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A B S T R A C T

We propose a model for anisotropic viscoelastic biological materials that can handle large deformations,
based on the kinematic assumption that the reinforcing fibre structure undergoes affine deformation with
the underlying matrix. A generalized orientation tensor approach is used to account for the dispersion of
the fibres. Moreover, we consider a strain energy function that features both an elastic and an overstress
component, corresponding to distinct natural states. As a consequence of this choice, the remodelled state is
not necessarily stress-free, and the material does not completely relax the stress. Notably, we consider that
viscous remodelling also alters the fibre distribution, leading to a dependence of the overstress energy on
the remodelled orientation tensor. An anisotropic evolution equation for the viscous strain is then derived,
which has five distinct characteristic times if a single fibre family is considered and requires no additional
assumptions on the viscous spin. To implement the model, we prove that the evolution of the viscous strain
can be recast in a variational form by an Onsager variational principle. Finally, we discuss the algorithm used
for the simulations and show numerical examples that serve as benchmark test cases for viscoelastic materials.
Among the continuum models, the angular integration approach
(Sacks, 2003; Driessen et al., 2005; Ateshian et al., 2009) computes
the fibre orientation distribution at every integration point, resulting
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. Introduction

Biological tissues exhibit viscoelastic behaviour which manifests
s a combination of solid-like and fluid-like properties contingent on
pplied force and time scale (Fung, 1993). Viscoelasticity in biolog-
cal tissues may indeed serve as a crucial biomarker, reflecting the
tructural and functional alterations in tissues under diverse health and
isease conditions (Mierke, 2022). Consequently, the comprehension
nd measurement of viscoelastic properties in biological tissues stand as
ssential pursuits in biomechanics research and biomedical applications
Gotschi et al., 2023).

Soft biological tissues are usually treated as nearly incompressible
aterials due to their high water content. Comprising an isotropic soft
atrix (mainly elastin) and stiffer collagen fibres, these tissues exhibit

ibre orientation and dispersion patterns specific to the tissue type and
ody location (Canham et al., 1989; Komai and Ushiki, 1991; Finlay
t al., 1998; Boote et al., 2006; Schriefl et al., 2011).

In particular, there are two main methods for modelling reinforced
oft tissues. The first method treats matrix and fibres as separate entities
Lanir, 1979) and uses appropriate kinematic assumptions and a rule
f mixture to derive the overall tissue response (Lanir, 2017). The
econd method instead views matrix and fibres as a single homogenized
ontinuum, whose anisotropic material response reflects fibre distri-
ution (Fung, 1993; Latorre and Montáns, 2016; Grillo et al., 2014;
ashlamoun et al., 2016).

∗ Corresponding author.
E-mail address: giulio.lucci@uniroma1.it (G. Lucci).
vailable online 14 March 2024
167-6636/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.mechmat.2024.104976
eceived 15 January 2024; Received in revised form 11 March 2024; Accepted 11
n a computationally expensive numerical procedure. In contrast, gen-
ralized structure tensor (GST) models preprocess the fibre orientation
istribution and represent it using tensors that encapsulate distribution
oments (Freed et al., 2005; Gasser et al., 2006; Pandolfi and Vasta,
012a,b; Wollner et al., 2023). While GST models lack the ability
o differentiate between fibres under varying deformation states, they
ffer superior computational efficiency (Verron, 2015). This type of
odels proved to be efficient to describe soft biological tissues with
istributed fibres and their material response (Gizzi et al., 2016b;
andolfi et al., 2017, 2016; Pandolfi and Vasta, 2012b; Teichtmeister
nd Holzapfel, 2022).

Concerning the modelling of viscous effects, a continuum approach
o model the viscoelasticity of soft tissues at large strain builds on the
xtension of simple rheological models, such as the Maxwell model,
he Kelvin model, and the generalized Maxwell model, to finite de-
ormations (Reese and Govindjee, 1998; Upadhyay et al., 2020; Coco
nd Saccomandi, 2023). This is typically accomplished by assuming a
ultiplicative decomposition of the deformation gradient or an additive
ecomposition of the Cauchy stress into elastic and viscous compo-
ents. In this framework, Latorre and Montáns (2015, 2016) introduced
remodelled state of the continuum and an anisotropic strain energy

ensity solely dependent on the elastic component of the deformation,
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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which plays the role of an internal-like variable whose evolution is
governed by a kinetic equation. Similarly, Liu et al. (2019) assumed
that the amount of elastic deformation experienced by the matrix and
fibres differs, leading to a separate multiplicative decomposition for
each component.

In a recent development, Sadik and Yavari (2024) introduced a
geometric perspective on the multiplicative decomposition of the de-
formation gradient. They highlighted the crucial distinction that vis-
coelastic materials, unlike traditional inelastic solids, do not relax to a
zero-stress state. To accommodate this behaviour, they used an additive
decomposition of the elastic strain energy density into two components:
one dependent on the elastic part of the deformation gradient and the
other on the complete deformation gradient, a concept also used in
Reese and Govindjee (1998), Latorre and Montáns (2015) and Liu et al.
(2019). Notably, both components of the strain energy share the same
material symmetry, defined by the reference orientation of the fibres.

A different approach was instead introduced in Ciambella and
Nardinocchi (2021), based on a novel anisotropic inelastic model
that accounts for fibre remodelling during viscous deformation. The
consequent evolution of the material symmetry from the reference
configuration to the natural state was also included in the constitutive
theory, which was also required to be structurally frame indifferent
(SFI).

Here, we build upon the work in Ciambella and Nardinocchi (2021)
and propose a wider model that incorporates several key features. First,
the viscous component of the deformation gradient is explicitly linked
to the remodelling of the fibre structure, which, in turn, affects the ma-
terial’s anisotropic behaviour. Secondly, fibre dispersion is accounted
for using a generalized orientation tensor approach. Thirdly, the model
allows for the presence of an overstress, which makes the remodelled
state not necessarily stress-free.

These assumptions lead to a dynamical evolution of the viscous
stretch, governed by five characteristic times for a single fibre family.
Specifically, the proposed constitutive model exhibits a material be-
haviour that transitions from anisotropic hyperelasticity at high defor-
mation rates to anisotropic Ericksen fluid behaviour at low deformation
rates.

In detail, the paper is organized as follows. In Section 2 we present
the kinematics of the model and discuss how the fibre distribution is
accounted for. Section 3 describes the energetic choices and derives
thermodynamically consistent constitutive equations. Then, through a
careful analysis, in Section 4 we demonstrate that the flow rule can
be reformulated in referential terms, without the need of imposing any
additional constraints on the viscous spin rate, and it can be recast in
a variational form through an Onsager variational principle. Several
examples that showcase the capabilities of the model are presented in
Section 5, allowing to compare its outcomes against benchmark test
cases for viscoelastic materials. Finally, in Section 6 we provide some
concluding remarks and discuss future perspectives.

2. Kinematics and reoriented fibre distribution

We identify the material body with its reference configuration 𝛺,
which is a regular region of the three-dimensional Euclidean space  ,
and denote with 𝑋 ∈ 𝛺 the generic material point. The deformation

ap 𝜒 ∶ 𝛺 ×  →  assigns to each point 𝑋 ∈ 𝛺 at any time 𝑡 ∈ 
position 𝑥 = 𝜒(𝑋, 𝑡) ∈  . The image of the map at the current time

dentifies the current configuration 𝛺𝑡, which represents the deformed
tate of the material body. The deformation gradient 𝐅 = ∇𝜒 quantifies
he local alteration in both length and orientation of material line
lements due to the deformation 𝜒 .

The macroscopic deformation gradient 𝐅 is multiplicatively decom-
osed (Lee, 1969) into an elastic 𝐅e and a viscous 𝐅v component and
xpressed as:
2

= 𝐅e𝐅v with 𝐽e = det 𝐅e > 0 and 𝐽v = det 𝐅v > 0 . (2.1) N
s a consequence, 𝐽 = det 𝐅 = 𝐽e 𝐽v. The decomposition (2.1), sketched
n Fig. 1a, provides an understanding of the interplay between elastic
nd viscous components in producing the macroscopic deformation.

The fibre dispersion in the reference configuration is accounted for
y introducing the reference generalized orientation tensor1

𝐀0 = ∫
𝜌(𝐦) 𝐦⊗𝐦d𝐦 , s.t. ∫

𝜌(𝐦) = 1 , and |𝐦| = 1, (2.2)

n which the fibre-related probability density function 𝜌 satisfies the
normalization condition when computed over the unit sphere . So,
the generalized orientation tensor possesses the normalization property
𝐈 ⋅𝐀0 = 1, where 𝐈 is the identity tensor and ⋅ denotes the inner product
between tensors. We remark that 𝐀0, which is a symmetric positive
semi-definite tensor, represents the second moment of the probability
distribution 𝜌(𝐦). On assuming that fibres deform as material line
elements2 and that the viscous component 𝐅v of the deformation corre-
sponds to a remodelled state, the generalized orientation tensor in the
remodelled state is defined as follows:

𝐀v =
𝐅v𝐀0𝐅T

v
𝐈 ⋅ 𝐅v𝐀0𝐅T

v
with 𝐈 ⋅ 𝐀v = 1, (2.3)

hereas the orientation tensor in the current state is (see Fig. 1a):

=
𝐅e𝐀v𝐅T

e

𝐈 ⋅ 𝐅e𝐀v𝐅T
e

with 𝐈 ⋅ 𝐀 = 1.

he multiplicative decomposition of the deformation gradient (2.1)
rings into the model different strain measures, namely the visible right
auchy–Green strain 𝐂 and its viscous 𝐂v and elastic 𝐂e counterparts:

= 𝐅T𝐅 , 𝐂v = 𝐅T
v𝐅v , 𝐂e = 𝐅T

e𝐅e = 𝐅−T
v 𝐂𝐅−1

v . (2.4)

q. (2.4)3 shows that the elastic strain 𝐂e can be represented in terms
f the viscous deformation 𝐅v and the current strain 𝐂. Based on the
revious kinematic assumptions, the viscous deformation rate tensor is

v = �̇�v𝐅−1
v , (2.5)

hat can be additively decomposed into the viscous stretch rate 𝐃v =
ym𝐋v and the viscous spin 𝐖v = skw𝐋v. The following kinematic
elations arise as well:
̇ = 2𝐅T𝐃𝐅 , (2.6)
̇ e = 2𝐅T

e𝐃𝐅e − 𝐂e𝐋v − 𝐋T
v𝐂e , (2.7)

̇ v = 𝐋v𝐀v + 𝐀v𝐋T
v − 2(𝐀v ⋅ 𝐃v)𝐀v , (2.8)

here 𝐃 = sym (�̇�𝐅−1) is the stretch rate. It is noteworthy that Eq. (2.8)
nsures that 𝐀v maintains a trace of 1 throughout its evolution.

emark 1. When the fibre dispersion is planar, there is a one-to-one
apping between the unit tensor 𝐀0 and the angle 𝜃 that the fibre forms
ith a reference axis 𝐞1. Then, the definition of 𝐀0 in (2.2) simplifies
s:

0 = 𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌(𝜃) 𝐦(𝜃)⊗𝐦(𝜃)d𝜃 . (2.9)

In addition, if the dispersed fibres are symmetrically distributed
round a mean direction 𝐚0, that is, 𝜌(𝜃) = 𝜌(−𝜃) ∀𝜃, then the fol-
owing is obtained in terms of the dispersion parameter 𝜅 ∈ [0, 1∕2]
Teichtmeister and Holzapfel, 2022):

0 = 𝜅𝐈 + (1 − 2𝜅)𝐚0 ⊗ 𝐚0, with 𝜅 = 𝜋 ∫

𝜋∕2

−𝜋∕2
𝜌(𝜃) sin2 𝜃 d𝜃,

1 It is also referred to as generalized structure tensor (Gasser et al., 2006;
izzi et al., 2016a; Pandolfi and Vasta, 2012b).
2 A possible modelling alternative consists in assuming non-affine remod-

lling of the fibre structure, which renders remodelling of material line
lements different from remodelling of fibres, see for instance (Ciambella and

ardinocchi, 2019, 2022; Ciambella et al., 2022).
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Fig. 1. (a): Multiplicative decomposition of the deformation gradient: 𝐀0, 𝐀v, and 𝐀 are the generalized orientation tensors in the reference, remodelled, and current states,
respectively. (b): Rheological model corresponding to the energy choice of Eq. (3.11). The arrows on the springs are used to highlight the fact that the elastic behaviour,
represented by 𝜑 and 𝜑ov, is anisotropic. Here, 𝜑 corresponds to the specific elastic energy associated with the visible strain 𝐂 and reference orientation tensor 𝐀0, while 𝜑ov is
the specific elastic energy linked to the elastic strain 𝐂e and remodelled generalized orientation tensor 𝐀v. Additionally, 𝛿 represents the specific dissipation density corresponding
to the damper.
We also notice that the case of a standard transversely isotropic mate-
rial, in which a single preferential direction 𝐚0 exists, is recovered as a
particular case on assuming that the probability distribution is a Dirac
delta centred in 𝐚0, i.e., 𝜌(𝐦) = 𝛿𝐚0 (𝐦). In such a case, 𝐀0 = 𝐚0 ⊗ 𝐚0.

In this limiting case, the orientation tensor in the remodelled state
(2.3) simplifies into

𝐀v = 𝐚v ⊗ 𝐚v , 𝐚v =
𝐅v𝐚0
|𝐅v𝐚0|

, (2.10)

which is coherent with the remodelling framework introduced in
Ciambella and Nardinocchi (2021).

Remark 2. The consideration of multiple fibre distributions can be
achieved by assuming the existence of additional mean orientations in
the reference configuration, denoted as 𝐚𝑖0, 𝑖 = 1,… ,𝑀 . Consequently,
multiple generalized orientation tensors 𝐀𝑖

0 would be introduced, each
one associated with its respective distribution 𝜌𝑖. While the incorpora-
tion of these tensors into the current model is straightforward, for the
sake of clarity, we will not delve into it in this context.

3. Energies, stresses, and remodelling action

In remodelling theories, the multiplicative decomposition is in-
herently tied to constitutive information. The non-elastic part of the
deformation gradient is not merely a kinematic descriptor of remod-
elling in an underlying intermediate state, but it carries constitutive
information in the observed current state where actual displacements
occur (DiCarlo and Quiligotti, 2002). Typically, it characterizes the
intermediate state as stress-free with zero elastic energy, which justifies
the usual definition of the intermediate state as the natural state.
Consequently, the evolution of 𝐅v is usually assumed to govern the
evolution of the stress-free state of the body.

Here, we adopt a different perspective and consider the possibility
that the intermediate state is not stress-free. Stresses arise from the de-
formation gradient even when 𝐅e = 𝐈, while overstresses are driven by
an elastic component of the deformation 𝐅e ≠ 𝐈. This viewpoint aligns
with the rheological model depicted in Fig. 1b and is consistent with
various approaches in the literature, where overstresses are sometimes
referred to as non-equilibrium stresses3 (Reese and Govindjee, 1998;
Sadik and Yavari, 2024).

3 This point of view differs from that introduced in Ciambella and Nardinoc-
chi (2021). Therein, with the aim to recover the anisotropic Ericksen fluid
material behaviour, only the contribution of the elastic deformation to the
stress was accounted for and the intermediate state was indeed a natural state.
3

3.1. Elastic energies

We assume that the elastic energy 𝜙 per unit mass,4 referred to
hereafter as the specific elastic energy, comprises two components:
the overstress 𝜑ov and the elastic 𝜑 components. The two components
correspond to distinct natural states and are meant to describe the
viscoelastic behaviour of the material; in this sense, they encompass
the elasticity of the springs in Fig. 1b.

We posit that 𝜑ov = �̂�ov(𝐂e,𝐀v) depends on the elastic strain 𝐂e
and on the remodelled generalized orientation tensor 𝐀v in such a
way that, for all 𝐀v, �̂�ov(𝐈,𝐀v) = 0. On the other side, we assume
that 𝜑 = �̂�(𝐂,𝐀0) depends on the current strain 𝐂 and the reference
generalized orientation tensor 𝐀0 in such a way that, for all 𝐀0,
�̂�(𝐈,𝐀0) = 0.

As a consequence, the specific energy density is represented as

𝜙 = �̂�(𝐂,𝐂e,𝐀0,𝐀v) = �̂�ov(𝐂e,𝐀v) + �̂�(𝐂,𝐀0) . (3.11)

Eq. (3.11) and the considerations outlined above reveal several key
points: (i) the reference state is a natural state for the specific energy 𝜑;
(ii) the remodelled state, where 𝐅e = 𝐈, is a natural state for 𝜑ov; (iii) the
remodelled state is not necessarily stress-free, owing to the energetic
component 𝜑.

It is worth noting that the overstress energy 𝜑ov is contingent on
the remodelled generalized orientation tensor 𝐀v, which represents the
fibre distribution in the natural state for 𝜑ov. This distinction marks a
notable aspect of our approach, setting it apart from other recent pro-
posals where any consideration on the remodelled anisotropic structure
is absent (Sadik and Yavari, 2024).

Let us also note that the function 𝜑ov is structurally frame indif-
ferent. SFI was originally introduced by Green and Naghdi (1971) to
filter out the rotation indeterminacy associated with the multiplicative
decomposition from the constitutive model. Subsequently, it was estab-
lished that for a strain energy function solely dependent on the elastic
strain 𝐂e, SFI implies isotropy of the material (Gurtin et al., 2013). In
this paper, where the strain energy density depends both on 𝐂e and 𝐀v,
SFI equates to imposing transverse isotropy in the remodelled state, as
demonstrated in Ciambella and Nardinocchi (2021).

Remark 3. In the literature, the energy densities 𝜑 and 𝜑ov are often
labelled as the equilibrium and non-equilibrium components, denoted
as 𝜑Eq and 𝜑NEq, respectively (Reese and Govindjee, 1998; Sadik and

4 The theory is developed assuming mass conservation, which leads to the
relationships 𝜚0 = 𝐽𝜚 = 𝐽v𝜚v among the mass densities 𝜚0, 𝜚v, and 𝜚 per unit
reference, remodelled, and current volume, respectively.
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Yavari, 2024; Kumar and Lopez-Pamies, 2016). That nomenclature is
driven by the idea that, at the so-called thermodynamic equilibrium,
when dissipation is zero, the non-equilibrium energetic component
vanishes. In other words, this component only contributes to the energy
density under out-of-equilibrium conditions.

However, our goal is to operate within a broader mechanical frame-
work in which the two components of the strain energy may be both
different from zero at a steady state, when dissipation is zero. This
scenario arises when forcing terms act on the internal-like viscous
variables, allowing the system to reach a steady state, yet with both
energetic components being nonzero. In such cases, the 𝜑ov component
is responsible for overstresses which are necessary to maintain the
equilibrium with the external forcing term. Therefore we prefer to label
those energy components as 𝜑 and 𝜑ov as opposed to 𝜑Eq and 𝜑NEq.

3.2. Actual power and dissipation

In adherence to the principles of continuum thermodynamics, we
introduce a specific dissipation density 𝛿, which represents the disparity
between the stress power per unit reference volume and the time rate
of the elastic energy density, and require it to be non-negative for any
admissible deformation rates �̇� and �̇�v. So, the dissipation inequality in
local form reads:

𝜚0 𝛿 = 𝐒 ⋅ �̇� + 𝐽v 𝐆 ⋅ �̇�v𝐅−1
v − 𝜚0 �̇� ≥ 0 . (3.12)

The power is dissipated by the reference stress 𝐒, also known as
First Piola–Kirchhoff stress tensor, on the rate of deformation gradi-
ent. Simultaneously, the inner remodelling action 𝐆 expends power
on the viscous deformation rate tensor 𝐋v. It is imperative that the
constitutive functions �̂� and �̂�, delivering the reference stress 𝐒 and
the inner remodelling action 𝐆, comply with the dissipation inequality
(3.12). This adherence to the dissipation inequality is enforced through
the Coleman-Noll procedure (Coleman and Noll, 1963), enabling the
identification of a class of constitutive equations �̂� and �̂� that are
thermodynamically consistent. By analysing the structure of the energy
defined in Eq. (3.11), the time derivative of the specific energy, denoted
as �̇�, can be expressed as follows:

�̇� =
𝜕𝜑
𝜕𝐂

⋅ �̇� +
𝜕𝜑ov
𝜕𝐂e

⋅ �̇�e +
𝜕𝜑ov
𝜕𝐀v

⋅ �̇�v , (3.13)

since the reference generalized orientation tensor 𝐀0 remains constant
over time, i.e., �̇�0 = 0, but the same does not hold true for 𝐀v, which
volves in time as prescribed by Eq. (2.8).

Upon substitution of (2.6)–(2.8) and (3.13) into (3.12), and by using
ass conservation, i.e., 𝜚0 = 𝐽 𝜚 = 𝐽v 𝜚v, we get:

𝜚0 𝛿 =
(

𝐒𝐅T − 2 𝜚0 𝐅
𝜕𝜑
𝜕𝐂

𝐅T − 2 𝜚0 𝐅e
𝜕𝜑ov
𝜕𝐂e

𝐅T
e

)

⋅ 𝐃

+𝐽v

(

sym𝐆 + 2 𝜚v sym
(

𝐂e
𝜕𝜑ov
𝜕𝐂e

−
𝜕𝜑ov
𝜕𝐀v

𝐀v
)

+ 2 𝜚v (
𝜕𝜑ov
𝜕𝐀v

⋅ 𝐀v)𝐀v

)

⋅𝐃v

+𝐽v

(

skw𝐆 + 𝜚v
(

[𝐂e,
𝜕𝜑ov
𝜕𝐂e

] + [𝐀v,
𝜕𝜑ov
𝜕𝐀v

]
)

)

⋅𝐖v ≥ 0 , (3.14)

where, with a slight abuse of notation, we confused the function �̂�
with the value 𝜑 it takes, and similarly for the other constitutive func-
tions. Moreover, the square brackets indicate the commutator operator
[

𝐀,𝐁
]

= 𝐀𝐁 − 𝐁𝐀 for any tensors 𝐀 and 𝐁. A consequence of this
definition is that the commutator of two symmetric tensors is zero if
and only if the two tensors are coaxial, implying that they share the
same eigenvectors (Vianello, 1996; Ciambella and Nardinocchi, 2019).

We further assume that dissipation is solely associated with the
viscous material behaviour and adhere to the inequality (3.14) by
proposing the following simple constitutive equation for the First Piola–
Kirchhoff stress 𝐒:

𝐒 = 𝐒e + 𝐒ov, 𝐒e = 2 𝜚0 𝐅
𝜕𝜑

, 𝐒ov = 2 𝜚0 𝐅e
𝜕𝜑ov 𝐅−T . (3.15)
4

𝜕𝐂 𝜕𝐂e
v

Eq. (3.15) shows that the additive split of the elastic energy results in an
additive split of the stress tensor. Indeed, the component 𝐒e corresponds
to the energetic contribution 𝜑. Importantly, given that 𝜑 is non-zero
for elastic strains being null, specifically when 𝐅e = 𝐈, 𝐒e controls the
asymptotic material behaviour, particularly at the remodelled state.
Additionally, it represents the sole stress component at the end of a
viscous relaxation experiment. Conversely, the component 𝐒ov is the
overstress term, subject to relaxation through viscous processes. This
representation of 𝐒 extends the forces acting on parallel elements of
the standard solid rheological model in three-dimensional, nonlinear
viscoelasticity (refer, for instance, to Reese and Govindjee (1998)). As
demonstrated in Ciambella and Nardinocchi (2021) (see the Appendix
therein with 𝜑ov ≡ 𝜙), the following identity holds:
[

𝐂e,
𝜕𝜑ov
𝜕𝐂e

]

+
[

𝐀v,
𝜕𝜑ov
𝜕𝐀v

]

= 0 . (3.16)

With Eqs. (3.15)–(3.16) on hands, we obtain the reduced dissipation
inequality:

𝜚0 𝛿 = 𝐽v skw𝐆 ⋅𝐖v (3.17)

+ 𝐽v

(

sym𝐆 + 2 𝜚v sym
(

𝐂e
𝜕𝜑ov
𝜕𝐂e

−
𝜕𝜑ov
𝜕𝐀v

𝐀v
)

+ 2 𝜚v (
𝜕𝜑ov
𝜕𝐀v

⋅ 𝐀v)𝐀v

)

⋅ 𝐃v ≥ 0 ,

hich depends both on the viscous stretch rate 𝐃v and on the viscous
pin 𝐖v.

In Ciambella and Nardinocchi (2021), it was shown that for the
issipation to be consistent with SFI, the dissipation density must
epend solely on the viscous stretch rate and not on the viscous spin.
herefore, to adhere to SFI, we introduce the following constitutive
ssumptions:

kw𝐆 = 0 , (3.18)

ym𝐆 = 𝐆dis + 𝐄sh . (3.19)

he former guarantees that the dissipation is independent of 𝐖v, as
equired by SFI, whereas the latter assumes that the inner remodelling
ction is made of a dissipative part 𝐆dis and of an energetic component
sh known as the Eshelby stress, defined by:

sh = −2 𝜚v sym
(

𝐂e
𝜕𝜑ov
𝜕𝐂e

−
𝜕𝜑ov
𝜕𝐀v

𝐀v

)

− 2 𝜚v

(

𝜕𝜑ov
𝜕𝐀v

⋅ 𝐀v

)

𝐀v . (3.20)

As a result, the dissipation inequality is further reduced to:

𝜚0 𝛿 = 𝐽v 𝐆dis ⋅ 𝐃v ≥ 0 . (3.21)

If the dissipation density 𝛿 is a quadratic function of the viscous stretch
rate 𝐃v and the generalized orientation tensor 𝐀v, i.e., 𝛿 = 𝛿(𝐃v,𝐀v)5,
an appropriate constitutive representation of 𝐆dis can be consequently
derived. The most general quadratic form of two symmetric tensors
involves five constitutive coefficients and can be expressed as:

𝜚0 𝛿(𝐃v,𝐀v) = 𝜂1𝐽
2
1 + 𝜂2𝐽2 + 𝜂3𝐽1𝐽4 + 𝜂4𝐽

2
4 + 𝜂5𝐽5 ≥ 0 , (3.22)

ith

1 = 𝐃v ⋅ 𝐈 , 𝐽2 = 𝐃v ⋅ 𝐃v , 𝐽4 = 𝐃v ⋅ 𝐀v , 𝐽5 = 𝐃2
v ⋅ 𝐀v,

he invariants of 𝐃v and 𝐀v, in terms of the constitutive coefficients 𝜂𝑖,
= 1,… , 5, ([𝜂𝑖] = J s m−3) which determine the dissipated power per
nit reference volume. In particular, 𝜂2 measures the shear viscosity
arallel to the fibres, 𝜂4 is the extensional viscosity along the fibre
irections, 𝜂5 is related to the relative viscosity for shear parallel and
rthogonal to the fibres, and 𝜂1, 𝜂3 quantify viscosity associated with
iscous volume variations (Spencer, 2004).

By direct comparison of (3.22) with (3.21), one obtains a possible
onstitutive equation for the dissipative symmetric part of the internal

5 To maintain consistency with SFI.
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action6:
𝐽v 𝐆dis = 𝜂1(𝐃v ⋅ 𝐈)𝐈 + 𝜂2𝐃v + 𝜂3

(

(𝐃v ⋅ 𝐀v)𝐈 + (𝐃v ⋅ 𝐈)𝐀v
)

+ 𝜂4(𝐃v ⋅ 𝐀v)𝐀v + 𝜂5(𝐃v𝐀v + 𝐀v𝐃v) .
(3.23)

3.3. Balance equations and flow rule

The constitutive equations for the stress and the inner remodelling
action must be used in the balance equations to get the evolution
equations of the model. The standard balance equation of forces is
written in its reference form as:

div𝐒 = 0 in 𝛺 and 𝐒𝐧 = 𝐭0 on 𝜕𝛺 , (3.24)

where 𝐭0 is the boundary traction (per unit of reference area), 𝐧 is the
utward unit normal to 𝜕𝛺, and the bulk forces are assumed to vanish.
n the other hand, no external actions are assumed to act on the inner
iscous degrees of freedom and the balance equation of the remodelling
ction takes the simple form7:

= 0 in 𝛺 , (3.25)

as derived in Ciambella and Nardinocchi (2021). As a consequence, the
constitutive Eq. (3.19) together with the balance Eq. (3.25) and the
conservation of mass 𝜚0 = 𝐽v𝜚v, delivers the flow rule of the viscous
tretch rate 𝐃v:

1(𝐃v ⋅ 𝐈)𝐈 + 𝜂2𝐃v + 𝜂3
(

(𝐃v ⋅ 𝐀v)𝐈 + (𝐃v ⋅ 𝐈)𝐀v
)

+ 𝜂4(𝐃v ⋅ 𝐀v)𝐀v

+ 𝜂5(𝐃v𝐀v + 𝐀v𝐃v) = 2 𝜚0 sym
(

𝐂e
𝜕𝜑ov
𝜕𝐂e

−
𝜕𝜑ov
𝜕𝐀v

𝐀v

)

+ 2 𝜚0

(

𝜕𝜑ov
𝜕𝐀v

⋅ 𝐀v

)

𝐀v .

(3.26)

In order to determine 𝐀v in previous equation, one has to further
rescribe an evolution for the skew symmetric part of the viscous rate.
ollowing Ciambella and Nardinocchi (2021), here we assume that

v = 0 , (3.27)

and interpret it as an internal constraint enforced by null reactive ac-
tions, a consequence of Eq. (3.18) and the balance Eq. (3.25). Eq. (3.27)
implies 𝐋v = 𝐃v, leading to �̇�v = 𝐃v𝐅v, which governs the remodelling
process. The remodelled orientation is then determined from Eq. (2.8)
as:

�̇�v = 𝐃v𝐀v + 𝐀v𝐃v − 2(𝐀v ⋅ 𝐃v)𝐀v , 𝐀v(0) = 𝐀0 . (3.28)

The complete set of equations that govern the equilibrium of this
continuum is summarized in Table 1. However, as we show in Section 4,
we work with equations in referential form, avoiding the necessity of
making assumptions on 𝐖v and the explicit computation of 𝐀v.

Remark 4. It is noteworthy that Eq. (3.26) highlights the role of the
Eshelby stress, i.e., the right-hand side of the equation dependent on
the overstress energy density, in driving the evolution of the internal
variable. In Ciambella and Nardinocchi (2021), it was demonstrated
that for small elastic deformations, where 𝐂e = 𝐈 + 2 𝜀𝐄e, the Eshelby
stress approaches the Cauchy stress and 𝐃v tends to 𝐃 (at order 𝜀). This
implies that the previous equation represents the constitutive equation
of an anisotropic Ericksen fluid, where particles rotate at the same
angular velocity as the fluid line elements to which they are parallel
(Ericksen, 1960). In contrast, other approaches in the literature, such as
(Sadik and Yavari, 2024), assume the flow rule to be dependent on the
reference orientation of the fibres; this implies that in the limit of small
strain rates, the equivalent fluid model is unaffected by the viscous flow
of the reinforcing particles.

6 For completeness, it is worth mentioning that a factor of 2 is sometimes
ncorporated into this equation (Spencer, 2004).

7 Boundary conditions are absent, since we consider a remodelling theory
f grade 0.
5

Table 1
Recap of all modelling equations.

Balance div𝐒 = 𝟎 in 𝛺 , 𝐒 𝐧 = 𝐭0 on 𝜕𝛺
𝐆 = 𝟎 in 𝛺

First Piola–Kirchhoff stress:

Constitutive

𝐒 = 𝐒e + 𝐒ov , 𝐒e = 2 𝜚0 𝐅
𝜕𝜑
𝜕𝐂

, 𝐒ov = 2 𝜚0 𝐅e
𝜕𝜑ov
𝜕𝐂e

𝐅−T
v

Eshelby stress:

𝐄sh = −2 𝜚v sym
(

𝐂e
𝜕𝜑ov
𝜕𝐂e

−
𝜕𝜑ov
𝜕𝐀v

𝐀v

)

− 2 𝜚v

(

𝜕𝜑ov
𝜕𝐀v

⋅ 𝐀v

)

𝐀v

Dissipative inner action:
𝐽v 𝐆dis = 𝜂1(𝐃v ⋅ 𝐈)𝐈 + 𝜂2𝐃v + 𝜂3

(

(𝐃v ⋅ 𝐀v)𝐈 + (𝐃v ⋅ 𝐈)𝐀v
)

+𝜂4(𝐃v ⋅ 𝐀v)𝐀v + 𝜂5(𝐃v𝐀v + 𝐀v𝐃v)

Viscous stretch rate:

Evolution 𝜂1(𝐃v ⋅ 𝐈)𝐈 + 𝜂2𝐃v + 𝜂3
(

(𝐃v ⋅ 𝐀v)𝐈 + (𝐃v ⋅ 𝐈)𝐀v
)

+𝜂4(𝐃v ⋅ 𝐀v)𝐀v + 𝜂5(𝐃v𝐀v + 𝐀v𝐃v) = −𝐽v 𝐄sh

Viscous spin: 𝐖v = 𝟎

Remark 5. It is important to recognize that the indeterminacy of
the viscous spin, inherent in the multiplicative decomposition of the
deformation gradient, makes the value assigned to the viscous spin by
the internal constraint (3.27) not affecting the solution of the problem.
Indeed, we can determine the symmetric component 𝐂1∕2

v (as detailed
in Section 4) of the viscous deformation 𝐅v = 𝐑v𝐂

1∕2
v , whereas the

orthogonal component 𝐑v of 𝐅v remains indeterminate regardless of
the value of 𝐖v.

4. Reference flow rule

By utilizing suitable pull-back, the equations governing the evolu-
tion of inelastic variables can be recast in their reference form. This
yields a flow rule expressed solely in terms of the deformation measures
𝐂 and 𝐂v, and on the reference orientation tensor 𝐀0. These measures
inherently disregard superimposed rotations on the remodelled state,
implying that their evolution is independent of specifying 𝐖v. Notably,
this approach does not enable the complete determination of 𝐅v due to
the inherent indeterminacy of the remodelled state, even if the current
state of the body can be completely characterized.

To reformulate the flow rule, we firstly recall that

�̇�v = 2𝐅T
v 𝐃v 𝐅v , (4.29)

and so pre-multiplication by 2𝐅T
v and post-multiplication by 𝐅v allow

us to rewrite Eq. (3.26) as:

𝜂1 (�̇�v ⋅ 𝐂−1
v )𝐂v + 𝜂2 �̇�v + 𝜂3

(

�̇�v ⋅ 𝐀0
𝐂v ⋅ 𝐀0

𝐂v +
�̇�v ⋅ 𝐂−1

v
𝐂v ⋅ 𝐀0

𝐂v𝐀0𝐂v

)

(4.30)

+ 𝜂4
�̇�v ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v + 𝜂5

( �̇�v𝐀0𝐂v
𝐂v ⋅ 𝐀0

+
𝐂v𝐀0�̇�v
𝐂v ⋅ 𝐀0

)

= −2 𝐽v𝐅T
v 𝐄sh 𝐅v .

o ensure transverse isotropy in the remodelled state and consequently
atisfy SFI, the elastic energy density 𝜑ov must be defined solely in

terms of the invariants of the tensors 𝐂e and 𝐀v. We write:

𝜑ov(𝐂e,𝐀v) = �̃�ov(𝐼e1 , 𝐼
e
2 , 𝐼

e
3 , 𝐼

e
4 , 𝐼

e
5 ) ,

here the elastic invariants 𝐼e1 ,… , 𝐼e5 are defined as:
e
1 = 𝐈 ⋅ 𝐂e , 𝐼e

2 = 𝐈 ⋅ 𝐂∗
e , 𝐼e

3 = det 𝐂e ,
e
4 = 𝐀v ⋅ 𝐂e , 𝐼e

5 = 𝐀v ⋅ 𝐂2
e ,

(4.31)

here a superscript ∗ denotes the cofactor. Through the kinematic
elationships (2.4), these invariants can be rewritten as:

e
1 = 𝐂−1

v ⋅ 𝐂 , 𝐼e
2 = 1

det 𝐂v
𝐂v ⋅ 𝐂∗ , 𝐼e

3 = det 𝐂
det 𝐂v

,

𝐼e =
𝐂 ⋅ 𝐀0 , 𝐼e =

𝐂𝐂−1
v 𝐂 ⋅ 𝐀0 .

(4.32)
4 𝐂v ⋅ 𝐀0
5 𝐂v ⋅ 𝐀0
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Subsequently, by incorporating the constitutive equation of the Eshelby
stress from Eq. (3.20) and the additional calculations in the Appendix,
the evolution Eq. (4.30) can be expressed solely in terms of the refer-
ence quantities 𝐂v, 𝐂, and 𝐀0, allowing for its solution upon specifying
the initial condition for 𝐂v:

𝜂1 (�̇�v ⋅ 𝐂−1
v )𝐂v + 𝜂2 �̇�v + 𝜂3

(

�̇�v ⋅ 𝐀0
𝐂v ⋅ 𝐀0

𝐂v +
�̇�v ⋅ 𝐂−1

v
𝐂v ⋅ 𝐀0

𝐂v𝐀0𝐂v

)

(4.33)

+ 𝜂4
�̇�v ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v + 𝜂5

( �̇�v𝐀0𝐂v
𝐂v ⋅ 𝐀0

+
𝐂v𝐀0�̇�v
𝐂v ⋅ 𝐀0

)

= 4 𝜚0
[

𝜑ov,1 𝐈 + 𝜑ov,2 (𝐂−1
v ⋅ 𝐂)𝐈 − 𝜑ov,2 𝐂𝐂−1

v
]

𝐂

+ 4 𝜚0𝜑ov,3
det 𝐂
det 𝐂v

𝐂v + 4 𝜚0𝜑ov,4
𝐂 ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v

+ 4 𝜚0𝜑ov,5

(

𝐂𝐀0𝐂
𝐂v ⋅ 𝐀0

+
𝐂𝐂−1

v 𝐂 ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v

)

.

Here, 𝜑ov,𝑖 indicates the derivative of the overstress energy density with
respect to the 𝑖th invariant, whereas derivatives of the invariants are
computed in Appendix.

To complete the reference form of the problem, one can compute
the First Piola–Kirchhoff stress tensor expressed in terms of the refer-
ential quantities 𝐂v and 𝐀0 and of the deformation measures 𝐅 and

. By utilizing the constitutive Eqs. (3.15) and the definitions (4.32)
long with the derivatives provided in the Appendix, we arrive at the
ollowing expression:

e = 2 𝜚0
(

𝜑,1 𝐅 + 𝜑,2 (𝐈 ⋅ 𝐂)𝐅 − 𝜑,2 𝐅𝐂 + 𝜑,3 𝐅𝐂∗

+ 𝜑,4 𝐅𝐀0 + 𝜑,5 (𝐅𝐀0𝐂 + 𝐅𝐂𝐀0)
) (4.34)

and
𝐒ov =2 𝜚0

(

𝜑ov,1 𝐈 + 𝜑ov,2 (𝐂−1
v ⋅ 𝐂)

)

𝐅𝐂−1
v − 2 𝜚0 𝜑ov,2 𝐅𝐂−1

v 𝐂𝐂−1
v

+ 2 𝜚0 𝜑ov,3
det 𝐂
det 𝐂v

𝐅−T + 2 𝜚0 𝜑ov,4
𝐅𝐀0

𝐂v ⋅ 𝐀0

+ 2 𝜚0
𝜑ov,5
𝐂v ⋅ 𝐀0

(

𝐅𝐀0𝐂𝐂−T
v + 𝐅𝐂−1

v 𝐂𝐀0
)

,

(4.35)

that can be evaluated once the displacement 𝐮 has been determined
rom the balance Eq. (3.24), allowing us to calculate 𝐅, 𝐂, and conse-
uently 𝐂v from (4.33).

.1. Variational form of the flow rule

To address the numerical treatment of the problem, we employ a
taggered numerical scheme. Before delving into the numerical imple-
entation, we first show that the referential flow rule (4.33) can be

ormulated in a variational form. This approach, prevalent in various
ields such as hydrodynamics, polymer science, and soft matter physics,
nvolves representing the evolution equation for a state variable 𝐇

using dissipative 𝛹 and elastic 𝛷 potentials:
𝜕𝛹
𝜕�̇�

+ 𝜕𝛷
𝜕𝐇

= 𝟎 , (4.36)

where it is assumed that 𝛹 = 𝛹 (𝐅,𝐇, �̇�) and 𝛷 = 𝛷(𝐅,𝐇). The
volution Eq. (4.36) for the variable 𝐇 is the Euler–Lagrange equation
orresponding to the minimization of the Rayleighian functional

(𝐅, �̇�,𝐇, �̇�) ∶= 𝛹 (𝐅,𝐇, �̇�) + �̇�(𝐅, �̇�,𝐇, �̇�) (4.37)

with respect to the rate �̇�, a procedure also known as Onsager varia-
tional principle (Doi, 2021, 2011). In particular, in analogy with On-
sager’s theory for irreversible isothermal thermodynamical processes,
the evolution of the state variable �̇� is provided by the solution of a

inimum problem, coupled with the elastic one.8 A flow rule in the

8 In this respect, we note that the derivative of  with respect to �̇� provides
the constitutive equation for the first Piola stress 𝐒.
6

v

form of Eq. (4.36) is also found in works that deal with viscoelasticity
by using the so-called two-potential framework, see for instance (Kumar
and Lopez-Pamies, 2016; Sadik and Yavari, 2024).

Here, we present a similar variational structure for the reference
evolution Eq. (4.33) which, to our knowledge, has not been derived
previously for viscoelastic materials. Such a formulation is relevant
from a computational viewpoint, since it can be easily implemented
in a finite element code, as we will discuss later. At the same time, it
is theoretically interesting, as it integrates into the Onsager variational
framework and pursues the goal of modelling viscoelasticity by means
of a kinematic descriptor that does not require the explicit computation
of 𝐅v. Specifically, we now show that Eq. (4.33) is equivalent to the
following:
𝜕𝛹
𝜕 ̇𝐂−1

v
+ 𝜕𝛷

𝜕𝐂−1
v

= 𝟎 , (4.38)

where
̇𝐂−1
v ∶= d

d𝑡
(

𝐂−1
v
)

= −𝐂−1
v �̇�v𝐂−1

v , (4.39)

and the Onsager principle is formulated to determine the evolution of
𝐂−1

v . In detail, by using Eq. (4.39), the left-hand side of Eq. (4.33) can
be rewritten as

− 𝜂1 ( ̇𝐂−1
v ⋅ 𝐂v)𝐂v − 𝜂2 𝐂v

̇𝐂−1
v 𝐂v

− 𝜂3

( ̇𝐂−1
v ⋅ 𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

𝐂v +
𝐂v ⋅ ̇𝐂−1

v
𝐂v ⋅ 𝐀0

𝐂v𝐀0𝐂v

)

− 𝜂4
𝐂v𝐀0𝐂v ⋅ ̇𝐂−1

v

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v − 𝜂5

(

𝐂v
̇𝐂−1
v 𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

+
𝐂v𝐀0𝐂v

̇𝐂−1
v 𝐂v

𝐂v ⋅ 𝐀0

)

= 𝜕𝛹
𝜕 ̇𝐂−1

v

. (4.40)

The dissipative potential 𝛹
( ̇𝐂−1

v ,𝐂v,𝐀0
)

is defined by

𝛹
( ̇𝐂−1

v ,𝐂v,𝐀0
)

= 1
2

̇𝐂−1
v ⋅ D(𝐂v,𝐀0) ̇𝐂−1

v , (4.41)

with the fourth-order positive-definite tensor D(𝐂v,𝐀0) given by

D(𝐂v,𝐀0) = 𝜂1𝐂v ⊗ 𝐂v + 𝜂2 𝐂v ⊗𝐂v

+ 𝜂3

(

𝐂v ⊗
𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

+
𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

⊗ 𝐂v

)

+ 𝜂4
𝐂v𝐀0𝐂v
(𝐂v ⋅ 𝐀0)2

⊗ 𝐂v𝐀0𝐂v + 𝜂5

(

𝐂v ⊗
𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

+
𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

⊗𝐂v

)

,

(4.42)

nd 𝜂𝑖 are the viscosities introduced in Eq. (3.22). The following
otation was used:

𝐀⊗𝐁)𝐂 = 𝐀𝐂𝐁T , (𝐀⊗𝐁)𝐂 = 𝐀𝐂T𝐁T , 𝐀⊗𝐁 = 1
2
(𝐀⊗𝐁 + 𝐀⊗𝐁) .

If we additionally define

𝛷
(

𝐂,𝐂−1
v ,𝐀0

)

= 4𝜚0 𝜑ov(𝐂,𝐂−1
v ,𝐀0) + 4𝜚0 𝜑(𝐂,𝐀0) , (4.43)

i.e., we consider the overstress free energy as a function of the state
variable 𝐂−1

v , it is immediate to observe that the right-hand side of
Eq. (4.33) can be restated as

4𝜚0
[

𝜑ov,1 𝐈 + 𝜑ov,2 (𝐂−1
v ⋅ 𝐂)𝐈 − 𝜑ov,2 𝐂𝐂−1

v
]

𝐂

+ 4 𝜚0𝜑ov,3
det 𝐂
det 𝐂v

𝐂v + 4 𝜚0 𝜑ov,4
𝐂 ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v

+ 4 𝜚0𝜑ov,5

(

𝐂𝐀0𝐂
𝐂v ⋅ 𝐀0

+
𝐂𝐂−1

v 𝐂 ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v

)

= − 𝜕𝛷
𝜕𝐂−1

v
. (4.44)

herefore, our referential flow rule (4.33) can be recast in the vari-
tional form of Eq. (4.38), with the dissipative and elastic potentials
iven by Eqs. (4.41) and (4.43), respectively. The state variable of the
ariational problem is therefore the inverse viscous strain 𝐂−1 and the
v
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evolution law is equivalent to finding, for a given deformation 𝐂 and an
nitial fibre distribution 𝐀0, the value of 𝐂−1

v that satisfies the minimum
problem in the appropriate space9:

min
̇𝐂−1
v

{

𝜕𝛷
𝜕𝐂−1

v
⋅ ̇𝐂−1

v + 𝛹
( ̇𝐂−1

v ,𝐂−1
v ,𝐀0

)

}

. (4.45)

revious variational structure facilitates a direct numerical implemen-
ation of the model. In particular, by following the procedure also used
n Miehe et al. (2004), Fancello et al. (2006) and Ortiz and Stainier
1999), we assume that the time interval [0, 𝑇 ] is subdivided into a
equence of time steps 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑡𝑛+1 < ⋯ < 𝑡𝑁 = 𝑇
uch that 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 is the time increment. We can then evaluate the
ncremental work done on the system during the interval [𝑡𝑛, 𝑡𝑛+1] as:

𝑛+1 = ∫

𝑡𝑛+1

𝑡𝑛

(

�̇� + 𝛹
)

𝑑𝑡 = 𝛷𝑛+1 −𝛷𝑛 + 𝛥𝑡𝛹
( ̊𝐂−1

v , [𝐂v]𝑛,𝐀0
)

, (4.46)

here 𝛷𝑛+1 = 𝛷([𝐂]𝑛+1, [𝐂v]𝑛+1,𝐀0), 𝛷𝑛 = 𝛷([𝐂]𝑛, [𝐂v]𝑛,𝐀0), and
−̊1
v is a suitable incremental approximation of ̇𝐂−1

v . The continuous
ariational problem (4.45) on the interval [𝑡𝑛, 𝑡𝑛+1] is then equivalent
o minimizing such an incremental work, that is,

min
[𝐂−1

v ]𝑛+1

{

𝛷
(

[𝐂]𝑛+1, [𝐂−1
v ]𝑛+1,𝐀0

)

+ 𝛥𝑡𝛹
(

[𝐂−1
v ]𝑛+1, [𝐂−1

v ]𝑛,𝐀0
)}

. (4.47)

Hence, given the deformation [𝐂]𝑛+1 at the next time step 𝑡𝑛+1, Eq. (4.47)
rovides the value of the unknown state variable [𝐂−1

v ]𝑛+1.
The numerical implementation of the problem is achieved through

a staggered algorithm with an iterative alternate minimization proce-
dure, summarized in Algorithm 1. Starting from the solution
([𝐂]𝑛, [𝐂−1

v ]𝑛) at previous step, we firstly solve the nonlinear elastic
problem with given [𝐂−1

v ]𝑛 to find [𝐂]𝑛+1 through the minimization

[𝐂]𝑛+1 = arg min
𝐂

𝛷
(

𝐂, [𝐂−1
v ]𝑛,𝐀0

)

, (4.48)

in the absence of external forces. If external forces are present, we
augment the objective function with the external work. Then, we use
this value of [𝐂]𝑛+1 to solve the variational problem (4.47) for [𝐂−1

v ]𝑛+1.
The procedure is iterated until variations in [𝐂−1

v ]𝑛+1 are below a fixed
tolerance or a maximum number of iterations is reached.

Remark 6. To compute the first Piola stress tensor [𝐒]𝑛+1 at time 𝑡𝑛+1,
recalling Eqs. (4.34)–(4.35), it is actually required to know [𝐅]𝑛+1 in
addition to [𝐂]𝑛+1. Therefore, in the numerical computations, we solve
the elastic problem (4.48) with respect to the displacement field 𝐮(𝑋, 𝑡)
and then we use it to evaluate the deformation gradient.

5. Numerical examples and benchmark problems

We show the application of the model in simplified settings, through
the analysis of some benchmark problems in viscoelasticity. Specifi-
cally, we consider a viscoelastic anisotropic body reinforced with a
distribution of fibres and simulate stress relaxation and recovery, cyclic
deformation tests, and creep tests. These three cases allow to highlight
the main features of the viscoelastic model in different experimental
conditions. Finally, we simulate a simple shear condition, to take into
account also a case in which the problem is not homogeneous.

In detail, introduced an orthonormal basis (𝐞1, 𝐞2, 𝐞3), we consider
a material with a distribution of fibres in the reference configuration
characterized by the generalized orientation tensor

𝐀0 = diag(0.1, 0.2, 0.7) , (5.49)

so that the majority of fibres is found along the direction 𝐞3. For
simplicity, we choose both the components of the strain energy in

9 We note that, with the definition of Eq. (4.43) the derivative of 𝛷 with
espect to 𝐂 is equal to two times the second Piola–Kirchhoff stress tensor.
7

Algorithm 1 Staggered algorithm for the coupled viscoelastic problem
in referential form
1: 𝑛 = 0
2: while 𝑡 ≤ 𝑇 do
3: 𝑡 += 𝛥𝑡

4: Given ([𝐂]𝑛, [𝐂−1
v ]𝑛), solve (4.48) to find [𝐂]𝑛+1iter

5: Given ([𝐂]𝑛+1iter , [𝐂
−1
v ]𝑛), solve (4.38) to find [𝐂−1

v ]𝑛+1iter
6: [𝐂−1

v ]trial ← [𝐂−1
v ]𝑛

7: while ‖[𝐂−1
v ]trial − [𝐂−1

v ]𝑛+1iter ‖ > tol and numiter < itermax do
8: [𝐂−1

v ]trial ← [𝐂−1
v ]𝑛+1iter and [𝐂]trial ← [𝐂]𝑛+1iter

9: Given ([𝐂]trial, [𝐂−1
v ]trial), solve (4.48) to find [𝐂]𝑛+1iter

0: Given ([𝐂]𝑛+1iter , [𝐂
−1
v ]trial), solve (4.38) to find [𝐂−1

v ]𝑛+1iter
1: end while
2: [𝐂]𝑛 ← [𝐂]𝑛+1iter and [𝐂−1

v ]𝑛 ← [𝐂−1
v ]𝑛+1iter

13: 𝑛 += 1
4: end while

Table 2
Constitutive parameters used in the simulations.
𝜇 = 13.54 kPa 𝜅 = 13.5 MPa 𝛾 = 0.2
𝜇ov = 5.4 kPa 𝜅ov = 13.5 MPa 𝛾ov = 0.2

the form of Neo-Hookean elastic energies with a standard reinforcing
component, namely,

𝜚0 𝜑(𝐼1, 𝐼3, 𝐼4) =
𝜇
2
(𝐼1 − 3) − 𝜇 ln 𝐽 + 𝜅

2
(𝐽 − 1)2 + 1

2
𝜇𝛾(𝐼4 − 1)2 , (5.50)

𝜚0 𝜑ov(𝐼e1 , 𝐼
e
3 , 𝐼

e
4 ) =

𝜇ov
2

(𝐼e1 − 3) − 𝜇ov ln 𝐽e +
𝜅ov
2

(𝐽e − 1)2 + 1
2
𝜇ov𝛾ov(𝐼e4 − 1

(5.51)

In previous equations, 𝜇, 𝜇ov denote the shear moduli of the material
in its reference configuration, and 𝜅, 𝜅ov are the reference bulk moduli
with the dependence on 𝐽 and 𝐽e included in the energies to ensure
that the material resists a pure volumetric compression. Specifically,
the dependence on 𝐽e alongside the one on 𝐽 avoids excessive volume
variations related to viscous effects. Moreover, 𝛾, 𝛾ov ≥ 0 control the
resistance of the elastic fibre distribution to stretch. We remark that,
as discussed in Section 3.1, anisotropy is weighed in the overstress
energy 𝜑ov by means of the remodelled structural tensor 𝐀v, whence the
dependence on 𝐼e4 . The values of the material parameters that appear
in the energies employed in the simulations are reported in Table 2.
Furthermore, we introduce the characteristic times 𝜏1,… , 𝜏5 associated
with the viscosities that appear in Eq. (4.33) by setting 𝜂𝑖 = 𝜇ov𝜏𝑖,
𝑖 = 1,… , 5. With these choices, we solve the elastic problem and the
flow rule by using the algorithmic procedure detailed in Section 4.1. In
particular, implementation is performed by means of the Python-based
Finite Element library FEniCS (Logg et al., 2012; Alnæs et al., 2015).

5.1. Uniaxial tests

We start simulating uniaxial experimental tests on a viscoelastic
cube, with 𝜏2 = 1000 s and 𝜏1 = 𝜏3 = 𝜏4 = 𝜏5 = 0. The first benchmark
case that we consider is a stress relaxation experiment with recovery.
The specimen is subjected to a sudden stretch 𝜆max = 3 in the direction
𝐞3, which is the one with the highest fraction of fibres, whereas in the
other two directions traction-free conditions are applied. The stretch
is kept fixed for 𝑡 = 2000 s, after which it is removed and recovery is
observed for additional 1000 s.

The deformation history is shown in Fig. 2a, while the results for
the 𝑆33 component of the first Piola–Kirchhoff stress are reported in

Fig. 2b. It can be observed that, after an initial stress peak due to
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Fig. 2. Stress relaxation and recovery simulation. (a): applied deformation in time along the direction 𝐞3. (b): evolution of the stress component 𝑆33. (c): magnification of the stress
relaxation phase, with stress normalized with respect to 𝜇 and time with respect to 𝜏2. The ellipsoid on the left-hand side shows the fibre distribution 𝐀0, whereas the ellipsoids
on the right-hand side show the final remodelled distributions. (d): plot of the normalized stress measure 𝑆𝛼𝛼 . (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
the elastic instantaneous response, stress relaxation occurs. Yet, the
material does not relax to a zero-stress state, owing to the presence of
the energetic term 𝜑, that represents the elastic spring in parallel with
the Maxwell element in the rheological scheme in Fig. 1b. After the
stretch is removed, the stress rapidly decreases and becomes negative,
then it progressively returns to the initial stress-free state. Fig. 2c shows
a magnification of the stress relaxation phase of the experiment. Stress
values are normalized with respect to the shear modulus 𝜇, whereas
time is rescaled with the characteristic time 𝜏2. Additionally, the blue
curve represents the stress component in the direction 𝐞3, while the red
curve refers to an experiment where the same stretch is applied in the
direction 𝐞1. As expected, the stress peak in 𝑆33 is more than doubled
compared with the one in 𝑆11, since the majority of reinforcing fibres
are found along 𝐞3 and the material is more rigid in that direction. The
initial ellipsoid associated with the fibre distribution (5.49) and the
final ellipsoids are also shown in the plots. At the end of the relaxation
phase, if the stretch is applied along 𝐞3, the distribution has become
almost perfectly aligned with such a direction. Instead, coherently with
the affine evolution of the fibres embedded in Eq. (2.3), a stretch
applied along 𝐞1 makes the distribution elongate in this direction.

Finally, in Fig. 2d we highlight the nonlinearity of the relaxation
time by plotting a rescaled measure of stress calculated as �̄�𝛼𝛼 ∶=
(𝑆𝛼𝛼 − 𝑆eq

𝛼𝛼)∕max(𝑆𝛼𝛼 − 𝑆eq
𝛼𝛼), where 𝑆eq

𝛼𝛼 is the value of the stress at
steady state and 𝛼 = 1, 3. In this Figure, the distinct relaxation times
correspond to uniaxial tractions along the directions of the highest
and lowest fibre concentrations, denoted by 𝐞3 and 𝐞1, respectively.
Specifically, the more rapid relaxation occurs in the direction where
the specimen exhibits greater stiffness.

We also simulated a cyclic deformation experiment, where a trian-
gular stretch

𝜆(𝑡) =

{

1 + |�̇�|𝑡 if 0 < 𝑡 ≤ 𝑇 ∕2
3 − |�̇�|(𝑡 − 𝑇 ∕2) if 𝑇 ∕2 < 𝑡 ≤ 𝑇

(5.52)

is applied in the direction 𝐞3 as shown in Fig. 3(a). In particular, once
the stretch rate |�̇�| is fixed, the duration 𝑇 of the experiment is chosen
in such a way that 𝜆(𝑇 ∕2) = 3. In Fig. 3(b) we report the stretch-stress
diagrams for different values of |�̇�|. We firstly observe that two elastic
limits exist, for high and low stretch rates. In the former case, with
reference to Eq. (3.15) and to the blue curve in Fig. 3(b), we have
8

Fig. 3. Cyclic deformation test. (a): applied stretch 𝜆 as a function of time, as given
by Eq. (5.52). (b): stretch-stress curves in the direction 𝐞3 for different values of the
stretch rate |�̇�|. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

that no dissipation occurs, and the total stress follows the one of a
hyperelastic body with strain energy given by the sum of the elastic
and overstress energies, i.e.,

𝐒 ≈ 2 𝜚0 𝐅
𝜕
𝜕𝐂

(𝜑 + 𝜑ov) , (5.53)

taking into account that 𝐅e → 𝐅. Instead, for very low stretch rate,
corresponding to the yellow curve in Fig. 3(b), another elastic branch
is found, owing to the presence of a spring component in parallel with
the dissipative one. In this case, 𝐅e → 𝐈 and the first Piola stress is given
by

𝐒 ≈ 2 𝜚0 𝐅
𝜕𝜑
𝜕𝐂

, (5.54)

with the overstress component that vanishes. Between these two limits,
the material exhibits a hysteretic behaviour, due to viscous relaxation
processes.

The last situation that we simulate is a creep and recovery ex-
periment, which is relevant for viscoelastic biological tissues like the
reproductive tissue tested in Dubik et al. (2022) and Clark-Patterson
et al. (2021). In this case, as shown in Fig. 4(a), we apply a constant
traction 𝑆 in the direction 𝐞3, which is held fixed for 2000 s. A second
creep step is then applied, with the traction being doubled and kept
constant for additional 2000 s. Finally, the body is unloaded, in order to
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Fig. 4. Creep and recovery experiment for 𝐀0 = diag(0.1, 0.2, 0.7). (a): load history
in the direction 𝐞3. A traction 𝑆 of 10 kPa is suddenly applied to the specimen and
maintained constant for 2000 s, then it is doubled and sustained for additional 2000
s. Afterwards, the load is removed and recovery is observed. (b): stretch response of
the material to the applied traction shown in (a) in terms of the stretches 𝜆11 , 𝜆22, and
𝜆33 along the principal axes of the specimen.

Fig. 5. Simple shear simulations for different initial distributions of fibres. (a): average
stress �̄�32. (b): average stress �̄�22.

bserve the recovery phase. Results in terms of the stretch components
11, 𝜆22, and 𝜆33 are shown in Fig. 4(b). After the application of the
orce, the deformation in the loading direction continues to increase in
oth creep steps. Then, when the load is removed, the stretch 𝜆33 un-

dergoes an instantaneous elastic recovery, after which it progressively
returns to the undeformed state. An opposite behaviour is observed
for 𝜆11 and 𝜆22, that decrease below 1 during creep, and then increase
uring the recovery phase.

.2. Simple shear

To simulate a case in which stress and strain are not homogeneous,
e perform simple shear finite element simulations of a rectangular

pecimen with square cross section, whose reference configuration is
efined by

= {(𝑋1, 𝑋2, 𝑋3) ∣ 𝑋1 ∈ [0, 𝐿], 𝑋2 ∈ [0,𝐻], 𝑋3 ∈ [0, 𝐿]}

with 𝑋𝑖 the coordinates with respect to the axis 𝐞𝑖, 𝑖 = 1,… , 3. The
spect ratio was chosen to be 𝐿∕𝐻 = 10. As regards the boundary

conditions, a displacement 𝑢3 = 1 mm in the direction 𝐞3 is rapidly
pplied to the upper face (orthogonal to 𝐞2) and held for 2500 s, while
he bottom face is clamped (𝐮 = 0). All the other faces of the specimen
re stress-free. The material parameters used for the simulations are
hose listed in Table 2, with the addition of 𝜏1 = 3000 s, 𝜏2 = 1000 s, 𝜏4 =
000 s, 𝜏3 = 𝜏5 = 0. Discretization is performed with 5012 tetrahedral
lements, while degree 2 polynomials are used to approximate the
isplacement field 𝐮 and degree 1 polynomials are used for the state
ariable 𝐂−1

v .
Results are shown in Figs. 5–6 in terms of the average Piola stress

omponents, computed in the middle plane of the specimen, that is, we
valuate

̄32(𝑡) =
1 𝑆32(𝑋, 𝑡) 𝑑𝑋 , �̄�22(𝑡) =

1 𝑆22(𝑋, 𝑡) 𝑑𝑋 , (5.55)
9

𝐿2 ∫0 𝐿2 ∫0
Fig. 6. Simple shear simulations for different relative stiffness of the fibres 𝛾 = 𝛾ov and
fixed 𝐀0 = diag(0.1, 0.2, 0.7). (a): average stress �̄�32. (b): average stress �̄�22.

where

0 = {(𝑋1, 𝑋2, 𝑋3) |𝑋1 ∈ [0, 𝐿], 𝑋2 = 𝐻∕2, 𝑋3 ∈ [0, 𝐿]} .

pecifically, Fig. 5 displays �̄�32 and �̄�22 over time for different initial
ibre distributions 𝐀0. As expected, when the displacement is applied,
he shear stress �̄�32 relaxes to a value which increases as the fraction
f fibres along the direction 𝐞2 is increased (see Fig. 5(a)). Interest-
ngly, whilst the shear stress �̄�32 exhibits a monotonically decreasing
ehaviour as expected from such a test, the normal stress �̄�22 is non-

monotonic and after an initial decrease it starts increasing again, until
it reaches the steady state.

This effect is even more evident when investigating the material
response for increasing stiffness of the reinforcing fibres, as done in
Fig. 6 for fixed 𝐀0 = diag(0.1, 0.2, 0.7) and varying 𝛾 = 𝛾ov. While the
shear stress relaxes to a steady state value that increases with fibre
stiffness, the stress �̄�22 exhibits a non-monotonic behaviour, as evident
from Fig. 6(b). In particular, if the fibres are sufficiently stiffer than
the matrix, the stress is initially positive, indicating that the specimen
would contract in absence of clamping force (negative Poynting effect),
but then the stress changes sign, meaning that the specimen would start
expanding (positive Poynting effect). Yet, at steady state, �̄�22 takes a
positive value. This time dependent behaviour of the Poynting effect
was already discussed for isotropic viscoplastic materials in Califano
and Ciambella (2023).

6. Conclusions

Soft biological materials exhibit complex anisotropic viscoelastic
behaviour, arising from the inherent alignment of structural elements,
such as fibres or collagen networks, which are often distributed statis-
tically and require an appropriate treatment from both a theoretical
and a computational viewpoint. In addition, a variety of material
responses like stress relaxation, creep, and hysteresis, all with a di-
rectional dependence, emerges when viscoelastic reinforced tissues are
tested experimentally to assess their mechanical properties.

Building upon previous works in nonlinear anisotropic viscoelastic-
ity, we have developed a novel model that incorporates a distribution
of fibres through a generalized orientation tensor approach, enabling us
to capture the aforementioned material behaviours. The key elements
of our work are as follows: (i) the deformation gradient is decomposed
into multiplicative elastic and viscous components, where the latter
influences the anisotropy and material symmetry of the body, which
evolve over time; (ii) the elastic energy is separated into two compo-
nents, one dependent on the strain relative to the reference state and
the reference orientation tensor, and the other dependent on the strain
relative to the remodelled state and on the orientation tensor modified
by the viscous part of the deformation; (iii) a flow rule formulated
in terms of referential variables is derived, governing the evolution of
the viscous strain and featuring five characteristic time scales; (iv) the

same flow rule is demonstrated to emerge as a minimization problem
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for a proper Rayleighian functional using Onsager’s variational prin-
ciple, which is beneficial from a computational perspective. Finally,
the implementation of the model into a finite element framework has
been discussed, and the features of the model are shown through some
benchmark problems in viscoelasticity.

There are still a number of interesting aspects that could be investi-
gated in future works, such as the study of dispersion and waves, which
was recently done for Kelvin–Voigt solids in Coco and Saccomandi
(2023). Moreover, the promising referential approach adopted in the
present paper also suggests to delve into a formulation of viscoelasticity
in terms of the inverse viscous strain. Finally, applications of the pro-
posed framework are foreseen in tissue mechanics, where the interplay
between mechanical and biochemical factors is relevant. For instance,
the consideration of active fibres would allow to study the material
response to electro-chemical stimuli, which is an important aspect in
the mechanics of reproductive tissues (Huntington et al., 2021).
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Appendix. Supplementary calculations

Elastic invariants
As a consequence of structural frame indifference (SFI), the overstress
elastic energy 𝜑ov is an isotropic function of the two tensors 𝐂e and 𝐀v.
Therefore, it can be expressed in terms of their invariants 𝐼e

1 ,… , 𝐼e
5 , as

usually done for anisotropic materials, i.e.,

𝜑ov = 𝜑ov(𝐂e,𝐀v) = �̂�ov(𝐼e1 , 𝐼
e
2 , 𝐼

e
3 , 𝐼

e
4 , 𝐼

e
5 ) . (A.1)

Starting from their definitions, we firstly show that the invariants as
well as their derivatives can indeed be expressed as functions of 𝐂, 𝐅v,
𝐂v and 𝐀0; such a result will allow us to express the right hand side of
q. (3.26) as a function of 𝐂, 𝐂v and 𝐀0 only.

By using the common definitions of the invariants together with
Eq. (2.4), we obtain

𝐼e
1 ∶= 𝐈 ⋅ 𝐂e = 𝐂−1

v ⋅ 𝐂 , (A.2)

𝐼e ∶= 𝐈 ⋅ 𝐂∗ = 1 𝐂v ⋅ 𝐂∗ , (A.3)
10

2 e det 𝐂v
𝐼e
3 ∶= det 𝐂e = det 𝐂

det 𝐂v
, (A.4)

𝐼e
4 ∶= 𝐀v ⋅ 𝐂e =

𝐂 ⋅ 𝐀0
𝐂v ⋅ 𝐀0

, (A.5)

e
5 ∶= 𝐀v ⋅ 𝐂2

e =
𝐂𝐂−1

v 𝐂 ⋅ 𝐀0
𝐂v ⋅ 𝐀0

, (A.6)

ith the derivatives with respect to 𝐂e given by
𝜕𝐼e

1
𝜕𝐂e

= 𝐈 , (A.7)

𝜕𝐼e
2

𝜕𝐂e
=
(

𝐈 ⋅ 𝐂e
)

𝐈 − 𝐂e =
(

𝐂−1
v ⋅ 𝐂

)

𝐈 − 𝐅−T
v 𝐂𝐅−1

v , (A.8)

𝜕𝐼e
3

𝜕𝐂e
= 𝐂∗

e = det 𝐂
det 𝐂v

𝐅v𝐂−1𝐅T
v , (A.9)

𝜕𝐼e
4

𝜕𝐂e
= 𝐀v =

𝐅v 𝐀0 𝐅T
v

𝐂v ⋅ 𝐀0
, (A.10)

𝜕𝐼e
5

𝜕𝐂e
= 𝐀v𝐂e + 𝐂e𝐀v = 2

𝐂v ⋅ 𝐀0
sym

(

𝐅v 𝐀0 𝐂𝐅−1
v
)

, (A.11)

s well as derivatives with respect to 𝐀v given by
𝜕𝐼e

4
𝜕𝐀v

= 𝐂e = 𝐅−T
v 𝐂𝐅−1

v , (A.12)

𝜕𝐼e
5

𝜕𝐀v
= 𝐂2

e = 𝐅−T
v 𝐂𝐂−1

v 𝐂𝐅−1
v . (A.13)

The Eshelby tensor
We now use (A.1)–(A.13) to rewrite the right-hand side of Eq.

(3.26) by explicitly computing �̃�sh ∶= 2𝐽v𝐅T
v𝐄sh𝐅v. Specifically, by

ulling back the three terms in Eq. (3.20) with 𝐅v, we obtain

̃1 ∶= 𝐅T
v sym

(

𝐂e
𝜕𝜑ov
𝜕𝐂e

)

𝐅v = (𝜑ov),1 𝐂 + (𝜑ov),2
(

(

𝐂−1
v ⋅ 𝐂

)

𝐂 − 𝐂𝐂−1
v 𝐂

)

+ (𝜑ov),3
det 𝐂
det 𝐂v

𝐂v + (𝜑ov),4
sym (𝐂𝐀0𝐂v)

𝐂v ⋅ 𝐀0

+ (𝜑ov),5
𝐂𝐀0 𝐂 + sym (𝐂𝐂−1

v 𝐂𝐀0 𝐂v)
𝐂v ⋅ 𝐀0

,

�̃�2 ∶= 𝐅T
v sym

(

𝜕𝜑ov
𝜕𝐀v

𝐀v

)

𝐅v

= (𝜑ov),4
sym (𝐂𝐀0𝐂v)

𝐂v ⋅ 𝐀0
+ (𝜑ov),5

sym (𝐂𝐂−1
v 𝐂𝐀0𝐂v)

𝐂v ⋅ 𝐀0
,

�̃�3 ∶= 𝐅T
v

(

𝜕𝜑ov
𝜕𝐀v

𝐀v ⋅ 𝐈
)

𝐀v𝐅v

=

(

(𝜑ov),4
𝐂𝐀0 ⋅ 𝐈
𝐂v ⋅ 𝐀0

+ (𝜑ov),5
𝐂𝐂−1

v 𝐂𝐀0 ⋅ 𝐈
𝐂v ⋅ 𝐀0

)

𝐂v𝐀0𝐂v
𝐂v ⋅ 𝐀0

,

uch that the tensor �̃�sh is

̃sh ∶= 2𝐽v𝐅T
v𝐄sh𝐅v = −4𝜚0�̃�1 + 4𝜚0�̃�2 − 4𝜚0�̃�3

= − 4𝜚0
[

(𝜑ov),1𝐈 + (𝜑ov),2(𝐂−1
v ⋅ 𝐂)𝐈 − (𝜑ov),2𝐂𝐂−1

v
]

𝐂 − 4𝜚0(𝜑ov),3
det 𝐂
det 𝐂v

𝐂v

−4𝜚0(𝜑ov),4
𝐂 ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v

−4𝜚0(𝜑ov),5

[

𝐂𝐀0𝐂
𝐂v ⋅ 𝐀0

+
𝐂𝐂−1

v 𝐂 ⋅ 𝐀0

(𝐂v ⋅ 𝐀0)2
𝐂v𝐀0𝐂v

]

,

hat is a function of 𝐂, 𝐂v, and 𝐀0, and corresponds to minus the
ight-hand side of Eq. (4.33).
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