whereas the tra-
ditional regression methods may overestimate/underestimate
the trend. For example, we simulated a set of LST time series
using the following equation:

LST(t) =T (t) + S (t) + E(¢) (1)

with T(t) = b+ mt, S(t) = Asin(2nt), and E (t) =
wgn(z, p), where b is the intercept, m is the slope, A is the
amplitude, wgn is the white Gaussian noise, and p is the power
of noise sample. Also, ¢ is the time selected as monthly, i.e.,
the sampling rate is 12 samples per year. We applied the linear
regression, MK test and its associated SSE, and anti-leakage
least-squares spectral analysis (ALLSSA) to estimate the slope
of such time series at a 99% confidence level.

The results for a case when = 10 °C, m = 0.1 °Clyr,
and A = 5 °C with randomly eliminated 30% of the sam-
ples are shown in Fig. 4. The estimated slopes by linear
regression, SEE, and ALLSSA are 0.124 °C/yr, 0.122 °Clyr,
and 0.111 °Clyr, respectively. We performed this experiment
on one million time series such that each time series was
generated by (1), where the intercept, slope, and amplitude
of the sinusoid were randomly generated for each time series
and a random wgn was added to each time series. Then,
up to 60% of samples were randomly selected and eliminated
from each time series. The root-mean-square error (RMSE)
was calculated for each method as

N oG —om)?
s Zect =)’ o

where m; is the simulated slope (the true value), i, is the
estimated slope, and N is the number of those estimated slopes
that were statistically significant at a 99% confidence level.
The RMSEs for the linear regression, SEE, and ALLSSA
were 0.0314, 0.0307, and 0.0141, respectively, showing that
the simultaneous season-trend fit model ALLSSA is superior
in these cases.

Note that if S (z) in (1) is the sum of multiple sinusoids
of different amplitudes and frequencies and T (¢) is other
types of trends such as quadratic or cubic, then ALLSSA can
simultaneously estimate their coefficients with a high accuracy.
The discussion above clearly shows that methods themselves
can make a big difference in estimating LST trends, and thus,
researchers should also be cautious about which techniques
they apply to process their time series.

VIII. CONCLUSION

This article explored the opportunities and challenges of
using remote sensing data, as well as potential research gaps in
the methodological and conceptual approaches of utilizing the
data. Understanding the extent and magnitude of the LST trend
is important to cope with the ongoing climate change across
the world. Using the appropriate remote sensing approaches,
the mapping of temperature trends would help us in deciding
the adaption and mitigation strategies for environmental sus-
tainability. It would also direct local governments across the
world to understand better about the warming trend in their
jurisdiction that could help them act quickly and to address
any potential negative risks posed by the warming.
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