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We give from first principles the nonrelativistic limit of scalar and Dirac fields in curved spacetime. We
aim to find general relativistic corrections to the quantum theory of particles affected by Newtonian
gravity, a regime nowadays experimentally accessible. We believe that the ever-improving measurement
accuracy and the theoretical interest in finding general relativistic effects in quantum systems require the
introduction of corrections to the Schrödinger-Newtonian theory. We rigorously determine these
corrections by the nonrelativistic limit of fully relativistic quantum theories in curved spacetime. For
curved static spacetimes, we show how a noninertial observer (equivalently, an observer in the presence of
a gravitational field) can distinguish a scalar field from a Dirac field by particle-gravity interaction. We
study the Rindler spacetime and discuss the difference between the resulting nonrelativistic Hamiltonians.
We find that for sufficiently large acceleration, the gravity-spin coupling dominates over the corrections
for scalar fields, promoting Dirac particles as the best candidates for observing non-Newtonian gravity in
quantum particle phenomenology.
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I. INTRODUCTION

The study of gravitational effects in quantum mechanics
is driven by the search for a bridge between general
relativity and the quantum theory. In the last twenty years,
a remarkable series of experiments reported evidence of
gravitational effects on the discrete spectrum of neutron
bouncing [1–7]. These experiments confirmed the predic-
tion of neutron wave functions having the form of Airy
functions in the presence of a homogeneous gravity field.
The reported observations can be explained by the

nonrelativistic quantum theory (NRQT) with an external
gravitational Newtonian potential. This theoretical approach
is the first step to analyze phenomena in the regime of
nonrelativistic quantum theory in curved spacetime
(NRQTCS), ignoring the backreaction of quantum particles
on the gravitational field and any eventual quantum nature
of gravity. In Fig. 1, we represent the approach by two
vertexes (NRQT and NRQTCS).
Despite being the most direct attack on the problem, the

former approach can be inconsistent or too simplified.
Indeed, the NRQT description of quantum particles

approximates the fully-relativistic QFT into a noncovar-
iant theory. Therefore, in NRQT, we ignore the relativistic
nature of fields. As a result, we may miss some inter-
actions between matter and gravity arising from covari-
ance, e.g., spin-gravity couplings for Dirac fields. A
nonrelativistic theory cannot furnish general relativistic
(GR) corrections. On the other hand, the experimental
precision may eventually increase to the point that these
GR corrections become detectable.
By looking at Fig. 1, we identify these steps with the path

QFT → NRQT → NRQTCS. The fully-relativistic QFT is
approximated by NRQT in the nonrelativistic limit, and then,

FIG. 1. The links between quantum field theory (QFT), NRQT,
quantum field theory in a curved spacetime (QFTCS), and its
NRQTCS. The path NRQT → NRQTCS is not rigorous as it
ignores the relativistic nature of the fields.
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by considering gravitational effects, one studies the
NRQTCS regime. The nonrelativistic limit (QFT →
NRQT) cancels out information “before” the gravitational
effects are introduced (NRQT → NRQTCS).
Another way to address the problem exists. Instead of

introducing the gravitational effects “after” the nonrelativ-
istic limit, we may consider them before such a limit. In this
way, we are able to take track of the GR corrections on the
gravity-matter interaction avoiding the inconsistencies. The
procedure relies on the QFTCS, which is the description of
fully-relativistic quantum fields affected by a gravitational
field. QFTCS also ignores the backreaction of the field on
the metric (i.e., the gravity is not quantum), but it is the
simplest attempt to a quantum theory that takes into account
a nonflat metric. We identify the new approach in Fig. 1
through the path QFT → QFTCS → NRQTCS and corre-
spond to the nonrelativistic limit of a fully-relativistic
quantum field theory in a curved spacetime.
The most known predictions of QFTCS are the

Hawking [8] and Unruh effect [9], which have never
been directly observed due to their inaccessible energy
scales. Conversely, the neutron-bouncing experiments [1–7]
prove that the NRQTCS regime is nowadays experimentally
accessible. This circumstance motivates the study of the
nonrelativistic limit of QFTCS. For instance, in a recent
work [10], the problem of quantum bouncing particles in a
gravitational field is discussed in the context of QFTCS. By
solving the Dirac equation in Rindler spacetime with
bouncing boundary conditions, the authors found GR
corrections to the energy spectrum of the neutrons in a
gravitational field. Others considered related scenarios:
authors in [11–13] found the perturbations of the energy
levels of an atom placed in curved spacetime; in [14], a
generalized Schwarzschild metric is used to investigate GR
corrections with gravitational spin-orbit coupling. These
results were derived from solving the Dirac equation in
Rindler spacetime in a nonrelativistic limit and, hence, by
following the path QFTCS → NRQTCS.
Here, we report on a general procedure to perform the

nonrelativistic limit for bosonic and fermionic fields in a
static spacetime. We consider complex scalar and Dirac
fields and provide the nonrelativistic description of quantum
particles in terms of wave functions, scalar product, and
Hamiltonian. As detailed in the next section, the non-
relativistic limit of QFT in Minkowski spacetime is well
established. Despite early investigation [11–14], the case of
curved spacetime has not been extensively considered.
It is known that, in the Minkowski spacetime, the time

evolution of free nonrelativistic single particles can be
approximately described by the free Hamiltonian, which
has the same form for both scalar and Dirac fields. Indeed,
the Klein-Gordon and the Dirac equation asymptotically
lead to the same nonrelativistic Schrödinger equation. For a
Dirac field, the spinorial components—obeying the same
Schrödinger equation—are decoupled and can be treated as

spectral degeneracy. Therefore, without a spin-dependent
interaction or enough experimental precision, a Minkowski
observer cannot distinguish the time evolution of a non-
relativistic scalar particle from a Dirac particle. This also
happens if one introduces a first-order correction due to a
weak gravitational field. In the case of a Rindler spacetime
with a nearly flat metric and for nonrelativistic particles, the
first correction introduced in the Schrödinger equation
corresponds to the Newtonian gravitational potential, with
no difference between scalar and Dirac fields.
By considering GR corrections, the difference between

scalar and Dirac fields appears. In this manuscript, we show
that metrics not approximated by the flat spacetime lead to
a nonvanishing difference between the Schrödinger equa-
tions arising from the Klein-Gordon and Dirac equation in
curved spacetime. A spin-metric coupling occurs, and the
observer can distinguish between a scalar and a Dirac
particle. We also show that for approximately flat metrics,
such coupling can be observed at different orders. For
sufficiently large curvature, the precision required to
distinguish between scalar and Dirac fields is lower than
the one needed in flat spacetime.
The paper is organized as follows. In Sec. II we give a

review for the nonrelativistic limit of scalar (Sec. II A) and
Dirac (Sec. II B) fields in the Minkowski spacetime. We also
show how nonrelativistic particles are approximately solu-
tions to the same Schrödinger equation. Section III is devoted
to the curved case.We derive the nonrelativistic limit of fields
in a static spacetime, and we show how the approximated
Schrödinger equations differ in the two cases. Finally, we
detail these results for the case of Rindler metric in Sec. IV.
Conclusions are drawn in Sec. V. Detailed calculations and
proofs are provided in the Appendices A, B, and C.

II. MINKOWSKI SPACETIME

The nonrelativistic limit of QFT in flat spacetimes is well
understood and discussed in the literature. In different
textbooks one can find the usual procedure to recover the
NRQT as the limiting case of QFT [15–19].
In these works, one can see how the fully-relativistic

Klein-Gordon equation can be approximated by the familiar
Schrödinger equation with vanishing potential. However,
solutions of the Klein-Gordon equation cannot be identified
with time-evolved wave functions. This occurs because the
equation is second order in the time derivative and, hence,
does not provide conservation of probability [15]. Such an
issue is part of a more general problem: one cannot define
relativistic wave functions in the position representation
[19]. Specifically, nowave function is Lorentz invariant and
obeys quantum mechanics at the same time.
The issue is solved if one considers nonrelativistic

particle and antiparticle field operators instead of wave
functions as the nonrelativistic limit of QFT fields. In the
Heisenberg picture of NRQT, the creation operators
of particles with defined position are solutions of the
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single-particle Schrödinger equation. However, such oper-
ators cannot be directly seen as the nonrelativistic limit of
QFT fields: the sole particle field—without the antipar-
ticle component—leads to operators that do not commute
when spacelike separated. This brings causality issues that
can only be solved by introducing the notion of anti-
particles. By combining particle and antiparticle field
operators, one finally recovers the nonrelativistic limit
of QFT fields. [15,18,19]
The result is that only in the context of second quan-

tization one is able to connect QFT with NRQT. In such
context, single-particle wave functions are defined through
the use of field operators ϕ̂ in the following way:

ϕ1ðt; x⃗Þ ∝ h0jϕ̂ðt; x⃗Þjϕi; ð1Þ

where jϕi is the quantum state and j0i the vacuum. Such
definition works for both NRQT and QFT. The probability
amplitudes in QFT, instead, are defined through the use of
the Klein-Gordon inner product. In the nonrelativistic limit,
ϕ1ðt; x⃗Þ is a solution of the Schrödinger equation, and the
Klein-Gordon inner product can be replaced by the usual
product between wave functions in NRQT. [17–19]
In this section, we provide a detailed review of such an

approach: we show how to recover the nonrelativistic
Schrödinger equation and wave functions from relativistic
quantum fields. In addition to spinless scalar fields ϕ̂, we
also consider Dirac fields ψ̂ , which are already discussed
in literature—see for instance [15]. We, furthermore,
consider the case of interacting relativistic fields leading
to Schrödinger equations with nonvanishing potential that
may not conserve the number of particles. To this end, we
use the definition of wave functions for states with
indefinite number of particles.
We also revise the nonrelativistic limit of flat QFT by

considering generic solutions of the Klein-Gordon
equation—i.e., modes with not defined momenta. In this
way, we address a problem that arises when one switches
from the flat to the curved case. In [19], the author points
out that the difficulty around the definition of a wave
function in first quantization comes from the problematic
definition of localized particle position states. Conversely,
states with defined momentum are well defined in both
NRQT and QFT and have been used to connect the two
theories. This fact does not occur in curved spacetimes,
where particles are defined as solutions of the curved
Klein-Gordon equation—see, for instance, [20]—and,
hence, they have not defined momentum. Therefore,
one may be interested in recovering the nonrelativistic
limit of QFT by avoiding modes with defined momentum.
In this section, we perform such a limit with generic
modes in flat spacetimes to connect with the curved case,
where such an approach is necessary. The nonflat scenario
will then be discussed in the next section.

In this section, we work in a Minkowski spacetime,
defined by coordinates ðt; x⃗Þ and flat metric

ημν ¼ diagð−c2; 1; 1; 1Þ; ð2Þ

where c is the speed of light. We consider a complex scalar
ϕ̂ðt; x⃗Þ and Dirac ψ̂ðt; x⃗Þ field. We review the known
description of fields in terms of particles [20], and we
detail the nonrelativistic limit identified by states with
kinetic and potential energy that is small with respect to
their mass energy.
We show that the representation of particles through

positive-frequency solutions of the Klein-Gordon (Dirac)
equation and the associated scalar product leads to the
familiar position representation of 0-ð1=2-Þspin states in
the nonrelativistic limit. We also show that the time
evolution of these states leads to the Schrödinger equation
in NRQT. In absence of spin-dependent interaction, scalar
and Dirac particles are approximately described by the same
Hamiltonian and, hence, identical in their time evolution.

A. Scalar field

In the case of a scalar field, we start reviewing free
particles—i.e., without interaction—and we use the decom-
position in positive and negative frequency modes with
fixed momenta. Positive frequency modes are a basis for
the Hilbert space of single particles, and the Klein-Gordon
product is adopted as the inner product. By considering the
nonrelativistic limit, we show that these modes lead to the
position representation of particles with fixed momenta,
and the Klein-Gordon scalar product can be approximated
by the usual L2ðR3Þ inner product of NRQT. Moreover, we
show that the evolution of these states can be approximated
by the free Schrödinger equation. In this way, we recover
the nonrelativistic description of free particles in terms of
wave functions, scalar product, and free Hamiltonian.
Then, we derive the same description of nonrelativistic

particles starting from a general decomposition of the field
in terms of positive and negative frequency modes. These
new modes are not necessarily associated to particles with
fixed momenta, and they lead to the position representation
of states with fixed quantum numbers. Also, we estimate
the errors for the nonrelativistic approximations.
Finally, we describe the interacting case by a nonvanish-

ing external potential. We adopt the interaction picture and
define particle states as time-dependent combinations of free
particles. In the Schrödinger picture, we represent a generic
particle state as a time-dependent combination of free-
evolving modes. We show that in the nonrelativistic limit,
these wave functions are approximated solutions of a
Schrödinger equation with a potential. Also, we show that
the product of two single-particle states can be approxi-
mated by the L2ðR3Þ product of their wave functions.
As anticipated, we start from considering a free complex

scalar field ϕ̂ solution of the Klein-Gordon equation,
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�
c2ημν∂μ∂ν −

�
mc2

ℏ

�
2
�
ϕ̂ ¼ 0; ð3Þ

where ημν is the inverse of ημν and m the mass. Hereafter,
we adopt Einstein notation over repeated indexes. Greek
indexes μ, ν, ρ, σ are for four-dimensional spacetime
coordinates ð0; 1; 2; 3Þ ¼ ðt; x⃗Þ, while latin indexes i, j,
k for three-dimensional space coordinates ð1; 2; 3Þ ¼ x⃗.
Equation (3) leads to the usual expression for the

scalar field,

ϕ̂ðt; x⃗Þ ¼
Z
R3

d3k½fðk⃗; t; x⃗Þâðk⃗Þ þ f�ðk⃗; t; x⃗Þb̂†ðk⃗Þ�; ð4Þ

where âðk⃗Þ is the annihilator operator for a free particle
mode,

fðk⃗; t; x⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc2

ð2πÞ32ωðk⃗Þ

s
e−iωðk⃗Þtþik⃗·x⃗; ð5Þ

b̂†ðk⃗Þ is the creation operator for an antiparticle with
momentum k⃗, and ωðk⃗Þ is the dispersion relation

ωðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mc2

ℏ

�
2

þ ðckÞ2
s

: ð6Þ

Note that âðk⃗Þ and b̂ðk⃗Þ generate the usual Minkowski-
Fock space through the canonical commutation relation,

½âðk⃗Þ; âðk⃗0Þ� ¼ ½b̂ðk⃗Þ; b̂ðk⃗0Þ� ¼ ½âðk⃗Þ; b̂ðk⃗0Þ� ¼ 0; ð7aÞ

½âðk⃗Þ; â†ðk⃗0Þ� ¼ ½b̂ðk⃗Þ; b̂†ðk⃗0Þ� ¼ δ3ðk⃗ − k⃗0Þ: ð7bÞ

The fðk⃗Þ modes are defined to be solutions of the Klein-
Gordon equation (3) and orthonormal with respect to the
Klein-Gordon scalar product,

ðϕ;ϕ0ÞKG ¼ i
ℏc2

Z
R3

d3x½ϕ�ðt; x⃗Þ∂0ϕ0ðt; x⃗Þ

−ϕ0ðt; x⃗Þ∂0ϕ�ðt; x⃗Þ�; ð8Þ

which is defined for any t and for any ϕ, ϕ0 solutions of
Eq. (3). Equation (8) is time independent for such solutions,
as it can be directly proven by using Eq. (3) and the
integration by parts:

d
dt

ðϕ;ϕ0ÞKG ¼ i
ℏc2

Z
R3

d3xðϕ�
∂
2
0ϕ

0 − ϕ0
∂
2
0ϕ

�Þ

¼ i
ℏc2

Z
R3

d3xðϕ�δij∂i∂jϕ0 − ϕ0δij∂i∂jϕ�Þ

¼ iδij

ℏc2

Z
R3

d3x½−ð∂iϕ�Þð∂jϕ0Þ þ ð∂iϕ0Þð∂jϕ�Þ�

¼ 0; ð9Þ

where δij ¼ ηij is the Kronecker delta. The orthonormality
of fðk⃗Þ modes with respect to ðϕ;ϕ0ÞKG reads

ðfðk⃗Þ; fðk⃗0ÞÞKG ¼ δ3ðk⃗ − k⃗0Þ; ð10aÞ

ðf�ðk⃗Þ; f�ðk⃗0ÞÞKG ¼ −δ3ðk⃗ − k⃗0Þ; ð10bÞ

ðfðk⃗Þ; f�ðk⃗0ÞÞKG ¼ 0; ð10cÞ

which can be proven from Eqs. (5) and (8).
In the interaction-free theory, the Hilbert space of single

particles is the vector space generated by the fðk⃗Þ modes
and supplemented by the Klein-Gordon scalar product (8).
The f�ðk⃗Þ modes have to be excluded since they are
associated to negative probabilities [Eq. (10)]. The space
of single antiparticle states is analogously defined from the
field ϕ̂†. Once the single particle and antiparticle space is
defined, one can derive their Fock space, which is regarded
as the space of the field states. Hereafter, we only focus on
particles.
Each fðk⃗Þ mode is associated to a single-particle state

fðk⃗Þ ↦ jk⃗i ¼ â†ðk⃗Þj0Mi—with j0Mi as the vacuum state—
while the function fðk⃗; t; x⃗Þ, with varying t and x⃗, provides
a representation for jk⃗ðtÞi, evolved with respect to the
free theory

iℏ∂0jk⃗ðtÞi ¼ ωðk⃗Þjk⃗ðtÞi: ð11Þ

We will show that in the nonrelativistic limit such repre-
sentation can be approximated by the familiar position
representation in NRQT.
The jk⃗i states are a basis for the single-particle space.

This means that a generic particles state jϕi can be
expanded in the following way:

jϕi ¼
X∞
n¼0

Z
R3n

d3nknϕ̃nðknÞjkni; ð12Þ

where

kn ¼ ðk⃗1;…; k⃗nÞ ð13Þ

is a 3n vector collecting n momenta, jkni the n-particles
state with momenta k⃗1;…; k⃗n, jk0i ¼ j0Mi the vacuum
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state, ϕ̃nðknÞ the n-particles wave function of jϕi in the
momentum representation, and ϕ̃0 the coefficient associ-
ated to the vacuum state. Note that ϕ̃nðknÞ is defined to
be symmetric with respect to the momenta variables.
The representative of the time-evolved state jϕðtÞi in the
Schrödinger picture reads

ϕnðt;xnÞ ¼
�
2m
ℏ2

�
n=2
Z
R3n

d3nknϕ̃nðknÞ
Yn
l¼1

fðk⃗l; t; x⃗lÞ;

ð14Þ

where

xn ¼ ðx⃗1;…; x⃗nÞ: ð15Þ

When n ¼ 0, we assume ϕ0 ¼ ϕ̃0. It is possible to notice
that in the single-particle case n ¼ 1, Eq. (14) is equivalent
to Eq. (1). In this way we connect to the literature.
The Klein-Gordon scalar product (8) represents the

Hilbert product between two single-particle states in terms
of their wave functions,

hϕjϕ0i ¼ ℏ2

2m
ðϕ1;ϕ0

1ÞKG: ð16Þ

This product is time independent if evaluated on
wave functions of the form of Eq. (12) and, hence,
leading to constant probabilities, as expected by the
quantum theory. Equation (16) can be proven by using
Eqs. (10), (12), (14), and the orthonormality of momen-
tum states hk⃗jk⃗0i ¼ δðk − k0Þ.
The time evolution of the jk⃗i states is described by the

e−iωt phase of the time evolved fðk⃗; t; x⃗Þ modes [Eq. (11)].
In other words, the jk⃗i states are eigenstates of an
Hamiltonian ĥKG with ωðk⃗Þ as eigenvalue. If we try to
represent such Hamiltonian in the representation space of
fðk⃗Þ modes, we must rely on some kind of square root of

HKG ¼ −ðℏcÞ2δij∂i∂j þ ðmc2Þ2 ð17Þ

since each fðk⃗Þ mode is solution of

HKGfðk⃗Þ ¼ ½ℏωðk⃗Þ�2fðk⃗Þ: ð18Þ

What we mean by square root ofHKG is the fact thatHKG

and the representative of ĥKG share the same eigenvectors
in the fðk⃗Þ modes space, but with different eigenvalues: if
ℏω is the eigenvalue of jk⃗i with respect to ĥKG, then ðℏωÞ2
is the eigenvalue of fðk⃗Þ with respect toHKG. We define, in
any case, the representative of ĥKG as hKG, and we write the
following improper expression:

hKG ¼
ffiffiffiffiffiffiffiffiffi
HKG

p
: ð19Þ

Note that hKG is not in a standard form, as it cannot be
written in terms of spatial derivatives and space-dependent
functions. However, in the nonrelativistic limit, we show that
hKG is approximated by the usual free-particle Hamiltonian
that includes a mass and kinetic energy term,

HM ¼ mc2 −
ℏ2

2m
δij∂i∂j: ð20Þ

This can be done by showing that the free modes fðk⃗Þ are
approximately solutions of the Schrödinger equation with
HM as Hamiltonian

iℏ∂0fðk⃗Þ ≈HMfðk⃗Þ: ð21Þ

To do so, we remark that the nonrelativistic limit is
achieved by particle states with energies very close to the
mass energy

���� ℏωmc2
− 1

����≪ 1: ð22Þ

We say that jϕi is nonrelativistic if ϕ̃nðknÞ is nonvanishing
only for momenta k⃗ such that Eq. (22) holds.
For nonrelativistic momenta k⃗, the frequency dispersion

relation of Eq. (6) can be approximated by

ωðk⃗Þ ≈mc2

ℏ
þ ℏk2

2m
; ð23Þ

and, hence, fðk⃗; t; x⃗Þ reads

fðk⃗; t; x⃗Þ ≈ ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32m

p exp

�
−i

mc2t
ℏ

− i
ℏk2t
2m

þ ik⃗ · x⃗

�
:

ð24Þ

This means that fðk⃗Þ is approximately the solution to
Eq. (21). Moreover, it is possible to notice that in Eq. (24)
the mode ð ffiffiffiffiffiffiffi

2m
p

=ℏÞfðk⃗; t; x⃗Þ is put in the form of the
familiar wave function of a momentum state jk⃗i in the
position representation.
The fact that nonrelativistic modes fðk⃗Þ are solutions of

Eq. (21) means also that any time-dependent wave function
in the Schrödinger picture [Eq. (14)] is a solution of the
Schrödinger equation for Fock states,

iℏ∂0ϕn ≈
Xn
l¼1

�
mc2 −

ℏ2

2m
∇2

x⃗l

�
ϕn; ð25Þ

where
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∇2
x⃗ ¼ δij

∂

∂xi
∂

∂xj
: ð26Þ

In this way, we describe the time evolution of any non-
relativistic state in the familiar Schrödinger picture
of NRQT.
It can be noticed that HM is Hermitian with respect to

both the Klein-Gordon scalar product (8) and the L2ðR3Þ
inner product, defined as

ðϕ;ϕ0ÞL2ðR3Þ ¼
Z
R3

d3xϕ�ðt; x⃗Þϕ0ðt; x⃗Þ: ð27Þ

Indeed, by integrating by parts, one can prove that

ðHMϕ;ϕ0ÞKG ¼ ðϕ; HMϕ
0ÞKG; ð28aÞ

ðHMϕ;ϕ0ÞL2ðR3Þ ¼ ðϕ; HMϕ
0ÞL2ðR3Þ: ð28bÞ

It is straightforward to prove from Eq. (24) that for
nonrelativistic modes, the Klein-Gordon scalar product (8)
can be approximated by the L2ðR3Þ inner product, with the
exception of a 2m=ℏ2 factor,

ðfðk⃗Þ; fðk⃗0ÞÞKG ≈
2m
ℏ2

ðfðk⃗Þ; fðk⃗0ÞÞL2ðR3Þ: ð29Þ

By using Eqs. (14) and (16), we can derive the same
approximation for nonrelativistic single particle states,

hϕjϕ0i ≈ ðϕ1;ϕ0
1ÞL2ðR3Þ: ð30Þ

This approximation can be also generalized for the case of
an indefinite number of particles,

hϕjϕ0i ≈
X∞
n¼0

ðϕn;ϕ0
nÞL2ðR3nÞ; ð31Þ

where

ðϕn;ϕ0
nÞL2ðR3nÞ ¼

Z
R3n

d3nxnϕ
�
nðt;xnÞϕ0

nðt;xnÞ; ð32aÞ

ðϕ0;ϕ0
0ÞL2ðR0Þ ¼ ϕ�

0ϕ
0
0: ð32bÞ

While in the fully relativistic theory, single particles can
be described by the inner product (16) and the Hamiltonian
hKG nonrelativistic single particles can be approximately
described by the L2ðR3Þ inner product and the Hamiltonian
HM. This difference is shown schematically by Table I. The
Schrödinger equation (25) and the inner product (31) are
the familiar ingredients for the description of free Fock
states in the position representation. In this way, we have
been able to describe free scalar particles in NRQT, through
the usual prescription.

It can be noticed that, in order to obtain Eqs. (21)
and (29), we have used the explicit form of free modes fðk⃗Þ
and performed the nonrelativistic limit for such functions.
Conversely, it is possible to show that the Klein-Gordon
equation leads to a free Schrödinger equation and the
Klein-Gordon product (8) to an L2ðR3Þ product for modes
with positive frequencies without looking at the explicit
form of such modes. The result is the same shown by
Eqs. (25) and (31). However, the method relies on a general
definition of real frequency modes.
To see this, we expand the scalar field ϕ̂ in terms of

generic modes gðθÞ and hðθÞ with, respectively, positive
and negative frequencies,

ϕ̂ðt; x⃗Þ ¼
X
θ

½gðθ; t; x⃗ÞâðθÞ þ hðθ; t; x⃗Þb̂†ðθÞ�; ð33Þ

where θ is a collection of quantum numbers which can be
discrete, continuum, or both.

P
θ is, hence, a generalized

sum including, eventually, integrals for continuum varia-
bles. âðθÞ and b̂†ðθÞ are, respectively, annihilation operators
for particle mode gðθÞ and creation operator for antiparticle
mode h�ðθÞ. The function gðθ; t; x⃗Þ with varying t and x⃗ is,
hence, the representative of the single-particle state jθi with
quantum numbers θ.
The fact that gðθÞ and hðθÞ have positive and negative

frequencies can be expressed by the following time
dependencies:

gðθ; t; x⃗Þ ¼ g̃ðθ; x⃗Þe−iωðθÞt; ð34aÞ

hðθ; t; x⃗Þ ¼ h̃ðθ; x⃗ÞeiωðθÞt; ð34bÞ

where the function ωðθÞ is many-to-one because of the
energy degeneracy. The orthonormality with respect to the
Klein-Gordon scalar product (8), instead, reads

ðgðθÞ; gðθ0ÞÞKG ¼ δθθ0 ; ð35aÞ

ðhðθÞ; hðθ0ÞÞKG ¼ −δθθ0 ; ð35bÞ

ðgðθÞ; hðθ0ÞÞKG ¼ 0; ð35cÞ

TABLE I. Inner product (first line) and Hamiltonian (second
line) for free scalar single particles. The left column is for the
fully relativistic theory (QFT), while the right one is for the
nonrelativistic limit (NRQT).

QFT NRQT

hϕjϕ0i ½ℏ2=ð2mÞ�ðϕ1;ϕ0
1ÞKG ðϕ1;ϕ0

1ÞL2ðR3Þ
Hamiltonian hKG HM
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where, in this case, the deltas are generalized, as they act as
Kronecker deltas for discrete indexes and as Dirac deltas
for continuum variables.
The decomposition of the field in real frequencies

[Eq. (34)] is guaranteed by the Klein-Gordon equation (3).
Indeed, by imposing the ansatz (34a), Eq. (3) for gðθÞ
becomes a Schrödinger equation with eigenvalues propor-
tional to ω2,

HKGgðθÞ ¼ ½ℏωðθÞ�2gðθÞ: ð36Þ

HKG is positive with respect to the Klein-Gordon scalar
product (8) for any positive-frequency solution of the
Klein-Gordon equation. Indeed, by defining

h0 ¼ mc2; hi ¼ ℏc∂i; ð37Þ

one can prove, through integration by parts, that

ðϕ; HKGϕ
0ÞKG ¼ δijðhiϕ; hjϕ0ÞKG þ ðh0ϕ; h0ϕ0ÞKG: ð38Þ

In this way one can see that if ϕ is a combination of gðθÞ
modes, then

ðϕ; HKGϕÞKG > 0; ð39Þ

and hence, HKG has positive eigenvalues in the space of
gðθÞ modes. This is compatible with the fact that the ω
appearing in Eq. (36) is real. The same proof holds for
h�ðθÞ modes, by considering the field ϕ̂†.
As in Eqs. (12) and (14), we may define wave functions

for any state jϕi by decomposing it in terms of jθi states,

jϕi ¼
X∞
n¼0

X
θn

ϕ̃nðθnÞjθni; ð40Þ

where we have defined the vector

θn ¼ ðθ1;…; θnÞ: ð41Þ

Note that ϕ̃nðθnÞ is symmetric with respect to θ1;…; θn.
The state jϕi in the Schrödinger picture is represented by

ϕnðt;xnÞ ¼
�
2m
ℏ2

�
n=2X

θn

ϕ̃nðθnÞ
Yn
l¼1

gðθl; t; x⃗lÞ: ð42Þ

We prove that in the nonrelativistic limit (22), ϕn is
approximately the solution of the free Schrödinger equa-
tion (25) by showing that gðθÞ is approximately the solution
of the free single-particle Schrödinger equation (21),

iℏ∂0gðθÞ ≈HMgðθÞ: ð43Þ

Thanks to Eqs. (42) and (43), one can check that Eq. (25)
holds also for wave functions defined by Eq. (42).
The proof of Eq. (43) follows from the fact that gðθÞ is

the solution of Eq. (3) and in the nonrelativistic limit (22),
the second-order time derivative of Eq. (3) acting on gðθÞ is
approximately replaced by a first-order time derivative.
Indeed, by using Eq. (34a), we obtain the following chain
of identities:

−∂20gðθÞ ¼ ω2ðθÞgðθÞ

¼
�
mc2

ℏ

�
2
�
1þ

�
ℏωðθÞ
mc2

− 1

�	
2

gðθÞ

¼
�
mc2

ℏ

�
2
�
1þ 2

�
ℏωðθÞ
mc2

− 1

�
þOðϵ2Þ

	
gðθÞ

¼ mc2

ℏ

�
2i∂0 −

mc2

ℏ
þmc2

ℏ
Oðϵ2Þ

�
gðθÞ; ð44Þ

with

ϵ ¼ ℏω
mc2

− 1: ð45Þ

Hereafter, we do not specify the argument of ϵ since for
different nonrelativistic frequencies ω, ω0, we have that
ϵðωÞ ∼ ϵðω0Þ. Finally, by using Eq. (44) in the Klein-Gordon
equation (3), we obtain

iℏ∂0gðθÞ ¼ ½HM þmc2Oðϵ2Þ�gðθÞ; ð46Þ

which leads to the Schrödinger equation (43).
From Eq. (46) one can also derive the error associated to

the approximation (43). The difference between the non-
relativistic Hamiltonian HM and the exact fully-relativistic
Hamiltonian hKG acting on nonrelativistic states is of order

HM − hKG ∼ ϵ2mc2: ð47Þ

The equivalent of Eq. (29) for gðθÞ modes reads

ðgðθÞ; gðθ0ÞÞKG ≈
2m
ℏ2

ðgðθÞ; gðθ0ÞÞL2ðR3Þ; ð48Þ

which can be obtained by using Eq. (34a) and the
approximation (22). The error associated to the approxi-
mation of the scalar products (48) comes directly from
having replaced the time derivative of the modes with
mc2=ℏ times such modes. The relative error is, hence, of
the order of ϵ,

ðgðθÞ; gðθ0ÞÞKG
2m
ℏ2 ðgðθÞ; gðθ0ÞÞL2ðR3Þ

− 1 ∼ ϵ: ð49Þ

Equations (43) and (48) result again in the familiar
description of free single-particle states in the position
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representation as before. In this case, however, gðθÞ
represents a generic basis jθi for the single-particles space.
The description of nonrelativistic Fock states is given again
by Eqs. (25) and (31), with the definition of wave functions
in a generic basis provided by Eq. (42).
Finally, we want to provide an analysis for an interacting

scalar field. We work in the interaction picture. Therefore,
the field ϕ̂ðt; x⃗Þ is free—i.e., the solution of the Klein-
Gordon equation (3)—while any quantum state jϕðtÞi is
time evolved through an interacting potential V̂ðtÞ,

iℏ∂0jϕðtÞi ¼ V̂ðtÞjϕðtÞi: ð50Þ

In the interaction picture, the field ϕ̂ can still be expanded
in terms of gðθÞ and hðθÞ modes as in Eq. (33), and the
Hilbert state can still be defined as the Fock space generated
by the orthonormal free single-particle states jθi.
We show that, in the nonrelativistic limit, states, scalar

product, and Hamiltonian can be represented identically to
the free case, with the only modifications coming from an
extra term in the Hamiltonian. To see this, we use the
modes gðθÞ as representatives of jθi, evolved with respect
to the free theory.
A generic particles state jϕðtÞi is expanded with respect

to the jθni basis,

jϕðtÞi ¼
X∞
n¼0

X
θn

ϕ̃nðθn; tÞjθni: ð51Þ

In this case, the n-particle wave function ϕ̃n is time
dependent since the time evolution of jϕðtÞi in the
interaction picture is given by Eq. (50). This leads to a
differential equation for ϕ̃n that reads

iℏ∂0ϕ̃nðθn; tÞ ¼
X∞
m¼0

X
θ0m

hθnjV̂ðtÞjθ0miϕ̃mðθ0m; tÞ: ð52Þ

The representative of the state jϕðtÞi in the Schrödinger
picture reads

ϕnðt;xnÞ ¼
�
2m
ℏ2

�
n=2X

θn

ϕ̃nðθn; tÞ
Yn
l¼1

gðθl; t; x⃗lÞ; ð53Þ

where, differently from Eq. (42), ϕ̃n is time dependent
according to Eq. (52).
For interacting particles we still define nonrelativistic

states as the ones such that ϕ̃nðθn; tÞ is nonvanishing
only for nonrelativistic frequencies ωðθÞ. However, we
also require potential energies that are very small with
respect to the mass term. We, therefore, consider the
following condition,

hθnjV̂ðtÞjθ0mi ∼ ϵmc2; ð54Þ

so that Eq. (52) is of order ϵmc2ϕ̃n.
Thanks to Eq. (52) it is straightforward to prove that

Eq. (25) still holds but with an additional potential term,

iℏ∂0ϕnðt;xnÞ ≈
Xn
l¼1

�
mc2 −

ℏ2

2m
∇2

x⃗l

�
ϕðt;xnÞ

þ
X
θn

�
2m
ℏ2

�
n=2X∞

m¼0

X
θ0m

hθnjV̂ðtÞjθ0mi

× ϕ̃mðθ0m; tÞ
Yn
l¼1

gðθl; t; x⃗lÞ: ð55Þ

Equation (55) can be identified as the NRQT Schrödinger
equation for particles with potential. It can be noticed that
the error associated to Eq. (55) is still of the order ϵ2mc2

[Eq. (47)] since the interacting part of Eq. (55) has been
exactly derived, and the error associated to the time
evolution only comes from the free part.
It is also possible to prove that Eq. (30) holds for

nonrelativistic interacting single particles. Here, Eq. (54)
plays an important role. Indeed, it suppresses the terms
coming from the time derivative of ϕ̃n [Eq. (52)] that appear
as extra terms in Eq. (30). Moreover, the fact that ℏ∂0ϕ̃n is
of order ϵmc2ϕ̃n means that the relative error associated to
the approximation (30) is still of order ϵ, as for the free
case [Eq. (49)].
The need for Eq. (54) implies that in order to have the

same description of nonrelativistic particles for free and
interacting systems, we have to assume that the energy
potential is small if compared to the mass term. The fact
that the energy of the particles is close to their mass energy
[Eq. (22)] and that the potential energy is very small with
respect to the mass [Eq. (54)] means that also the kinetic
energy of the particles is small. In this way we recover
the definition of nonrelativistic particles in terms of their
velocity.

B. Dirac field

In the previous section, we have been able to derive the
familiar position representation of states, scalar product,
and Hamiltonian in the nonrelativistic limit, starting from
the fully relativistic description of scalar particles in QFT.
A very similar result holds for Dirac fields ψ̂ .
Here, we show that nonrelativistic Dirac particles can

be described by wave functions, scalar product, and
Hamiltonian as prescribed by the NRQT. Specifically, the
representation space of single particles isC2 ⊗ L2ðR3Þ, and
the time evolution is given by a Schrödinger equation
similar to Eq. (55). The difference with the scalar theory
relies on the two spin degrees of freedom and the possibility
to have interaction-spin coupling in the energy potential.
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This section is organized as Sec. II A. We start from the
free theory and derive the NRQT description of non-
relativistic particles with fixed momenta. We also show
that the time evolution of these particles can be approx-
imately described by the same Schrödinger equation (25) of
the scalar case. Then, we use a general decomposition of
the field in positive and negative frequencies to derive the
same C2 ⊗ L2ðR3Þ representation space but with a general
basis. Finally, we detail the interacting case and show that
Eq. (55) still holds but with a potential operator that can
generally break the spin degeneracy.
Here, we use the Dirac representation for the field ψ̂ and

its modes. Therefore, we identify ψ̂ as a four-dimensional
vector and any operator acting on the left as a 4 × 4 matrix.
Free Dirac fields in Minkowski spacetime are solutions

of the Dirac equation, which reads

�
icγμ∂μ −

mc2

ℏ

�
ψ̂ ¼ 0; ð56Þ

where

γ0 ¼ 1

c

�
I 0

0 −I

�
; γi ¼

�
0 σi

−σi 0

�
ð57Þ

are gamma matrices, with I as 2 × 2 identity matrix and

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
ð58Þ

as Pauli matrices. The anticommutation relation of gamma
matrices is the following:

fγμ; γνg ¼ −2ημν: ð59Þ
Moreover, γ0 is defined to be Hermitian, while γi anti-
Hermitian,

ðγ0Þ† ¼ γ0; ðγiÞ† ¼ −γi: ð60Þ

The usual decomposition of ψ̂ in terms of modes with
defined momenta and spin reads

ψ̂ðt; x⃗Þ ¼
X2
s¼1

Z
R3

d3k½usðk⃗; t; x⃗Þĉsðk⃗Þ þ vsðk⃗; t; x⃗Þd̂†sðk⃗Þ�;

ð61Þ

where ĉsðk⃗Þ and d̂†sðk⃗Þ are, respectively, annihilation
operators for particles and creation operators for antipar-
ticles with momentum k and spin number s, and have the
following anticommutation relations:

fĉsðk⃗Þ; ĉs0 ðk⃗0Þg ¼ fd̂sðk⃗Þ; d̂s0 ðk⃗0Þg ¼ fĉsðk⃗Þ; d̂s0 ðk⃗0Þg ¼ 0;

ð62aÞ

fĉsðk⃗Þ; ĉ†s0 ðk⃗0Þg ¼ fd̂sðk⃗Þ; d̂†s0 ðk⃗0Þg ¼ δss0δ
3ðk⃗ − k⃗0Þ: ð62bÞ

The free Dirac modes usðk⃗; t; x⃗Þ and vsðk⃗; t; x⃗Þ read

usðk⃗; t; x⃗Þ ¼
cγ0ωðk⃗Þ − cγiki þmc2=ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωðk⃗Þ½ωðk⃗Þ þmc2=ℏ�

q e−iωðk⃗Þtþik⃗·x⃗us;

ð63aÞ

vsðk⃗; t; x⃗Þ ¼
−cγ0ωðk⃗Þ þ cγiki þmc2=ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωðk⃗Þ½ωðk⃗Þ þmc2=ℏ�

q eiωðk⃗Þt−ik⃗·x⃗vs;

ð63bÞ

with

u1¼

0
BBBB@
1

0

0

0

1
CCCCA; u2¼

0
BBBB@
0

1

0

0

1
CCCCA; v1 ¼

0
BBBB@
0

0

1

0

1
CCCCA; v2¼

0
BBBB@
0

0

0

1

1
CCCCA:

ð64Þ

Note that usðk⃗Þ and vsðk⃗Þ modes are orthonormal with
respect to the C4 ⊗ L2ðR3Þ scalar product,

ðψ ;ψ 0ÞC4⊗L2ðR3Þ ¼
Z
R3

d3xψ†ðt; x⃗Þψ 0ðt; x⃗Þ; ð65Þ

which is defined for any t and any ψ, ψ 0 solutions of
Eq. (56). Indeed, it is possible to prove that

ðusðk⃗Þ; us0 ðk⃗0ÞÞC4⊗L2ðR3Þ ¼ δss0δ
3ðk⃗ − k⃗0Þ; ð66aÞ

ðvsðk⃗Þ; vs0 ðk⃗0ÞÞC4⊗L2ðR3Þ ¼ δss0δ
3ðk⃗ − k⃗0Þ; ð66bÞ

ðusðk⃗Þ; vs0 ðk⃗0ÞÞC4⊗L2ðR3Þ ¼ 0: ð66cÞ

Moreover, one can prove that Eq. (65) is time independent
for any ψ, ψ 0 solutions of Eq. (56) thanks to Eqs. (59), (60),
and an integration by parts,
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d
dt

ðψ ;ψ 0ÞC4⊗L2ðR3Þ ¼
d
dt

Z
R3

d3xψ†ψ 0

¼ c2
d
dt

Z
R3

d3xψ†γ0γ0ψ 0

¼ c2
Z
R3

d3x½ð∂0ψÞ†γ0γ0ψ 0 þ ψ†γ0γ0∂0ψ
0�

¼ c2
Z
R3

d3x½ðγ0∂0ψÞ†γ0ψ 0 þ ψ†γ0γ0∂0ψ
0�

¼ c2
Z
R3

d3x

���
−γi∂i − i

mc
ℏ

�
ψ

�†
γ0ψ 0þψ†γ0

�
−γi∂i − i

mc
ℏ

�
ψ 0
	

¼ c2
Z
R3

d3x½ð∂iψ†Þγiγ0ψ 0 − ψ†γ0γi∂iψ
0�

¼ c2
Z
R3

d3x½ð∂iψ†Þγiγ0ψ 0 þ ψ†γiγ0∂iψ
0�

¼ 0: ð67Þ

It can be noticed that the Dirac equation (56) is already
put in a Schrödinger equation form. Indeed, by acting on
Eq. (56) with a ℏcγ0 matrix and using Eq. (59), one obtains

iℏ∂0ψ̂ ¼ hMψ̂ ; ð68Þ

with Hamiltonian

hM ¼ −iℏc2γ0γi∂i þmc3γ0: ð69Þ

It can also be noticed that hM is Hermitian with respect to
the C4 ⊗ L2ðR3Þ scalar product,

ðhMψ ;ψ 0ÞC4⊗L2ðR3Þ ¼ ðψ ; hMψ 0ÞC4⊗L2ðR3Þ: ð70Þ

This can be proven by using Eqs. (59), (60), and an
integration by parts,

ðhMψ ;ψ 0ÞC4⊗L2ðR3Þ ¼
Z
R3

d3x½ð−iℏc2γ0γi∂i þmc3γ0Þψ �†ψ 0

¼
Z
R3

d3x½−iℏc2ð∂iψ†Þγiγ0 þmc3ψ†γ0�ψ 0

¼
Z
R3

d3x½iℏc2ð∂iψ†Þγ0γi þmc3ψ†γ0�ψ 0

¼
Z
R3

d3xψ†ð−iℏc2γ0γi∂i þmc3γ0Þψ 0

¼ ðψ ; hMψ 0ÞC4⊗L2ðR3Þ: ð71Þ

The quantum states js; k⃗i ¼ ĉ†sðk⃗Þj0Mi generate the
Hilbert space of single particles, and they are orthonormal.
This means that any state jψi can be decomposed in the
Fock basis jsn;kni,

jψi ¼
X∞
n¼0

X
sn

Z
R3n

d3nknψ̃nðsn;knÞjsn;kni; ð72Þ

with

ðsn;knÞ ¼ ððs1; k⃗1Þ;…; ðsn; k⃗nÞÞ; ð73Þ

and with ψ̃nðsn;knÞ antisymmetric with respect to spin-
momenta variables. Equation (72) is the equivalent of
Eq. (12) for Dirac particles and provides the definition
of ψ̃nðsn;knÞ as the wave function for jψi in the spin-
momentum representation.
Equivalently to Eq. (14), the representative of the time-

evolved state jψðtÞi in the Schrödinger picture reads
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ψαn
n ðt;xnÞ¼

X
sn

Z
R3n

d3nknψ̃nðsn;knÞ
Yn
l¼1

uαlsl ðk⃗l; t; x⃗lÞ; ð74Þ

where we have introduced the four-dimensional spinorial
degrees of freedom through the α indexes,

αn ¼ α1…αn: ð75Þ

Single-particle wave functions, instead, can be written in
the spinorial notation without indexes,

ψ1ðt; x⃗Þ ¼
X2
s¼1

Z
R3

d3kψ̃1ðs; k⃗Þusðk⃗; t; x⃗Þ: ð76Þ

ψ1 is the solution of Eq. (68) and, hence, its time
evolution is provided by hM. Moreover, the Hilbert product
of any couple of single-particle states jψi, jψ 0i can be
written in terms of the C4 ⊗ L2ðR3Þ product of their wave
functions,

hψ jψ 0i ¼ ðψ1;ψ 0
1ÞC4⊗L2ðR3Þ: ð77Þ

This means that the single-particle content of the Dirac field
can be fully described by spin-momentum wave functions
(76), C4 ⊗ L2ðR3Þ product, and Hamiltonian hM. This is
summarized by Table II in its left column.
We may think that C4 ⊗ L2ðR3Þ is the representation

space of the single-particle states. However, the ortho-
normal functions usðk⃗Þ do not provide a complete basis
for C4 ⊗ L2ðR3Þ, as it is possible to see from Eq. (66).
The real representation space is actually a subspace of
C4 ⊗ L2ðR3Þ, namely the positive-frequency subspace
of C4 ⊗ L2ðR3Þ.
A generalization for an indefinite number of particles can

be given by the wave functions (74) and by the following
Hilbert product:

hψ jψ 0i ¼
X∞
n¼0

ðψn;ψ 0
nÞC4n⊗L2ðR3nÞ; ð78Þ

where

ðψn;ψ 0
nÞC4n⊗L2ðR3nÞ ¼

X
αn

Z
R3n

d3nxn½ψ�
nðt;xnÞ�αn

× ½ψ 0
nðt;xnÞ�αn ; ð79aÞ

ðψ0;ψ 0
0ÞC0⊗L2ðR0Þ ¼ ψ�

0ψ
0
0: ð79bÞ

Once that fully-relativistic theory of Dirac particles has
been provided, we move on the nonrelativistic limit of the
states. By taking the limit (23), we obtain

usðk⃗; t; x⃗Þ ≈
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p exp

�
−i

mc2t
ℏ

− i
ℏk2t
2m

þ ik⃗ · x⃗

�
us:

ð80Þ

From Eq. (80) it is immediate to see that the usðk⃗Þ modes
cover the subspace of C4 ⊗ L2ðR3Þ with vanishing third
and fourth spinorial components. More specifically, one
can prove that

v†s0usðk⃗Þ ∼ ϵ1=2u†
s00usðk⃗Þ: ð81Þ

This leads to a new representation for nonrelativistic
particle states, where the wave functions (74) and the
Hilbert product (65) can be considered with spinorial α
indexes running through only the first two components.
The representation space for nonrelativistic particles can,
hence, be identified with C2 ⊗ L2ðR3Þ.
Moreover, the time evolution of usðk⃗Þ reads

iℏ∂0usðk⃗Þ ≈HMusðk⃗Þ; ð82Þ

which means that the spinorial components of usðk⃗Þ are
approximately decoupled and are solutions of Eq. (21). It is
also possible to notice that HM is Hermitian with respect to
the scalar product ðψ ;ψ 0ÞC4⊗L2ðR3Þ,

ðHMψ ;ψ 0ÞC4⊗L2ðR3Þ ¼ ðψ ; HMψ
0ÞC4⊗L2ðR3Þ; ð83Þ

as it can be directly seen from the fact that

HM ¼ h2M
2mc2

þmc2

2
; ð84Þ

and, hence,

TABLE II. Inner product (first line) and Hamiltonian (second
line) for free Dirac single particles. The left column is for the fully
relativistic theory (QFT), while the right one is for the non-
relativistic limit (NRQT).

QFT NRQT

hψ jψ 0i ðψ1;ψ 0
1ÞC4⊗L2ðR3Þ ðψ1;ψ 0

1ÞC2⊗L2ðR3Þ
Hamiltonian hM HM
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ðHMψ ;ψ 0ÞC4⊗L2ðR3Þ

¼ 1

2mc2
ðhMhMψ ;ψ 0ÞC4⊗L2ðR3Þ þ

mc2

2
ðψ ;ψ 0ÞC4⊗L2ðR3Þ

¼ 1

2mc2
ðhMψ ; hMψ 0ÞC4⊗L2ðR3Þ þ

mc2

2
ðψ ;ψ 0ÞC4⊗L2ðR3Þ

¼ 1

2mc2
ðψ ; hMhMψ 0ÞC4⊗L2ðR3Þ þ

mc2

2
ðψ ;ψ 0ÞC4⊗L2ðR3Þ

¼ ðψ ; HMψ
0ÞC4⊗L2ðR3Þ: ð85Þ

Equation (84), on the other hand, can be derived
from Eq. (59) and the symmetry of second derivatives
(∂i∂j ¼ ∂j∂i),

h2M
2mc2

þmc2

2
¼ −

ðℏcÞ2
2m

γ0γiγ0γj∂i∂j þ
mc4

2
γ0γ0

− i
ℏc3

2
ðγ0γiγ0 þ γiγ0γ0Þ∂i þ

mc2

2

¼ ðℏcÞ2
2m

γ0γ0γiγj∂i∂j þmc2

¼ −
ℏ2

2m
ηij∂i∂j þmc2

¼ HM: ð86Þ

The result is that, in the nonrelativistic limit, single
particles are described as elements of C2 ⊗ L2ðR3Þ, where
uαs ðk⃗; t; x⃗Þ is the wave function of a particle with momen-
tum k⃗ and spin number s and with spinorial index α
running through the first two values. The states are also
approximately evolved with respect to the Hamiltonian
HM. This description is listed in Table II in the right
column and can be compared with the relativistic case,
which is in the left column.
We have been able to derive the familiar description of

Dirac particles in NRQT. General Fock states can be
obtained from the singe-particle representation space C2 ⊗
L2ðR3Þ and from the following Schrödinger equation:

iℏ∂0ψ
αn
n ≈

Xn
l¼1

�
mc2 −

ℏ2

2m
∇2

x⃗l

�
ψαn
n : ð87Þ

We want to provide the same description of nonrelativ-
istic particles but starting from generic real-frequency Dirac
modes. For this reason, we use the general expression for ψ̂
similar to Eq. (33),

ψ̂ðt; x⃗Þ ¼
X
θ

½uðθ; t; x⃗ÞĉðθÞ þ vðθ; t; x⃗Þd̂†ðθÞ�; ð88Þ

with the difference that, here, the spin degrees of freedom
introduces a further energy degeneracy and that the modes

uðθÞ and vðθÞ have spinorial components. The time
dependency of uðθÞ and vðθÞ reads identically to Eq. (34),

uðθ; t; x⃗Þ ¼ ũðθ; x⃗Þe−iωðθÞt; ð89aÞ

vðθ; t; x⃗Þ ¼ ṽðθ; x⃗ÞeiωðθÞt: ð89bÞ

Equation (89) is guaranteed by the already-proven
Hermiticity of hM. Note that uðθÞ and vðθÞ are also defined
to be orthonormal with respect to the C4 ⊗ L2ðR3Þ
product,

ðuðθÞ; uðθ0ÞÞC4⊗L2ðR3Þ ¼ δθθ0 ; ð90aÞ

ðvðθÞ; vðθ0ÞÞC4⊗L2ðR3Þ ¼ δθθ0 ; ð90bÞ

ðuðθÞ; vðθ0ÞÞC4⊗L2ðR3Þ ¼ 0: ð90cÞ

Any Fock state jψi is expanded with respect to the
single-particle basis jθi ¼ ĉ†ðθÞj0Mi as in Eq. (40),

jψi ¼
X∞
n¼0

X
θn

ψ̃nðθnÞjθni: ð91Þ

The representative of state jψðtÞi in the Schrödinger picture
reads similarly to Eq. (74),

ψαn
n ðt;xnÞ ¼

X
θn

ψ̃nðθnÞ
Yn
l¼1

uαlðθl; t; x⃗lÞ: ð92Þ

It is straightforward to prove Eq. (77) for single particles
with the new definition of ψ1ðt; x⃗Þ given by Eq. (92).
The result is the description of single particles through

the C4 ⊗ L2ðR3Þ Hilbert space. The new basis is identified
by particles with quantum numbers θ. Thanks to Eq. (90)
we notice again that the representation space is actually a
subspace of C4 ⊗ L2ðR3Þ.
For nonrelativistic particles, we can identify such sub-

space as the one in which the third and fourth spinorial
components are always vanishing. Indeed, it is possible to
prove the equivalent of Eq. (81) for the uðθÞ modes,

v†suðθÞ ∼ ϵ1=2u†
s0uðθÞ: ð93Þ

The proof of Eq. (93) follows from the fact that uðθÞ is the
solution of the Dirac equation (56),

�
cγ0ωðθÞ þ icγi∂i −

mc2

ℏ

�
uðθÞ ¼ 0; ð94Þ

and the combination of modes with nonrelativistic
momenta,
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ℏ∂iuðθÞ ∼ ϵ1=2mcuðθÞ: ð95Þ

By acting with u†
s on the left of Eq. (94), one obtains

mc2

ℏ
ϵu†

suðθÞ þ ic
X2
s0¼1

u†
sγivs0v

†
s0∂iuðθÞ ¼ 0; ð96Þ

which together with Eq. (95) leads to Eq. (93).
One can prove Eq. (82) for the mode uðθÞ in the

following way. It is known that the components of any
solution of the Dirac equation are also solutions of the
Klein-Gordon equation (3) with the same mass. This fact
can be proven by multiplying Eq. (56) with icγμ∂μ þ
mc2=ℏ on the left and exploiting the anticommutation
relation (59). This means that the uðθÞ modes are also
solutions of the Klein-Gordon equation,

�
c2ημν∂μ∂ν −

�
mc2

ℏ

�
2
�
uðθÞ ¼ 0: ð97Þ

We can, at this point, use the same arguments of Sec. II A
that have led to Eq. (43) in order to prove that

iℏ∂0uðθÞ ≈HMuðθÞ: ð98Þ

The error associated to the approximation (98) can be
identified with the equivalent of Eq. (47) for Dirac fields

HM − hM ∼ ϵ2mc2; ð99Þ

which, in turn, can be obtained from Eq. (46) for uðθÞ
modes. From Eqs. (47) and (99) one can derive the error
made by considering scalar and Dirac states identical in
their time evolution [Eqs. (43) and (98)],

hKG − hM ∼ ϵ2mc2: ð100Þ

Equation (100) implies that corrective terms of Eqs. (43)
and (98) that spoil the difference between scalar and Dirac
fields in the Minkowski spacetime can be found at order ϵ2.
A second error associated to the nonrelativistic limit

comes from considering the third and the fourth spinorial
component of uðθÞ vanishing quantities. Such approxima-
tion allowed us to replace the exact C4 ⊗ L2ðR3Þ scalar
product with the C2 ⊗ L2ðR3Þ scalar product. The relative
error can be obtained from Eq. (93) and is of order ϵ, as in
the scalar case [Eq. (49)].
Finally, we consider an interacting Dirac field, and by

following the same steps of Sec. II Awe see that interacting
particles can be still described in the representation space of
free particles. The difference between the interacting and
the free theory is only given by the presence of a potential
energy in the approximated Schrödinger equation. Such a

term can introduce spin interactions that cannot appear in
the scalar theory.
The representative of any state jψðtÞi in the Schrödinger

picture reads

ψαn
n ðt;xnÞ ¼

X
θn

ψ̃nðθn; tÞ
Yn
l¼1

uαlðθl; t; x⃗lÞ; ð101Þ

where, differently from Eq. (92), ψ̃nðθn; tÞ is time depen-
dent. The time evolution of Eq. (101) in the nonrelativistic
limit reads

iℏ∂0ψ
αn
n ðt;xnÞ ≈

Xn
l¼1

�
mc2 −

ℏ2

2m
∇2

x⃗l

�
ψαn
n ðt;xnÞ

þ
X
θn

X∞
m¼0

X
θ0m

hθnjV̂ðtÞjθ0mi

× ψ̃mðθ0m; tÞ
Yn
l¼1

uαlðθl; t; x⃗lÞ; ð102Þ

where, in this case, hθnjV̂ðtÞjθ0mi are the matrix elements of
a potential V̂ðtÞ that comes from a Dirac interacting
Lagrangian. The quantum numbers θ also contain spinorial
degrees of freedom, and hence, hθnjV̂ðtÞjθ0mi can break the
spin degeneracy present in the free theory. As explained in
Sec. II A, we obtain Eq. (102) by supplementing the
definition of nonrelativistic limit of the free theory (22)
with Eq. (54).

III. NON-MINKOWSKI SPACETIME

At variance with Sec. II, here we work with coordinates
ðT; X⃗Þ and metric gμνðT; X⃗Þ, which represent a curved
spacetime. The aim of this section is to derive a description
for nonrelativistic states of scalar Φ̂ðT; X⃗Þ and Dirac
Ψ̂ðT; X⃗Þ fields.
We start from the description of fully-relativistic particle

states in static spacetimes [20], and then we perform the
nonrelativistic limit. We show how the representation of
nonrelativistic states changes from the Minkowski to the
non-Minkowski case. We also derive the Schrödinger
equation for particles affected by the curvature and the
consequent precision needed to distinguish between scalar
and Dirac fields.

A. Scalar field

The field considered in the present section is scalar. As in
Sec. II A, we start by reviewing the relativistic theory of
particles for the free scalar field Φ̂. Each positive-frequency
mode is associated to a single-particle state and the Klein-
Gordon product in curved spacetime is used as Hilbert
product for the single-particle space. Then we perform the
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nonrelativistic limit and show that such product can be
approximated by the L2ðR3Þ inner product with a metric-
dependent measure. Moreover, we show that the quantum
states are solutions of a metric-dependent Schrödinger
equation. Finally, we extend the theory to the interacting
case by introducing a potential energy in the Schrödinger
equation.
We consider a free scalar field Φ̂ that is the solution of

the Klein-Gordon equation in curved spacetime,

�
c2ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νÞ −

�
mc2

ℏ

�
2
�
Φ̂ ¼ 0; ð103Þ

where g is the determinant of gμν. We also consider the
curved Klein-Gordon scalar product,

ðΦ;Φ0ÞCKG ¼ −
i
ℏc

Z
R3

d3X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðT; X⃗Þ

q
g0μðT; X⃗Þ

× ½Φ�ðT; X⃗Þ∂μΦ0ðT; X⃗Þ
−Φ0ðT; X⃗Þ∂μΦ�ðT; X⃗Þ�: ð104Þ

Note that ðΦ;Φ0ÞCKG is time independent for solutions of
the curved Klein-Gordon equation (103). This can be
proven by using the integration by parts

d
dT

ðΦ;Φ0ÞCKG ¼ −
i
ℏc

Z
R3

d3X½ð∂0Φ�Þ ffiffiffiffiffiffi
−g

p
g0μ∂μΦ0 þΦ�

∂0ð
ffiffiffiffiffiffi
−g

p
g0μ∂μΦ0Þ − ð∂0Φ0Þ ffiffiffiffiffiffi

−g
p

g0μ∂μΦ� −Φ0
∂0ð

ffiffiffiffiffiffi
−g

p
g0μ∂μΦ�Þ�

¼ −
i
ℏc

Z
R3

d3X

�
ð∂0Φ�Þ ffiffiffiffiffiffi

−g
p

g0μ∂μΦ0 þΦ�
�
−∂ið

ffiffiffiffiffiffi
−g

p
giμ∂μÞ þ

ffiffiffiffiffiffi
−g

p �
mc
ℏ

�
2
�
Φ0 − ð∂0Φ0Þ ffiffiffiffiffiffi

−g
p

g0μ∂μΦ�

−Φ0
�
−∂ið

ffiffiffiffiffiffi
−g

p
giμ∂μÞ þ

ffiffiffiffiffiffi
−g

p �
mc
ℏ

�
2
�
Φ�
	

¼ −
i
ℏc

Z
R3

d3X½ð∂0Φ�Þ ffiffiffiffiffiffi
−g

p
g0μ∂μΦ0 þ ð∂iΦ�Þ ffiffiffiffiffiffi

−g
p

giμ∂μΦ0 − ð∂0Φ0Þ ffiffiffiffiffiffi
−g

p
g0μ∂μΦ� − ð∂iΦ0Þ ffiffiffiffiffiffi

−g
p

giμ∂μΦ��

¼ −
i
ℏc

Z
R3

d3X½ð∂νΦ�Þ ffiffiffiffiffiffi
−g

p
gνμ∂μΦ0 − ð∂νΦ0Þ ffiffiffiffiffiffi

−g
p

gνμ∂μΦ��

¼ 0: ð105Þ

For this reason ðΦ;Φ0ÞCKG can be used as Hilbert product
for positive-frequency modes.
By expanding Φ̂ in terms of modes with real frequencies

with respect to the time T, we obtain

Φ̂ðT; X⃗Þ ¼
X
θ

½Gðθ;T; X⃗ÞÂðθÞþHðθ;T; X⃗ÞB̂†ðθÞ�; ð106Þ

where ÂðθÞ (B̂ðθÞ) is the annihilation operator associated to
the particle (antiparticle) mode GðθÞ (H�ðθÞ).
The GðθÞ and HðθÞ modes are defined to be orthonor-

mal with respect to the curved Klein-Gordon scalar
product (104),

ðGðθÞ; Gðθ0ÞÞCKG ¼ δθθ0 ; ð107aÞ

ðHðθÞ; Hðθ0ÞÞCKG ¼ −δθθ0 ; ð107bÞ

ðGðθÞ; Hðθ0ÞÞCKG ¼ 0: ð107cÞ

As in Eq. (34), the definition of positive and negative
frequency modes is expressed by

Gðθ; T; X⃗Þ ¼ G̃ðθ; X⃗Þe−iΩðθÞT; ð108aÞ

Hðθ; T; X⃗Þ ¼ H̃ðθ; X⃗ÞeiΩðθÞT: ð108bÞ

It is important to mention that the expansion of Φ̂ in
positive and negative frequency modes is not always
possible. For some metrics, the ansatz (108) is not
compatible with Eq. (103). The condition for the validity
of Eq. (108) is given by a static spacetime,

∂0gμν ¼ 0; g0i ¼ gi0 ¼ 0: ð109Þ

Indeed, Eq. (103) forGðθÞ becomes a Schrödinger equation
with eigenvalues proportional to Ω2,

ðℏΩÞ2GðθÞ ¼ HCKGGðθÞ; ð110Þ

with Hamiltonian

HCKG ¼ g00

�
ℏ2ffiffiffiffiffiffi−gp ∂ið

ffiffiffiffiffiffi
−g

p
gij∂jÞ − ðmcÞ2

�
; ð111Þ

that is positive with respect to the curved Klein-Gordon
scalar product (104) for positive-frequency modes. The
positivity of HCKG guarantees the existence of real Ω
for Eq. (110).
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It is possible to prove that HCKG is positive thanks to the
following identity:

ðΦ;HCKGΦ0ÞCKG¼δijðHiΦ;HjΦ0ÞCKGþðH0Φ;H0Φ0ÞCKG;
ð112Þ

with

H0 ¼ mc2e00; Hi ¼ ℏce00eij∂j; ð113Þ

where eαμ is the vierbein field defined as

eαμeβνgμν ¼ ηαβ ð114Þ

and with eαμ as inverse. Equation (112), in turn, can be
proven by using the static spacetime condition (109), which
in terms of the vierbein field reads

∂0eαμ ¼ 0; ei0 ¼ e0i ¼ 0: ð115Þ

The product (104) in static spacetimes reads

ðΦ;Φ0ÞCKG ¼ −
i
ℏc

Z
R3

d3X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX⃗Þ

q
g00ðX⃗Þ½Φ�ðT; X⃗Þ∂0Φ0ðT; X⃗Þ −Φ0ðT; X⃗Þ∂0Φ�ðT; X⃗Þ�: ð116Þ

By integrating by parts, one obtains

ðΦ;HCKGΦ0ÞCKG ¼−i
ℏ
c

Z
R3

d3XfΦ�½∂0∂ið
ffiffiffiffiffiffi
−g

p
gij∂jÞΦ0�− ½∂ið

ffiffiffiffiffiffi
−g

p
gij∂jÞΦ0�∂0Φ�gþ i

m2c
ℏ

Z
R3

d3X
ffiffiffiffiffiffi
−g

p ðΦ�
∂0Φ0−Φ0

∂0Φ�Þ

¼−i
ℏ
c

Z
R3

d3X
ffiffiffiffiffiffi
−g

p
gij½−ð∂iΦ�Þ∂0∂jΦ0 þ ð∂jΦ0Þ∂i∂0Φ��þ i

m2c
ℏ

Z
R3

d3X
ffiffiffiffiffiffi
−g

p ðΦ�
∂0Φ0−Φ0

∂0Φ�Þ

¼ iℏc
Z
R3

d3X
ffiffiffiffiffiffi
−g

p
g00e00e00ηijeii

0
ejj

0 ½−ð∂i0Φ�Þ∂0∂j0Φ0 þ ð∂j0Φ0Þ∂i0∂0Φ��

− i
m2c3

ℏ

Z
R3

d3X
ffiffiffiffiffiffi
−g

p
g00e00e00ðΦ�

∂0Φ0−Φ0
∂0Φ�Þ

¼ δijðHiΦ;HjΦ0ÞCKGþðH0Φ;H0Φ0ÞCKG; ð117Þ

which proves Eq. (112).
Seemingly, one can prove that HCKG is positive with

respect to the following scalar product:

ðΦ;Φ0ÞL2
SðR3Þ ¼ −c

Z
R3

d3X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX⃗Þ

q
g00ðX⃗ÞΦ�ðX⃗ÞΦ0ðX⃗Þ;

ð118Þ

which can be seen as the L2ðR3Þ inner product with a
metric-dependent measure. The positivity of HCKG with
respect to such product can still be obtained from an
identity similar to Eq. (112),

ðΦ; HCKGΦ0ÞL2
SðR3Þ ¼ δijðHiΦ; HjΦ0ÞL2

SðR3Þ

þ ðH0Φ; H0Φ0ÞL2
SðR3Þ: ð119Þ

This scalar product will appear in the nonrelativistic limit
and can be interpreted as the non-Minkowski version of the
usual L2ðR3Þ inner product.
As in Sec. II A, we interpret the Klein-Gordon equation

for positive-frequency solutions as a Schrödinger equation,

iℏ∂0GðθÞ ¼ hCKGGðθÞ; ð120Þ

with Hamiltonian hCKG that is the square root ofHCKG. The
equivalent of Eq. (19) in curved spacetime reads

hCKG ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HCKG

p
: ð121Þ

Wewill show that such Hamiltonian can be approximated by
a free single-particle Hamiltonian modified by the curvature.
In summary, the fully-relativistic single-particle descrip-

tion of the field is defined by the Hamiltonian hCKG and the
scalar product ðΦ;Φ0ÞCKG, as shown by the left column of
Table III. Instead, general Fock states jΦi are represented in
the Schrödinger picture by

TABLE III. Inner product (first line) and Hamiltonian (second
line) for free scalar single particles in curved spacetime. The left
column is for the fully relativistic theory (QFTCS), while the
right one is for the nonrelativistic limit (NRQTCS).

QFTCS NRQTCS

hΦjΦ0i ½ℏ2=ð2mÞ�ðΦ1;Φ0
1ÞCKG ðΦ1;Φ0

1ÞL2
SðR3Þ

Hamiltonian hCKG HS
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ΦnðT;XnÞ ¼
�
2m
ℏ2

�
n=2X

θn

Φ̃nðθnÞ
Yn
l¼1

Gðθl; T; X⃗lÞ; ð122Þ

where Φ̃nðθnÞ is defined from the decomposition of jΦi in
the Fock space, similarly to Eq. (40),

jΦi ¼
X∞
n¼0

X
θn

Φ̃nðθnÞjθni; ð123Þ

and is symmetric with respect to θ1;…; θn.
In the non-Minkowski spacetime, we still refer to the

nonrelativistic limit as���� ℏΩmc2
− 1

����≪ 1: ð124Þ

Wewant to show that GðθÞ is approximately the solution to
a Schrödinger equation,

iℏ∂0GðθÞ ≈HSGðθÞ; ð125Þ

with Hamiltonian

HS ¼ mc2

2

�
1 −

g00
c2

�
þ ℏ2g00
2mc2

ffiffiffiffiffiffi−gp ∂ið
ffiffiffiffiffiffi
−g

p
gij∂jÞ; ð126Þ

and that the curved Klein-Gordon scalar product ðΦ;Φ0ÞCKG
is approximated by ðΦ;Φ0ÞL2

SðR3Þ,

ðGðθÞ; Gðθ0ÞÞCKG ≈
2m
ℏ2

ðGðθÞ; Gðθ0ÞÞL2
SðR3Þ: ð127Þ

In this way, we show that the nonrelativistic single-particle
description of the field is defined by the Hamiltonian HS
and the scalar product ðΦ;Φ0ÞL2

SðR3Þ. The result can be seen
as the equivalent of Eqs. (43) and (48) in curved spacetime
and is summarized by the right column of Table III.
HS is Hermitian with respect to the curved Klein-Gordon

scalar product (116) and the product given by Eq. (118)
since it can also be written as

HS ¼ HCKG

2mc2
þmc2

2
; ð128Þ

and HCKG is Hermitian with respect to both products.
The nonrelativistic description of states with indefinite

numbers of particles is given by the wave functions Φn of
Eq. (122), the Fock extension of the ðΦ;Φ0ÞL2

SðR3Þ scalar
product,

hΦjΦ0i ≈
X∞
n¼0

ðΦn;Φ0
nÞL2

SðR3nÞ; ð129Þ

and the following Schrödinger equation,

iℏ∂0ΦnðT;XnÞ ≈
Xn
l¼1

�
mc2

2

�
1 −

g00ðX⃗lÞ
c2

�

þℏ2g00ðX⃗lÞ
2mc2

∇2

X⃗l

	
ΦnðT;XnÞ; ð130Þ

where, in this case,

ðΦn;Φ0
nÞL2

SðR3nÞ ¼ ð−cÞn
Z
R3n

d3nXn

×

�Yn
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX⃗lÞ

q
g00ðX⃗lÞ

�

×Φ�
nðXnÞΦ0

nðXnÞ; ð131aÞ

ðΦ0;Φ0
0ÞL2

SðR0Þ ¼ Φ�
0Φ0

0; ð131bÞ

and

∇2

X⃗
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðX⃗Þ
q ∂

∂Xi

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX⃗Þ

q
gijðX⃗Þ ∂

∂Xj

�
: ð132Þ

A way to approximate Eq. (103) as a Schrödinger
equation is to replace the second-order time derivative of
a mode with a first-order time derivative. In the non-
relativistic limit, the second-order time derivative of
Eq. (103) acting on GðθÞ reads

−∂20GðθÞ ¼
mc2

ℏ

�
2i∂0 −

mc2

ℏ
þmc2

ℏ
Oðϵ2Þ

�
GðθÞ; ð133Þ

which is the equivalent of Eq. (44) in curved spacetime. By
using Eq. (133) in Eq. (103) for GðθÞ, we obtain

iℏ∂0GðθÞ ¼ ½HS þmc2Oðϵ2Þ�GðθÞ; ð134Þ

which leads to the Schrödinger equation (125). The error
associated to such approximation reads

HS − hCKG ∼ ϵ2mc2: ð135Þ

Equation (127) can be proven from Eqs. (108) and (116)
and by replacing the frequencies with mc2=ℏ. The relative
error associated to such approximation is of the order ϵ as in
Eq. (49),

ðGðθÞ; Gðθ0ÞÞCKG
2m
ℏ2 ðGðθÞ; Gðθ0ÞÞL2

SðR3Þ
− 1 ∼ ϵ: ð136Þ

Finally, the interacting theory can be described similarly
to Sec. II A. The only modification from the free theory is
given by wave functions Φ̃nðθn; TÞ that are now time
dependent and, hence, generate an extra term in the
Schrödinger equation,
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iℏ∂0ΦnðT;XnÞ ≈
Xn
l¼1

�
mc2

2

�
1 −

g00ðX⃗lÞ
c2

�
þℏ2g00ðX⃗lÞ

2mc2
∇2

X⃗l

	
ΦnðT;XnÞ þ

�
2m
ℏ2

�
n=2

×
X
θn

X∞
m¼0

X
θ0m

hθnjV̂ðTÞjθ0miΦ̃mðθ0m; TÞ
Yn
l¼1

Gðθl; T; X⃗lÞ: ð137Þ

In order to obtain such a result, we consider the following
condition:

hθnjV̂ðTÞjθ0mi ∼ ϵmc2: ð138Þ

Then by following the same arguments of Sec. II A, we
obtain Eq. (137).

B. Dirac field

Here, we work in the ðT; X⃗Þ frame with a Dirac field Ψ̂.
We show how nonrelativistic single particles can be
represented by the space of positive frequency modes
and through an inner product that is metric dependent.
This result is similar to Sec. II B. However, the single-
particle representation is no more equivalent to the familiar
position representation in C2 ⊗ L2ðR3Þ.
We also show that nonrelativistic Fock states are

approximately solutions of a Schrödinger equation that
is different from the one obtained in Sec. III A for scalar
fields. Such difference is noticeable at any order, unless the
metric is almost flat and the limit gμν → ημν is controlled by
the nonrelativistic parameter ϵ. In that case, the difference
between the scalar and Dirac Hamiltonians is not vanishing
only at some orders. We discuss the situation in which
these orders differ from the one seen for the Minkowski
case [Eq. (100)].
The present section is organized as the previous ones. We

start from the free theory. We provide the fully relativistic
theory of particles, and then we consider the nonrelativistic
limit. Finally, we introduce an interaction through a
potential term in the Schrödinger equation.
The free field Ψ̂ is the solution of the curved spacetime

Dirac equation due to Fock and Weyl—see, for instance,
[21]—which reads

�
iceαμγαDμ −

mc2

ℏ

�
Ψ̂ ¼ 0; ð139Þ

with

Dμ ¼ ∂μ þ Γμ; ΓμðT; X⃗Þ ¼ −
1

2
σαβωαβμ; ð140Þ

the spin connection,

ωαβμ ¼ ηαγeγνð∂μeβν þ Γν
μρeβρÞ; ð141Þ

the Christoffel symbols,

Γρ
μν ¼

1

2
gρσð∂νgσμ þ ∂μgνσ − ∂σgμνÞ; ð142Þ

and the generators of the Clifford algebra,

σμν ¼ 1

4
½γμ; γν�: ð143Þ

The following product [12] can be defined for any couple
of solutions of Eq. (139),

ðΨ;Ψ0ÞC4⊗L2
DðR3Þ ¼ c

Z
R3

d3X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðT; X⃗Þ

q
eα0ðT; X⃗Þ

×Ψ†ðT; X⃗Þγ0γαΨ0ðT; X⃗Þ: ð144Þ

Note that ðΨ;Ψ0ÞC4⊗L2
DðR3Þ can be seen as the inner product

of C4 ⊗ L2ðR3Þ but with a metric dependent measure.
It has been proven [12] that when the metric is static,
ðΨ;Ψ0ÞC4⊗L2

DðR3Þ is time independent for solutions of
Eq. (139). Therefore, we consider the case in which
condition (109) holds.
As a consequence of condition (109), Eq. (115) holds,

together with

∂0Γρ
μν ¼ 0; Γ0

ij ¼ Γi
0j ¼ Γi

j0 ¼ 0: ð145Þ

Correspondingly,

∂0ωαβμ ¼ 0; ωij0 ¼ ωi0j ¼ ω0ij ¼ 0; ð146Þ

which leads to

∂0Γμ ¼ 0; Γ0 ¼−
1

4
ω0i0σ

0i; Γi ¼−
1

8
ωjkiσ

jk: ð147Þ

By taking into account Eq. (60), we also find out that Γ0 is
Hermitian while Γi anti-Hermitian,

Γ†
0 ¼ Γ0; Γ†

i ¼ −Γi: ð148Þ

Moreover, Eq. (144) now reads
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ðΨ;Ψ0ÞC4⊗L2
DðR3Þ ¼

1

c

Z
R3

d3X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX⃗Þ

q
e00ðX⃗Þ

×Ψ†ðT; X⃗ÞΨ0ðT; X⃗Þ; ð149Þ

thanks to Eqs. (59) and (115).
In a static spacetime, the Hamiltonian associated to the

curved Dirac equation (139) is Hermitian with respect to
the scalar product ðΨ;Ψ0ÞC4⊗L2

DðR3Þ. Such Hamiltonian is
defined from the curved Dirac equation (139) for static
spacetimes,

�
ice00γ0ð∂0þΓ0Þþ iceijγið∂j þΓjÞ−

mc2

ℏ

�
Ψ̂¼ 0; ð150Þ

and reads

hNM¼−iℏc2e00eijγ0γið∂jþΓjÞþmc3e00γ0− iℏΓ0: ð151Þ

Indeed, by acting with ℏce00γ0 on the left of Eq. (150) and
using Eq. (59), one obtains

iℏ∂0Ψ̂ ¼ hNMΨ̂: ð152Þ

The proof for the Hermiticity of hNM with respect to
ðΨ;Ψ0ÞC4⊗L2

DðR3Þ arises from the fact that ðΨ;Ψ0ÞC4⊗L2
DðR3Þ

is time independent for solutions of the curved Dirac
equation (139) and, hence, for solutions of Eq. (152),

0¼ iℏ
d
dt
ðΨ;Ψ0ÞC4⊗L2

DðR3Þ

¼ −ðiℏ∂0Ψ;Ψ0ÞC4⊗L2
DðR3Þ þ ðΨ; iℏ∂0Ψ0ÞC4⊗L2

DðR3Þ

¼ −ðhNMΨ;Ψ0ÞC4⊗L2
DðR3Þ þ ðΨ; hNMΨ0ÞC4⊗L2

DðR3Þ: ð153Þ

The Hermiticity of hNM guarantees the separation of the
field into positive and negative frequency modes,

Ψ̂ðT; X⃗Þ ¼
X
θ

½Uðθ;T; X⃗ÞĈðθÞþVðθ;T; X⃗ÞD̂†ðθÞ�; ð154Þ

with

Uðθ; T; X⃗Þ ¼ e−iΩðθÞTŨðθ; X⃗Þ; ð155aÞ

Vðθ; T; X⃗Þ ¼ eiΩðθÞTṼðθ; X⃗Þ: ð155bÞ

The single-particle space is generated by theUðθÞmodes
and is supplemented by the ðΨ;Ψ0ÞC4⊗L2

DðR3Þ product. It can
be noticed that even in the nonrelativistic limit (124), such
representation is not equivalent to C2 ⊗ L2ðR3Þ, at vari-
ance with the flat case. This occurs for two reasons:
ðΨ;Ψ0ÞC4⊗L2

DðR3Þ is metric dependent, and the curved
Dirac equation (139) in the nonrelativistic limit (124) does
not lead to vanishing spinorial components for UðθÞ

modes. The familiar NRQT prescription of position rep-
resentation through the C2 ⊗ L2ðR3Þ space cannot be
restored in the curved case (gμν ≠ ημν).
Single particles are also described by the Hamiltonian

hNM. In this section, we want to find an approximation for
hNM in the nonrelativistic limit by following the same steps
of Sec. II B. For this reason, we are interested in a Klein-
Gordon-like equation forUðθÞ. Such an equation exists and
reads [22]

�
c2ffiffiffiffiffiffi−gp Dμð

ffiffiffiffiffiffi
−g

p
gμνDνÞ−

�
mc2

ℏ

�
2

−
c2

4
R

�
UðθÞ ¼ 0; ð156Þ

with R as the Ricci scalar. In Appendix A, we give a
detailed proof for such identity. In the static case, Eq. (156)
reads

�
c2g00ð∂0 þ Γ0Þ2 þ

c2ffiffiffiffiffiffi−gp ð∂i þ ΓiÞ½
ffiffiffiffiffiffi
−g

p
gijð∂j þ ΓjÞ�

−
�
mc2

ℏ

�
2

−
c2

4
R

	
UðθÞ ¼ 0: ð157Þ

By using the curved Dirac equation (152) for UðθÞ on
Eq. (157), we obtain

−ℏ2
∂
2
0UðθÞ ¼

�
ℏ2g00ffiffiffiffiffiffi−gp ð∂i þ ΓiÞ½

ffiffiffiffiffiffi
−g

p
gijð∂j þ ΓjÞ�

−
g00
c2

�
ðmc2Þ2 þ ðℏcÞ2

4
R
�

− i2ℏΓ0hNM þ ℏ2Γ2
0

	
UðθÞ: ð158Þ

In this way, we have been able to find hNM squared. Indeed,
by using Eq. (152) for UðθÞ and Eq. (158), we obtain

−ℏ2
∂
2
0UðθÞ ¼ h2NMUðθÞ; ð159Þ

and

h2NM ¼ ℏ2g00ffiffiffiffiffiffi−gp ð∂i þ ΓiÞ½
ffiffiffiffiffiffi
−g

p
gijð∂j þ ΓjÞ�

−
g00
c2

�
ðmc2Þ2 þ ðℏcÞ2

4
R

�
− i2ℏΓ0hNM þ ℏ2Γ2

0:

ð160Þ

The second-order time derivative of Eq. (156) is the same
of Eq. (103). Moreover, Eq. (133) is valid also for Dirac
modes UðθÞ in the nonrelativistic limit. For these reasons,
Eq. (159) reads

mc2½2iℏ∂0 −mc2 þmc2Oðϵ2Þ�UðθÞ ¼ h2NMUðθÞ: ð161Þ
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If we now define the Hamiltonian

HD ¼ h2NM
2mc2

þmc2

2
; ð162Þ

then Eq. (161) reads

iℏ∂0UðθÞ ¼ ½HD þmc2Oðϵ2Þ�UðθÞ: ð163Þ

Equation (163) leads to the Schrödinger equation,

iℏ∂0UðθÞ ≈HDUðθÞ; ð164Þ

with an error given by

HD − hNM ∼ ϵ2mc2: ð165Þ

From Eq. (162) one can see that the Hamiltonian HD is
Hermitian with respect to ðΨ;Ψ0ÞC4⊗L2

DðR3Þ and can be used
for the time evolution of nonrelativistic states.
In summary, single particles are described by the inner

product ðΨ;Ψ0ÞC4⊗L2
DðR3Þ. The time evolution of single

particles is given by the Hamiltonian hNM, which, in the
nonrelativistic limit, can be replaced by HD. These results
are shown schematically by Table IV.
By comparing Eq. (160) with Eq. (111) we can write

h2NM ¼ HCKG þ 2mc2ΔH; ð166Þ

and hence,

HD ¼ HS þ ΔH; ð167Þ

with

ΔH ¼ ℏ2g00
2mc2

�½∂ið ffiffiffiffiffiffi−gp
gijΓjÞ�ffiffiffiffiffiffi−gp þ gijΓið2∂j þ ΓjÞ −

R
4

	

− i
ℏ

mc2
Γ0hNM þ ℏ2

2mc2
Γ2
0: ð168Þ

For a nonflat metric (gμν ≠ ημν), the difference between
HS and HD is nonvanishing. At variance with the flat case,
the spinorial decoupling does not occur, and Dirac particles
evolve differently from scalar states.

For Minkowski spacetimes (gμν ¼ ημν), ΔH is identi-
cally vanishing, and the difference between scalar and
Dirac fields is detectable only at order ϵ2 [Eq. (100)]. We
wonder if this is also true for a quasiflat spacetime
(gμν ≈ ημν). By considering the limit gμν → ημν regulated
through the nonrelativistic parameter ϵ, different scenarios
occur for different orders of magnitude of ΔH=ðmc2Þ with
respect to ϵ. For instance, if ΔH is of order lower than
ϵ2mc2, then the difference between hCKG and hNM is also of
order lower than ϵ2mc2. In that case, one can distinguish
between scalar and Dirac fields with less precision than the
one needed for the flat case [Eq. (100)].
For completeness we provide the nonrelativistic theory

for states different from the single particles. A general Fock
state jΨi is represented in the Schrödinger picture by

Ψαn
n ðT;XnÞ ¼

X
θn

Ψ̃nðθnÞ
Yn
l¼1

Uαlðθl; T; X⃗lÞ; ð169Þ

where Ψ̃nðθnÞ comes from the decomposition of jΨi in the
Fock space, as in Eq. (91),

jΨi ¼
X∞
n¼0

X
θn

Ψ̃nðθnÞjθni: ð170Þ

The inner product between two states jΨi, jΨ0i can be
achieved through a generalization of ðΨ;Ψ0ÞC4⊗L2

DðR3Þ for
states with indefinite number of particles,

hΨjΨ0i ¼
X∞
n¼0

ðΨn;Ψ0
nÞC4n⊗L2

DðR3nÞ; ð171Þ

with

ðΨn;Ψ0
nÞC4n⊗L2

DðR3nÞ

¼ 1

cn
X
αn

Z
R3n

d3nXn

�Yn
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX⃗lÞ

q
e00ðX⃗lÞ

�

× ½Ψ�
nðT;XnÞ�αn ½Ψ0

nðT;XnÞ�αn ; ð172aÞ

ðΨ0;Ψ0
0ÞC0⊗L2

DðR0Þ ¼ Ψ�
0Ψ0

0: ð172bÞ

The Schrödinger equation for ΨnðT;XnÞ is equi-
valent to Eq. (130) with extra terms coming from a
nonvanishing ΔH,

TABLE IV. Inner product (first line) and Hamiltonian (second
line) for free Dirac single particles in curved spacetime. The left
column is for the fully relativistic theory (QFTCS), while the
right one is for the nonrelativistic limit (NRQTCS).

QFTCS NRQTCS

hΨjΨ0i ðΨ1;Ψ0
1ÞC4⊗L2

SðR3Þ ðΨ1;Ψ0
1ÞC4⊗L2

SðR3Þ
Hamiltonian hNM HD

NONRELATIVISTIC LIMIT OF SCALAR AND DIRAC FIELDS … PHYS. REV. D 107, 045012 (2023)

045012-19



iℏ∂0Ψ
αn
n ðT;XnÞ ≈

Xn
l¼1

�
mc2

2

�
1 −

g00ðX⃗lÞ
c2

�
þℏ2g00ðX⃗lÞ

2mc2
∇2

X⃗l

	
Ψαn

n ðT;XnÞ þ
Xn
l¼1

ΔHðX⃗lÞαlβlΨ
α1…βl…αn
n ðT;XnÞ: ð173Þ

Finally, regarding the theory with interaction, we may use the same arguments of Sec. II B to conclude that the resulting
modification is an extra term in the Schrödinger equation (173),

iℏ∂0Ψ
αn
n ðT;XnÞ ≈

Xn
l¼1

�
mc2

2

�
1 −

g00ðX⃗lÞ
c2

�
þℏ2g00ðX⃗lÞ

2mc2
∇2

X⃗l

	
Ψαn

n ðT;XnÞ þ
Xn
l¼1

ΔHðX⃗lÞαlβl

×Ψα1…βl…αn
n ðT;XnÞ þ

X
θn

X∞
m¼0

X
θ0m

hθnjV̂ðTÞjθ0miΨ̃mðθ0m; TÞ
Yn
l¼1

Uαlðθl; T; X⃗lÞ: ð174Þ

IV. RINDLER FRAME

As an example of noninertial frame ðT; X⃗Þ, here we
consider a Rindler frame, such that

gμνðT; X⃗Þ ¼ diagð−c2e2aX; e2aX; 1; 1Þ; ð175Þ

where α ¼ c2a is the acceleration along the X axis. Without
loss of generality we consider α > 0. We adopt the theory
of Sec. III to derive the nonrelativistic limit for particle
states in the Rindler spacetime. We discuss the cases in
which the time evolution of scalar and Dirac fields differs.

A. Scalar field

Here we work with the scalar field Φ̂ðT; XÞ. Firstly, we
derive the nonrelativistic limit of single particles. We
compute the Schrödinger equation and the inner product
of nonrelativistic single particles. Thanks to the particular
form of the Rindler metric, we conclude that such product
can be approximated by the L2ðR3Þ inner product. In this
way, we show that nonrelativistic Rindler particles can be
equivalently treated as if they were in a flat spacetime but
with a modified free Schrödinger equation. Such modifica-
tions depend on the magnitude of the acceleration. By
considering an α that is constrained by the nonrelativistic
limit, we show how the Schrödinger equation is further
approximated by the familiar Schrödinger-Newton equation.
In the case of scalar fields in Rindler spacetime,

Eq. (103) reads�
−∂20þ c2∂21þ c2e2aX

�
∂
2
2þ ∂

2
3−
�
mc
ℏ

�
2
�	

Φ̂¼ 0: ð176Þ

An explicit decomposition of Φ̂ is known [23] and reads

Φ̂ðT; X⃗Þ ¼
Z þ∞

0

dΩ
Z
R2

d2k⊥½FðΩ; k⃗⊥; T; X⃗ÞÂðΩ; k⃗⊥Þ

þ F�ðΩ; k⃗⊥; T; X⃗ÞB̂†ðΩ; k⃗⊥Þ�; ð177aÞ

FðΩ; k⃗⊥; T; X⃗Þ ¼ F̃ðΩ; k⃗⊥; XÞeik⃗⊥·X⃗⊥−iΩT; ð177bÞ

F̃ðΩ; k⃗⊥; XÞ ¼
1

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ
a
sinh

�
πΩ
ca

�s

× KiΩ=ðcaÞ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2⊥ þ

�
mc2

ℏ

�
2

s
eaX

ca

!
;

ð177cÞ

with X⃗⊥ ¼ ðY; ZÞ and where KζðξÞ is the modified Bessel
function of the second kind. It can be noticed that in the
Rindler spacetime

g00 ¼ c
ffiffiffiffiffiffi
−g

p
; ð178Þ

and hence,

ðΦ;Φ0ÞCKG ¼ ðΦ;Φ0ÞKG; ðΦ;Φ0ÞL2
SðR3Þ ¼ ðΦ;Φ0ÞL2ðR3Þ:

ð179Þ

The FðΩ; k⃗⊥Þmodes defined in Eq. (177b) are orthonormal
with respect to the ðΦ;Φ0ÞKG scalar product and, hence,
orthonormal with respect to ðΦ;Φ0ÞCKG.
For Ω such that Eq. (124) holds, FðΩ; k⃗⊥Þ is approx-

imately the solution of

iℏ∂0FðΩ; k⃗⊥Þ ≈HSFðΩ; k⃗⊥Þ; ð180Þ

with, in this case,

HS ¼ −
ℏ2

2m
½∂21 þ e2aXð∂22 þ ∂

2
3Þ� þ

mc2

2
ð1þ e2aXÞ: ð181Þ

Equations (180) and (181) can be checked by using
Eq. (175) in Eqs. (125) and (126).
Moreover, in the nonrelativistic limit, the Klein-Gordon

product can be approximated by Eq. (127). In the case of
Rindler modes,
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ðFðΩ; k⃗⊥Þ; FðΩ0; k⃗0⊥ÞÞCKG
≈
2m
ℏ2

ðFðΩ; k⃗⊥Þ; FðΩ0; k⃗0⊥ÞÞL2
SðR3Þ: ð182Þ

Thanks to Eq. (179), Eq. (182) can be also replaced by

ðFðΩ; k⃗⊥Þ; FðΩ0; k⃗0⊥ÞÞCKG
≈
2m
ℏ2

ðFðΩ; k⃗⊥Þ; FðΩ0; k⃗0⊥ÞÞL2ðR3Þ: ð183Þ

This means that nonrelativistic Rindler single particles can
be treated identically to Minkowski particles but with a
different free Schrödinger equation (180).
Such a result is independent of the orders of magnitude

for X⃗, k⃗⊥, and a. Therefore, Eq. (180) can be considered in
all physical scenarios where the energy of the system is
nonrelativistic, while X⃗, k⃗⊥, and a can assume any values.
It can be proven that a further approximation for Eq. (180)

holds if, together with the nonrelativistic limit (124), one
considers the following orders of magnitude for the variables
X and k⃗⊥ and the parameter a:

ajXj ∼ ϵ;
ℏjk⃗⊥j
mc

∼ ϵ1=2;
ℏa
mc

∼ ϵ3=2; ð184Þ

where ϵ is defined in Eq. (45) and represents the ratio
between the nonrelativistic energy E ¼ ℏΩ −mc2 and the
mass energy mc2. The limits expressed by Eqs. (124)
and (184) can alternatively be obtained from c → ∞, with
X, k⃗⊥, α, and E fixed.
The condition jXj ≪ 1=a means that we consider states

with wave functions that are mostly localized in a region of
spacetime that is close to the accelerated observer position
X ¼ 0 with respect to the Rindler length scale 1=a. In other
words, the limit ajXj ≪ 1 can be identified with a locality
condition such that curvature effects are considered small.
Indeed, it is straightforward to see that when ajXj ≪ 1, gμν
is almost flat. For this reason we name Eq. (184) “quasi-
inertial limit.” The fact that ajXj goes to zero with the same
order of ϵ means that

Ug ¼ mαX ð185Þ

has the same magnitude of E (i.e.,Ug ∼ E ∼ ϵmc2) and can,
therefore, be regarded as a nonrelativistic energy. We
anticipate that Ug represents the potential energy for the
approximated Schrödinger equation in the limits (124)
and (184). The condition ℏ2k2⊥=m2 ∼ ϵ can also be inter-
preted as a nonrelativistic condition for the transverse
kinetic energy ℏ2k2⊥=ð2mÞ ∼ E.
When Eqs. (124) and (184) hold, Eq. (177c) can be

approximated by

F̃ðΩ; k⃗⊥; XÞ ≈
ℏ5=6

27=6πa1=6ðmcÞ1=3 Ai
�
21=3

�
mc
ℏa

�
2=3

×

�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

���
; ð186Þ

where Ai is the Airy function. The proof for Eq. (186) is
provided by Appendix B. From Eq. (186), one can see that
FðΩ; k⃗⊥Þ is approximately the solution of

iℏ∂0FðΩ; k⃗⊥Þ ≈HQIFðΩ; k⃗⊥Þ; ð187Þ

with

HQI ¼ −
ℏ2

2m
ð∂21 þ ∂

2
2 þ ∂

2
3Þ þmc2 þ Ug: ð188Þ

Indeed, by knowing that the Airy function is the solution of
the differential equation Ai00ðxÞ ¼ xAiðxÞ, one can prove
from Eq. (186) that

∂
2
1FðΩ; k⃗⊥; T; X⃗Þ ≈ 2

�
mc
ℏ

�
2
�
ℏ2k2⊥
2m2c2

þ aX

−
�
ℏΩ
mc2

− 1

��
FðΩ; k⃗⊥; T; X⃗Þ; ð189Þ

which, together with Eq. (177b), proves Eq. (187).
Equation (187) is a Schrödinger-Newton equation with a

mass term mc2 and a potential energy Ug generated by a
uniform gravitational force mα along the X axes. This can
be interpreted as the fact that an accelerated frame is locally
equivalent to an observer that experiences a gravitational
force. The result is, hence, expected by the equivalence
principle of general relativity and the limits that we have
considered.
The error associated to Eq. (187) approximating

Eq. (180) can be obtained by evaluating the difference
between the two HamiltoniansHS,HQI acting on FðΩ; k⃗⊥Þ,

HS−HQI¼
ℏ2k2⊥
2m

ðe2aX−1Þþmc2
�
e2aX−1

2
−aX

�
: ð190Þ

For nonrelativistic modes FðΩ; k⃗⊥Þ and in the quasi-inertial
limit (184), HS −HQI acts on FðΩ; k⃗⊥Þ with the following
leading order:

HS −HQI ∼ ϵ2mc2: ð191Þ

By comparing Eq. (191) with Eq. (135), one notices that the
errors associated to Eq. (187) are of the same orders of
Eq. (180). Therefore, no reason to prefer the Hamiltonian
HS over HQI exists: they can be considered equivalent
in the nonrelativistic quasi-inertial regime. Moreover, the
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difference between the HamiltonianHQI and the exact fully-
relativistic hCKG reads

HQI − hCKG ∼ ϵ2mc2: ð192Þ

Equation (192) gives an esteem of the GR corrections to the
Schrödinger-Newton equation (187) for scalar fields.
It can be noticed that a similar result holds when one

considers the following limit:

ajXj ∼ ϵ;
ℏjk⃗⊥j
mc

∼ ϵ1=2;
ℏa
mc

∼ ϵ: ð193Þ

Equation (193) can be identified with the quasi-inertial
limit (184) considered above but with a different order of
magnitude for ℏa=ðmcÞ, with respect to the nonrelativistic
limit. Moreover, Eq. (193) cannot be obtained from the limit
c → ∞, with X, k⃗⊥, α, and E fixed. A larger acceleration is
required here, as opposed to the limit (184). We, hence,
name Eq. (193) “high acceleration limit.”
By following a proof similar to Appendix B, one can

show that in the high acceleration limit (193), the Rindler
modes FðΩ; k⃗⊥Þ can be approximated by Eq. (186) and,
hence, are approximately solutions of Eq. (187). The
only difference with the previous case relies on the fact
that the argument of the Airy function is of order ϵ1=3.
Equation (192) also holds in the high acceleration limit (193)
and provides the error associated to the Schrödinger-Newton
equation (187).

B. Dirac field

Here we discuss the case of Dirac fields Ψ̂ in Rindler
spacetime. We first review the nonrelativistic limit of
single particles. We derive a Schrödinger equation that is
different from the scalar case.
We then show that in the quasi-inertial limit (184) such an

equation can be approximated by the Schrödinger-Newton
equation (187). GR corrections to such an equation are of
order ϵ2mc2, as for the scalar field. Conversely, by con-
sidering the high acceleration limit (193), we show that, in
such case, GR corrections to the Schrödinger-Newton
theory are ϵ−2=3 times larger than the ones obtained for
the scalar field. This means that Dirac fields are better
candidates for detecting GR corrections to the Schrödinger-
Newton theory. Moreover, we show that the difference
between scalar and Dirac Hamiltonians is ϵ−2=3 times larger
than what we found for the Minkowski case [Eq. (100)]. In
other words, the Rindler metric is able to enhance the
distinguishability between scalar and Dirac fields.
We consider a Dirac field Ψ̂ that is the solution to

the Dirac equation (139) in Rindler spacetime (175).
The explicit form of such an equation can be given by
computing the vierbein field eαμ and the matrices Γμ.

The only nonvanishing components of eαμ, ∂μeαν, ∂ρgμν,
Γρ

μν, ωαβμ, and Γμ are the following:

e00ðT; X⃗Þ ¼ e−aX; e11ðT; X⃗Þ ¼ e−aX; ð194aÞ

e22ðT; X⃗Þ ¼ 1; e33ðT; X⃗Þ ¼ 1; ð194bÞ

∂1e00ðT; X⃗Þ ¼−ae−aX; ∂1e11ðT; X⃗Þ ¼−ae−aX; ð194cÞ

∂1g00ðT; X⃗Þ ¼ −2c2ae2aX; ∂1g11ðT; X⃗Þ ¼ 2ae2aX;

ð194dÞ

Γ1
00ðT; X⃗Þ ¼ c2a; Γ0

10ðT; X⃗Þ ¼ a; ð194eÞ

Γ0
01ðT; X⃗Þ ¼ a; Γ1

11ðT; X⃗Þ ¼ a; ð194fÞ

ω100ðT; X⃗Þ ¼ c2a; ω010ðT; X⃗Þ ¼ −c2a; ð194gÞ

Γ0ðT; X⃗Þ ¼
c2a
2

γ0γ1: ð194hÞ

Equation (139) now reads

�
icγ0∂0 þ i

ca
2
γ1 þ icγ1∂1

þ eaX
�
icγ2∂2 þ icγ3∂3 −

mc2

ℏ

��
Ψ̂ ¼ 0; ð195Þ

while the scalar product (149) reads

ðΨ;Ψ0ÞC4⊗L2
DðR3Þ ¼

Z
R3

d3XeaXΨ†ðT; X⃗ÞΨ0ðT; X⃗Þ: ð196Þ

In the nonrelativistic limit (124), UðθÞ is approximately
the solution of the Schrödinger equation (164) that reads

iℏ∂0UðθÞ ≈ ðHS þ ΔHÞUðθÞ; ð197Þ

where, in this case, HS is given by Eq. (181) and ΔH by

ΔH ¼ −i
ℏa
2m

γ0γ1hNM þ ðℏaÞ2
8m

; ð198Þ

hNM ¼ −ℏcγ0
�
i
ca
2
γ1 þ icγ1∂1

þ eaX
�
icγ2∂2 þ icγ3∂3 −

mc2

ℏ

��
: ð199Þ

It can be noticed that the Schrödinger equation (197)
differs from the scalar field case [Eq. (180)]. The difference
between the two Hamiltonians HD and HS is given by
Eq. (198), which in the nonrelativistic limit reads
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ΔH ≈ −i
ℏc2a
2

γ0γ1 þ ðℏaÞ2
8m

: ð200Þ

Equation (200) is generally nonvanishing. As already
explained in Sec. III B, this occurs because the metric is
not flat.
Different scenarios are possible when a varies with

respect to other dimensional quantities and ϵ. For instance,
in the case of quasi-inertial limit defined by Eq. (184),
the scalar product (196) can be approximated by the
C4 ⊗ L2ðR3Þ inner product,

ðΨ;Ψ0ÞC4⊗L2
DðR3Þ ≈ ðΨ;Ψ0ÞC4⊗L2ðR3Þ; ð201Þ

and the dynamics of the single particles are reduced to the
familiar Schrödinger-Newton equation,

iℏ∂0UðθÞ ≈HQIUðθÞ; ð202Þ

already defined for scalar particles by Eqs. (187) and (188).
Equation (201) is due to the fact that in the quasi-inertial

limit, wave functions are localized inside the region
ajXj ≪ 1, and hence, eaX ≈ 1. Equation (202) can be
proven by noticing that ΔH, acting on nonrelativistic
states, is approximated by Eq. (200) and, hence, in the
quasi-inertial limit (184),

ΔH ∼ ϵ2mc2; ð203Þ

which is ϵ times smaller than the potential energy
Ug ∼ ϵmc2. This, together with the fact that in the quasi-
inertial limit (184), HS can be replaced by HQI [Eq. (191)],
leads to Eq. (202).
Equation (203) comes from the fact that in the quasi-

inertial limit ℏca ∼ ϵ3=2mc2 and that for any nonrelativistic
couple of modes UðθÞ, Uðθ0Þ,

cU†ðθ0Þγ0γ1UðθÞ ∼ ϵ1=2: ð204Þ

Equation (204), instead, comes from the following property:

v†sUðθÞ ∼ ϵ1=2u†
s0UðθÞ; ð205Þ

which holds for any nonrelativistic mode UðθÞ. This
cannot be proven identically to Eq. (93) since one cannot
consider solutions of the curved Dirac equation with defined
momentum. To prove Eq. (205), one has to consider the
exact solutions of the Dirac-Rindler equation (195) and
compare their spinorial components. We provide such proof
in Appendix C.
In summary, Dirac modes are approximately the solution

of the same Schrödinger equation for the scalar field and
the scalar product is the same one defined for Dirac fields in
Minkowski spacetime. Analogously, the scalar product for
scalar fields is approximated by the L2ðR3Þ inner product

[Eq. (183)]. This means that nonrelativistic quasi-inertial
Dirac particles can be described identically to scalar states
with the exception of spin degeneracy, as it occurs in the
Minkowski spacetime.
From Eqs. (165), (191), and (203), one can derive

the errors associated to the Schrödinger-Newton equa-
tion (202),

HQI − hNM ∼ ϵ2mc2: ð206Þ

By comparing Eq. (206) with Eq. (192), one can deduce
that GR corrections to the Schrödinger-Newton equation
for Dirac fields are of the same order as the GR corrections
for scalar fields. Moreover, the difference between scalar
and Dirac Hamiltonians is of the same order as in the
Minkowski case [Eq. (100)] and reads

hCKG − hNM ∼ ϵ2mc2: ð207Þ

A different scenario can be considered by changing the
asymptotic behavior of a with respect to the nonrelativistic
limit. For instance, by considering the high acceleration
limit (193), one obtains

ΔH ∼ ϵ4=3mc2: ð208Þ

Equation (208) can be proven similarly to Eq. (203) with
the difference that ℏca ∼ ϵmc2, and that for any non-
relativistic couple of modes UðθÞ, Uðθ0Þ,

cU†ðθ0Þγ0γ1UðθÞ ∼ ϵ1=3: ð209Þ

Equation (209) comes from the equivalent of Eq. (205) in
the high acceleration limit, which reads

v†sUðθÞ ∼ ϵ1=3u†
s0UðθÞ: ð210Þ

From Eqs. (165), (191), and (208), one can notice that
the errors associated to the Schrödinger-Newton equa-
tion (202) are dominated by ΔH and read

HQI − hNM ∼ ϵ4=3mc2: ð211Þ

By comparing Eq. (211) with Eq. (192), one can deduce that
GR corrections to the Schrödinger-Newton equation for
Dirac fields are ϵ−2=3 times larger than the GR corrections
for scalar fields. By increasing the experimental precision
for energies up to the order of ϵ4=3mc2, a term proportional
to γ0γ1 [Eq. (200)] appears in the Dirac case, while nothing
shows up for scalar fields.
By also comparing Eqs. (192) and (211), we find out that

hCKG − hNM ∼ ϵ4=3mc2; ð212Þ
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which means that the difference between scalar and Dirac
Hamiltonians is visible at order ϵ4=3. Such order is lower
than the one needed for the distinguishability between the
two types of fields in the Minkowski spacetime [Eq. (100)].
The result is that in the Rindler frame, when the accel-
eration is sufficiently high, it is easier to distinguish
between scalar and Dirac fields than in the Minkowski
spacetime.
This is a difference between the quasi-inertial (184) and

the high acceleration limit (193) that is summarized in
Table V.

V. CONCLUSIONS

We investigated the nonrelativistic limit of scalar and
Dirac particles in curved static spacetimes. It is well known
that particles in flat spacetime are approximated by the
same Schrödinger equation in the nonrelativistic limit
[Eqs. (43) and (98)]. On the contrary, scalar and Dirac
fields in curved spacetimes have different nonrelativistic
asymptotic Hamiltonians HS and HD. This implies that the
two kinds of particles evolve differently when the gravi-
tational field is sufficiently strong.
As an example, we considered nonrelativistic particles in

a Rindler metric with acceleration α. For an α sufficiently
large, ΔH ¼ HD −HS cannot be ignored and leads to
noticeable differences on the time evolution of the particles.
If the spacetime is almost flat [Eq. (184)], then ΔH
becomes negligible if compared to the gravitational poten-
tial Ug; in this way, one finds the usual Schrödinger-
Newton equation (187) for both scalar and Dirac fields.
We remark that the nonrelativistic limit is often regarded

as the one in which c → ∞. However this limit may vary in
a way dependent on the acceleration. Letting a ¼ α=c2, the
limit c → ∞ does not specify if α has to go to infinity with
finite a, or a has to go to zero with finite α.
By considering α ∼ c and a ∼ c−1 [Eq. (193)], we find

that GR corrections coming from ΔH are of order ϵ4=3

[Eq. (211)], while the GR corrections coming from the
Klein-Gordon equation (176) are of the order ϵ2 [Eq. (135)].
This implies that an improved experimental precision will
eventually unveil a second-order GR correction only for
Dirac fields. We believe that this scaling addresses the
possibility of observing spin-gravity coupling as a signal for
general relativity in quantum particle phenomena.

APPENDIX A

In this section, we give a proof of Eq. (156) for any Ψ
that is the solution of Eq. (139). Here we use the usual
definition of derivatives ∇ covariant with respect to the
tensorial indexes μ, ν, ρ, σ, and D such that

Dμ ¼ ∇μ þ Γμ: ðA1Þ

In this way, we replace Eq. (139) with

�
iceαμγαDμ −

mc2

ℏ

�
Ψ ¼ 0; ðA2Þ

Eq. (141) with

ωαβμ ¼ ηαγeγν∇μeβν; ðA3Þ

and Eq. (156) with

�
c2gμνDμDν −

�
mc2

ℏ

�
2

−
c2

4
R

�
Ψ ¼ 0: ðA4Þ

The aim here is to prove Eq. (A4) from Eq. (A2).
We proceed by acting on the left of Eq. (A2) with

iceβνγβDν þmc2=ℏ, in order to obtain

�
−c2eβνγβDνðeαμγαDμÞ −

�
mc2

ℏ

�
2
�
Ψ ¼ 0: ðA5Þ

And thanks to Eqs. (59), (A3), and the antisymmetry of
ωαβμ with respect to α and β we prove that Dν and eαμγα

commute as follows:

TABLE V. Asymptotic behavior with respect to the nonrela-
tivistic parameter ϵ for different limits. The quasi-inertial and the
high acceleration limit are defined by, respectively, Eqs. (184)
and (193) in terms of the position X, the transverse momentum
k⃗⊥, the acceleration α ¼ ac2, and ϵ. The variable Δh ¼ hCKG −
hNM is the difference between the scalar and Dirac Hamiltonians.
The orders of Δh for the two limits are shown in the last column.
In the high acceleration limit, Δh is lower than its equivalent for
Minkowski spacetime ðhKG − hMÞ=ðmc2Þ ∼ ϵ2 [Eq. (100)]. This
means that lower precision is needed to distinguish between the
time evolution of scalar and Dirac fields.

ajXj ℏjk⃗⊥j
mc

ℏa
mc

Δh
mc2

Quasi-inertial limit (184) ϵ ϵ1=2 ϵ3=2 ϵ2

High acceleration limit (193) ϵ ϵ1=2 ϵ ϵ4=3
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½Dν; eαμγα� ¼ ð∇νeαμÞγα þ eαμ½Γν; γα�

¼ ηβγeγμωβανγ
α −

1

4
eαμωβγν½γβγγ; γα�

¼ eαμωβγν

�
ηβαγγ −

1

4
γβγγγα þ 1

4
γαγβγγ

�

¼ eαμωβγν

�
1

2
ηβαγγ −

1

4
γβγγγα −

1

4
γβγαγγ

�

¼ eαμωβγν

�
1

2
ηβαγγ þ 1

2
ηγαγβ

�

¼ 1

2
eαμðωβγν þ ωγβνÞηβαγγ

¼ 0: ðA6Þ

In this way Eq. (A5) reads

�
−c2eβνeαμγβγαDνDμ −

�
mc2

ℏ

�
2
�
Ψ ¼ 0: ðA7Þ

We are now interested in the commutation relation
½Dν;Dμ�Ψ, which can be computed by separating Dμ into
∇μ and Γμ. Therefore, we derive the following quantities:

½∇ν;∇μ�Ψ ¼ ð∂ν∂μ − Γρ
νμ∂ρ − ∂μ∂ν þ Γρ

μν∂ρÞΨ ¼ 0;ðA8aÞ

½∇ν;Γμ�Ψ ¼ ð∇νΓμÞΨ
¼ ½ð∂νΓμÞ − Γρ

νμΓρ�Ψ

¼
�
−
1

4
ð∂νωαβμÞγαγβ − Γρ

νμΓρ

�
Ψ; ðA8bÞ

½Γν;Γμ� ¼
1

4
ωαγνωδβμ½σαγ; σδβ�

¼ 1

4
ωαγνωδβμð−ηαβσγδ þ ηγβσαδ þ ηαδσγβ − ηγδσαβÞ

¼ −ωαγνωδβμη
γδσαβ

¼ −
1

4
ωαγνωδβμη

γδ½γα; γβ�

¼ −
1

4
ðωαγνωδβμ − ωαγμωδβνÞηγδγαγβ; ðA8cÞ

where we have used the antisymmetry of spinorial indexes
of ωαβμ and the Clifford algebra commutation relation,

½σαγ; σδβ� ¼ −ηαβσγδ þ ηγβσαδ þ ηαδσγβ − ηγδσαβ: ðA9Þ

From Eq. (A8), one can derive

½Dν;Dμ�Ψ ¼ ð½∇ν;∇μ� þ ½∇ν;Γμ� − ½∇μ;Γν� þ ½Γν;Γμ�ÞΨ

¼ −
1

4
½ð∂νωαβμÞ − ð∂μωαβνÞ

þ ðωαγνωδβμ − ωαγμωδβνÞηγδ�γαγβΨ

¼ −
1

4
eαρeβσRρσνμγ

αγβΨ; ðA10Þ

where

Rρσνμ ¼ eαρeβσ½ð∂νωαβμÞ − ð∂μωαβνÞ
þ ðωαγνωδβμ − ωαγμωδβνÞηγδ� ðA11Þ

is the Riemann tensor in the form of Cartan’s structure
equation—see, for instance, [24].
Such tensor has the following properties:

Rρσνμ ¼ −Rσρνμ ¼ −Rρσμν ¼ Rνμρσ ¼ −Rρνμσ − Rρμσν

ðA12Þ

and is related to the Ricci scalar R through the following
identity,

R ¼ gρνgσμRρσνμ: ðA13Þ

Equations (A12) and (A13) are used together with Eq. (59)
for the following chain of identities:
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eβνeαμeγρeδσRρσνμγ
βγαγγγδ ¼ −eβνeαμeγρeδσRρσνμγ

βγαγδγγ

¼ eβνeαμeγρeδσRρσνμðγδγβγα þ γαγδγβÞγγ
¼ eβνeαμeγρeδσRρσνμð−4ηδβγα − γβγδγα − γαγβγδÞγγ
¼ eβνeαμeγρeδσRρσνμð−4ηδβγα þ 2ηδαγβ þ γβγαγδ − γαγβγδÞγγ
¼ eβνeαμeγρeδσRρσνμð6ηδαγβ þ 2γβγαγδÞγγ
¼ eβνeαμeγρeδσRρσνμð6ηδαγβγγ þ 2γβγαγδγγÞ
¼ eβνeαμeγρeδσRρσνμ½3ηδαðγβγγ þ γγγβÞ − 2γβγαγγγδ�
¼ eβνeαμeγρeδσRρσνμ½−6ηδαηβγ − 2γβγαγγγδ�
¼ −6gσμgρνRρσνμ − 2eβνeαμeγρeδσRρσνμγ

βγαγγγδ

¼ −6R − 2eβνeαμeγρeδσRρσνμγ
βγαγγγδ; ðA14Þ

which leads to

eβνeαμeγρeδσRρσνμγ
βγαγγγδ ¼ −2R: ðA15Þ

Equations (A10) and (A15) lead to the following
identity:

eβνeαμγβγα½Dν;Dμ�Ψ ¼ 1

2
RΨ; ðA16Þ

which in turn can be used in Eq. (A7) together with Eq. (59)
in order to obtain Eq. (A4),

− c2eβνeαμγβγαDνDμΨ

¼ −
c2

2
eβνeαμðfγβ; γαg þ ½γβ; γα�ÞDνDμΨ

¼
�
c2eβνeαμηβαDνDμ −

c2

2
eβνeαμγβγα½Dν;Dμ�

�
Ψ

¼
�
c2gνμDνDμ −

c2

4
R

�
Ψ: ðA17Þ

APPENDIX B

A proof for Eq. (186) can be provided in the following
way. Firstly, we manipulate Eq. (177c) by using the
following identity [25]:

KζðξÞ ¼ i
π

2
exp

�
i
π

2
ζ

�
Hð1Þ

ζ ðeiπ=2ξÞ; ðB1Þ

whereHð1Þ
ζ is the Hankel function, ζ and ξ are both complex

values with 0 ≤ argðζÞ ≤ π=2, and −π < argðξÞ ≤ π.
Equation (B1) can be used in Eq. (177c) if we make the
following identifications:

ζ ¼ eiπ=2
Ω
ca

; ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2⊥ þ

�
mc2

ℏ

�
2

s
eaX

ca
: ðB2Þ

In this way, Eq. (177c) reads

F̃ðΩ; k⃗⊥; XÞ ¼
eiπ=2

4π
exp

�
−
π

2
e−iπ=2ζðΩÞ

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ
a
sinh ðπe−iπ=2ζðΩÞÞ

r
Hð1Þ

ζðΩÞ

× ðeiπ=2ξðk⃗⊥; XÞÞ; ðB3Þ

where the functions ζðΩÞ and ξðk⃗⊥; XÞ are defined
by Eq. (B2).
The limits (124) and (184) can be expressed in terms of ζ

and ξ in the following way:

e−iπ=2ζ ≫ 1; eiπ=2ξ ≈ ζ þ ϑζ1=3; ðB4Þ

with

ϑ ¼ eiπ=3
�
mc
ℏa

�
2=3
�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

��
: ðB5Þ

Equation (B4) can be proven in the following way:

e−iπ=2ζ ¼ Ω
ca

¼ mc
ℏa

þmc
ℏa

�
ℏΩ
mc2

− 1

�

¼ mc
ℏa

þOðϵ−1=2Þ
¼ Oðϵ−3=2Þ; ðB6Þ
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ξ ¼ mc
ℏa

�
1þ ℏ2k2⊥

2m2c2
þOðϵ2Þ

�
½1þ aX þOðϵ2Þ�

¼
�
Ω
ca

−
mc
ℏa

�
ℏΩ
mc2

− 1

��
×

�
1þ ℏ2k2⊥

2m2c2
þ aX þOðϵ2Þ

�

¼
�
e−iπ=2ζ − ½e−iπ=2ζ þOðϵ−1=2Þ�

�
ℏΩ
mc2

− 1

�	�
1þ ℏ2k2⊥

2m2c2
þ aX þOðϵ2Þ

�

¼ e−iπ=2ζ þ e−iπ=2ζ

�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

��
þOðϵ1=2Þ

¼ e−iπ=2ζ þ ðe−iπ=2ζÞ1=3
�
mc
ℏa

þOðϵ−1=2Þ
�
2=3
�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

��
þOðϵ1=2Þ

¼ e−iπ=2ζ þ e−iπ=6ζ1=3
�
mc
ℏa

�
2=3

×

�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

��
þOðϵ0Þ

¼ e−iπ=2ðζ þ ϑζ1=3Þ þOðϵ0Þ: ðB7Þ

When Eq. (B4) holds, the limit of Hð1Þ
ζ ðeiπ=2ξÞ is [25]

Hð1Þ
ζ ðeiπ=2ξÞ ¼ 24=3

ζ1=3
e−iπ=3Aið−21=3ei2π=3ϑÞ þOðjζj−2=3Þ: ðB8Þ

In terms of Ω, k⃗⊥, and X, Eq. (B8) reads

Hð1Þ
ζðΩÞðeiπ=2ξðk⃗⊥; XÞÞ ¼ 24=3e−iπ=2

�
Ω
ca

�
−1=3

Ai

�
21=3

�
mc
ℏa

�
2=3
�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

���
þOðϵÞ

¼ 24=3e−iπ=2
�
mc
ℏa

½1þOðϵÞ�
	

−1=3
Ai
�
21=3

�
mc
ℏa

�
2=3
�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

���
þOðϵÞ

¼ 24=3e−iπ=2
�
ℏa
mc

�
1=3

Ai

�
21=3

�
mc
ℏa

�
2=3
�
ℏ2k2⊥
2m2c2

þ aX −
�
ℏΩ
mc2

− 1

���
½1þOðϵÞ�; ðB9Þ

At the same time, in the limit e−iπ=2ζ → ∞,

exp

�
−
π

2
e−iπ=2ζ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðπe−iπ=2ζÞ

q
≈

1ffiffiffi
2

p : ðB10Þ

Therefore, Eq. (B3) can be approximated by Eq. (186).

APPENDIX C

Here we prove Eq. (205) in the quasi-inertial limit (184)
and Eq. (210) in the high acceleration limit (193). For such
proofs, we use the exact solutions of the Dirac-Rindler
equation (195), which can be found, e.g., in [26].
We consider solutions with defined energy and trans-

verse momentumUðΩ; k⃗⊥Þ, and we compare their spinorial
components, to obtain [26]

v†sUðΩ; k⃗⊥Þ
u†
s0UðΩ; k⃗⊥Þ

∼
Hð1Þ

ζþ1=2ðiξÞ −Hð1Þ
ζ−1=2ðiξÞ

Hð1Þ
ζþ1=2ðiξÞ þHð1Þ

ζ−1=2ðiξÞ
; ðC1Þ

with Hð1Þ
ζ ðξÞ as the Hankel function and ζ, ξ defined

by Eq. (B2).
The numerator in the right side of Eq. (C1) can be

manipulated by using a recursive identity for Hankel
functions [27],

Hð1Þ0
ζþ1=2ðiξÞ ¼ Hð1Þ

ζ−1=2ðiξÞ −
ζ þ 1=2

iξ
Hð1Þ

ζþ1=2ðiξÞ; ðC2Þ

where Hð1Þ0ðξÞ ¼ ∂ξH
ð1Þ
ζ ðξÞ is the derivative of the Hankel

function. In the limit defined by Eq. (B4), Eq. (C2) can be
approximated by

Hð1Þ0
ζ ðiξÞ ≈Hð1Þ

ζ−1=2ðiξÞ −Hð1Þ
ζþ1=2ðiξÞ; ðC3Þ

and Eq. (C1) reads
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v†sUðΩ; k⃗⊥Þ
u†
s0UðΩ; k⃗⊥Þ

∼
Hð1Þ0

ζ ðiξÞ
Hð1Þ

ζ ðiξÞ
: ðC4Þ

The equivalent of Eq. (B8) for its derivative reads [27]

Hð1Þ0
ζ ðiξÞ ≈ 25=3

ζ2=3
e−i2π=3Ai0ð−21=3ei2π=3ϑÞ: ðC5Þ

By using Eqs. (B8) and (C5) in Eq. (C4), one obtains the
following asymptotic behavior:

v†sUðΩ; k⃗⊥Þ
u†
s0UðΩ; k⃗⊥Þ

∼
1

ζ1=3
∼
�
ℏa
mc

�
1=3

: ðC6Þ

In the quasi-inertial limit (184), Eq. (C6) leads to Eq. (205),
while in the high acceleration limit (193), Eq. (C6) leads
to Eq. (210).

[1] V. Nesvizhevsky, H. Börner, A. Petukhov, H. Abele, S.
Baessler, F. Ruess, T. Stöferle, A. Westphal, A. Gagarski, G.
Petrov, and A. Strelkov, Quantum states of neutrons in the
earth’s gravitational field, Nature (London) 415, 297 (2002).

[2] V. V. Nesvizhevsky, H. G. Börner, A. M. Gagarski, A. K.
Petoukhov, G. A. Petrov, H. Abele, S. Baeßler, G. Divkovic,
F. J. Rueß, T. Stöferle, A. Westphal, A. V. Strelkov, K. V.
Protasov, and A. Y. Voronin, Measurement of quantum
states of neutrons in the earth’s gravitational field, Phys.
Rev. D 67, 102002 (2003).

[3] V. Nesvizhevsky, A. Petukhov, H. Börner, T. Baranova, A.
Gagarski, G. Petrov, K. Protasov, A. Voronin, S. Baeßler, H.
Abele, A. Westphal, and L. Lucovac, Study of the neutron
quantum states in the gravity field, Eur. Phys. J. C 40, 479
(2005).

[4] A. Westphal, H. Abele, S. Baeßler, V. V. Nesvizhevsky,
K. V. Protasov, and A. Yu. Voronin, A quantum mechanical
description of the experiment on the observation of gravi-
tationally bound states, Eur. Phys. J. C 51, 367(2006).

[5] V. Nesvizhevsky, F. Nez, S. Vasiliev, E. Widmann,
P. Crivelli, S. Reynaud, and A. Voronin, A magneto-
gravitational trap for studies of gravitational quantum states,
Eur. Phys. J. C 80, 520 (2020).

[6] G. Ichikawa, S. Komamiya, Y. Kamiya, Y. Minami,
M. Tani, P. Geltenbort, K. Yamamura, M. Nagano, T.
Sanuki, S. Kawasaki, M. Hino, and M. Kitaguchi, Obser-
vation of the Spatial Distribution of Gravitationally Bound
Quantum States of Ultracold Neutrons and its Derivation
Using the Wigner Function, Phys. Rev. Lett. 112, 071101
(2014).

[7] Y. Kamiya, G. Ichikawa, and S. Komamiya, Precision
measurement of the position-space wave functions of
gravitationally bound ultracold neutrons, Adv. High Energy
Phys. 2014, 859241 (2014).

[8] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975); 46, 206(E) (1976).

[9] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev.
D 14, 870 (1976).

[10] A. Rohim, K. Ueda, K. Yamamoto, and S.-Y. Lin,
Relativistic quantum bouncing particles in a homogeneous
gravitational field, Int. J. Mod. Phys. D 30, 2150098 (2021).

[11] L. Parker, One-Electron Atom in Curved Space-Time, Phys.
Rev. Lett. 44, 1559 (1980).

[12] L. Parker, One-electron atom as a probe of spacetime
curvature, Phys. Rev. D 22, 1922 (1980).

[13] L. Parker and L. O. Pimentel, Gravitational perturbation
of the hydrogen spectrum, Phys. Rev. D 25, 3180 (1982).

[14] U. D. Jentschura and J. H. Noble, Nonrelativistic limit of the
Dirac-Schwarzschild Hamiltonian: Gravitational Zitterbe-
wegung and gravitational spin-orbit coupling, Phys. Rev. A
88, 022121 (2013).

[15] M. Srednicki, Quantum Field Theory (Cambridge Univer-
sity Press, Cambridge, England, 2007), Chap. I.1.

[16] A. Zee,Quantum Field Theory in a Nutshell: Second Edition
(PrincetonUniversityPress, Princeton,NJ, 2010),Chap. III.5.

[17] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2013), Chap. 2.3.2.

[18] T. Padmanabhan, Quantum Field Theory: The Why, What
and How (Springer International Publishing, New York,
2016), Chap. 1.5.

[19] T. Padmanabhan, Obtaining the non-relativistic quantum
mechanics from quantum field theory: Issues, folklores and
facts, Eur. Phys. J. C 78, 563 (2018).

[20] R. M. Wald, Quantum Field Theory in Curved Space-Time
and Black Hole Thermodynamics, Chicago Lectures in
Physics (University of Chicago Press, Chicago, IL, 1995).

[21] P. Collas and D. Klein, The Dirac Equation in Curved
Spacetime: A Guide for Calculations (Springer International
Publishing, New York, 2019).

[22] M. D. Pollock, On the Dirac equation in curved space-time,
Acta Phys. Pol. B 41, 1827 (2010), http://www.actaphys.uj
.edu.pl/fulltext?series=Reg&vol=41&page=1827.

[23] L. C. B.Crispino,A.Higuchi, andG. E. A.Matsas, TheUnruh
effect and its applications, Rev. Mod. Phys. 80, 787 (2008).

[24] T. Eguchi, P. Gilkey, and A. Hanson, Gravitation, gauge
theories and differential geometry, Phys. Rep. 66, 213 (1980).

[25] E. M. Ferreira and J. Sesma, Zeros of the Macdonald
function of complex order, J. Comput. Appl. Math. 211,
223 (2008).

[26] M. Soffel, B. Müller, and W. Greiner, Dirac particles in
rindler space, Phys. Rev. D 22, 1935 (1980).

[27] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical
Tables, Applied Mathematics Series (Dover Publications,
New York, 1965).

RICCARDO FALCONE and CLAUDIO CONTI PHYS. REV. D 107, 045012 (2023)

045012-28

https://doi.org/10.1038/415297a
https://doi.org/10.1103/PhysRevD.67.102002
https://doi.org/10.1103/PhysRevD.67.102002
https://doi.org/10.1140/epjc/s2005-02135-y
https://doi.org/10.1140/epjc/s2005-02135-y
https://doi.org/10.1140/epjc/s10052-020-8088-2
https://doi.org/10.1103/PhysRevLett.112.071101
https://doi.org/10.1103/PhysRevLett.112.071101
https://doi.org/10.1155/2014/859241
https://doi.org/10.1155/2014/859241
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1142/S021827182150098X
https://doi.org/10.1103/PhysRevLett.44.1559
https://doi.org/10.1103/PhysRevLett.44.1559
https://doi.org/10.1103/PhysRevD.22.1922
https://doi.org/10.1103/PhysRevD.25.3180
https://doi.org/10.1103/PhysRevA.88.022121
https://doi.org/10.1103/PhysRevA.88.022121
https://doi.org/10.1140/epjc/s10052-018-6039-y
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1827
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1016/0370-1573(80)90130-1
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1103/PhysRevD.22.1935

