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Abstract 
Context  Naturally recovering secondary forests are 
frequently re-cleared before they can recover to pre-
disturbance conditions. Identifying landscape factors 
associated with persistence success will help planning 
cost-efficient and effective forest restoration.
Objectives  The ability of secondary forest to persist 
is an often undervalued requisite for long-term eco-
system restoration. Here we identify the landscape 
context for naturally regenerated forests to persist 
through time within central Panama.

Methods  We developed a random forest classifica-
tion (RFC) calibration method to identify areas with 
high (≥ 90%) and low (< 90%) likelihood of forest 
persistence success based on their spatial relation 
with nine landscape explanatory variables.
Results  The RFC model discriminated between 
secondary forests areas that persisted and did not 
persisted with an error rate of 2%. By tuning, we 
obtained a precision of 0.94 (94%) in the validation 
test. The two most important explanatory variables 
involved in the persistence dynamic were eleva-
tion and distance to the nearest rural area. Naturally 
regenerated forests lasted longer in patches that were 
closer to both Gatun and Alajuela Lakes as to pro-
tected areas, but further from rural communities, 
roads, urban areas and in patches with higher eleva-
tion and steeper slopes.
Conclusion  By tracking remote sensed, landscape 
context metrics of easy collection, we developed a 
prediction map of central Panama areas with high 
(≥ 90%) and low (> 90%) probability of natural forest 
regeneration and persistence success within the next 
30 years. This map represents a basis for management 
decisions and future investigations for effective, long-
term forest-landscape restoration.
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Introduction

Protecting and restoring forests is essential to meet-
ing the Paris Climate Agreement and the new Global 
Biodiversity Framework goals, conserving biodi-
versity, and addressing food security and livelihood 
needs (Chazdon et al. 2017a; UN SDG 2017; Lewis 
et  al. 2019; CBD 2022). Many reforestation activi-
ties are being conducted worldwide, at both local and 
landscape scales. While local-based projects could 
help determine the best specific solution for the tar-
get area, landscape-scale projects require a broader 
perspective and planning for restoration activities 
(Mansourian and Vallauri 2014). The forest landscape 
restoration (FLR) is a holistic approach that consid-
ers the relationship between landscape structure (the 
spatial patterning of different land uses across space) 
and landscape functioning (ecological processes), and 
holds promises to achieve both ecological and social 
goals. It also provides long-term, multi-objective and 
large-scale means to implement international targets 
in field interventions (Turner 2005; Hall et al. 2011, 
2015; Holl 2017; Stanturf and Mansourian 2020). 
Within the different forest recovery scenarios, natu-
ral recovery, or “passive restoration” sensu Holl and 
Aide (2011), can play a major role in large-scale 
landscape restoration in tropical regions (van Breugel 
et al. 2013a, b; Chazdon and Guariguata 2016; Chaz-
don and Uriarte 2016; Hall et al. 2022).

Significant progress in recovering ecosystem ser-
vices found in mature tropical forests have been 
observed in as little as two decades of naturally recov-
ering secondary forests. For example, Martin et  al. 
(2013) found aboveground carbon pools can recover 
to xxxx in yyy time while Rozendaal et  al. (2019) 
reported an 80% recovery of tree species diversity in 
20 years across the Neotropics. Poorter et al. (2021) 
found significant recovery of functional traits within 
this same time period for a sub sample of these same 
sites. Working at Agua Salud in Panama on water 
related ecosystem services, Hassler et  al. (2011) 
found a significant recovery in saturated hydraulic 
conductivity, a measure of soil water infiltration in 
12 to 15  years of natural forest recovery in the top 
layer of the mineral soils. Birch et al. (2021) reported 
recovery of hydraulic flow paths at the catchment 
scale at Agua Salud up to 30 cm depth within a dec-
ade of forest recovery while Chavarria et  al. (2021) 
report a significant shift in stream water bacterial 

communities and measures of water quality at the 
same site and time scale. This means that to achieve 
an effective restoration of forest landscape, forests not 
only need suitable conditions to grow, but also to per-
sist in time (Sloan 2022), where persistence is defined 
as a time-dependent process where forests grow, 
mature and continue to be present in time, without 
being cut again. Persistence of naturally regenerat-
ing forests could translate into a “forest transition” 
event, which has been increasingly observed in the 
tropics since the 1990s (e.g., Rudel et al. 2002; Aide 
et al. 2013; Sloan 2022). Several studies have found 
that newly recovered forests are frequently re-cleared 
before they can recover to pre-disturbance conditions 
(Breugel et al. 2013a, b; Mbow et al. 2017; Meli et al. 
2017; Brondizio et al. 2019; Reid et al. 2019). Detect-
ing this dynamic and identifying the context where 
naturally recovered forest do not persist could provide 
support for a more effective forest landscape restora-
tion planning (Smith et  al. 2003; Fagan et  al. 2013; 
Sloan 2016; Reid et  al. 2017; Schwartz et  al. 2017, 
2020; Borda-Niño et al. 2020). To our knowledge, no 
studies have yet provided spatially explicit insights 
and/or landscape attributes related to the persistance 
of naturally recovering secondary forests in central 
Panama.

Central Panama is a dynamic and heterogene-
ous area with a diversity of ecosystems and habitats 
in a relatively small area, including tropical lowland 
and pre-montane moist forests, freshwater wetlands, 
and mangroves (Holdridge et  al. 1967; Ibanez et  al. 
2002), where its provision and dependence on eco-
system services are well known. The region hosts 
one of the most important inland commercial water-
ways, the Panama Canal, which is important for inter-
national trade and a crucial economic driver for the 
country (Adamowicz et  al. 2019). It contains two 
large artificial freshwater lakes—Gatun Lake and 
Alhajuela Lake—both created to ensure canal opera-
tions and freshwater supply for Panama City, the 
city of Colon, and numerous towns in between (Hall 
et al. 2015). The long-term maintenance and sustain-
ability of central Panama biodiversity and water sup-
ply depends on the preservation of the tropical for-
est cover; the latter is accomplished in part through 
a system of 21 protected and/or restricted areas (see, 
e.g. Hall et al. 2022). Nevertheless, it has experienced 
rapid economic growth over the past decade, followed 
by intense land use/land-cover changes (Heckadon 
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Moreno at al. 1999; Condit et al. 2001; Ibanez et al. 
2002; Walker et al. 2020) which led to the construc-
tion of roadways and the expansion of pastures. This 
has stimulated the decrease of forest cover capable of 
regulating water supply and maintaining connectivity 
between the protected areas (Rompre et al. 2008).

As people have migrated to cities in central Pan-
ama to take advantage of economic opportunities 
found there, significant areas that had been cleared for 
agriculture have regenerated (Wright and Samaniego 
2008; Sloan 2015) and also reduced the rate of defor-
estation by over 80% in recent decades (Walker 2020; 
Hall et  al. 2022). It is therefore an area where the 
recovery and the conservation of forests is key to sup-
port ecosystem services supply and where it is cru-
cial to assess wether and how the natural expansion 
of secondary forests is allowed to establish into for-
est transition. Yet, we do not know how much of the 
naturally recovered secondary forests persisted longer 
than 20  years, much less the relationship between 
landscape attributes and the probability to persist.

In this paper, we aim to identify the landscape con-
text for naturally recovered forest to persist in time 
within central Panama. We studied the forest areas 
that naturally recovered in the two decades between 
1990 and 2010 and persisted until 2020 using the 
random forest classification (RFC) method and rely-
ing on the tuning of important RFC parameters, to 
identify areas with higher likelihood of persistence 
success.

Materials and methods

Study area

Our study area is identical to that of Hall et al. (2022) 
and represents 23% of the country’s land area (Fig. 1). 
The study area includes the Panama Canal Watershed 
(PCW), an area of critical relevance for biodiversity 
conservation and economic development (Ibanez 
et al. 2002; Adamowicz et al. 2019). Previous projec-
tions of deforestation and carbon storage have found 
that the unrealistic scenario of halting deforestation 
and allowing all available forested land within the 
study region to be protected, to grow, and to persist, 
central Panama could sequester between 56.0% of its 
national goal. In contrast, were deforestation rates to 
revert to those before the year 2000, it would have 

devastating consequences releasing an additional 73 
million Mg CO2e by 2050, making it extremely dif-
ficult for Panama to achieve its planned land-based 
carbon sequestration objective (Hall et al. 2022).

Data processing and quantification of persistence

A unique 30-year time-series data set (1990–2020) 
of central Panama vegetation cover compiled by 
Walker (2020) was used to identify areas where nat-
ural regeneration occurred spontaneously and per-
sisted between 1990 and 2020 (Fig.  2a–c). Vegeta-
tion cover layers were based on epochal composite of 
dry-season Landsat 4, 5, 7, 8 images with less than 
70% total cloud cover and at least 10% clear pixels 
images (30 m). All images were downloaded as Land-
sat Surface Reflectance Products through the EROS 
science processing architecture (ESPA) interface 
with standard pre-processing for L1T data to correct 
for positional and atmospheric conditions and hand-
classified in five macro-categories and 23 sub-cate-
gories (Table  1). Sub-categories provide additional 
information regarding habitat, disturbance and land-
use, allowing for a better understanding of land-cover 
change dynamics. Unlike previous land-cover maps 
of Panama, which applied dichotomous or categori-
cal definitions of forests, these maps are based on an 
ordinal scale to define vegetation, distinguishing dif-
ferent age classes of secondary forests: low vegetation 
(1–2  yrs), medium vegetation (3–5  yrs), high veg-
etation (6–20 yrs) and forest (≥ 20 yrs), and therefore 
capturing small and ephemeral clearings. Such gra-
dient reflects the natural process of regeneration and 
acknowledges the fuzzy boundaries between forest 
and non-forest classes. The Walker forest cover and 
forest-cover change maps were designed to achieve an 
adequate spatial and temporal resolution; before these 
maps became available Panama lacked a consistent 
dataset by which to assess baselines for land-cover 
changes.

The regeneration and persistence dynamics 
were observed working at macro-categories level 
(NOVEG, LOWVEG, MEDVEG, HIGHVEG and 
FOREST), while the pre-selection of eligible patches 
also considered sub-categories. We adopted a patch-
based approach, where a patch is defined as a mini-
mum 0.5  ha width, homogeneous area that differs 
from its surroundings (Forman and Godron 1981; 
Farina 2000). The patches classified as HIGHVEG 
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in 1990 were excluded from the dataset to limit the 
fuzziness and highlight the transition from non-
forest to forest. The patches classified as NOVEG, 
as LOWVEG sub-categories low crops rainfed (18) 
and low crops irrigated (28), and as MEDVEG 
sub-category high crops (48) were not considered 
in the analysis as our goal was to assess the forest-
landscape natural regeneration potential in a multi-
functional landscape, without altering the presence 
of urban/agricultural land-uses. Finally, we excluded 
the patches classified as FOREST sub-category ever-
green plantations (68) to focus on natural regen-
eration only. We designated patches with 0 = natural 
recovery BUT NO persistence or 1 = natural recovery 
AND persistence histories as follows: Patches 0 were 
identified as ≥ 0.5 ha patches classified as LOWVEG 
or MEDVEG in 1990, as FOREST in 2010 and again 

as LOWVEG or MEDVEG in 2020 land-cover map; 
patches 1 were identified as ≥ 0.5 ha patches classified 
as LOWVEG or MEDVEG in 1990 land cover map 
and as FOREST in both subsequent 2010 and 2020 
land cover maps, for at least 50% of their total area. 
Our sample was composed by 1,234 patches rang-
ing from 0.5 to 35,978 ha, representing a total area of 
150,381 ha.

Explanatory variables

While climatic and edaphic factors affect plant ger-
mination, growth, and survival, leading variations in 
the regeneration process across regions, landscape 
context determines where regeneration is permitted 
to occur and persist, playing a central role in driv-
ing successional pathways within human-modified 

Fig. 1   Study area (Panama Canal Watershed)
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Fig. 2   Panama Canal 
Watershed Land-Cover 
Maps: a 1990; b 2010; c 
2020
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landscapes, such as tropical ones (Jakovac et  al. 
2021). Nine remote-sensed, easily collectable explan-
atory variables linked to anthropic use and access of 
the area were measured for each of the 1234 patches 
included in the dataset (Table 2): mean patch eleva-
tion (meanElev); mean patch slope (meanSlope); min-
imum distance from the patch centroid to the nearest 
road (RoadsDista); minimum distance from the patch 
centroid to the nearest river (Hydro123D); minimum 
distance from the patch centroid to the nearest urban 
area (UrbanDista), defined by the National Institute 
of Statistics and Census of Panama as the populated 
places that concentrates 1500 or more inhabitants; 
minimum distance from the centroid to the near-
est rural area (RuralDist), defined by the National 
Institute of Statistics and Census of Panama as the 
populated places that concentrates > 1500 inhabit-
ants; minimum distance from the patch centroid to 
either Gatun or Alajuela lake (LLDistDi); minimum 
distance from the patch centroid to the nearest pro-
tected area (PADistanc); mean distance between the 
centroid and the patch’s edge (distpole). The selec-
tion of explanatory variables was based on a pre-
vious study on deforestation scenarios and future 

carbon dynamics conducted in the PCW (Hall et  al. 
2022). The variable distpole, which was not used in 
the previous study, was included to consider the patch 
nature of our samples and their variability in terms of 
extent..

Data analysis

Random forest classification

We evaluated the associations between secondary for-
est persistence success and landscape-context predic-
tors using the Machine-Learning (ML) based method 
of random forest classification (RFC) (Breiman 
2001). The advantage of ML over traditional statisti-
cal techniques is the ability to model highly dimen-
sional and non-linear data—such as ecological data 
(Knudby et  al. 2010; Thessen 2016)—with complex 
interactions. There are several types of tasks that ML 
techniques can perform. The task we were interested 
in was the classification, the process of predicting the 
class of given data point (Kotsiantis 2007). RFC is 
the most widespread classifier ML technique, espe-
cially when working with land use/land cover change 

Table 1   Macro and Sub-categories of land-cover maps

Macro-categories Summary Sub-categories: vegetation Sub-categories: wet detail Sub-categories: anthro-
pological detail

NOVEG Water/Bare/Beach/
Built

− 7 Water 1 Built/Bare
7 Water and bare

LOWVEG Low growth (1–2 yrs)/
Pasture/Agriculture/
Low wetland

10 Low veg, seasonally 
dry

27 Low wetland 18 Low crops rainfed

20 Low veg 28 Low crops irrigated
MEDVEG Medium growth 

(3–5 yrs)/Shrubby 
crops/Medium gal-
lery vegetation

30 Thin gallery/edge veg 37 Low to Med gallery 48 High crops
40 Med veg 47 Med gallery

HIGHVEG Young high vegetation 
(6–10 yrs)/Immature 
forest (11–20 yrs)

50 High veg 57 High gallery 58 Deciduous plantations

FOREST Fragmented/disturbed 
forest/Forest within 
50 m of edge/
Secondary forest, 
cleared > 20 yrs 
prior/Riparian trees 
(wet or heavily 
shaded)/Forested 
wetland/Undisturbed 
upland forest

60 Disturbed forest 67 Mature gallery 68 Evergreen plantations
70 Forest wetland 77 Mixed water & man-

grove
80 Mature upland forest 87 Gallery in mature 

forest
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(LULC) (Vitale et al. 2014; Lowe and Kulkarni 2015; 
Pelletier et  al. 2016; Nguyen et  al. 2018; Talukdar 
et al. 2020). RFC is a supervised algorithm based on 
decision trees and improved bagging and bootstrap 
techniques that utilizes several classifiers to work 
together to identify the class label for each observa-
tion (Yang et  al. 2010). In addition, RFC provides 
variable importance measures, which can be used 
to identify most relevant features and/or their effect 
(Archer and Kimes 2008). However, like most clas-
sifiers RFC faces problems when learning from an 
extremely unbalanced training data set (Zakariah 
2014). As it is constructed to minimize the overall 
error rate, it will tend to focus more on the prediction 
accuracy of the majority class, which often results in 
poor accuracy for the minority class. However, there 
are several techniques that can be used with RFC to 
solve class imbalance problems (Chen 2004; Kuhn 
and Johnson 2013; More and Rana 2017). We solved 
the class unbalance problems to the training set, and 
we validated the model on the unbalanced test set to 
assess the performance of the model with real fre-
quencies. The study used the randomForest package 
running in Rstudio (CRAN) (Liaw and Wiener 2002).

Training dataset balancing  The dataset was com-
posed of 0 = 182 and 1 = 1052 units. We divided the 

dataset into training and test sets following the rule 
of 70–30%, as it is demonstrated to represent the ratio 
with the best performance in ML models (Nguyen 
et al. 2021). The balance problem was solved for the 
training set through up-sampling technique (upSam-
ple function in the caret package running in Rstudio 
(CRAN)). Up-sampling is an oversampling technique 
that randomly selects and duplicates observations in 
the minority class to balance the dataset. We obtained 
a balanced training set with a total of 1474 samples. 
The optimal number of decision trees (n = 1000) and 
number of explanatory variables randomly sampled as 
candidates at each split (n = 3) were evaluated based 
on the lowest out of bag (OOB) error. The RFC is 
trained through bagging technique, where each new 
decision tree is fit from a subsample of the training 
units. The OOB error is the average classification 
error of the remaining training units not included in 
the subsample. That allows to fit and also validate the 
RFC while being trained (Breiman 1996).

Tuning  The tuning consists of the identification of a 
set of optimal RFC hyperparameters’ values to maxi-
mize the model’s performance and produce better out-
puts. Hyperparameters are parameters whose values 
control the learning process of the model and can be 
tuned to increase some specific metrics like accuracy 

Table 2   Independent/explanatory variables

Variables Dataset name Description Source

Slope meanSlope Mean slope in degrees Digital elevation model of the Republic 
of Panamá, generated by NASA SRTM 
program, 30 m

Elevation meanElevation Mean elevation in meters Digital elevation model of the Republic 
of Panamá, generated by NASA SRTM 
program, 30 m

Distance to rivers Hydro123D Euclidean distance to nearest river (first, 
second and third order)

Hydrology,Instituto Geográfico Nacional 
Tommy Guardia, 1:50,000

Distance to roads RoadsDista Euclidean distance to nearest road Roads, open street map, 1:50,000
Distance to protected areas PADistanc Euclidean distance to nearest protected 

area
ANAM (National Environmental Author-

ity, now MiAmbiente), 2006
Distance to Gatun Lake or 

Alajuela Lake
LLDist Euclidean distance to nearest Lake 

(Gatun Lake or Alajuela Lake)
Lakes and Lagunes, Instituto Geográfico 

Nacional Tommy Guardia, 1:50,000
Distance to urban areas UrbanDista Euclidean distance to nearest urban area Urban Areas, Instituto Geográfico Nacional 

Tommy Guardia, 1:25,000
Distance to rural areas RuralDista Euclidean distance to nearest rural area Rural Areas, Instituto Geográfico Nacional 

Tommy Guardia, 1:25,000
Distance centroid distpole Mean distance between centroid and 

patch edge
Fragstats 4.2
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or precision. In our case, the RFC model was validated 
on an unbalanced test set to assess the real frequencies 
of 0 and 1 found in the PCW, within the past 30 years. 
Since RFC is designed to minimize the overall error 
rate, with an unbalanced dataset it will tend to focus 
more on the prediction accuracy of the majority class, 
which often results in poor accuracy for the minor-
ity class. For this reason, accuracy was not a suitable 
measure for our model’s performance. We instead 
focused on the tuning of precision for 1, and recall for 
0 (Table 3a, b). Here precision is defined as the ability 
of a classifier not to label “as TRUE” an instance that 
is actually “FALSE”. For each class, it is defined as 
the ratio of real trues (RT) to the sum of real trues and 
false trues (FT), Eq. (1):

Thus, the precision measures how good the model 
is at predicting a specific category. The recall (also 
known as sensitivity) is the ability of a classifier to 
find all the RT instances for the specified class. It is 
defined as the ratio of RT to the sum of RT and false 
false (FF), Eq. (2):

Recall is a measure of how many times the model 
was able to detect a specific category. To maximize 
the precision of 1, we needed to improve the Recall 
of 0. In other words, we needed to reduce as much 
as possible the misclassification errors (FT) of 0. 
A straightforward approach to improve the perfor-
mance of a classifier that predicts probabilities with 

(1)Precision =
RT

RT + FT

(2)Recall =
RT

RT + FF

unbalanced dataset is to tune the threshold used to 
map probabilities to class labels. ML algorithms pre-
dicts the probability or scoring of class membership 
by using a threshold. All values equal to or greater 
than the selected threshold are mapped to one class 
and all the other values are mapped to another class. 
We therefore tested several thresholds until identify-
ing 0.90 as the optimal one to improve the precision 
of 1 and recall of 0, as described above. Scores above 
0.90 were classified as 1, those below as 0.

Tuning one of these quantities nevertheless entails 
a trade-off: as we increase the precision of a class, we 
decrease the recall for the same class, and viceversa. 
In our case, this trade-off leads to low sensitivity for 
class 1 (several 1 RT were lost), and consequently low 
precision for class 0 (a high percentage of the total 
patches that were predicted as 0, were actually 1).

Relative importance of  independent variables 
and  partial dependencies  To evaluate the specific 
behavior of each of the explanatory variables in the 
persistence dynamic we did not rely on the thresholds 
derived by the tree graph, rather on the relative impor-
tance of the independent variables and their partial 
dependencies. The underlying RFC algorithms are 
trained by randomly selected subsets of data, which 
makes thresholds potentially different for each of the 
“n” trees produced by the RFC, and therefore approxi-
mate for the purpose of our work. The relative impor-
tance of independent variables indicates their predic-
tive power. It can be used to sort variable from most to 
least predictive, allowing to have more insights on the 
problem and to perform feature selection when there 
are too many input variables. The order of importance 
of the variables was measured through mean decrease 

Table 3   Confusion matrix parameters for class 1 and 0

RF real false, NRF non-real false, RT real true, NRT non-real true

Confusion matrix 1 Real

Predicted 0 1 Parameters

0 RF FF Precision: RT/RT + FT
1 FT RT Recall: RT/RT + FF

Confusion matrix 0 Real

Predicted 0 1 Parameters

0 RT FT Precision: RT/RT + FT
1 FF RF Recall: RT/RT + FF
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in Gini (MDG). MDG is a measure of how important 
a variable is for estimating the class across all of the 
trees that make up the forest (Grömping 2009). A 
higher MDG indicates higher variable importance. 
The most important variables to the model will have 
the largest MDG. Conversely, the least important vari-
able will have the smallest MDG values. In addition, 
partial dependencies plots contributed to clarifying 
which predictors have positive and negative effects on 
the persistence success. The RFC model allows graph-
ical examination of partial dependencies of the model 
on each predictor. Partial dependencies plots show 
how the variables marginally affect the prediction 
based on the RFC model. Assuming all other variables 
fixed at the center, the values of a given predictor that 
increases along the y-axes indicate a positive effect on 
the prediction, while the values that decreases along 
the y-axes indicate a negative effect on the prediction.

Results

Secondary forest persistence analysis

From a total of ~ 62,203,260  ha of LOWVEG 
and MEDVEG occurring in 1990 in the study 
area, ~ 150,380  ha (0, 24%) were classified as FOR-
EST (natural regeneration) in 2010. Within this forest 
subset, approximately ~ 36,400 ha (24%) were cleared 
again by 2020, while ~ 113.900 ha (76%) persisted.

Random forest classification performance analysis

As shown in Table 4, in the training phase the RFC 
model discriminated between the two classes (0–1) 
with an OOB error rate of about 2% and a class spe-
cific error of 0.001 (0.1%) for the 0, and 0.046 (4.6%) 
for the 1. By tuning, Precision of 1 and Recall of 0 

reached, respectively, 0.94 (94%) and 0.83 (83%) in 
the validation test (Table 5).

Relative importance of independent variables and 
partial dependencies plots

Variables are sorted and displayed in the Variable 
Importance plot (Fig. 3). The variables with more pre-
dictive power were meanElev and RuralDist, followed 
by LLDistDi, UrbanDist, meanSlope, PADistanc, 
RoadsDista, distpole and Hydro123D. Figure  4a–i 
shows the variables-specific partial dependencies 
plots, which represent how each variable marginally 
affected the persistence of secondary forests. The var-
iables meanElev, meanSlope, RoadsDista, UrbanDist 
and RuralDist appeared to be directly proportional to 
the probability of 1, while distpole, PADistanc and 
LLDistDi were inversely proportional to the probabil-
ity of 1.  

Prediction map of secondary forests persistence

Based on the RFC model, we developed a prediction 
map of central Panama areas that have high (≥ 90%) 
and low (< 90%) probability of secondary forests 
persistence success within the next 20 years (Fig. 5). 
From a total of 286,593 ha of LOWVEG and MED-
VEG present in 2020 within our study area, only 16% 
(~ 48,179  ha) have a probability ≥ 0.90% to recover 
and persist until, at least, 2050. 

Discussion

Natural regeneration following land abandonment has 
been globally recorded starting from 1950 and is seen 
as an important opportunity for carbon sequestration 
and habitat restoration (Holl and Aide 2011; Chazdon 

Table 4   Random forest classification training performance

Number of decision trees (ntree) 1000
Number of variables tried at 

each split (mtry)
3

OOB estimate of error rate 2,37%
Confusion matrix Real Class error
 Predicted 0 1
  0 736 1 0.001356852
  1 34 703 0.046132972

Table 5   Random forest classification test performance

Accuracy 0.5122
95% CI (0.4599, 0.5643)
Mcnemar’s test P-value  < 2e − 16
Confusion matrix Real Precision Recall
 Predicted 0 1
  0 45 171 0.46 0.83
  1 9 144 0.94 0.20
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Fig. 3   Variables order of 
importance based on mean 
decrease of Gini index

Fig. 4   Partial dependence plots for the marginal effects of 
the predictors on the random forest classification model: esti-
mated probability of no persistence/persistence (0–1) versus 
the observed values of each predictor in the combined data: a 
elevation (meanElev); b slope (meanSlope); c area and shape 

(distpole); d nearest river (Hydro123D); e nearest road (Road-
sDista); f nearest urban area (UrbanDista); g nearest rural area 
(RuralDist); h nearest protected area (PADistanc); i nearest 
lake (Panama Canal/Alajuela lake (LLDistDi)
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et  al. 2017b; Hall et  al. 2022). Yet, those benefits 
largely depend on the persistence of the forests, which 
has been found to be largely transient across the 
globe, with an average residence time of ~ 14.22 years 
(Crawford et al. 2022). Walker (2020) found signifi-
cant secondary forest regeneration in central Panama. 
Our analysis, however, reveals that the secondary 
forest expansion recorded in the past 30  years did 
not necessarily persist. Indeed, 24% of the naturally 
regenerating secondary forest found in 2010 was 
lost by 2020. As pointed out by several authors, the 
potential ephemeral nature of secondary forests could 
result in a limited role for these forests in mitigating 
climate change and ecosystem service recovery. Piffer 
et al. (2022) found that the re-clearance of native sec-
ondary forests in the Atlantic Forests of Brazil greatly 
limited carbon sequestration, where second-growth 

forests could have sequestered over three times more 
carbon than the actual estimated carbon sequestration. 
Van Breugel et al. (2013a, b) noted that the proportion 
of species that could sustain reproductive populations 
(effective diversity) in a dynamic patchwork of young 
secondary forests found in central Panama depended 
on how old the secondary forests became and how 
many tree species were able to reach reproductive 
size within that time frame. By investigating the role 
of secondary forests in providing habitat for many 
vertebrates within tropical region, Acevedo‐Charry 
et al. (2019) recorded slow recovery of species com-
position (at least 40 years) and strongly argued for the 
role of secondary forest persistence for the conserva-
tion of forest specialist’s species as well as for source 
populations to recover in secondary forest sites. Iden-
tifying conditions that encourage the persistence of 

Fig. 5   Map of secondary forest persistence potential within 2020–2050
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naturally regenerated forests is therefore crucial in 
assessing the real potential for ecosystem restoration 
within dynamic landscapes as those found in the trop-
ics, as well as for informing evaluation of the specific 
supporting actions needed to reach the UN goals and 
to ensure a sustained ecosystem services provision. 
With a precision of 94%, we predicted areas with high 
(≥ 90%) and low (> 90%) probability of natural forest 
regeneration and persistence success within the next 
30  years in central Panama (Fig.  5). These results 
demonstrate that a set of remotely sensed, easily col-
lected landscape context variables could be used to 
predict persistence success of secondary forests. The 
two variables with more predictive power were found 
to be the elevation and the distance to rural areas. Nat-
urally regenerated forests lasted longer in patches that 
were at higher elevation, further from rural commu-
nities, roads and urban areas, and on steeper slopes. 
This findings underlie the contribution of remoteness 
in achieving forest transition, mirroring what found in 
other areas within the tropics (Aide et al. 2013, 2019; 
Molin et  al. 2017; Calaboni et  al. 2018; Reid et  al. 
2019). Ashton et al (2001) provided a framework for 
tropical forest restoration in Sri Lanka that is adapt-
able throughout the tropics (see, e.g., Griscom and 
Ashton 2011 for an example involving dry forest in 
Panama). They point out that the ability for forests to 
recover depends upon the level of degradation and the 
disturbance regime in terms of both chronicity and 
acuteness. More recently, Chazdon et al. (2021) com-
mented on ecosystems recovery following damage or 
destruction. People can participate in enabling natural 
mechanisms of recovery of a targeted ecosystem by 
interventions that both facilitate the inherent capacity 
for natural recovery and inhibit drivers of ecosystem 
degradation. Our approach contributes to restora-
tion planning by identifying areas where forests have 
higher and/or lower potential to persist in time, setting 
the scene for the identification of the stakeholders 
involved and the potential drivers of ecosystem degra-
dation, allowing informed prioritization and planning 
of appropriate actions for the support of forest natural 
regeneration and its persistence in time. In addition, 
our approach allows for a more detailed future explo-
ration of the social and economic drivers underlying 
the ephemerality of secondary forests within central 
Panama and represents a basis for future investiga-
tions and management decisions for successful, long-
term forest-landscape restoration.
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