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ABSTRACT
Wide field-of-view (FOV) sensors such as Sentinel-2 exhibit per-pixel view and illumination 
geometry variation that may influence the retrieval accuracy of essential crop biophysical and 
biochemical variables (BVs) for precision agriculture. However, this aspect is rarely studied in 
the existing literature. Hence, the current study aimed to evaluate the contribution of view 
and illumination geometries to the accuracy of retrieving Leaf Chlorophyll a and b (LCab), 
Canopy Chlorophyll Content (CCC), and Leaf Area Index (LAI) using the Random Forest (RF). 
The experiments were performed on various input variable scenarios where per-pixel geo
metric covariates, i.e. View and Sun Zenith Angles (VZA and SZA, respectively), and Relative 
Azimuth Angle (RAA), are excluded and included in spectral bands (SB) and spectral vegeta
tion indices (SVIs), respectively, in two semi-arid areas. The results showed that spectral bands 
or vegetation indices combined with geometric covariates improved the R2 by 10–15% for LAI 
and 3–5% for CCC. In contrast, negligible improvements of 1–2% were achieved for LCab with 
cross-validation test data and independent held-out dataset, respectively. In agreement with 
previous studies, VZA and SZA were among the topmost influential variables in the RF models 
for estimating LAI, LCab, and CCC. Collectively, per-pixel geometric variables explained more 
than 30% of the variability in surface reflectance for all Sentinel-2 spectral bands (p < 2.2e-16). 
Overall, the results showed that incorporating geometric covariates improved the accuracy of 
retrieving BVs; thus, it provided additional information that improves the predictive power of 
SB and SVIs. The significant benefits of the geometric variables were mainly realized for 
canopy-level BVs (i.e. LAI and CCC) than for LCab. Therefore, it is recommended to incorporate 
per-pixel view and illumination geometry in estimating LAI and CCC, especially when using 
wide-view sensors such as Sentinel-2. However, further testing in different phenology, site 
and acquisition conditions is needed to confirm the contribution of the geometric covariates 
to facilitate reliable retrieval of BVs from remotely sensed data and aid better agronomic 
decisions.
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1. Introduction

Improving the estimation of crop biophysical and 
biochemical variables (BVs) is critical to support agri
cultural management practices, aid the optimization 
of farm inputs, and monitor agricultural production at 
landscape to regional level (Alexandridis, Ovakoglou, 
and Clevers 2020). Plant parameters such as the Leaf 
Chlorophyll a and b (LCab), Leaf Area Index (LAI), and 
Canopy Chlorophyll Content (CCC) are often used in 
as input to models monitoring the physiological sta
tus of plants and their health (Lu et al. 2018). The LAI is 

considered an essential parameter for quantitatively 
analyzing a series of biophysical processes which 
describe vegetation dynamics (Alexandridis, 
Ovakoglou, and Clevers 2020; Liu et al. 2017). LCab 

and CCC, on the other hand, are critical for character
izing the photosynthetic activity of crops. Because 
they are both related to Nitrogen (N) content 
(Clevers, Kooistra, and Van den Brande 2017), CCC 
and LCab are critical agronomic parameters to moni
tor N content at canopy and leaf scales. Moreover, the 
photosynthetic activities of crops hinge on water 
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availability. Thus, crop stress caused by declining soil 
moisture can be detected rapidly by assessing the 
changes in chlorophyll content.

LAI and LCab are traditionally measured using destruc
tive and lab-based methods (Liang et al. 2011), which 
entail prohibitive operational costs for vast areal and 
temporal coverages. Therefore, optical handheld LAI 
instruments, such as Accu-Par Ceptometer, digital hemi
spherical photography, SunScan, and LAI-2200C and 
chlorophyll meters such as MC-100 Chlorophyll 
Concentration Meter and SPAD-502, provide reasonably 
accurate measurements of effective LAI and LCab in a 
rapid and noninvasive manner. When coupled with 
satellite-based remotely sensed data, the detailed retrie
val of crop BVs can be realized over vast areas at frequent 
intervals, thus suitable for precision agriculture needs.

For years, spectral vegetation indices (SVIs) have 
shaped the scientific advancements in the retrieval of 
BVs due to their high correlation with vegetation traits 
such as leaf pigments, nitrogen, and LAI (Lee et al. 2008; 
Clevers and Gitelson 2013; Clevers, Kooistra, and Van den 
Brande 2017; Haboudane et al. 2008). Such SVIs were 
developed using visible and near-infrared (VNIR) bands 
from earlier missions such as AVHRR (Advanced Very 
High-Resolution Radiometer), MODIS (Moderate 
Resolution Imaging Spectroradiometer), and Landsat. 
Hence, SVIs such as the NDVI (ROUSE 1973) and its 
variants – designed to overcome background effects, 
atmospheric interference, and saturation – are popular 
in agronomic and other vegetation applications. 
However, VNIR indices are known to suffer from under
estimations at various (i.e. low or high) biomass, chlor
ophyll content and LAI. Recently, red-edge SVIs based on 
quasi-hyperspectral sensors, such as Worldview-2 and 
Multi-Spectral Instrument (MSI) on board Sentinel-2, 
were shown to enhance the accuracy of BVs and over
come challenges of VIS/NIR indices (Delegido et al., 2013; 
Dimitrov et al., 2019; Fitzgerald et al., 2010; Sibanda et al.,  
2019). Other studies have demonstrated the potential of 
Radiative Transfer Models (RTMs) (Jacquemoud et al.  
2009). However, such models are beset with errors result
ing from poor parameterization and complexity, which 
may result in considerable uncertainty in the retrieved 
BVs (Xu et al. 2019; Durbha, King, and Younan 2007).

Alternatively, MLRAs (Machine Learning Regression 
Algorithms) were tailored to learn complex relationships 
between measured BVs and reflectance data from satel
lite imagery (Karimi et al. 2018; Mao et al. 2019). The 

application of MLRAs for the retrieval of important crop 
BVs is considered ideal due to their high accuracy and 
flexibility to process multiple features and datasets 
(Apolo-Apolo et al., 2020). It is, therefore, essential to 
examine whether such approaches could improve future 
product development, aid informed agricultural man
agement decisions, and accelerate precision agriculture, 
especially in developing regions such as Africa where 
operational use of Earth observation for precision agri
culture is still in its infancy.

Vegetation canopy reflectance is affected by the bio
physical and biochemical traits, phenological and envir
onmental changes, signal attenuation by the atmosphere, 
topographic effects, and acquisition conditions, among 
others (Ollinger 2011). In particular, satellite-based radio
metric measurements exhibit non-negligible effects from 
view and illumination geometry or Bidirectional 
Reflectance Distribution Function (BRDF) that may intro
duce ambiguity in retrieving BVs. BRDF refers to the ratio 
of the solar incident irradiance Ei from a given direction on 
a target surface to its contribution to the reflected radi
ance Lr from the same surface in another direction. 
Mathematically, it is expressed as 

fr θi;ϕi; θr;ϕrð Þ ¼
dLr θi;ϕi ;θr ;ϕr ;Eið Þ

dEi θi;ϕið Þ
sr� 1½ �, where θ and ϕ 

indicate a direction, i and r are the quantities associated 
with the incident and reflected radiant flux, respectively. 
Ei, Lr , and d denote the incident irradiance, reflected 
radiance, and differential quantity, respectively 
(Nicodemus et al. 1977). Essentially, the BRDF refers to 
the surface reflectance variation with the varying view 
and illumination geometry (Nagol et al. 2015). Due to 
the different acquisition angles between sensors and 
orbits and the sun-angle variations across different sea
sons, latitudes, and terrains, previous studies dedicated 
considerable effort to reducing BRDF effects (Roy et al.  
2017b; Roy, Li, and Zhang 2017a). The reduction of BRDF 
effects is particularly essential for obtaining temporally 
consistent data across different sensors to enhance the 
accuracy and temporal consistency of land cover maps 
(Nagol et al. 2015), canopy structural parameters (Sharma, 
Kajiwara, and Honda 2013), and BVs (Pocewicz et al. 2007).

In that regard, techniques such as the c-factor (Roy et 
al. 2017b; Roy, Li, and Zhang 2017a) – based on a semi- 
empirical Ross Thick/Li Sparse-Reciprocal BRDF model 
(Schaaf et al. 2002) – and integrated topographic and 
angular normalization (Yin et al. 2020)—based on the C- 
factor and Path Length Correction (PLC)—have been 
proposed for Landsat and Sentinel-2. Other techniques, 
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such as the MODIS BRDF/Albedo algorithm, have been 
used to produce Nadir BRDF-Adjusted surface 
Reflectance (NBAR) for decades (Schaaf et al. 2002). For 
high-resolution sensors, e.g. Sentinel-2, atmospheric cor
rection tools such as Sen2Cor provide an option to per
form empirical BRDF corrections (Louis et al. 2016). 
However, the BRDF correction option is often left deac
tivated in validation studies to be consistent with other 
methods (Sola et al. 2018). So far, the radiometric varia
tion introduced by the sensor view and illumination 
geometry has been regarded as a nuisance. However, 
such geometry-induced spectral variation may provide 
additional structural information content due to the 
dependence of reflected radiance on the geometric con
figurations (Kneubühler et al. 2008). This is especially 
highlighted by the studies utilizing multi-angular data 
(Verrelst et al. 2008; Duveiller, Lopez-Lozano, and 
Cescatti 2015; Vierling, Deering, and Eck 1997), showing 
its utility for characterizing structural variation of various 
layers of vegetation (e.g. foliage clumping) that affects 
LAI. However, high-resolution multi-angular data are 
costly and can only be acquired by commercial satellites 
(Roosjen et al. 2018). Other studies showed that view and 
illumination geometry have a considerable effect on 
vegetation indices and phenology metrics (Ranson, 
Daughtry, and Biehl 1986; Middleton 1991; Pocewicz et 
al. 2007; Verrelst et al. 2008; Ma et al. 2020).

Meanwhile, studies (Nagol et al. 2015; Roy et al.  
2017b) also show that popular multispectral sensors (e. 
g. Landsat and Sentinel-2) exhibit within-scene angular 
effects. In particular, Sentinel-2’s wide Field-of-View 
(FOV), i.e. ~20.6° (~295 km), has been shown to exhibit 
considerable within-scene surface anisotropy due to 
varying per-pixel view and illumination geometry for 
each of its 12 detectors (Gascon et al. 2017; Roy et al.  
2017b). Fortunately, Sentinel-2 data provides a pixel- 
wise and band-wise view and illumination geometry, 
thus providing some prospects to address the questions 
such as (1) How much variability in crop canopy reflec
tance is explained by the view and illumination geome
try variations? (2) What is the contribution of 
incorporating per-pixel view and illumination geometry 
to the accuracy of retrieving crop BVs using MLRAs? (3) 
Are geometric variables influential in improving model
ing accuracy when coupled with commonly used radio
metric input variables, i.e. spectral bands and SVIs? These 
will clarify whether acquisition conditions (i.e. sun-view 
geometry) provide additional information or noise to the 
estimation of crop BVs. The operational Sentinel-2 Land 

bio-physical processor (SL2P) (available in Sentinel 
Application Platform, SNAP), based on pretrained ANN, 
uses per-pixel geometric information as input to the 
biophysical retrieval process (Weiss and Baret 2020). 
However, such complex, “black-box” (or opaque) models 
do not provide model agnostics, which would otherwise 
reveal the influence of per-pixel geometric variables on 
the estimations. Interpretable MLRAs such as RF are 
essential for obtaining new causal links and novel 
insights between predictor and response variables. 
Moreover, they enable the detection and diagnosis of 
biases in the MLRA models and associated input data, 
hence essential for improved satellite-based value- 
added products (Azodi et al., 2020).

In that context, this study evaluated the contribution 
of view and illumination geometries on crop biophysical 
and biochemical retrieval using the Random Forest (RF) 
regression algorithm and various combinations of 
Sentinel-2 covariates. The evaluated covariates consisted 
of spectral bands (SB), spectral vegetation indices (SVIs), 
SB combined with sensor view-illumination geometries 
(SB + Angles), and SVIs combined with sensor view and 
illumination geometries (SVIs + Angles), and all variables 
(Avar). The specific objectives were threefold: (1) To 
quantify the amount of spectral variability caused by 
the per-pixel view and illumination geometry in 
Sentinel-2 spectral bands; (2) To determine the contribu
tion of per-pixel view and illumination geometry to the 
accuracy of retrieving LAI, LCab and CCC with RF; and (3) 
To identify the most important (i.e. influential) variables 
contributing to the model accuracy, considering differ
ent combinations of covariates. The study area is com
prised of two semi-arid African agricultural sites, located 
in South Africa.

2. Study area

Bothaville and Harrismith sites are located in the Free 
State province, South Africa (see Figure 1). The sites are 
characterized by mainly commercial farming of crops 
and livestock takes place. The summer growing season, 
which constitutes most cropping activities in both sites, 
has mean annual temperatures of about 18°C and 19.2°C 
and mean annual rainfall of about 584 and 115 mm, 
respectively (Kganyago et al. 2020, 2020). The crops in 
the sites are generally similar, i.e. predominantly maize 
and beans, while sunflower and groundnuts are domi
nant in Bothaville only. Cropping takes place on flat 
slopes with sandy-loamy and sandy soils in Bothaville 

GISCIENCE & REMOTE SENSING 3



and undulating slopes with clay-loamy soils in 
Harrismith. The summer cropping calendar at both 
sites is from December to May or June.

3. Materials and methods

The summary of the methods followed in this study is 
given in Figure 2.

3.1. Data

3.1.1. In situ data
LAI and LCab in situ data were collected nondestruc
tively in Harrismith and Bothaville between 15 and 
26 March 2021 and between 11 and 23 April 2021, 
respectively. Similar sampling strategy was followed 
at the two sites, where the plots (each with 40 m ×  

Figure 1. Land cover distributions in Bothaville and Harrismith (orange and red squares), Free State province (dark grey), South Africa 
(adopted from Kganyago 2022). The insert maps are projected to UTM (Universal Transverse Mercator) with WGS-84 (World geodetic 
System 1984) Datum. The land cover dataset was obtained from the Department of Forestry, Fisheries and the Environment (https:// 
egis.environment.gov.za/gis_data_downloads, accessed 20 March 2021).

Figure 2. The schematic representation of the methods used in this study. Five experimental scenarios, i.e. Spectral bands (SB), SB and 
Angles (SB + Angles), Spectral vegetation indices (SVIs), SVIs and Angles (SVIs + Angles), and All variables (Avar) were used for crop 
biophysical and biochemical variable (BV) retrieval using two test datasets, i.e. cross-validation test dataset and an independent held- 
out test (i.e. unseen) dataset.
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40 m) were designed along transects chosen ran
domly within various crop fields. Six to eight random 
measurements were captured within each plot and 
averaged. Each plot’s centroids were Geo-tagged 
with a GPS coordinate and a picture using TDC600 
handheld Data Collector (Trimble® Inc., Westminster, 
CO, USA) with 1.5 m GNSS accuracy. Plant Canopy 
Analyzer 2200c (Li-Cor, Inc., Lincoln, NE, USA), 
equipped with an 180° field-of-view (FOV) view cap, 
was used to measure LAI. The view cap ensured that 
any possible uncertainty caused by the operator’s 
influence and uneven sky conditions are avoided. 
On the other hand, MC-100 (Apogee Instruments, 
Inc., Logan, UT, USA) was used to acquire LCab mea
surements on sun-exposed leaves. The CCC was 
obtained as a product of plot-averaged LCab and 
LAI measurements (LCab × LAI) (Jacquemoud et al.  
2009). Because our aim was to develop generic mod
els, we combined the in situ data from each site, i.e. 
beans, maize, and peanuts and beans and maize 
found in Bothaville and Harrismith, respectively. 
Our approach is aligned with NGUY-Robertson et al. 
(2012) who note that crop types with different phy
siological pathways (i.e. C3 and C4), plant structures 
and architectures are representative many other 
crop types’ physiological and anatomical traits. 
Therefore, the developed models are likely widely 
applicable to multiple crops, critical for sub-Saharan 
Africa, where inter-cropping agricultural practices 
dominate.

3.1.2. Sentinel-2 data
Sentinel-2 Multi-Spectral Imager (MSI) images (granule: 
35JMK and 35JPJ), acquired on 20 21 March 
2022T07:46:11.024Z and 20 21 April 
2014T07:56:01.024Z, over Harrismith (Sensing orbit 
number: 135) and Bothaville (Sensing orbit number: 
35), respectively, were retrieved from Sentinel Hub 
(Sinergise Laboratory for geographical information sys
tems, Ltd., Ljubljana, Slovenia) at processing Level-2A, i.e. 
surface reflectance. Sentinel-2A and 2B have the identi
cal MSI sensors and provide a 5-day revisit period. The 
images used here were acquired by Sentinel-2A satellite 
in a descending orbit direction. Out of the 13 MSI spec
tral bands, which are provided in various spatial resolu
tions, we used only the 10 m and 20 m spectral bands 

which are designed for land applications: 490 nm (B2: 
blue), 560 nm (B3: green), 665 nm (B4: red), 705 nm (B5: 
red-edge), 740 nm (B6: red-edge), 783 nm (B7: red-edge), 
865 nm (B8A: NIR), 842 nm (B8: NIR), 1610 nm (B11: SWIR- 
1), and 2190 nm (B11: SWIR-2). The details of the 
Sentinel-2 calibration are reported by Gascon et al. 
(2017). In addition to radiometric data, each tile, i.e. 
100 km × 100 km, is packaged within various folders 
containing the ancillary, spectral data and band-wise 
and mean per-pixel view and illumination geometry, i. 
e. View and Sun Zenith Angle (VZA and SZA, respec
tively), View and Sun Azimuth Angle (VAA and SAA, 
respectively) on a 5-km grid (Gascon et al. 2017). The 
mean SZA, mean VZA, mean SAA, and mean VAA and 
spectral bands acquired by different detectors were 
resampled to a standard spatial resolution, i.e. 20 m, 
using the bilinear resampling technique.

Other land covers, i.e. other than croplands, were 
removed from the images by applying a crop mask 
generated from the National Crop Boundaries data 
(Cropestimatesconsortium 2017). To limit the analyses 
to the active croplands of 2021 summer growing 
season, we applied an NDVI-based vegetation mask, 
where non-vegetated pixels were considered as those 
with NDVI <0.2.

3.2. Multiple linear regression

As shown in Figure 3, the SZA, VZA, and RAA vary 
spatially within a single Sentinel-2 MSI tile. Gascon et al. 
(2017) indicate that Sentinel-2 acquisition geometries 
differ according to the 12 detectors for each spectral 
band due to the sensor’s push-broom design. This spatial 
variability is clear in Figures 3 and 4, where it is evident 
that the SZA, VZA, and RAA vary by pixel across the 
scene. Therefore, it is also expected that pixel-wise sur
face reflectance over crops would vary by sensor view 
and illumination geometry (Verrelst et al. 2008; Jay et al.  
2017; Galvao et al. 2011; Biriukova et al. 2020).

In this study, multiple linear regression (Equation 1) 
and coefficient of determination adjusted for the 
degree of freedom, adjusted R2, were used to evaluate 
how much of the reflectance variation is explained by 
sensor view and illumination per-pixel variation using 
mean SZA, VZA, and RAA as predictor variables (x), 
and each spectral band as the response variable (y). 
RAA was calculated as a difference between SAA 
and VAA. 
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y ¼ m1x1 þm2x2 þ . . .þmnxn þ b (1) 

where y is the response variable (i.e. surface reflec
tance of each spectral band), and x1...n are predictor 
variables (SZA, VZA, RAA), m1 represent regression 
coefficients, while b is the intercept. The regression 
coefficient, i.e. the partial derivative of the response 
variable for each predictor variable, measures the 
linear sensitivity of y to inputs xi...n (Mohanty and 
Codell 2002). Adjusted R2 was used to assess the 
relationship between the response variable and pre
dictor variables. In contrast, the F-statistic p-value was 
used to determine the significance of the relation
ships at α = 0.05.

3.3. Statistical analysis experiments

3.3.1. Random Forest regression algorithm
The retrieval of BVs considered here, i.e. LAI, LCab, and 
CCC, was performed using Random Forest (RF) (Breiman  
2001) within the “randomForest” R-statistics package 
(Tierney 2012; Liaw and Wiener 2002). RF is a popular 
tree-based MLRA that utilizes bagging to repeatedly and 
independently build multiple decision trees using a sub
set of random training samples generated using resam
pling with replacement out of the original sample 
(Fawagreh, Gaber, and Elyan 2014; Breiman 2001). 
From all the training data (i.e. 70%), about 64% are 
kept for model building (i.e. in-bag samples), while 
model performance evaluation and variable importance 

are performed with the remaining 36% (i.e. out-of-bag or 
OOB samples) (Gislason, Benediktsson, and Sveinsson  
2006). For each predictor, variable importance is com
puted by assessing the %IncMSE (Percent Increase in 
Mean Squared Error) when permuting OOB samples 
while keeping all other variables constant. The predictive 
power of the variables is assessed with %IncMSE, i.e. also 
used as a ranking measure for the various variables. For 
example, a variable is deemed significant if its exclusion 
from the model causes a considerable reduction in pre
diction accuracy. Essentially, a predictor with a high 
importance score strongly correlates with the response 
variable or predictive power (Mutanga, Adam, and Cho  
2012). The tuning parameters, i.e. ntree (number of trees) 
and mtry (the number of variables for each split), were 
determined using the Grid-search approach using values 
from 100 to 500 with an interval of 10, and from 1 to p (i. 
e. number of predictors) with a single interval, 
respectively.

3.3.2. Input variables
The input variables to the Random Forest (RF) regres
sion algorithm were divided into five (5) experimental 
scenarios (Table 1). The per-pixel view and illumina
tion geometries, i.e. SZA, mean of VZA and RAA (i.e. 
calculated as the difference between SAA and VAA), 
were obtained as raster layers from the Sentinel-2 MSI 
product. At the same time, the MSI spectral bands 
were used to compute carefully selected red-edge 

Figure 3. Spatial (per-pixel) variation of Sentinel-2 illumination and view angles over the two study sites, i.e. Bothaville (a–c) and 
Harrismith (d–f). (a) and (d) show per-pixel Sun Zenith Angle (SZA), (b) and (e) show per-pixel mean View Zenith Angle (VZA), and (c) 
and (f) show per-pixel mean Relative Azimuth Angle (RAA).
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spectral vegetation indices (SVIs, see Table 2) based 
on their previous empirical relationship with the BVs 
considered in the current study (Viña et al. 2011; 
Schlemmer et al., 2013; Pasqualotto et al., 2019; 
Delegido et al., 2011; Nguy-Robertson et al. 2012). 
All SVIs were calculated in the Sentinel-2 Toolbox 
within Sentinel Application Platform (SNAP) v8.0 soft
ware (http://step.esa.int, accessed 10 November 

2020). Since the variables had varying values, they 
were normalized using scale and center approaches 
in the “mlr” R-package.

3.3.3. Model calibration and testing
The in situ data from Harrismith data were split into 
70% calibration (i.e. training) vs 30% testing (i.e. vali
dation) using stratified-random sampling to represent 

Figure 4. Summary statistics Sentinel-2 illumination and view angles in Bothaville (a–c) and Harrismith (d–f). The red line indicates the 
mean value for each geometric variable over 50,000 randomly sampled pixels.

Table 1. The various experimental scenarios were designed by excluding and including view and illumination geometry from 
commonly used radiometric inputs (i.e. spectral bands and vegetation indices).

Scenario Input variables Description of input variables

SB (p = 10) Spectral Bands Only spectral bands (defined in Section 3.1.2) were used.
SB + Angles (p = 

13)
Spectral Bands and 

Angles
Spectral bands combined with the cosine of view/illumination geometries (Angles), i.e. Sun Zenith Angle (SZA), 

mean View Azimuth Angle (VAA), and the Relative Azimuth Angle (RAA).
SVIs (p = 10) Spectral Vegetation 

Indices
Only the spectral vegetation indices were used.

SVIs + Angles (p 
= 13)

SVIs and Angles SVIs combined with the Angles, i.e. SZA, VAA, and mean RAA, were used.

Avar (p = 23) All Variables All input variables (described above) were used.
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all crops at the study site proportionally. Then, the 
70% calibration data were combined with Bothaville 
data to form the calibration data for the study, while 
30% was held-out for independent testing of the 
models. Using the pooled calibration data from the 
two sites, nested k-fold cross-validation (cv), where 
two nested k-fold cv resampling, were used for hyper
parameter tuning (k = 10) and model calibration and 
testing (k = 5), respectively. k-fold cross-validation (cv) 
randomly divides the dataset into equal number of 
sub-datasets according to k. Then, k-1 sub-datasets 
constitute a training dataset, while one kth sub-data
set is the validation dataset. Using one of the k sub- 
datasets at each iteration, i.e. k times, the final estima
tion value is formed by aggregating all the validation 
steps. The nested k-fold cv resampling ensured that all 
pooled data from both study sites were used to cali
brate and test the RF models (Shah et al. 2019; Verrelst 
et al. 2015). The cv resampling for model calibration 
and testing was performed with 100 iterations to 
reduce variability and increase the model’s predictive 
ability on unseen data.

3.3.4. Prediction accuracy metrics
The prediction accuracies for each Random Forest 
(RF) model, constructed using various experimental 
scenarios, were assessed with the recommended 
metrics by Richter et al. (2012). These metrics are 
R2 (coefficient of determination), RMSE (root mean 
squared error), MAE (mean absolute error), and 
RRMSE (relative RMSE) (Equations 2–6). The R2 cal
culates the amount of the response variable (e.g. 
CCC) variance explained by the predictors (e.g. 
spectral bands). The RMSE and MAE, on the other 
hand, measure the degree of error between pre
dictions and observations in the units of the BVs, i. 

e. m2 m−2 for LAI and µg cm−2 for LCab and CCC. 
The RRMSE is used for comparing different vari
ables or ranges. RRMSE values of ≤10% are indica
tive of Excellent predictions, and 10% < RRMSE 
≤20% are Good predictions (Richter et al. 2012). 
Lastly, percentage Bias (%Bias) measures the mod
el’s tendency to overestimate or underestimate a 
specific BV. A model is deemed accurate when the 
%Bias is close to 0% (Gara et al. 2019). Prediction 
accuracy assessment was assessed using R-statistics 
version 4.1.2 (Tierney 2012) packages “Metrics” 
(https://cran.r-project.org/web/packages/Metrics/ 
index.html, accessed 18 July 2021) and “Fgmutils” 
(https://rdrr.io/cran/Fgmutils/, accessed 18 July 
2021). 

R2 ¼

P
ðyn

i � �yiÞ
2

P
ðyi � yiÞ

2 (2) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

XN

i¼1
ðxi � yiÞ

2

r

(3) 

RRMSE ¼
RMSE

�xi
(4) 

MAE ¼
1
n

Xn

i¼1
xi � yij j (5) 

%BIAS ¼
Xn

i¼1
ðxi � yiÞ=

Xn

i¼1
ðxiÞ (6) 

where xi denotes the observed BV (e.g. CCC), and yi 

denotes the predicted BV (e.g. CCC), �xi and �yi are the 
means of the observed (or measured) and predicted 
BV, respectively. N in Equation 3 is the number of 
errors and n is the sample size.

Table 2. The red-edge indices from Sentinel-2 MSI data.
Index Equation Reference

Normalized Difference Index NDI45 ¼ R705 � R665
R705þR665

Delegido et al. (2011)

Meris Terrestrial Chlorophyll Index MTCI ¼ R740 � R705
R740 � R665

Dash and Curran (2005)

Modified Chlorophyll Absorption Ratio Index MCARI ¼ ½ðR705 � R665Þ � 0:2� R705 � R560ð Þ� � R705
R665

� �
Daughtry et al., (2000)

Red-Edge Inflection Point Index REIP ¼ 700þ 40� ððR665 � R783Þ=2� R705Þ

ðR740þR705Þ
Guyot and Baret, (1988)

Sentinel-2 Red-Edge Position Index S2REIP ¼ 705þ 35� ðððR665 � R783Þ=2� R705Þ

ðR740þR705Þ
Frampton et al., (2013)

Inverted Red-Edge Chlorophyll Index IRECI ¼ R783 � R665
R705þR740

Frampton et al., (2013)

Red-edge Chlorophyll Index (CIrededge) CIred� edge ¼
RNIR
RRE
� 1 Gitelson et al., (2003)

Red Edge Relative Indices (RERI) @ 705 nm RERI 705½ � ¼
R705 � R665

R865
XU et al. (2019)

Red Edge Relative Indices (RERI) @ 783 nm RERI 783½ � ¼
R783 � R705

R865
XU et al. (2019)

Simple Sentinel-2 LAI Index SeLI ¼ R865 � R705
R865þR705

Pasqualotto et al., (2019)
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4. Results

4.1. Spectral variability explained by the view and 
illumination geometry

To determine the amount of spectral variability 
explained by the view and illumination geometry vari
ables, we assessed the pixel-wise relationship of the 
geometries and each spectral band using multiple linear 
regression and coefficient of variation adjusted for the 
degree of freedom (adjusted R2). The results (Table 3) 
show that there is a significant relationship between 
view and illumination geometric covariates and 
Sentinel-2 spectral bands (p-value <2.2e-16). The 
adjusted R2 values were between 0.30 and 0.43; there
fore, view and illumination geometry covariates (i.e. SZA, 
VZA, RAA) explained 30% to 43% of spectral variability. 
B4, B2, and B7 had the lowest adjusted R2 values of 
0.30 ≤ 0.34, while B3, B5, B6, B8, B8AB8A, and B12 had 
adjusted R2 values of 0.35 < 0.4, and B11 had adjusted R2 

value of >0.4. The same is observed in Harrismith for VIS 
bands B2, B3, and B4 and NIR band B8, but the geometric 
variables explained <30% of surface reflectance variabil
ity in B5, B6, B7B7, and B8A, while they explained >40% 
of surface reflectance variability in B11 and B12. In 
Harrismith, the significant geometric variables at α <  
0.05were RAA in B2, RAA and VZA in B3, and SZA and 
VZA in B7, while all the other bands were influenced 
significantly by all geometric variables, i.e. SZA VZA, and 
RAA. Similarly, in Bothaville, all the geometric variables 
were significant at α < 0.05.

4.2. Predictive performance of Sentinel-2 
covariates

Five experimental scenarios, designed based on the dif
ferent combinations of Sentinel-2 MSI co-variates, were 
assessed for their performance in retrieving LAI, LCab, 
and CCC using Random Forest (RF) regression algorithm. 
The results were confirmed by applying the calibrated 
models on two test datasets, i.e. one selected through 
five5-fold cross-validation (cv) using the pooled data 

from two study sites (hereafter, cross-validation test 
dataset) and an independent held-out (i.e. unseen) data
set from Harrismith (hereafter, independent held-out 
test dataset). Generally, the results (Table 4) indicate 
that, among the compared experimental scenarios, the 
SB + Angles and SVIs + Angles scenarios provided the 
most robust retrievals of all the BVs considered here, 
except for CCC, where SB + Angles and Avar provided 
better results than other scenarios. The LAI retrieval 
models using SB + Angles and SVIs + Angles yielded 
excellent predictive performance with RMSE of 0.50 
and 0.43 m2 m−2. Moreover, they explained the most 
significant variability of LAI within the two test datasets, 
i.e. 69% and 67% for cross-validation test data and inde
pendent held-out (i.e. unseen) data, respectively. These 
performances were closer to Avar, which achieved 
RMSEs of 0.52 and 0.55 m2 m−2 and R2 of 0.66 and 0.67, 
respectively. In contract, the predictive performance of 
input scenarios where the per-pixel view and illumina
tion geometry covariates were excluded, i.e. SB and SVIs, 
were relatively inferior, achieving RMSE >0.60 m2 m−2 

and R2 <0.60) for both test datasets.
Interestingly, the best predictive performance for 

LCab was achieved with SVIs + Angles with RMSE of 
6.57 µg cm −2 (R2: 0.76) and 6.16 µg cm −2 (R2: 0.61), 
respectively. The next better predictive performance 
was achieved by SVIs and Avar, while SB + Angles and 
SB were slightly worse. Similar to LAI models, the CCC 
retrieval models built with input scenarios that incorpo
rated per-pixel view and illumination geometry covari
ates, i.e. SB + Angles, SVIs + Angles, and Avar, were better 
than those that used scenarios which did not contain any 
geometric variables, i.e. SB and SVIs.

Overall, the predictive performance of the BV models 
was consistent between the two test datasets, demon
strating the contribution of per-pixel view and illumina
tion geometry covariates in improving the robustness of 
BV retrievals. However, contrary to LAI results, the SVIs- 
LCab model outperformed the scenarios incorporating 
per-pixel view and illumination geometry covariates, i.e. 
SB + Angles and Avar. As demonstrated by SB + Angles, 

Table 3. The amount of spectral variability explained by the geometric variables based on multiple linear regression.
B2 B3 B4 B5 B6 B7 B8 B8A B11 B12

Bothaville Adj. R2 0.32 0.36 0.30 0.35 0.35 0.34 0.35 0.36 0.43 0.37
p-Value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Harrismith Adj. R2 0.35 0.32 0.37 0.25 0.19 0.21 0.28 0.36 0.47 0.42
p-Value <2.2e-16 2.709e-15 <2.2e-16 9.297e-12 1.076e-08 1.624e-09 2.718e-13 <2.2e-16 <2.2e-16 <2.2e-16

Adj. R2 denotes Adjusted R2.
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SVIs + Angles, and Avar results, incorporating pixel-wise 
geometric information led to robust LAI, LCab, and CCC 
predictions using Random Forest (RF). It can also be 
deduced that carefully chosen red-edge vegetation 
indices have high information content considering SVIs’ 
next better performance after SVIs + Angles in the retrie
val of LCab. In contrast, spectral reflectance bands were 
relatively superior in retrieving LAI and CCC. All input 
variable scenarios achieved RRMSE of <5%, thus within 
the GCOS limit of 10% (GCOS, 2009).

As shown in Figure 5, all the experimental scenarios 
resulted in underestimations, to some extent, of all the 
BVs considered. The LAI seems to saturate at ~5 m2 m−2 

with a %Bias of up to 4% with the independent test 
data. The retrievals of LCab saturate at ~50 µg cm−2. 
Finally, using the cross-validation test dataset, the CCC 
saturates at ~250 µg cm−2, while the same occurs at 
relatively lower values, i.e. ~200 µg cm−2 with the inde
pendent held-out test dataset. It should be noted, 
however, that the range was lower in the latter test 
dataset. As shown in Table 4, the %Bias was slightly 
worse in models which did not incorporate per-pixel 
view and illumination geometry covariates, i.e. up to 
6%, across all BVs. Overall, the results from the two test 
datasets indicate that incorporating pixel-wise sensor 
view and illumination geometries reduced the %Bias 
for LAI, LCab and CCC.

The spatial distribution maps of crop biophysical 
and biochemical variables are presented in Figure 6. 
The maps were derived with the best RF models, 
which incorporated geometric variables, i.e. SB +   

Angles and SVIs + Angles (see Table 4)

4.3. Variable importance

We evaluated the contribution of each input variable to 
the BV retrieval models with the Random Forest (RF) 
variable importance measure, i.e. the Percentage 
Increase in Mean Squared Error (%IncMSE). For brevity, 
we exclude the results for SB and SVIs which did not 
incorporate sensor view and illumination geometries as 
covariates because our interest was on the contribution 
of geometric covariates. Nevertheless, the results for SB 
were reported in our previous work (Kganyago, 
Mhangara, and Adjorlolo 2021). Generally, all evaluated 
input variable scenarios (i.e. that incorporated geometric 
covariates in the modeling of BVs) show the considerable 
importance (or influence) of the per-pixel illumination 
and viewing geometries on crop BV retrieval (Figure 7). 
The RF variable importance results for LAI (Figure 7a,d,g) 
show that VZA and SZA were the topmost important 
input variables, consistently showing a high %IncMSE of 
>20% when using the SB + Angles and SVIs + Angles, 
while they had an average %IncMSE of ≥10%<20% 
when using Avar. The other geometric covariate, i.e. 
RAA, had an average %IncMSE (i.e. ≥10% <20%) in all 
the scenarios, along B3, B8A, and B5, and SWIR bands 
B11 and B12 when using SB + Angles, CIRE_740, MTCI, 
NDI45, MCARI, IRECI, and RERI705 when using SVIs +  
Angles, and CIgreen, CIRE_740, B3, MTCI, B8A, and B12 
when using Avar. The visible bands, B2 and B4, were 

Table 4. The performance of various Sentinel-2 input variables in retrieving various crop parameters using Random Forest (RF) 
with two test datasets, i.e. cross-validation data pooled from the two sites and independent test data from Harrismith (in 
brackets).

SB SVIs SB + Angles SVIs + Angles Avar

LAI R2 0.59 (0.49) 0.52 (0.58) 0.69 (0.66) 0.67 (0.67) 0.66 (0.67)
RMSE 0.57 (0.65) 0.62 (0.62) 0.50 (0.55) 0.51 (0.53) 0.52 (0.55)
RRMSE 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02)
MAE 0.41 (0.48) 0.44 (0.44) 0.34 (0.37) 0.36 (0.36) 0.36 (0.37)
%Bias 0.00 (−0.03) 0.00 (−0.04) 0.00 (−0.03) 0.00 (−0.03) 0.00 (−0.04)

LCab R2 0.71 (0.49) 0.74 (0.59) 0.72 (0.49) 0.76 (0.61) 0.74 (0.58)
RMSE 7.16 (7.18) 6.75 (6.31) 7.01 (7.06) 6.57 (6.16) 6.69 (6.43)
RRMSE 0.01 (0.03) 0.01 (0.03) 0.01 (0.03) 0.01 (0.03) 0.01 (0.03)
MAE 5.68 (5.57) 5.30 (4.88) 5.56 (5.32) 5.24 (4.75) 5.57 (4.95)
%Bias − 0.01 (0.00) −0.01 (−0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

CCC R2 0.69 (0.69) 0.67 (0.67) 0.72 (0.69) 0.72 (0.72) 0.72 (0.72)
RMSE 33.48 (26.48) 34.52 (27.86) 32.07 (26.63) 32.37 (25.98) 32.36 (24.83)
RRMSE 0.02 (0.04) 0.02 (0.04) 0.02 (0.04) 0.02 (0.04) 0.02 (0.03)
MAE 23.31 (20.96) 23.88 (19.38) 22.60 (20.16) 22.39 (18.19) 22.68 (18.12)
%Bias 0.00 (0.00) −0.01 (−0.06) 0.00 (−0.02) −0.01 (−0.04) −0.01 (−0.03)

The bold values indicate the best (i.e. lowest) RMSE achieved by the input variable scenario for each biophysical/biochemical variable (BV).
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among the highly influential variables in the LAI model 
using SB + Angles (i.e. %IncMSE >20%), while B2 was 
among the top three influential variables in the LAI 
model using Avar.

In Figure 7b,e,h, the contribution of geometric 
covariates is also evident, where when using SB +  
Angles as input variables, VZA was the only geometric 
variable featured in the top 10 most important vari
ables. When using SVI + Angles and Avar, only SZA 
(among other geometric covariates) was the topmost 
influential variable. The radiometric variables, B5, B11, 
B8A, and B4, were relatively more influential in the SB  
+ Angles-LCab models, while MCARI, RERI705, NDI45, 
REIP, and S2REP were among the highly influential 

among the SVI + Angles variables. For Avar, B11, 
RERI705, MCARI, B5, NDI45, and REIP had the most 
influence on the LCab model. Similar to LAI, the RF 
variable importance results (Figures 7c,f,i) show 
that VZA and SZA seem to play a pivotal role in 
the CCC retrieval, where they were consistently 
featured among the most important variables in 
all experimental scenarios, SB + Angles, SVI + Angles 
and Avar. In addition to these geometric covari
ates, B5, B3, B11, and B12 were the topmost vari
ables when using SB + Angles. On the other hand, 
MTCI, S2REP, RERI705, and REIP have ranked top
most in SVI + Angles, while B5, B3, S2REP, REIP, and 
MTCI were topmost in Avar.

Figure 5. Scatterplots for the best Random Forest (RF) models for retrieving various BVs using various Sentinel-2 covariates, cross- 
validation test dataset pooled from Bothaville and Harrismith (i.e. a–c) and an independent held-out (i.e. 30%) dataset from Harrismith 
(i.e. d–f). SB + Angles achieved the best LAI and CCC predictive accuracy with cross-validation test datasets (i.e. a and c), while SVIs + 
Angles resulted in superior predictive accuracy for LCab with both test datasets (i.e. b and e), and for LAI with the Independent held-out 
(i.e. 30%) dataset (i.e. d). Avar achieved superior predictive accuracy for CCC with the independent held-out dataset (i.e. f).
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Figure 6. Spatial distribution of crop biophysical and biochemical variables for Bothaville (a–c) and Harrismith (d–f). The LAI and CCC 
maps in (a) and (c) were achieved with SB + Angles, while LCab in (b) and (e) SVIs + Angles. Avar was used to map CCC in (f).

Figure 7. Top 10 important variables (high to low) for retrieving LAI, LCab, and CCC using each experimental scenario identified with 
Random Forest (RF) and fivefold cross-validation with 100 iterations.
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5. Discussions

Understanding the contribution of view and illumina
tion geometry to the accuracy of retrieving crop BVs is 
critical for reducing the retrieval uncertainty of these 
BVs by accounting for geometric sources of variability 
in the reflectance data. As Jacquemoud et al. (2009) 
note, the view and illumination geometry profoundly 
impact the canopy reflectance. Therefore, incorporat
ing geometric variables provides an opportunity to 
exploit additional structural information content or to 
minimize their effects where it causes noise (Roy et al.  
2017b; Verrelst et al. 2008). Previous studies focused 
on the effects of varying illumination conditions due 
to topography (Martín-Ortega, García-Montero, and 
Sibelet 2020; Matsushita et al. 2007), correction of 
surface anisotropy effects for inter-sensor compari
sons (Roy et al. 2017b; Roy, Li, and Zhang 2017a) 
and global effect of either view or illumination geo
metry on vegetation reflectance (Pocewicz et al. 2007; 
Verrelst et al. 2008; Ranson, Daughtry, and Biehl 1986), 
without considering the within-scene, per-pixel view, 
and illumination geometry contribution to the retrie
val of BVs.

To address this gap, we evaluated various input 
variable scenarios (see Table 2) for crop BVs retrieval 
using the Random Forest (RF) regression algorithm. 
These experimental scenarios were designed to eluci
date the contribution of view and illumination geo
metries to the crop BVs retrieval accuracy. Since 
Sentinel-2 has a relatively wide field of view (FOV), i. 
e. ~20.6° (i.e. ~290 km), compared to relatively narrow 
FOV sensors such as Landsat-8 OLI, i.e. ~15° (~190  
km), it is prone to within scene view and illumination 
geometry variations (see Figure 2), with potential to 
affect BVs retrieval. To highlight view and illumination 
geometry contribution to model performance practi
cally, we assessed the predictive power of all input 
variables per experimental scenario using RF variable 
importance (%IncMSE). Furthermore, the adjusted R2 

of multiple linear regression was used to determine 
the amount of spectral reflectance variation explained 
by geometric covariates (see Table 4).

5.1. Contribution of geometric covariates to BVs 
retrieval accuracy

Generally, the results showed that the experimental 
scenarios incorporating per-pixel geometric 

covariates, i.e. SZA, VZA, and RAA, yielded robust 
retrievals of LAI, LCab, and CCC. For example, adding 
geometric covariates to the standard input variables 
for retrieval of LAI using cross-validation test data, i.e. 
spectral bands (SB) and spectral vegetation indices 
(SVIs), showed improvements in R2 of 10% and 15%, 
respectively. At the same time, RMSEs improved by 
0.07 m2 m−2 and 0.11 m2 m−2, respectively. These 
improvements also manifest in the derived spatial 
distribution maps, which show with-field and 
between-field spatial variations in LAI when geo
metric variables are excluded (i.e. SB and SVIs) and 
included (i.e. SB + Angles and SVIs + Angles) in the 
model (see Figure S1 and S2). The independent 
held-out test dataset showed improvements in R2 by 
17% and 9% and RMSEs by 0.1 and 0.09 m2 m−2. On 
the other hand, relatively lower improvements were 
realized for CCC, where SB + Angles achieved improve
ments of 3% in explained variability and RMSE 
improvements by only 1.41 µg cm −2 using a cross- 
validation test dataset. In contrast, the independent 
held-out dataset showed no improvements (instead, a 
decline in RMSE by 0.15 µg cm −2 was observed). 
Using SVIs + Angles, 5% improvements in explained 
variability were achieved using both test datasets, 
respectively, while RMSEs improved by 2.15 and 
1.88 µg cm −2 for the cross-validation and indepen
dent held-out test datasets, respectively. For LCab, the 
improvements in R2 and RMSE were marginal and 
possibly trivial. When the geometric covariates were 
added to SB (i.e. SB + Angles), only a 1% increase in R2 

and RMSE increase by 0.15 and 0.12 µg cm −2 were 
achieved with both test datasets, respectively. 
Similarly, SVIs + Angles led to a 2% improvement in 
explained variability and RMSE improvements by 0.18  
and 0.15 µg cm −2 for the cross-validation and inde
pendent held-out test datasets, respectively. 
Generally, LCab (measured at the leaf level) is difficult 
to estimate from canopy reflectance, which contains 
the influence of the background, plant structural and 
biochemical traits. That is why the variability intro
duced by geometric covariates was not crucial for 
LCab estimation in this study. Consequently, spatial 
distribution maps derived with standard variables, i.e. 
SB and SVIs show no apparent differences (see Figures 
S1 and S2).

Indeed, the SVIs offer a simple and rapid assess
ment of crop health, with several studies showing 
their relationship with and accuracy in retrieving 
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crop BVs (Jay et al. 2017; Main et al. 2011; Kooistra and 
Clevers 2016; Haboudane et al. 2008, 2004). In retriev
ing the LAI, CCC, and canopy nitrogen content of 
sugar beet crops, Jay et al. (2017) found that the 
SVIs perform equivalent or slightly better than 
PROSAIL inversion. It is, therefore, not surprising that 
the SVIs such as MTCI, S2REIP, REIP, NDI45, MCARI, and 
CIRE_740 were consistently ranked among the top vari
ables when using Avar across all BVs. Also, the SVIs 
scenario was superior to SB, SB + Angles, and Avar in 
retrieving LCab. Vegetation indices such as MTCI, RVI 
and NDI45 were previously found to be highly corre
lated to LAI and chlorophyll content (Viña et al. 2011). 
In agreement, Shah et al. (2019) found that MTCI is 
one of the best-performing SVIs with an R2 of 0.86 and 
an RMSE of 6.07 µg cm−2 in estimating Wheat LCab 

due to its sensitivity to wide-ranging chlorophyll con
tent. Similarly, CLEVERS and Gitelson (2013) observed 
that the MTCI is an accurate estimator of Canopy 
Chlorophyll Content (CCC) and nitrogen (N) content 
due to its linear relationship with these BVs. The 
results in this study are consistent with these previous 
studies and others (Main et al. 2011), using cross- 
validation and independent held-out test datasets. 
Moreover, SVIs selected in this study yielded compara
tive results to SB, except in exceptional cases, i.e. the 
SVIs-LCab model, where the former was superior. Their 
excellent performance can be attributed to their rela
tively low sensitivity to background soils, and residual 
atmospheric effects, which affect most VIS/NIR indices 
(Liu, Pattey, and Jégo 2012). However, their relatively 
low performance relative to SVIs + Angles signifies 
their sensitivity to per-pixel view and illumination 
geometry, as consistently reported previously 
(Verrelst et al. 2008; Jay et al. 2017). For example, 
Verrelst et al. (2008) found that broadband and nar
rowband greenness indices exhibit significant sensi
tivity to view geometry. In the current study, when 
per-pixel view and illumination geometric covariates 
were incorporated (i.e. SVIs + Angles), the variability 
explained improved from 52% (58%), 74% (59%) and 
67% (67%) when using SVIs only to 67% (67%), 76% 
(61%), and 72% (72%) for LAI, LCab, and CCC, respec
tively, using cross-validation test (independent held- 
out test) datasets. Moreover, when per-pixel view and 
illumination geometric covariates were incorporated 
into SB (i.e. SB + Angles), the variability explained 
improved from 59% (49%), 71% (49%), and 69% 
(69%) to 69% (66%), 72% (49%), 72% (69%) for LAI, 

LCab, and CCC, respectively, using cross-validation 
test (independent held-out test) datasets. These 
results signify that the per-pixel view and illumination 
geometry affect the upwelling radiance from crop 
canopies as determined by the interaction of various 
leaf and canopy traits. Such effects were not 
accounted for during atmospheric correction and 
thus were propagated to surface reflectance.

Therefore, incorporating pixel-wise view and illu
mination geometry into the retrieval of BVs is reason
able since it is one of the factors influencing the 
canopy reflectance. In this study, its inclusion to SB 
and SVIs ensured that the variability in reflectance 
caused by the view and illumination geometry is 
accounted for, thus leading to improved predictive 
accuracy relative to using the SB or SVIs only. As 
shown by the multiple linear regression analysis 
(Table 3), more than 30% of the variability in all 
Sentinel-2 spectral bands was explained by the per- 
pixel variation in view and illumination geometries at 
a 5% significant level (p < 2.2e-16). A previous study 
(Verrelst et al. 2008) found that topographic and illu
mination geometry accounted for about 13% of SVIs’ 
variability. Similarly, Rahman et al. (1999) found that 
the canopy reflectance of rice and wheat varies sig
nificantly with view geometry, where the change in 
view geometry resulted in different spectral 
responses due to the exposed soils and vegetation 
for each geometry. Nagol et al. (2015) found that the 
effect of narrow VZA (i.e. ±7°) in Landsat data resulted 
in non-negligible variations in reflectance, i.e. 20%.

5.2. The predictive power of the geometric 
covariates

The additional predictive power provided by the 
geometric covariates was also shown by the 
Random Forest (RF) variable importance results, 
where one or more view and illumination geometry 
covariates were among highly informative variables 
in all biophysical and biochemical models (see 
Figure 7). Among the geometric covariates, VZA 
and SZA were the most influential in retrieving LAI 
and CCC. In particular, all scenarios showed the high 
influence (ranked by their %IncMSE) of SZA and VZA 
for the retrieval of LAI and CCC. Other scenarios, i.e. 
LCab retrieval with SB + Angles, showed that VZA was 
the only geometric variable featured in the top 10 
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important variables (see Figure 7). In contrast, the 
retrieval of LCab using SVIs + Angles and Avar showed 
SZA as the only geometric variable with a strong 
influence on the model. The findings in this study 
correspond to Verrelst et al. (2008) that the spectral 
response of plant canopies is significantly affected 
by the sensor view geometry, affecting the accuracy 
of retrieved BVs.

Moreover, the findings not only ascertain pre
vious studies that demonstrated solar illumination 
effects on SVIs (Galvao et al. 2011) but also indi
cate that per-pixel SZA can contribute essential 
additional information that improves the predictive 
power of SVIs, thus reducing the uncertainty in BV 
retrieval. SZA contains per-pixel geometric informa
tion of the incident radiation. Critically, within- 
scene SZA changes with the crop growth stages 
(i.e. time of year); hence, ignoring its effects may 
lead to inconsistent BV retrieval and subsequent 
incorrect interpretations. For example, Galvao et 
al. (2011) found that intra-annual variability in 
enhanced vegetation index (EVI) from MODIS and 
nadir Hyperion was regulated by illumination 
effects than actual changes in LAI. In the context 
of precision agriculture and crop monitoring, such 
false alarms, i.e. caused by geometric variability, 
have profound implications. It may lead to incor
rect crop condition diagnosis that can lead to was
teful use of scarce and expensive farm inputs (e.g. 
irrigation water, pesticides, and fertilizers) and poor 
yields as the stressed crops are not timely and 
adequately remedied. This can potentially lead to 
loss of trust in remotely sensed crop BVs for agro
nomic applications.

As one of the factors affecting reflectance variability 
(see Table 3), per-pixel geometric information has been 
ignored in retrieving BVs with optical satellite images. 
This may be a consequence of the absence of spatially 
explicit view and illumination information by heritage 
missions such as Landsat and AVHRR that largely drove 
BV retrieval techniques’ development. As the results in 
this study have shown, the per-pixel geometric variables 
explain a reasonable amount of variability in satellite- 
based canopy reflectance; hence it should be incorpo
rated into MLRA models to improve the accuracy and 
reliability of crop BVs. Therefore, it is reasonable to 
deduce that spectral bands or vegetation indices com
bined with geometric covariates offer the most 

significant prospects of reliable prescription maps for 
precision agriculture technologies, such as variable rate 
application (VRA) of fertilizer and pesticides, and to aid 
agronomic decisions. Although SNAP biophysical pro
cessor, based on PROSAIL LUT and ANN incorporate 
these geometric variables (Weiss and Baret 2020), valida
tion studies (Kganyago et al. 2020; Xie et al. 2019; Djamai 
et al. 2019) have shown that the product is associated 
with significant uncertainties which render its site-speci
fic agronomic application questionable. Therefore, 
based on the results here and in line with Combal et al. 
(2003), it can be assumed that locally parameterizing the 
PROSAIL LUT (using prior information) may reduce high 
uncertainty in BV retrieval and show the contribution of 
the geometric covariates.

Therefore, models with SB or red-edge SVIs and 
pixel-wise geometric covariates are more promising 
for LAI and CCC retrieval (see Figures S1 and S2). This 
is attractive for precision agriculture applications 
since these geometric covariates come standard 
with Sentinel-2 products and can be conveniently 
incorporated into BV retrieval models to account for 
per-pixel view and illumination geometry effects and 
achieve unprecedented accuracies and temporal con
sistency for relatively wide FOV sensors such as 
Sentinel-2.

5.3. Limitations of the study

Despite the promising results, the main limitation of this 
study was that the applicability of MLRA models con
structed with experimental data is limited by the repre
sentativeness of such data (Weiss, Jacob, and Duveiller  
2020); thus, the results obtained here may be crop-type, 
region- and phenology-specific. Therefore, further 
experiments in different geographic locations and peri
ods are required to ascertain the contribution of per- 
pixel geometric covariates. Moreover, simulated data 
using RTMs is recommended for future works to make 
the models widely applicable and assess the geometric 
variables’ influence on BVs. Nonetheless, the multiple 
linear regression analysis showed a non-negligible influ
ence on surface reflectance of the considered crop types, 
while RF variable importance indicated that they are 
influential to the model performance and accuracy of 
retrieving LAI, LCab and CCC. Overall, this study found 
that per-pixel view and illumination geometric covari
ates improve MLRA crop BVs retrieval. Future studies 
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should explore the optimization of Sentinel-2 feature 
space (including derived vegetation indices using fea
ture selection to avoid potential collinearity of predictors 
and improve the practical prospects of combining geo
metric and radiometric variables in retrieving crop BVs.

6. Conclusion

This study evaluated the influence of Sentinel-2 
pixel-wise sensor view and solar illumination geome
try on the accuracy of estimating crop biophysical 
and biochemical variables relevant for precision agri
culture and crop monitoring, i.e. LAI, LCab, and CCC. 
Generally, the results showed that the experimental 
scenarios incorporating per-pixel geometric covari
ates, i.e. SZA, VZA, and RAA, yielded robust retrievals 
of LAI and CCC, while there was a negligible 
improvement (i.e. R2: 1–2%) in LCab retrieval accu
racy. In particular, standard input variables, such as 
spectral bands and spectral vegetation indices, to 
biophysical retrieval models, combined with geo
metric covariates resulted in the best (i.e. lowest) 
RMSE for all considered crop BVs owing to high 
information content in the spectral bands and red- 
edge indices, and residual variability explained by 
the pixel-wise view and illumination geometry. The 
results showed that this variability exceeded 30% in 
all Sentinel-2 bands and sites. Moreover, variable 
importance assessment showed that VZA and SZA 
were among the topmost influential variables in 
retrieving all BVs. The spatially explicit view and 
illumination information provided with Sentinel-2 
can be used as additional information to account 
for variability resulting from sensor and sun geome
tries in BV retrieval with MLRAs. This study showed 
that ignoring the influence of sensor and sun geo
metry may lead to inconsistencies in BV retrieval as 
the SZA changes along the cropping season, and 
VZA varies across the scene. Moreover, their influ
ence on reflectance is considerable, i.e. >30%; thus, 
estimated BVs can be incorrectly interpreted, as 
shown by Galvao et al. (2011). In precision agricul
ture, it may lead to an inaccurate crop health diag
nosis, risking wasteful use of irrigation water, 
pesticides and fertilizers, poor yields, and loss of 
trust in remotely sensed BVs for agronomic applica
tions. Based on this study’s results, we recommend 
incorporating per-pixel view and illumination 

geometry in estimating canopy-level BVs such as 
LAI and CCC, especially when using wide-view sen
sors such as Sentinel-2. However, further tests are 
required to reaffirm the contribution of view and 
illumination geometry toward improving the crop 
BVs that support precision agriculture and aid agro
nomic decisions.
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