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Abstract—The advent of Reconfigurable Intelligent Surfaces
(RISs) in wireless communication networks unlocks the way to
support high frequency radio access (e.g. in millimeter wave)
while overcoming their sensitivity to the presence of deep fading
and blockages. In support of this vision, this work exhibits
the forward-looking perception of using RIS to enhance the
connectivity of the communication links in edge computing sce-
narios, to support computation offloading services. We consider
a multi-user MIMO system, and we formulate a long-term
optimization problem aiming to ensure a bounded end-to-end
delay with the minimum users’ average transmit power, by jointly
selecting uplink user precoding, RIS reflectivity parameters, and
computation resources at a mobile edge host. Thanks to the
marriage of Lyapunov stochastic optimization, projected gradient
techniques and convex optimization, the problem is efficiently
solved in a per-slot basis, requiring only the observation of
instantaneous realizations of time-varying radio channels and
task arrivals, and that of communication and computing buffers.
Numerical simulations show the effectiveness of our method and
the benefits of the RIS, in striking the best trade-off between
power consumption and delay for different blocking conditions,
also when different levels of channel knowledge are assumed.

I. INTRODUCTION

The advent of the sixth generation of mobile communication
systems (6G) unveils several ambitions that span from the
support of new services, to completely new key performance
indicators. Indeed, we are facing an unprecedented revolution
of applications, such as immersive virtual reality, connected
autonomous systems, and the industrial Internet of Things,
all verticals that require real time data transmission and
processing [1]. Of course, to be effective, these services require
to be enabled with new levels of dependability, reliability and
sustainability. From a radio access perspective, the adoption of
higher frequency such as millimeter wave (mmWave) and Ter-
aHertz (THz) bands certainly enhances radio access network
capacity, although at the price of a higher sensitivity to the
presence of spatial blockages and, in general, to deep fading
events that may hinder the aforementioned vision on perfor-
mance [2], [3]. To this end, Reconfigurable Intelligent Surfaces
(RISs) have recently emerged as a promising candidate to
counteract the above mentioned issue, thanks to their ability to
opportunistically shape the wireless propagation environment.
More precisely, RISs are composed of scattering elements
that can be adaptively configured to shape the incident wave
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through adjustable phase shifts, with the aim of improving
system performance in specific locations in space and time
[4], [5]. Therefore, owing to their abilities of customizing
time-varying wireless propagation environments, RISs mark
undeniably the dawn of the 6G era. Another key technological
enabler of the 6G vision, already introduced in 5G, is Multi-
access Edge Computing (MEC), which brings storage and
computing resources close to end users, aiming to enable a new
class of connect-compute services [6]. As such, the interplay
between RISs and MEC plays a key role in improving network
performance, thanks to the double benefit of computation and
communication aspects, to be tackled and optimized jointly. In
this paper, we focus on computation offloading services, whose
goal is to move the execution of computation demanding
applications from resource-poor end devices to nearby Mobile
Edge Hosts (MEHs), to enable energy efficient, low latency,
and reliable processing [7]. In particular, we investigate on the
promising convergence of RISs and MEC, mainly focusing on
a joint optimization of radio and computing resources, down
to the wireless propagation environment properties.
Related works. Most of investigated works in the litera-
ture have been focused on addressing computation offloading
upon appropriate wireless environments, tackling the joint
optimization of communication and computation resources in
MEC-enabled wireless networks [6], [9]. However, inevitably,
moving towards higher frequency bands to cope with large
data volumes is no more suitable for MEC systems due to the
unpredictable and intermittent nature of wireless links. Indeed,
blocking events may deteriorate the overall network perfor-
mance. In line with this, the recent literature has involved the
prominence of RISs to boost the performance of MEC systems
in terms reliability [7], [10], [11]. Nevertheless, to the best of
our knowledge, a dynamic joint optimization of computing
resources and RIS-aided MIMO radio parameters is lacking.
Contribution. In this work, we propose an algorithm aiming
to dynamically configure RIS parameters, users’ uplink pre-
coding, and computation resources, with the goal of minimiz-
ing users’ transmit power, with guaranteed finite E2E delay
of the offloading service. Thanks to the theory of Lyapunov
stochastic optimization, we are able to split a long-term
problem into consecutive deterministic optimization problems,
based on instantaneous observations of context parameters.
The solution of the latter, from a radio perspective, builds on
an alternating optimization strategy that couples a projected
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gradient step for the RIS parameters [13], and a water-filling
solution for the users’ precoding [14]. The computation re-
source allocation problem is also solved with low complexity.

II. SYSTEM MODEL

In this work, we consider a dynamic system, in which a set
U of N users continuously generate data locally and offload
them to an MEH through the wireless connection with an
Access Point (AP). In such a scenario, context parameters
such as wireless channels and data arrivals vary over time, thus
calling for a dynamic cross-layer optimization involving users’
precoding for uplink transmission, RIS reflectivity matrix, and
computation resources at the MEH. Then, we consider time as
organized in time slots t = 1, 2, . . . of equal duration τ . Given
a random variable X , we denote by X its long-term average:

X = lim
T→∞

1

T

∑T

t=1
E{X(t)} (1)

A. Communication model

1) RIS reflectivity model: An RIS can be modeled as an
array of M nearly passive elements, whose phases can be
opportunistically tuned. Therefore, the RIS can be character-
ized by its reflectivity matrix that is represented, at time t, as
Θ(t) = diag{r1(t), ..., rM (t)}, where ri, i = 1...,M , are the
complex reflection coefficients of each element, characterized
by a fixed amplitude, which we assume to be unitary, and an
adjustable phase shift θi, therefore we have ri = αie

jθi . In the
sequel, we will denote by r(t) the vector r(t) = {ri(t)}Mi=1.

2) Channel model: We consider a MIMO system, in which
the AP is equipped with Na antennas, while each user is
equipped with K antennas. For each user k, the E2E channel
matrix Hk(t) at time t is composed of: i) a direct channel
Hk,d(t) ∈ CNa×K between the user and the AP; ii) an indirect
link, comprising the channel Hk,r(t) ∈ CM×K between the
user and the RIS, and the channel Hr,a(t) ∈ CNa×M between
the RIS and the AP. Also, since we consider blocking, we
define βk,a(t) ∈ {0, 1} (βk,r(t) ∈ {0, 1}), which equals 1 if
the direct (indirect) link experiences a blockage event. Then,
the overall channel matrix of user k can be written as follows
[15] (we omit the index t for ease of notation):

Hk = (1− βk,a)Hk,d + (1− βk,r)Hr,aΘHk,r. (2)

Note that, in the sequel, we will denote by pk,a (pk,r) the
blocking probability of the direct (indirect) link, i.e. the
probability that βk,a (βk,r) equals 1, which can be computed
as the expectation of βk,a (βk,r). Uplink transmission is a
fundamental phase of computation offloading services, fore-
seen to also increase future uplink traffic [16]. Thus, let us
now formalize the uplink parameters, whose optimization will
be presented in the sequel. Letting Qk(t) ∈ CK×K be the
transmit covariance matrix of user k at time t, the experienced
data rate reads as follows

Rk(t) = Wk log2
∣∣I+ σ−2

k Hk(t)Qk(t)H
H
k (t)

∣∣ (3)

where Wk represents the bandwidth assigned to user k, and the
noise power is σ2

k = N0Wk, with N0 the noise power spectral

density. Here, we assume that users are served thorough
orthogonal channels with a frequency division multiplexing.
Obviously, besides the current channel state conditions, the
data rate depends on the user transmit covariance and the RIS
parameters, which we will jointly optimize in the sequel.

B. Queuing Model and delay

Computation offloading services generally entail three
phases, along with their respective delays: i) uplink communi-
cation buffering and transmission of input data; ii) computa-
tion buffering and computation; iii) downlink communication
buffering and transmission of results. In this work, we consider
the first two delays, although considering the last one would
not substantially change the system model, as presented in
[7]. Therefore, we model the E2E delay thorough a queueing
system, comprising an uplink communication buffer Bl,k(t),
and a computation buffer Br,k(t) for each user k.
Communication buffer: The uplink buffer of each user k is
fed by new arrivals Ak(t) at time t, and drained by transmitting
bits over the wireless interface at rate Rk(t) (cf. (3)). Given
a slot of duration τ , the queue evolves as:

Bl,k(t+ 1) = max (0, Bl,k(t)− τRk(t)) +Ak(t) (4)

Computation buffer: Assuming that all computation tasks are
offloaded to the MEH, we consider a computation queue for
each UE, which is fed by the its arriving data in uplink, and
drained by the computation performed at the MEH. We assume
a linear relation between the number of transmitted bits and
the CPU cycles. Then, denoting by Jk the number of CPU
cycles per bit, the remote computation queue evolves as:

Br,k(t+ 1) =max (0, Br,k(t)− τfk(t)/Jk)

+ min(Bl,k(t), τRk(t)), (5)

where fk(t) represents the amount of resources (in CPU
cycles/s) allocated to user k during time slot t. Due to Little’s
law, the average E2E delay experienced by each device is
proportional to the sum queue length [6]: Dk = τ

Bl,k+Br,k

Ak
.

III. PROBLEM FORMULATION

In this paper, we jointly optimize users’ uplink covariance
matrix, RIS parameters, and computation resources at the
MEH, to minimize the users’ transmit power under queue sta-
bility constraints. The problem can be formulated as follows:

min
{Qk(t)}k,r(t),{fk(t)}k

∑
k∈U

Tr(Qk) (6)

subject to (a) Bl,k < ∞, ∀k (b) Br,k < ∞, ∀k
(c) Qk(t) ≽ 0, ∀k (d) Tr(Qk(t)) ≤ Pmax

k , ∀k
(e) |ri(t)| = 1, ∀i (f) fk(t) ≥ 0, ∀k

(g)
∑

k∈U
fk(t) ≤ fmax.

The constraints of (6) have the following meaning: (a)-(b)
the local and remote queues of each user are stable; (c) the
transmit covariance matrix of each user is semidefinite posi-
tive; (d) the uplink transmit power of each user is lower than
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a maximum value Pmax
k ; (e) the RIS reflectivity entries are

complex exponential; f) the CPU cycle frequency allocated to
each user by the MEH is non-negative; (g) The sum all CPU
cycle frequencies assigned to each user is at most equal to the
MEH CPU maximum frequency fmax. Problem (6) is a priori
very complex to solve, as it involves time averages performed
on variables whose statistics are supposed to be unknown. To
solve it in an efficient way, we leverage on Lyapunov stochas-
tic optimization [17], which allows us to define a sequence of
deterministic problems, based on instantaneous observations of
context parameters. In particular, following [17], and defining
the vector b(t) = [{Bl,k(t)}k, {Br,k(t)}k], we can write the
Lyapunov function as L(b(t)) = 1

2

∑
k∈U [B

2
l,k(t) + B2

r,k(t)]
[17], which is a measure of the overall congestion state of
the system. Our aim is to drive the network towards stability,
with the minimum transmit power. To this end, as in [17], let
us define first the drift-plus-penalty (DPP) function ∆p(t) =
E{L(b(t + 1)) − L(b(t))+V

∑
k∈U tr(Qk(t))|b(t)}, which

is the one slot conditional expected change of the Lyapunov
function, with a penalty factor, weighted by a parameter V ,
used to trade-off users’ transmit powers and queue backlogs,
thus shaping the desired trade-off between power consumption
and E2E delay. Interestingly, queues’ stability ((a)-(b) in (6))
is guaranteed if the DPP is bounded by a finite constant for all
t [17]. As in [17], we now proceed by minimizing a suitable
upper bound of the DPP. The upper bound, whose derivations
are omitted due to the lack of space (see, e.g., [17]) reads as

∆p(t) ≤ C + E
{∑

k∈U
[(Br,k(t)−Bl,k(t)) τRk(t)

+Ak(t)Bl,k(t)− τBr,k(t)fk(t)/Jk + V tr(Qk(t))]|b(t)
}
,

where C is a positive constant, omitted due to the lack
of space. By greedily minimizing this upper bound in each
time slot (i.e. removing the expectation), queues’ stability is
guaranteed, as well as the asymptotic optimality of the solution
as V increases, with the cost of increased queue backlogs (i.e.
higher E2E delay) [17]. It is easy to show that the resulting
problem can be split, in each time slot t, into a radio resource
allocation sub-problem, including the optimization of user
covariance matrices and RIS parameters, and a computation
resource allocation sub-problem, to optimize the MEH CPU
scheduling. The overall proposed dynamic resource allocation
procedure is described in Algorithm 1, whose steps are de-
scribed in the following. In particular, Sec. III-A describes the
implementation of step 1, to optimize radio resources. The
implementation of step 2 follows in Sec. III-B.

A. Radio resource allocation sub-problem
The radio resource allocation sub-problem (step 1 of Algo-

rithm 1) involves {Qk(t)}k and r(t), and is formulated as

min
{Qk(t)}k,r(t)

∑
k∈U

(V Tr(Qk(t))− τ(Bl,k(t)−Br,k(t))Rk(t))

subject to (c)-(e) of (6) (7)

Problem (7) is non convex, due to the non linear equality
constraint (e). However, given the RIS parameters, the prob-
lem is convex and enjoys a simple water-filling solution [14].

Then, the solution of (7) is built on an iterative optimization
algorithm that alternatively optimizes (7) with respect to the
RIS phase shift using the projected gradient descent method
(PGM), as in [13], and optimally updates the uplink covariance
matrices of all users through the water-filling method [14].
Steps 1.1 and 1.2 are implemented as follows.

1) RIS optimization step (Step 1.1 of Algorithm 1): The pro-
jected gradient step (step 1.1) with respect to r(t) comes with
low complexity, as both the gradient and the projection can
be written in closed form [13, Eq. (17a)]. However, differently
from [13], we deal with a multi-user case. Nevertheless, thanks
to the decoupling obtained through the Lyapunov optimization
framework, in this case, the gradient is a weighted sum of
different terms (corresponding to different users), where the
weights include both communication and computation queues.
This naturally introduces a scheduling of the RIS, which is
therefore optimized to prioritize users with worse queueing
states. The gradient with respect to r reads as follows [13]:

∇rf(r, {Qk}k) = −τ
∑

k∈U
Wk(Bl,k −Br,k)

× diag
(
HH

r,a

(
I + ZkQkZ

H
k

)−1
ZkQkH

H

k,R

)
, (8)

where Zk = Hk/σ, and Hk,R = Hk,r/σ, and the operator
diag(L) saves the diagonal elements of an NL × NL matrix
L into a vector. Finally, since |ri| = 1 must hold for all i =
1, . . .M , the projection onto the unit circle reads as [13]:

PΘ(ri) = ri/|ri|, ∀i = 1, . . . ,M. (9)

Step 1.1 of Algorithm 1 is implemented through (8) and (9).
2) Uplink covariances optimization (Algorithm 2): From

(7), it can be easily observed that, once the RIS configuration
is fixed, the problem with respect to {Qk(t)}k admits a low
complexity solution. First of all, the problem is separable
among the N users. Moreover, for a generic user k, if
Bl,k(t) ≤ Br,k(t), both terms in (7) are monotone non-
decreasing functions of the user transmit power. Therefore,
in this case, the optimal solution is Q∗

k(t) = 0K , i.e. user
k does not transmit (step 1.2.a of Algorithm 1). This holds
true also in the case in which all links are blocked. Instead,
for a generic user k for which Bl,k(t) > Br,k(t) holds, the
problem is convex and is similar to the one presented in [14],
thus admitting the water-filling procedure in Algorithm 2.

B. Computation resource allocation sub-problem

The second sub-problem, necessary to implement step 2 of
Algorithm 1, is formulated as follows:

max
fk(t)

∑
k∈U

Br,k(t)fk(t)/Jk (10)

subject to a) 0 ≤ fk ≤ min (fmax, Br,k(t)Jk/τ) , ∀k

b)
∑

k∈U
fk(t) ≤ fmax,

where, for efficiency purposes, we added the constraint in (a)
that prevents each user to be allocated more frequency than
the one needed to empty the remote queue. Problem (10) is
linear, and the optimal frequencies can be iteratively found by
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assigning the whole available frequency to the user with the
highest ratio Br,k(t)/Jk. If this leaves available frequency, the
left part is assigned to the subsequent users until draining the
whole CPU power of the server fmax, or serving all users [7].

Algorithm 1 Dynamic optimization of RIS-assisted MEC

Require: V , U = {1, . . . , N} Nslots, τ , Pmax
k , Bl,k(0), Br,k(0),

Jk, ∀k ∈ U , fmax,
for t = 1 : Nslots do
step 1: Optimize {Qk(t)}k and r(t).

for n = 1 : Imax do
step 1.1: rn+1 = PΘ(rn − ρ∇rf(r

n, {Q(n)
k }k))

step 1.2:
for k = 1, . . . , N do

a: If Bl,k ≤ Br,k, Q(n+1)
k = 0K , else

b: Update optimal {Q(n+1)
k }k with Algorithm 2

end for
end for

step 2: Optimize {fk(t)}k as in Section III-B
step 3: Compute Rk(t), ∀k ∈ U as in (3);
step 4: Update Bl,k and Br,k as in (4) and (5), respectively.
end for

Algorithm 2 Uplink covariance optimization for user k [14]

step 1: Compute HH
k Hk = UHΣU, with Σ a diagonal matrix

with non-negative elements σi, i = 1, ...,K

step 2: Check if
∑K

i=1 max
(
0,

τWk(Bl,k−Br,k)

V
− 1

σi

)
≤ Pmax

k

holds. If yes, then let µ∗ = 0

and λ∗
i = max

(
0,

τWk(Bl,k−Br,k)

V
− 1

σi

)
, else,

step 3: Take all σi, i = 1, . . . ,K in a decreasing order, i.e. as,
σd(1) > σd(2) > . . . > σd(K).
step 4:
Start with S0 = 0.
for i = 1 : K do
Let Si = Si−1+

1
σd(i)

and µ∗ = i
Si+P

− V
τWk(Bl,k−Br,k)

. If µ∗ ≥
0, 1

µ∗+ V
τWk(Bl,k−Br,k)

− 1
σd(i)

≥ 0, and 1

µ∗+ V
τWk(Bl,k−Br,k)

−
1

σd(i+1)
≤ 0, then stop the loop, otherwise, move to the next

iteration.
end for

step 5: Let λ∗
i = max

[
0,

1

µ∗ + V
τWk(Bl,k−Br,k)

− 1

σi

]
.

step 6: Q∗
k = UHΛ∗U, with Λ∗ diagonal matrix with entries λ∗

i

IV. NUMERICAL RESULTS

In this section, numerical results are provided to assess
the performance of our strategy. We consider a scenario with
N = 6 users aiming to offload their tasks to a MEH collocated
at the AP serving the users. Each user is assigned an equal
portion of the total bandwidth B = 1 MHz, while the noise
power spectral density is set to N0 = −174 dBm/Hz. The slot
duration is set to τ = 10 ms. The arrival rate is 1 Mbps with
Poisson distribution, for all users. The maximum available
CPU cycle frequency is fmax = 4.5 GHz and Jk = 500
∀k (cf. (5)). All channels (cf. (2)) are generated for a typical
mmWave operating frequency, f = 28 GHz, as in [15], with:
K = 4, Na = 4, and M = 64. The maximum transmit power
for a single user k is set to Pmax

k = 100 mW. In the sequel,

for the sake of comparison, we consider both scenarios with
and without the RIS. Also, we assume two different degrees
of channel knowledge: i) Alg. 1: instantaneous knowledge
of βk,r(t) and βk,a(t) (cf. 2) is assumed, and Alg. 1 is
used for radio resource allocation; ii) Alg. 1, statistical:
only a statistical knowledge of the blockage, i.e. the blocking
probabilities pk,a and pk,r is assumed. In this case, Algorithm
1 is used, but βk,r(t) and βk,a(t) are replaced by pk,a and
pk,r in (2), for the optimization. Obviously, the data rate
experienced by each user is computed with the true channel
in (2). Furthermore, for all cases, we consider also the case
in which the RIS phase shifts are randomly selected; whereas,
for Alg. 1, we also consider the case in which, after step 1.1
of Algorithm 1, the RIS phase shifts are quantized with 2 bits,
which is a practical constraint of RIS implementation [7].

Fig. 1: Delay-power trade-off

Fig. 2: Avg. transmit power vs. AP blocking probability

As a first result, in Fig. 1, we show the trade-off between
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average E2E delay and transmit power, for different blocking
probabilities pk,a on the direct link. We specifically plot
the results for pk,a = 0 and pk,a = 0.51, obtained by
increasing the Lyapunov trade-off parameter V from right to
left. For all curves we can notice how, by increasing V , the
system average transmit power decreases while the average
service delay increases. Also, all scenarios with the optimized
RIS outperform the scenario without the RIS, although with
negligible gain for the case without blocking. This suggests
that the benefits of the RIS are more significant in case of
high blocking probability of the direct link. Also, the Alg.
1, statistical strategy performs better than the non RIS case,
except for the random phase shifts case. Finally, for Alg. 1,
it can be noticed that a 2-bit quantization of RIS phase shifts
yields parallel performance as the ideal case (i.e., continuous)
with a very negligible gap, thus suggesting that our method
can be exploited also for practical RIS optimization.
To further highlight the previously mentioned remarks, we
illustrate, through Fig. 2, the gain in terms of average transmit
power of each strategy with respect to the non RIS case, as
a function of the direct link blocking2, for a fixed E2E delay
bound of 150 ms, obtained by tuning the trade-off parameter
V . As expected, as the blocking probability increases, the
gain notably increases with the Alg. 1 strategy, (up to 10
dB for pk,a = 0.7), also with quantized phases. Conversely,
the gain of Alg. 1, statistical is visible only for higher
blocking probabilities, due to the fact that, in this case, the
channel knowledge is well-matched to the real channel states.
Eventually, this implies that unreliable blocking knowledge
is critical for the performance. Optimizing the RIS through
step 1.1 of Algorithm 1 leads to a better exploitation of the
indirect path. However, for the random phase case, it can be
noticed that no gain is achieved (less than 2 dB in the best
case), which is obvious since we have no control on the RIS.
More specifically, it can be noticed that for pk,a around 0.5, the
channel knowledge is completely mismatched. Instead, at high
blocking probabilities pk,a ≥ 0.6, the mismatch is reduced and
higher gain is achieved. Overall, we can conclude that the use
of an RIS is prominent to satisfy a reliable MEC-based task
offloading in case of bad conditions of the direct link, i.e.,
higher pk,a, for all strategies. More specifically, the benefit of
the RIS starts to be noticed with a lower pk,a for the best
strategy, while it becomes more visible with higher pk,a for
the worst strategy.

V. CONCLUSION

In this work, we have explored the effectiveness of using
an RIS to counteract the blocking (e.g. unreliability) when
increasing communication frequency, in the case of com-
putation offloading services. To this end, we considered a
blocking aware framework through which we investigated the
dynamic joint optimization of computing resources and RIS-
aided multi-user MIMO communication parameters. Then,

1For pk,a = 0, βk,a(t) = 1, ∀k, t, so that only Alg. 1 is shown
2Problem (6) is not feasible for pk,a > 0.7 without the RIS

for dynamic configuration, we applied Lyapunov optimization
tools to transform a complex long-term optimization problem
into a per-slot deterministic problem that requires only instan-
taneous observations of the context parameters and properly
defined state variables. Numerical results show the inherent
gain of empowering MEC with RISs, while assuming different
degrees of channel knowledge along with different scenarios
and blocking conditions.

REFERENCES

[1] E. Calvanese Strinati et al., “Wireless Environment as a Service Enabled
by Reconfigurable Intelligent Surfaces: The RISE-6G Perspective,” Proc.
of EUCNC 6G Summit, Porto, Portugal, Jun. 2021.

[2] C. K. Anjinappa, F. Erden and I. Güvenç, ”Base Station and Passive
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