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ARTICLE INFO ABSTRACT

Keywords: In the context of artificial intelligence, the inherent human attribute of engaging in logical reasoning to
Emotion recognition facilitate decision-making is mirrored by the concept of explainability, which pertains to the ability of
Explainable Al a model to provide a clear and interpretable account of how it arrived at a particular outcome. This

Randomized neural network
Facial landmark

Deep Learning

Video classification

study explores explainability techniques for binary deep neural architectures in the framework of emotion
classification through video analysis. We investigate the optimization of input features to binary classifiers for
emotion recognition, with face landmarks detection, using an improved version of the Integrated Gradients
explainability method. The main contribution of this paper consists of the employment of an innovative
explainable artificial intelligence algorithm to understand the crucial facial landmarks movements typical
of emotional feeling, using this information for improving the performance of deep learning-based emotion
classifiers. By means of explainability, we can optimize the number and the position of the facial landmarks
used as input features for facial emotion recognition, lowering the impact of noisy landmarks and thus
increasing the accuracy of the developed models. To test the effectiveness of the proposed approach, we
considered a set of deep binary models for emotion classification, trained initially with a complete set of
facial landmarks, which are progressively reduced basing the decision on a suitable optimization procedure.
The obtained results prove the robustness of the proposed explainable approach in terms of understanding the
relevance of the different facial points for the different emotions, improving the classification accuracy and
diminishing the computational cost.

1. Introduction

Deep Learning (DL) models have recently achieved admirable per-
formance for classification and forecasting tasks, and nowadays they
represent a crucial tool in a wide range of real-world applications such
as in computer vision, document analysis, natural language processing,
etc. [1-3], as well as in tasks correlated to behavioral analysis and
clinical diagnosis exploiting massive technologies [4-7]. Acknowledged
for their high predictive and classification accuracy, DL models are
often identified with black-box methods that, given an input, offer little
visibility into why specific data characteristics are selected over others
for the generalization task. Moreover, there is no explanation of how
the training data is correlated with the represented choice of these
features, or why specific pathways in the network are selected [8]. For
this reason, DL architectures are seen as limited models in terms of
explainability and interpretability [9]. In addition to this, DL models
are known to be resources and time-consuming methods, including in
their architectures computationally expensive layers for classification
and prediction purposes [10-12].

As the fields in which Artificial Intelligence (AI) is committed are
numerous, researchers, companies, and common users started to rely
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on its decision-making mechanisms; for this reason, the interpretability
of their decisions and control over the inner processes of the different
applications became, during the last years, a serious concern for several
high-impact tasks [13]. The interpretation is the process of generating
human-understandable explanations of why the different decisions are
taken from DL models. For its inner nature, deep architectures hide the
complex logic behind the decision-making process, making it difficult
to reach such useful interpretations. For this reason, the employment
of explainability for a better understanding of the inner comprehension
of DL models is the key concept for a fair, safe, and understandable use
of AL in addition to a possible enabler for its deployment into everyday
activity [14].

The explainability and interpretability terms are often used in a
commutable way in the literature; however, a distinction between the
two concepts has been made in [15], where the interpretation refers to
the mapping of abstract concepts like the output class into a domain
example; explanation, on the other hand, refers on a set of domain
features contributing to the decision-making process of the DL model.
The key role of explainability is the possibility given to the users to un-
derstand and reason about the inner mechanism of a deep architecture,
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leading to the model output. However, despite the numerous research
works in this area, the progress remains quite limited in terms of the
generalization capability of the implemented approaches [16].

In this paper, we are going to extend the methodology proposed
in [17]; namely, we will describe and implement an improved version
of the Integrated Gradients (IGs) algorithm developed on single binary
classifiers for emotion recognition with landmarks detection [18]. In
detail, we propose in this paper a new and more global version of this
explainability technique, which examines the training mechanism of
the implemented neural network on the entire training set and not on
the single input sample. To enhance the amount of information gained
through using this method, we suggest some additional steps that are
customized for the particular application presented in this research.

Thus, the novelty expressed in this work is twofold and is described
in the following. From the explainability point of view, we exploit
in-depth the inner machinery of the proposed method using IGs. The
implemented approach, subsequently, allows us to discover which are
the most important facial landmarks for each emotion characterizing
the emotive feeling in human faces. In addition to this, from a practical
point of view, we investigated the re-training and the optimization
of several implemented binary deep neural networks (DNNs), using a
limited number of facial landmarks as input to the model, basing the
landmarks selection on the attributions of importance given to every
single facial point when optimizing the single binary emotion classifier.

We could finally evaluate and test the performance of the new
proposed algorithm on real data, and the results will be compared with
those of state-of-the-art methods. In particular, the well-known CK+
dataset [19] is employed for the experiments.

The results of the presented method are interesting from different
perspectives. First of all, the proposed explainable method is able to
exploit the importance of every single input facial landmark for each
emotion giving a numerical and graphical representation of the feature
importance for the training of different binary classifiers. Moreover,
from a computational point of view, the importance attribution of the
facial landmarks is employed to optimize the number of input land-
marks to the network, giving, as a result, an increase in the accuracy
of the network lowering the computational burden of the training
procedures.

The focus of this paper revolves around the concept of explainability
and investigates the contribution that an interpretable model can have
on increasing the model classification performance and computational
efficiency. To do so, explainability techniques have been applied to the
deep neural networks employed to classify the visual temporal data. In
this work, the implemented models represent an advanced fashion of
the classical signal processing techniques; however, the explainability
approach presented in this work can be applied to any differentiable
function and to every signal processing method such as the ones
presented in [20]. This paper shows how explainable Al can be used
to address potential limitations of the signal processing techniques and
how it represents a powerful tool to face these limitations in various
real-world applications.

The rest of the paper is organized as follows. In Section 2, other
investigations carried out on explainability in the emotion recognition
field are presented. In Section 3, the overall explainable AI method
implemented is presented. In Section 4, the results of the proposed
methodologies on a well-known dataset are presented and they are
successively discussed in Section 5. Finally, in Section 6 the concluding
remarks are drawn.

2. Related work

Automatic emotion recognition has been a fascinating and exten-
sively researched topic for over 40 years. Recent studies have shown
that emotion recognition systems have the potential to be used in
various applications, such as public safety, people surveillance, and
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human-computer interaction [21]. The objective of this state-of-the-
art review section is to describe the innovative use of explainability
methods in recent research studies to enhance the performance and
interpretability of DNNs for emotion recognition. This literature review
will examine the most recent and innovative research studies in the
field of automatic emotion recognition that have employed explainabil-
ity methods. In detail, this paper will be centered on explainability with
landmarks detection, but given the innovative aspect of this disserta-
tion, the description will be enlarged including methods working with
different streams of input data, from text analysis to visual samples.

Recently, different explainability approaches have been investigated
for emotion recognition tasks. In [22], an explainable DL model is pro-
posed for multi-class text emotion recognition. The authors developed
a novel explainability technique for the training of an innovative pre-
diction procedure. The proposed architecture is composed of different
modules, the classification is done through the employment of con-
volutional layers and bidirectional Long Short-Term Memory (LSTM)
layers. Explainability is used to describe the training and predictions
of the proposed system analyzing the inter and intra-cluster distances,
where the clusters are the projection of the emotion embeddings on
a hyperplane. The results achieved with this method are promising
and ensure the applicability of the model to real-world applications
and diverse texts. This text emotion recognition system for emotional
classification can in fact classify sentiment classes with high precision
and can be used for various textual data types.

In spite of this, the proposed approach is applicable only to text
data and it is only able to distinguish between positive, neutral and
negative emotions, without the possibility to discern the single senti-
ments. Another interesting work in terms of explainable Al for emotion
recognition is presented in [23]. In this paper, a multimodal speech-
emotion recognition system has been developed with an explainability
framework to describe the prediction process of the network. The neu-
ral architecture is based on Gated Recurrent Unit (GRU) and pre-trained
with a bidirectional encoder; for the prediction of the final emotion
class, the layers are successively concatenated. The training of the
layers and the prediction of the network have been explained through
emotion embedding plots and analyzing the intersection matrices for
various emotion classes’ embeddings. In this case, the presented frame-
work is interesting and reaches a high accuracy of the classification. On
the other hand, the multimodal aspect of the method could be expanded
with the incorporation of more modalities such as videos and images,
which is what is properly studied in the present work.

More related to images, and facial interpretation, is the paper
proposed in [24], where a Convolutional Neural Network CNN-based
model is developed for driver emotion recognition, using the output of
the network to expect his behavior during the drive. The model has
been evaluated on four different datasets and some experiments have
been conducted on a real driving environment with good results. Two
different interpretability techniques have been used to understand the
model behavior: the saliency map, which is one of the most known
methods, which is used to clarify the importance of some areas in an
input image; and Grad-CAM, another map that specifies the neuron’s
important values for each specified decision of interest. An interesting
improvement of this work could be the analysis of the driver’s distrac-
tion in real-time, which could lead to an extension of the applicability
domains of the approach.

Another work using images of faces as input is presented in [25].
In this investigation, a hybrid explainable artificial intelligence frame-
work composed of a functional and an explainable block has been
implemented for facial expression classification. Also in this case, the
framework is based on a 6-layer convolutional neural network. This
model has been backed by a layer comprising a facial action unit
extraction module whose outputs are used for the interpretation of the
obtained output. This module is based on an autoencoder that uses the
pre-trained Resnet-50 as an encoder to extract the action units from
the input image. A multilayer perceptron is added at the output of the
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extractor to reinforce the functional pipeline in terms of classification
accuracy. This work is well-presented and reaches good accuracy, it
would be even more powerful if used with an improved system of the
facial action unit extraction module implemented with state-of-the-art
neural methods.

Also in [26] an explainable DL algorithm for emotion recognition
from human faces is built. In this case, the classification is performed
between three basic emotions: happiness, neutrality, and sadness. The
proposed method, which takes input images, is able to show on the
facial images the areas that are symptomatic of a certain emotion. 1500
samples have been used to train the proposed promising explainable
emotion recognition method. This is an inspiring work, presenting re-
ally interesting results and having some similarities with our proposed
solution; however, the possibility of discerning between only three
classes is quite limiting for several different practical applications.

Given this literature review, the aim of the proposed paper is
to learn from the proposed approaches incorporating the interesting
aspects presented above and expand the domains and the applicability
of explainability methods. The goal of the proposed approach is in
fact to present a new global explainable framework outstanding the
state-of-the-art for generalization capability and for completeness of
applicability to the entire set of the six typical emotions.

3. Material and methods

Given the importance of this topic, highlighted also by the preceding
literature review, in the following we present the investigation of
explainable binary DNNs for emotion recognition. The starting point of
this paper is presented by the investigation presented in [17], in which
deep binary classifiers are implemented to distinguish a single emotion
from the others. In this paper, we present the problem of attributing
the classification of these deep binary classifiers to their input features,
which in this case are 468 facial landmarks coordinates. Moreover, we
use these attributions vectors to optimize the number and the selection
of the input features leading to better performance of the implemented
models and for a complete understanding of the facial point importance
in the classification of the single emotions.

Let F : R" — [0, 1] represent a binary classifier and x = (x,...,x,)
€ R" a general input; an attribution of the prediction of input x,
relative to a baseline input x’, is a vector a = Ag(x,x’) where a =
(ay,...,a,) € R" and g; is the contribution of the ith feature of input
x to its prediction. Establishing a baseline facilitates the interpretation
of the methodology, such that the attributions are independent of the
baseline, and thus, the output can be attributed to the specific input
features of the samples under examination.

3.1. Integrated gradients

Given that the concept of baseline is fundamental to describe the
functioning of the deep classifier with respect to the input we propose
an explainability method for the attribution of importance of the in-
put features based on IGs, which define an explainability technique
presented in [18] based on the concept of baseline. The baseline x’
is represented by a sample that has the same dimensions as the DNN
input and it is chosen in a way that the classification probability at the
baseline is near zero. For example, the general choice when applying
IGs to a DNN trained with images is the completely black image. IGs
are defined “as the path integral of the gradients along the straight-
line path from the baseline x’ to the input x” [18]. Hence, the IG along
a dimension is the gradient of the objective function F(x) along that
dimension. In our implementation, the function F will be represented
by the different binary DNNs.

The IGs technique is an interesting method for several different
reasons: first, it satisfies sensitivity, meaning that for every input and
baseline differing in one feature and in the predictions, the different
feature is given a non-zero attribution. Moreover, this method satisfies
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also completeness, which testifies that the attributions add up to the
difference between the output of the objective function at the input
under exam and the baseline.

The IG for the ith feature of input x is defined as:

, L oF [x’ +a(x — x’)]
IG;(x) = (x; — x}) - / —— da, (@)
0 ox;

1

where « is an interpolation constant employed for a perturbation of the
features. From a practical point of view, it is not always numerically
possible to solve the integral presented in (1) and it can be a compu-
tationally costly operation; hence, the numerical approximation can be
computed as:

(x;—x) & oF [X,+§(X_X/)]

IG,(x) = - :
i

(2)

k=1
where k is the scaled feature perturbation constant and m is the
number of steps in the Riemann sum approximation of the integral. In
particular, in this vectorized implementation of IGs, the scaled feature
perturbation constant k = 1,...,m singularly describes each of the m
steps of the tensor representing the interpolated samples. Increasing
the number of steps for the interpolation m increases the number of
possible values for k, making Eq. (2) a more accurate approximation
of Eq. (1).

Referring to the term (x; — x;), this is a necessary term used to scale
the IGs and keep them in terms of the original sample. This represents
the path from the baseline sample to the input one. Given that IG
consists of the integration in a straight line, this sum ends up being
roughly equivalent to the integral term of the derivative of the inter-
polated sample function with respect to a with a high number of steps.
Hence, the first thing to do is to generate a linear interpolation between
the baseline and the original input. From a practical point of view,
the interpolated samples are small steps in the feature space between
the baseline x’ and the input x. Then, the gradients are computed, to
measure the path between changes in a feature and changes in the
model’s prediction.

Given the construction of the method, IGs present some limitations:

+ IGs algorithm provides features importance on individual exam-
ples, but it does not reveal particular information across the entire
dataset;

» the method provides individual feature relevance, but it does not
explain feature interactions and combinations;

« even if IGs can be used to help understand how the network
works, if the features highlighted as more informative are not the
ones matching a logical intuition, there is no explanation for why
this phenomenon takes place.

Given those limitations, which can be quite significant in terms of
the generalization capability of the approach, we propose in Section 3.3
some additional steps that are meant to overcome these limitations
intrinsic to IGs. In particular, increasing the globalization capability of
the method over the whole dataset enables the use of the proposed
explainable technique for the optimization of the number of input
landmarks to the DNN.

3.2. Data environment

Given the preceding summary on IGs technique, for a better under-
standing of the proposed methodology and for a good comprehension
of the experimental activity, we will describe the data manipulated and
used in this work. We employed for training, validating, and testing
one of the most known and important datasets in the field of emotion
recognition, the Extended Cohn-Kanade dataset (CK+) [19]. The CK+
contains videos of emotional feelings, it contains sequences showing
the shift from neutral to peak expression, and it is composed of videos
representing 7 different emotions, including the 16 classical emotions
with the addition of the contempt emotion. The dataset is composed of
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videos of students with age between 18 and 30 years old. 65% of the
subjects in the dataset are women, 15% of the data samples are African-
Americans, and 3% of the subjects are Asian and South American. All
the videos in the dataset have 640 x 480 pixel resolution at 30 fps, with
8-bit grayscale images. Despite its limitations, such as the narrow age
range and lack of representation of various ethnic groups, this dataset
is commonly used to study DL models for recognizing emotions. It is
useful for comparing a model’s performance to the current leading
models and provides a reliable performance metric. To increase the
dataset for evaluation purposes, we also performed data augmentation
by flipping each frame of each video vertically. This ensures the model’s
dependability in diverse conditions. However, given the low number of
instances of the dataset labeled with the ‘contempt’ label, this emotion
is not analyzed in the proposed study, and data samples with that label
have been removed from the employed dataset. Each frame in each
video undergoes the preprocessing procedure, consisting of:

» face cropping from each video;

» resizing of the square face box image to a 300 x 300 x 1 image,
as one-channel (grayscale) image;

+ detection of the 468 face landmarks, depicting the entire face.

The 468 landmarks plane coordinates of each frame of each video
represent the input features of the neural architecture. In detail, the ith
sample of the dataset is represented by a P x 2 x L tensor V', where
P is the number of video frames and L is the number of extracted
landmarks. One of the most important contributions of the presented
approach consists in the employment of an improved and suitable
fashion of the explainable Al technique of IGs for the optimization of
L.

3.3. Proposed approach

The proposed explainability and optimization method presented in
this paper is based on the application of the IGs to several binary DNNs
(i.e. six, one for each typical emotion) for binary emotion recognition
with landmarks detection. The network architecture is the same as
the deep model presented in [17]. It consists of stacked Convolutional
and LSTM layers employed to extract spatio-temporal features from the
videos given in input to the network. These extracted features are sub-
sequently passed to fully-connected layers with non-linear activation
functions for the final binary classification. To deal with the high-
computational burden typical of the training of DNNs, two different
fashions of the model are proposed: R-EMO (Randomized Emotion
classifier) in which the convolutional layer is randomized and T-EMO
(Trained Emotion classifier), the fully trained version of the network.

Moreover, applying explainability to randomized networks is some-
thing particularly interesting, because it investigates the typical trade-
off between the accuracy of the classification and efficiency of the
training procedure from a different perspective. In fact, what is ex-
pected is a possible gain in accuracy and efficiency given by the
explainable procedure and its consequent optimization of the input
parameters which can further balance the loss in accuracy of the clas-
sification, result of the randomization of some layers in the network. A
graphic representation of the proposed network is presented in Fig. 1.
More in detail, the network is composed of:

+ a one-channel 2D-CNN layer which receives a frame of the video
in input and applies various different convolutional filters associ-
ated with nonlinear kernels with Rectified Linear Unit (ReLU) as
activation function. The result of this layer is represented by dif-
ferent feature maps. In the case of the proposed R-EMO network,
the entire set of weights of the kernels is selected randomly and
never changed during the network optimization. Instead, in the
fully trained version of the network T-EMO, the filters’ weights
are estimated by the training procedure;
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+ a batch normalization layer for normalizing the inputs from the
convolutional layer using the means and standard deviations of
the batches of inputs seen during training;

a flatten layer used to collapse the tensor associated with the
normalized feature maps;

an LSTM layer which is the only recurrent layer of the proposed
architecture;

a dropout layer employed after the recurrent layer in order to
prevent overfitting;

a fully connected layer (denoted as FC1) connecting the hidden
state of the preceding LSTM layer (possibly after the drop-out
operation) to the succeeding final layer for classification;
another fully connected layer (denoted as FC2) with two neurons
for the final classification.

The particular architecture described, presents some interesting aspects
when related to its final application and methodology. First of all, the
presented model is capable of tracking the spatio-temporal correlation
between the different landmarks of the different frames of the input
videos with the combination of CNN layers and LSTM layers. The
importance of this aspect is greatly highlighted by the application
under investigation. In fact, the videos show the variations of human
faces during the emotional feeling, and with this combination, it is
possible to elaborate on the related spatial variation of the landmark
coordinates across the different frames. Moreover, the sole employment
of the landmarks coordinates of each frame as input to the network
allows the optimization of the architectural weights to be not resource
greedy, with the possibility to develop real-time classification software.
After the CNN and the LSTM layers, the Fully Connected layers are
employed to analyze a projection of the extracted features using the
nonlinear activation functions of these layers, as it is common practice
when building deep learning models for classification.

When computing IGs through (2), for the specific application pre-
sented in this paper, the function F is represented by the binary
DNNs themselves. Once trained, the model is in fact a learned function
describing one of the possible mappings between the input feature
space and the output space defined by the different classes (i.e., the
six different emotions). The expected input for the model is a dense 5D
tensor with shape N x P x C x L x 1 where:

» N is the number of video samples in the dataset;

+ P is the number of video frames employed for each sample;

+ C is the number of spatial coordinates (i.e., C = 2);

» L is the number of landmarks that is the parameter to be opti-
mized by using the proposed explainable Al technique.

The latest tensor dimension is 1 as we are using as input to the DNN
an equivalent one-channel (grayscale) sample.

The gradient is used to reveal which landmarks coordinates of
the frames have the strongest effect on the model’s predicted class
probabilities given that the gradients are describing the local changes
in the model’s output. From a visual point of view, the plot in Fig. 2
shows how the model’s confidence in the prediction varies across
alphas which can be interpreted as the small steps in the feature space
between the baseline and the input. For this graphic representation,
the single sample is labeled as surprise, and the baseline represent one
of the happiness emotional feeling video. After the IGs are computed,
their absolute values across the frames and across the coordinates are
summed to produce an attribution mask. This attribution vector shows
the information brought by each landmark throughout the entire video.

To deal with a subset of IGs limitations we implemented a novel
algorithm, in particular, trying to give a more global fashion to the
proposed approach. In fact, to obtain a greater amount of information
from the utilization of this method, we propose some additive steps,
tailored for the specific application proposed in this study:

« for each emotion, the selection of a video representing a typical
behavior of that label is performed;
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Fig. 2. Graphical representation of the target class probability for the emotion surprise over alpha when using a sadness-labeled video as the baseline. In particular, it can be
seen that when « is 0, the network predicts the interpolation class as non-surprise. When a increases, the model confidence in the surprise classification increases as well saturating
after a =0.3.
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» Then, for each label, IGs are computed using as F the binary
network related to that emotion, computing IGs for each input
sample in the training set and employing as a baseline one of the
five typical samples;

the whole process is repeated using the five different baselines se-
lected as typical representations of the complementary emotions
(i.e. the five different labels with respect to the examined input
sample);

after the computation of the IGs for all the combinations, for each
emotion, the attributions obtained with each sample are firstly
averaged along the samples channel, and successively along the
five respective baselines channel for each emotion, obtaining a
final attribution vector.

Following this procedure, we obtained, for each label, an average
value of the attribution mask reflecting the importance of every single
landmark for the classification of that specific emotion, being thus
able to organize the 468 input features from the most important to
the least informative. This is one of the main contributions of this
paper, from the explainable Al perspective, it allows the awareness
of the importance of every single landmark for the detection of each
emotion in a video sequence. From a practical point of view, using 468
landmarks as input features can be useful for different reasons: first
of all, it permits obtaining a complete depiction of the human faces,
moreover, it allows capturing the facial micro-movements during the
emotional feeling, being able to classify emotions with higher accuracy.

Using such a large number of input features could determine that
some of them are not really helpful to the final classification and
thus, adding noise to the overall classification method, diminishing the
interpretability of the results. For this reason, it seems interesting to
try different combinations of input features to the binary DNN before
training, looking for an improvement in the classification performance
basing the features selection on the IGs method proposed herein.

4. Experimental results

In this section, we present the numerical results obtained with the
novel proposed methodology and the impact of explainability on the
implemented method. In particular, we applied the proposed method-
ology to two different architectures (i.e. T-EMO and R-EMO) to demon-
strate the improvement of the performance of the networks when
deleting from the input features the non-informative landmarks. In
addition, we were able to show from a graphical perspective how the
selection of the most important facial points matches human intuition,
reinforcing the solidity of the implemented models and the proposed
explainable approach. Hence, with the aim of applying IGs to the six
binary classifiers using (2), we employed as estimator F the binary
networks trained with the entire set of 468 landmarks. Doing this, with
the proposed method we obtained the attribution of the importance of
each facial landmark for each emotion.

After obtaining these attributions related to each input feature, we
performed six different grid search procedures for each binary network,
for the optimization of the hyperparameters, changing for each attempt
the number of input landmarks to a lower value: 234, 128, 64, 32 and
16, respectively. A graphical representation of the obtained importance
attribution can be seen in Fig. 3. The entire set of neural networks
proposed in this paper is trained using the ADAM algorithm [27]
with a learning rate fixed at 10~* and mini-batch size equal to 16,
selected after the first experimental activity. The grid search procedure
is implemented on the training data for each of the experimental
settings. This procedure has been followed in order to avoid overfitting
issues. Given the computational resources available, the grid search
procedures have been performed only to optimize the hyperparameters
of the fully trained fashion of each binary network. Moreover, from a
theoretical point of view, it seems fair to evaluate the discrepancies
in the performance obtained by the fully trained architectures and the
randomized ones when the structure of the models is the same, to
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Table 1
Optimized hyperparameters for T-EMO network with 234 input landmarks.
Emotion Convolutional LSTM FC1
Filters (F) Units (Q) Neurons (R)
Anger 25 31 54
Disgust 35 50 63
Fear 39 51 34
Happiness 50 58 63
Sadness 24 68 54
Surprise 30 58 63
Table 2
Optimized hyperparameters for T-EMO network with 128 input landmarks.
Emotion Convolutional LSTM FC1
Filters (F) Units (Q) Neurons (R)
Anger 25 31 54
Disgust 39 30 63
Fear 39 51 34
Happiness 39 68 72
Sadness 39 58 74
Surprise 40 68 73
Table 3
Optimized hyperparameters for T-EMO network with 64 input landmarks.
Emotion Convolutional LSTM FC1
Filters (F) Units (Q) Neurons (R)
Anger 25 31 54
Disgust 39 30 33
Fear 39 51 34
Happiness 16 58 52
Sadness 39 68 64
Surprise 40 58 63
Table 4
Optimized hyperparameters for T-EMO network with 32 input landmarks.
Emotion Convolutional LSTM FC1
Filters (F) Units (Q) Neurons (R)
Anger 25 31 54
Disgust 39 50 63
Fear 39 61 64
Happiness 16 58 52
Sadness 39 58 74
Surprise 30 58 63
Table 5
Optimized hyperparameters for T-EMO network with 16 input landmarks.
Emotion Convolutional LSTM FC1
Filters (F) Units (Q) Neurons (R)
Anger 25 31 54
Disgust 39 50 53
Fear 24 68 64
Happiness 16 58 52
Sadness 39 58 64
Surprise 40 58 63

analyze the possible advantages and the potential losses due to the
randomization of certain parts of the neural architectures. The different
parameters obtained with the mentioned procedure are listed from
Tables 1 to 5.

The dataset employed for the experiments is the CK+ dataset,
already described in Section 3.2. A total of 487 video samples were
utilized for training the networks, and 87 samples were used for testing
various network architectures. For each experiment, 10% of the train-
ing set was reserved for validation purposes. When training the binary
classifiers, it should be noted that the training set had an imbalanced
distribution, as it contained samples from six different emotions, with
only one emotion being labeled with a ‘true’ logical label (binary value
1) and the samples from the remaining emotions being labeled with a
‘false’ logical label (binary value 0).



F. Di Luzio et al

Biomedical Signal Processing and Control 100 (2025) 107177

Fig. 3. Graphical representation of the landmarks’ relevance attribution, projected into a 2-D space. The top left picture represents the 468 landmarks employed. The other images
show the most important landmarks selected over the entire set with a blue circle. We have from the top right to the right down picture the different combinations of the most

important landmarks: 234. 128, 64, 32, 16.

Once found the optimal hyperparameters, for each combination of
model parameters and number of features (i.e. facial landmarks), six
binary classifiers are modeled and trained, with each of these models
acting as a binary categorizer for every single emotion.

The model performance is evaluated by means of classification
accuracy, intended as the ratio of well-classified samples over the
number of total samples in the examined dataset. The binary cross
entropy BC is employed as loss function and is defined by Eq. (3).

Ky

BC=— Y [1log(3) + (1 - y)log(l - 3] @)
i=1

where S is the cardinality of the dataset, y; is the true binary label

of the ith sample and J; is the probability estimated by the adopted

model that the ith sample represents the considered emotion. Given

that the training outcome and the consequent accuracy level on each

test depend upon the random initialization of the model weights,

10 different runs of each algorithm are performed with 10 different

seeds and with a different set of hyperparameters, varying also the

training/validation/test set partition. Hence, the choice of the optimal
hyperparameters and the coherent binary classification performance
are based on the mean and on the standard deviation of the accuracy
over the different runs of the proposed algorithm. The binary classi-
fication performance of the different networks trained with the most
informative landmarks is summarized in Tables 6 and 7.

All of the experiments were conducted utilizing Python program-
ming language and Keras® library with the backend operating on a
machine equipped with an AMD Ryzen™ 7 5800X 8-core CPU, clocked
at 3.80 GHz, 64 GB of RAM, and an NVIDIA® GeForce™ RTX 3080
Ti GPU, clocked at 1.365 GHz and 12,288 MB of GDDR6X RAM. The
GPU was utilized for training, testing, as well as for the grid search
procedure.

It must be remarked that the main purpose of the proposed paper is
the description and the implementation of an innovative explainability
framework, and of an uncommon procedure for the selection of the
input features to train the binary deep neural networks for emotion
recognition. For this reason, the scope of this result section is the
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Table 6
Classification accuracy for binary T-EMO network.
468 234 128 64 32 16
Anger 0.924 +0.016 0.926 + 0.037 0.905 + 0.037 0.903 + 0.034 0.924 +0.030 0.891 +0.041
Disgust 0.934 +£0.019 0.964 + 0.027 0.964 + 0.019 0.951 +£0.034 0.948 + 0.040 0.925 +0.045
Fear 0.948 +0.024 0.971 +£0.023 0.974 + 0.020 0.964 +0.026 0.950 + 0.026 0.919 +£0.041
Happiness 0.986 + 0.008 0.988 + 0.011 0.982 +0.014 0.979 +0.018 0.981 +£0.015 0.978 +0.012
Sadness 0.920 +0.026 0.905 + 0.052 0.916 + 0.020 0.914 + 0.040 0.922 + 0.018 0.910 +0.029
Surprise 0.993 +0.009 0.995 +0.021 0.995 + 0.008 0.993 +£0.012 0.991 + 0.009 0.986 + 0.007
Table 7
Classification accuracy for binary R-EMO network.
468 234 128 64 32 16
Anger 0.889 + 0.018 0.874 +0.032 0.862 +0.04 0.874 +0.033 0.883 +0.047 0.866 + 0.043
Disgust 0.941 +0.023 0.941 +0.032 0.953 + 0.019 0.897 +0.034 0.905 +0.023 0.887 +0.048
Fear 0.934 +0.033 0.948 + 0.016 0.939 +0.027 0.936 + 0.003 0.924 +0.025 0.907 +0.032
Happiness 0.968 + 0.022 0.978 + 0.011 0.971 £0.016 0.957 +0.021 0.966 +0.011 0.964 +0.017
Sadness 0.907 + 0.031 0.893 +0.021 0.893 +0.037 0.907 + 0.027 0.898 +0.033 0.893 +0.033
Surprise 0.962 +0.014 0.981 + 0.009 0.976 +0.0016 0.981 +0.017 0.974 £ 0.027 0.974 +0.021

description of the improvement achieved in terms of accuracy of the
classification and explainability of the proposed approach when com-
pared with the models presented in [17]. The explainability framework
presented in this paper is employed to select the most important input
features for the classification of each of the six typical emotions.
Given these premises, the input combination of features for each of
the implemented solutions differs from one emotion to the other and
it was not possible to follow the approach described in [17] for the
construction of a six-emotions classifier, based on the merging of the
six different binary deep neural models. In Section 5, the results will
be analyzed, commented and compared with similar neural networks
trained on the same dataset. In particular, the two solutions employed
for benchmarking purposes trained on the same dataset are presented
in [28].

» The first model proposed for benchmarking purposes is a lin-
ear SVM and achieves the following level of accuracies for the
different emotions: Anger: 0.85%; Fear: 0.95%; Disgust: 0.78%;
Happiness: 0.97%; Sadness: 0.75%; Surprise: 0.99%.

» The second model proposed for benchmarking purposes is a RBF
SVM and achieves the following level of accuracies for the differ-
ent emotions: Anger: 0.84; Fear: 0.95; Disgust: 0.74; Happiness:
0.98; Sadness: 0.79; Surprise: 1.

5. Discussion

In the following, we discuss the results presented in Section 4. First
of all, in Fig. 3 it is shown which are the most important landmarks
for the recognition of a single emotion. It is interesting to note how,
by reducing the number of landmarks from 468 to 234, the facial points
that intuitively are not influenced by emotional feeling are the ones
depicting the nose and some points on the facial outline. When deleting
additional input features based on their importance attribution, the
facial points depicting the outline of the eyes and the cheeks are
progressively erased, mostly highlighting the lips and their boundary.
This behavior matches human intuition considering that, particularly
for the surprise emotion, the human mouth is the body part that shows
the most important change.

Analyzing the numerical results, it can be seen from Tables 6
and 7 that optimizing the number of landmarks leads to interesting
results in terms of improvements in the accuracy performance of the
binary networks. The first obvious advantage is represented by the gen-
eral increase in the classification accuracy of each network. Generally
speaking, it can be noted that the most performing combinations are
obtained using 234 and 128 landmarks. In particular, both for T-EMO
and R-EMO the optimization of the number of input features results
in greater accuracy of the classification for each emotion. The highest

improvement in the T-EMO performance is related to the Disgust and
Fear emotions, for which there is an increase in the accuracy of 3%. On
the other hand, the improvement achieved by the randomized fashion
of the network (i.e., R-EMO) is 1.9% for the Surprise and 1.5% for
the Fear classification accuracy. Besides the numerical aspects, it must
be remarked that the proposed methodology allows the construction
of explainable deep networks that are also more accurate. Moreover,
when comparing the accuracy achieved with the proposed methods
with the benchmarking purposes, the T-EMO network achieves higher
classification accuracy for the entire set of emotions when compared
with the linear SVM and for 5 emotions over 6 when compared with
the RBF SVM. The R-EMO architectures, on the other hand, achieve
higher classification accuracy for 5 emotions over 6 with respect to the
Linear SVM and for 4 emotions over 6 when compared with the RBF
SVM. The average increase in the accuracy achieved by T-EMO with the
two benchmarking models is 8% with respect to the linear SVM and 9%
when compared with the RBF SVM. Considering the R-EMO network,
the average increase in the accuracy is 6% with respect to the Linear
SVM and 7% when compared with the RBF SVM.

Something that must be highlighted is that R-EMO accuracy per-
formance in its best landmarks configuration is lower than the rela-
tive T-EMO accuracy for every emotion. This is interesting because
it is something that does not occur with the basic 468 facial point
configuration. However, this approach demonstrates that exploring
explainable randomized architectures is a promising concept to inves-
tigate. This is because the decrease in accuracy caused by randomizing
one or more layers can be offset not only by a significant reduc-
tion in training time, but also by an additional improvement in both
efficiency and effectiveness performance through explainability-based
feature optimization.

The general increase in the network accuracy, caused by a diminu-
tion in the number of input features to the network, represents a
great advantage consisting of the overall improvement of the network
classification performance with a substantial decrease in the needed
computational power. In fact, by this method, the input feature space
is controlled by a mathematically based explanation evaluating the
most informative input features after training a deep binary neural
classifier. The numerical results are even more impressive when the
improvement margin for each of the binary networks implemented is
at most 10%. When further diminishing the number of input landmarks,
the model is still able to obtain an accurate prediction of the video class,
but the accuracy generally decreases visibly when using less than 64
landmarks.

To conclude the discussion, emotion recognition from video analysis
is inherently complex due to the dynamic nature of facial expressions,
to the general absence of a common structure for the facial landmarks
and to the possibility of simulating a different emotion from the one



F. Di Luzio et al

really experienced by a person in a determined moment. The scope of
his investigation, and one of the main novelties of the implemented
methodology, relies upon the attempt to find common patterns, describ-
ing a general behavior, representative of each typical single emotion.
Even if this is a particularly difficult purpose for a neural network,
the explainability framework presented in this paper seems to be an
effective method for the classification of the most important facial land-
marks, meant as the ones that contribute the most to the optimization
of the neural network parameters for the classification of the single
emotions.

6. Conclusions

Given the continuous interest in DL techniques and model function-
ing in the biomedical context, it is of remarkable importance to find
new efficient explainability solutions to exploit the inner mechanism
dictating the behavior of neural networks in this domain. In particular,
the implementation of ML and DL models in clinical environments
presents numerous challenges, primarily due to the complexity and
variability of medical data, regulatory requirements, and the high
stakes involved in patient outcomes. Clinical data often come from
disparate sources, with varying levels of quality and completeness,
which can lead to model bias or inaccurate predictions. Moreover,
healthcare professionals may be reluctant to trust or adopt ML/DL tools
without a clear understanding of how these models arrive at their deci-
sions. This is where explainability becomes crucial. Explainable models
can enhance trust by providing transparent reasoning for a model’s
predictions, thus enabling clinicians to interpret, validate, and justify
the outcomes in a clinical setting. Additionally, explainability can aid in
meeting regulatory standards, as models with clearer decision-making
processes are more likely to be approved for clinical use [29-31].

From a different point of view, it is of great interest to investi-
gate the trade-off between the accuracy of the classification and the
computational cost of the optimization procedure; hence, the merging
of explainability and randomization of some layers of the network is
particularly intriguing from a scientific point of view. In this paper,
we applied a customized fashion of the explainability technique of
IGs to binary DNNs with randomized convolutional layers to capture
the functioning of the network optimizing the number and position of
input features. In particular, the networks were trained on videos of
emotional feeling, from which 468 facial landmarks were extracted and
whose coordinates are employed as input.

The aim of this work was to optimize the number of landmarks
to use as input features for each emotion evaluating the diminishing
of the noise feeding the model and the consecutive increase in the
overall classification performance. Investigating the obtained attribu-
tion of importance for each input feature, we can confirm, even from a
graphical point of view, that the implementation of the explainability
method presented in this paper rests on solid foundations. The obtained
results show that the landmarks selected as more important are the
ones situated in the parts of the face that change the most during
the emotional feeling, they are not always the same for the six typi-
cal emotions. On the other hand, by analyzing the numerical results
obtained with the optimized networks, we can confirm the edge of
the proposed approach, reporting advantages in classification accuracy
and computational cost needed when using the most important selected
landmarks for the training procedure.

In order to assess the randomized nature of the proposed method,
we employed the fully trained version of the same network and the
model presented in [17], optimized using the whole set of 468 face
landmarks as input to the neural networks. Given the improvements ob-
tained in this work with this customized version of IGs, this method can
pave the way for even more complex investigations on the optimization
of input features to DNNs for emotion recognition, exploiting even more
in-depth, the inner mechanism ruling the functioning of deep neural
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architectures. Moreover, this method can be applied to each similarly-
implemented binary network, showing high portability which could
result helpful in several different real-world applications and practical
fields like surveillance systems, security systems in general, and even
amusement tools.

From a practical point of view, given its mathematical implemen-
tation, the method proposed herein generates an attribution mask that
reflects the facial landmarks movement during the emotional feeling. In
detail, this attribution mask is representative of the importance of each
landmark of the videos in the optimization procedure of the network
weights. Considering that changing the input parameter to analyze the
results can lead to dissimilar outcomes, a particularly important novel
aspect of the proposed methodology relies upon its possible application
to several models fed with different data sources. In particular, it is
possible to perform the optimization of the input frame described in
this paper when the computation of the integrated gradients is feasible,
independently from the input data and its dimensionality.

Concluding, the methodology presented in this paper can pave the
way for several different studies on new explainability techniques that
can be used to describe the inner mechanism of deep learning models in
several real-world application fields. In the future, the possibility to in-
crease the global explanation capability of the proposed method can be
achieved with the employment of diverse emotion recognition datasets,
where other combinations of input features can be investigated and
newer and deeper architectures can be analyzed. In this sense, the
approach presented in this paper can be tested and its performance
can be evaluated on multimodal datasets where emotion recognition
can be performed analyzing the biomedical data recorded by numerous
sensors. For instance, the explainability techniques presented in this
paper could be employed to increase the efficiency and the classifica-
tion accuracy of the methods presented in [32]. This methodology, in
fact, can be applied to every differentiable function, and can be used
to understand the inner functioning of the same and to enhance its
classification capability.
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