
Annals of Pure and Applied Logic 175 (2024) 103456
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

journal homepage: www.elsevier.com/locate/apal

Full Length Article

The ghosts of forgotten things: A study on size after forgetting

Paolo Liberatore
DIAG, Sapienza University of Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2022
Received in revised form 13
December 2023
Accepted 2 May 2024
Available online 8 May 2024

MSC:
03B42
68T27
68T30
03B05
03D15

Keywords:
Logical forgetting
Boolean minimization

Forgetting is removing variables from a logical formula while preserving the
constraints on the other variables. In spite of reducing information, it does not
always decrease the size of the formula and may sometimes increase it. This article
discusses the implications of such an increase and analyzes the computational
properties of the phenomenon. Given a propositional Horn formula, a set of variables
and a maximum allowed size, deciding whether forgetting the variables from the
formula can be expressed in that size is Dp-hard in Σp

2. The same problem for
unrestricted CNF propositional formulae is Dp

2 -hard in Σp
3.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Several articles mention simplification as an advantage of forgetting, if not its motivation. Forgetting
means deleting pieces of knowledge, and less is more. Less knowledge is easier to remember, easier to work
with, easier to interpret. To cite a few:

• “With an ever growing stream of information, bounded memory and short response time suggest that
not all information can be kept and treated in the same way. [...] forgetting [...] helps us to deal with
information overload and to put a focus of attention” [21].

• “For example, in query answering, if one can determine what is relevant with respect to a query, then
forgetting the irrelevant part of a knowledge base may yield more efficient query-answering” [17].

• “Moreover, forgetting may be applicable in summarizing a knowledge base by suppressing lesser details,
or for reusing part of a knowledge base by removing an unneeded part of a larger knowledge base, or in
clarifying relations between predicates” [16].

E-mail address: liberato@diag.uniroma1.it.
https://doi.org/10.1016/j.apal.2024.103456
0168-0072/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.apal.2024.103456
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2024.103456&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:liberato@diag.uniroma1.it
https://doi.org/10.1016/j.apal.2024.103456
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
�
��
�

��

� � � �

�����������

�
��
��

�
��
�

��

�

a

b

c d e

f g

forgetremember

a

b

c

remember forget

Fig. 1. An example of forgetting some variables. Arrows stand for propositional implications.

• “For performing reasoning tasks (planning, prediction, query answering, etc.) in an action domain, not
all actions of that domain might be necessary. By instructing the reasoning system to forget about these
unnecessary/irrelevant actions, without changing the causal relations among fluents, we might obtain
solutions using less computational time/space” [23].

• “There are often scenarios of interest where we want to model the fact that certain information is
discarded. In practice, for example, an agent may simply not have enough memory capacity to remember
everything he has learned” [24].

• “The most immediate application of forgetting is to model agents with limited resources (e.g., robots),
or agents that need to deal with vast knowledge bases (e.g., cloud computing), or more ambitiously,
dealing with the problem of lifelong learning. In all such cases it is no longer reasonable to assume that
all knowledge acquired over the operation of an agent can be retained indefinitely” [44].

• “For example, we have a knowledge base K and a query Q. It may be hard to determine if Q is true
or false directly from K. However, if we discard or forget some part of K that is independent of Q, the
querying task may become much easier” [52].

• “To some extent, all of these can be reduced to the problem of extracting relevant segments out of large
ontologies for the purpose of effective management of ontologies so that the tractability for both humans
and computers is enhanced. Such segments are not mere fragments of ontologies, but stand alone as
ontologies in their own right. The intuition here is similar to views in databases: an existing ontology is
tailored to a smaller ontology so that an optimal ontology is produced for specific applications” [20].

These authors are right: if forgetting simplifies the body of knowledge then it is good for reducing the
amount of information to store, for increasing the efficiency of querying it, for clarifying the relationships
between facts, for obtaining solutions more easily, for retaining by agents of limited memory, for tailoring
knowledge to a specific application. If forgetting simplifies the body of knowledge, all these motivations are
valid.

If.
What if not? What if forgetting does not simplify the body of knowledge? What if it complicates it?

What if it enlarges instead of shrinking it?
This looks impossible. Forgetting is removing. Removing information, but still removing. Removing some-

thing leaves less, not more. What remains is less than what before, not more. Forgetting about d, e, f and
g in the formula depicted on the left of Fig. 1 only leaves information about a, b and c.

The only information that remains is that a and b imply c. All the rest, like c implying d or f implying
b is forgotten. What is left is smaller than what before because it is only a part of that.

This is the prototypical scenario of forgetting, the first that comes to mind when thinking about removing
information: some information goes away, the rest remains. The rest is a part of the original. Smaller. Simpler.
Easier than that to store, to query, to interpret. But prototypical does not mean exclusive.

Forgetting x from the formula on the left of Fig. 2 complicates it instead of simplifying it. Whenever a, b
and c are the case so is x. And x implies n, m and l. Like the neck of an hourglass, x funnels the first three

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 3
�
��
�

��

�
�

�
�

�
��	

�

�
�

�
�

�
��

��
��

�
��
�

��

�
��

�
�

�
��

�
��

�

�

�

a

b

c

x

n

l

remember forget

n

a

b

c

mm

l

forgetremember

Fig. 2. A formula that is complicated instead of simplified by forgetting.

variables in the upper bulb to the last three in the lower. Without it, these links need to be spelled out one
by one: a, b and c imply n; a, b and c imply m; a, b and c imply l. The variable x acts like a shorthand for
the first three variables together. Removing it forces repeating them.

Forgetting x deletes x but not its connections with the other variables. The lines that go from a, b and
c to n, l and m survive. Like a ghost, x is no longer there in its body, but in its spirit: its bonds. These
remain, weaved where x was.

The formula resulting from forgetting is still quite short, but this is only because the example is designed
to be simple for the sake of clarity. Cases with larger size increase due to forgetting are easy to find.
Forgetting a single variable never increases size much, but forgetting many may increase size exponentially.

The size of the formula resulting from forgetting matters for all reasons cited by the authors above. To
summarize, it is important for:

1. sheer memory needed;
2. the cost of reasoning; formulae that are difficult for modern solvers are typically large; while efficiency

is not directly related to size, small formulae are usually easy to solve;
3. interpreting the information; the size of a formula tells something about how much the forgotten variables

are related to the others.

These points are relevant to different research areas: for example, Delgrande and Wang [17] mention
the second point regarding disjunctive logic programming; Erdem and Ferraris [23] do the same in the
context of reasoning about actions. The third point is cited in the general survey on forgetting by Eiter and
Kern-Isberner [21] and in the article that generalizes forgetting across different logics by Delgrande [16].

This witnesses that the problem of size after forgetting is relevant to different logics. Many of them
generalize or can express propositional logic or Horn logic as a subcase. These are the two logics considered
here, as greater common divisors of them.

The figures visualize forgetting as a cut between what is remembered and what is forgotten. This cut
may divide parts that are easy to separate like in the first figure or parts that are not natural to separate
like in the second figure. The first cut glides following the direction of the fabric of the knowledge base. The
second is resisted by the connections it cuts.

The number of these connections does not tell the difference. How closely they hold together the parts
across the cut does. Even if the links in the first example were c → d1, . . . , c → d100 instead of c → d, the
result would be the same. What matters is not how many links connect the parts across the cut, but how
they do.

4 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
An increase of size gauges the complexity of these connections. The first example is easy to cut because its
implications are easy to ignore: c may imply d, but if d is forgotten this implication is removed and nothing
else changes. The second example is not so easy to cut: forgetting x does not just remove its implication
from a, b and c; it shifts its burden to the remaining variables.

A size increase suggests that the forgotten variables are closely connected to the remaining ones. If
forgetting is aimed at subdividing knowledge, it would be like the chapter on Spain next to that of Samoa
and far away from France in an atlas. The natural division is by continents, not initials of the name.
In general, the natural divisions are by topics, so that things closely connected stay close to each other.
Forgetting about Samoa when describing Spain is easier than forgetting about France. Neglecting some
obscure diplomatic relations is more natural than neglecting a bordering country.

Forgetting may be abstracting [39]. Cold weather increases virus survival, which facilitates virus trans-
mission, which causes flu. Forgetting about viruses: cold weather causes flu. But forgetting is not always
natural as an abstraction. A low battery level, a bad UPS unit and a black-out cause a laptop not to
start; which causes a report not to be completed, a movie not to be watched and a game not to be played.
Forgetting about the laptop is a complication more than an abstraction: the three preconditions cause the
first effect, they cause the second effect, and they cause the third effect. If x is the laptop not starting, this
is the example in the second figure, where forgetting increases size. That cold weather causes cold is short,
simple, a basic fact of life for most people. Brevity is the soul of abstraction.

In summary, a short formula is preferred for storage and computational reasons. The size of the formula
after forgetting is important for epistemological reason, to evaluate how natural a partition or abstraction
of knowledge is. Either way, the question is: how large is a formula after forgetting variables?

The question is not as obvious as it looks. Several formulae represent the same piece of knowledge. For
example, a ∨ (¬a ∧ b) is the same as the shorter a ∨ b. The problem of formula size without forgetting eluded
complexity researchers for twenty years: it was the prototypical problem for which the polynomial hierarchy
was created in the seventies [47], but framing it exactly into one of these classes only succeeded at the end
of the nineties [50]. This is the problem of whether a formula is equivalent to another of a given size.

The problem studied in this article is whether forgetting some variables from a formula is equivalent to
a formula of given size.

Forgetting is not complicated. A simple recipe for forgetting x from F is: replace x with true in F , replace
x with false in F , disjoin the two resulting formulae [32]. If F is in conjunctive normal form, another recipe
is: replace all clauses containing x with the result of resolving them [53,16,45]. The first solution may not
maintain the syntactic form of the formula. None of them is guaranteed to produce a minimal one.

Forgetting no variable from a formula results in the formula itself. Insisting on forgetting something does
not change complexity: every formula F is the result of forgetting x from F ∧ x if x is a variable not in
F . The complexity of the size of F is a subcase of the size of forgetting x from F . It is however not an
interesting subcase: the question is how much size decreases or increases due to forgetting. If F has size 100
before forgetting and 10 after, this looks like a decrease, but is not if F is equivalent to a formula of size 5
before forgetting and to none of size 9 or less afterwards. This is a size increase, not a decrease.

The main results of this article are the complexity characterization of this problem in the Horn and
general propositional case where size is the total number of occurrences of literals. The problem is Dp-hard
and belongs to Σp

2 when the formula is Horn; it is Dp
2-hard and in Σp

3 for arbitrary CNF formulae. A detailed
plan of the article follows.

After Section 2 introduces some basic concepts like resolution, Section 3 formally defines forgetting and
gives some results about size. Some equivalent formulations of forgetting are given, as well as some ways to
compute forgetting.

Section 4 shows the complexity of the problem in the Horn restriction. It comes before the general case
because of its slightly simpler proofs. The problem is Dp-hard and belongs to Σp

2.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 5
Section 5 shows that the problem is Dp
2-hard and belongs to Σp

3 for arbitrary CNF formulae. In both cases,
hardness is more difficult to prove than membership; on the other hand, it extends to logics that include
propositional or Horn logics as subcases. For example, since modal logics extend propositional logics, the
problem of size of forgetting is Dp

2-hard.
Section 6 compares the results in this article with previous work. Section 7 discusses future directions of

study.
A number of examples and counterexamples rely on calculating the resolution closure of a formula,

its minimal equivalent formulae, the result of forgetting a variable from it and the minimal formu-
lae equivalent to that. The program minimize.py does these operations on the formula it reads from
another file, for example allvariables.py or outresolve.py. It is currently available at https://
github .com /paololiberatore /minimize .py together with the files that contain the formulae mentioned
in this article.

2. Preliminaries

2.1. Formulae

The formulae in this article are all propositional in conjunctive normal form (CNF): they are sets of
clauses, a clause being the disjunction of some literals and a literal a propositional variable or its negation.
This is not truly a restriction, as every formula can be turned into CNF without changing its semantics. A
clause is sometimes identified with the set of literals it contains. For example, a subclause is a subset of a
clause.

If l is a negative literal ¬x, its negation ¬l is defined as x.
The variables a formula A contains are denoted Var(A).

Definition 1. The size ||A|| of a formula A is the number of variable occurrences it contains.

This is not the same as the cardinality of Var(A) because a variable may occur multiple times in a
formula. For example, A = {a, ¬a ∨ b, a ∨ ¬b} has size five because it contains five literal occurrences even
if its variables are only two. The size is obtained by removing from the formula all propositional operators,
commas and parentheses and counting the number of symbols left.

The definition of size implies the definition of minimality: a formula is minimal if it is equivalent to no
formula smaller than it. Given a formula, a minimal equivalent formula is a possibly different but equivalent
formula that is minimal. As an example, A = {a, ¬a ∨ b, a ∨ ¬b} has size five since it contains five literal
occurrences; yet, it is equivalent to B = {a, b}, which only contains two literal occurrences. No formula
equivalent to A or B is smaller than that: B is minimal. Minimizing a formula means obtaining a minimal
equivalent formula. This problem has long been studied [40,47,11,50,31,10].

Definition 2. The clauses of a formula A that contain a literal l are denoted by A ∩ l = {c ∈ A | l ∈ c}.

This notation is unambiguous: when is between two sets, the symbol ∩ denotes their intersection; when
is between a set and a literal, it denotes the clauses of the set that contain the literal. This is like seeing
A ∩ l as the shortening of A ∩ clauses(l), where clauses(l) is the set of all possible clauses that contain the
literal l.

2.2. Resolution

Resolution is a syntactic derivation mechanism that produces a clause that is a consequence of two clauses:
c1 ∨ l and c2 ∨ ¬l generate the clause c3 that results from removing repetitions from c1 ∨ c2. Resolution is

https://github.com/paololiberatore/minimize.py
https://github.com/paololiberatore/minimize.py

6 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
denoted c1 ∨ l, c2 ∨ ¬l � c3. Sometimes �R is used in place of � to emphasize the use of resolution as the
syntactic derivation rule. This is unnecessary in this article since no other derivation rule is ever mentioned.

Unless noted otherwise, tautologic clauses are excluded. Writing c1 ∨ a, c2 ∨ ¬a � c3 implicitly assumes
that none of the three clauses is a tautology unless explicitly stated. Two clauses that would resolve in
a tautology are considered not to resolve, which is not a limitation [38]. Tautologic clauses are forbidden
in formulae, which is not a limitation either since tautologies are always satisfied. This assumption has
normally little importance, but is crucial to superredundancy, a concept defined in the next section.

In what follows tautologies are excluded from formulae and from resolution derivations. As a result,
resolving two clauses always generates a clause different from them.

A resolution proof F � G is a binary forest where the roots are the clauses of G, the leaves are the clauses
of F and every parent is the result of resolving its two children.

Definition 3. The resolution closure of a formula F is the set ResCn(F) = {c | F � c} of all clauses that
result from applying resolution zero or more times from F .

The clauses of F are derivable by zero-step resolutions from F . Therefore, F � c and c ∈ ResCn(F) hold
for every c ∈ F .

The resolution closure is similar to the deductive closure but not identical. For example, a ∨ b ∨ c is in
the deductive closure of F = {a ∨ b} but not in the resolution closure. It is a consequence of F but is not
obtained by resolving clauses of F .

All clauses in the resolution closure ResCn(F) are in the deductive closure but not the other way around.
The closures differ because resolution does not expand clauses: a ∨ b ∨ c is not a resolution consequence of
a ∨ b. Adding expansion kills the difference [33,46].

F |= c if and only if c′ ∈ ResCn(F) for some c′ ⊆ c

That resolution does not include expansion may suggest that it cannot generate any clause that strictly
contains other entailed clauses. That would be too good to be true, since the shortest entailed clauses
would be exactly the ones generated by resolution. In fact, it is not the case, as seen in the formula
{a ∨ b ∨ c, a ∨ b ∨ e, ¬e ∨ c ∨ d}: the second and third clauses resolve to a ∨ c ∨ b ∨ d, which contains the first
clause of the formula, a ∨ b ∨ c.

What is the case is that resolution generates all prime implicates [33,46], the minimally entailed clauses.
The relation between ResCn(F) and the deductive closure of F tells that if a clause is entailed, a subset of
it is generated by resolution; since the only entailed subclause of a prime implicate is itself, it is the only
one resolution may generate. Removing all clauses that contain others from ResCn(F) results in the set of
the prime implicates of F .

While ResCn(F) contains all clauses generated by an arbitrary number of resolutions, some properties
used in the following require the clauses obtained by a single resolution step.

Definition 4. The resolution of two formulae is the set of clauses obtained by resolving each clause of the
first formula with each clause of the second:

resolve(A,B) = {c | c′, c′′ � c where c′ ∈ A and c′′ ∈ B}

If either of the two formulae comprises a single clause, the abbreviations resolve(A, c) = resolve(A, {c}),
resolve(c, B) = resolve({c}, B) and resolve(c, c′) = resolve({c}, {c′}) are used.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 7
This set contains only the clauses that results from resolving a single clause of A with a single clause of
B. Exactly one resolution of one clause with one clause. Not zero, not multiple ones. A clause of A is not
by itself in resolve(A, B) unless it is also the resolvent of another clause of A with a clause of B.

2.3. Superredundancy

A clause of a formula is superredundant if it is redundant in the resolution closure of the formula [36]:
ResCn(F)\{c} |= c. The following properties of superredundancy and superirredundancy are used in this
article.

Lemma 1 ([36], Lemma 2). If c is a superirredundant clause of F , it is contained in every minimal CNF
formula equivalent to F .

Lemma 2 ([36], Lemma 5). If a formula contains only superirredundant clauses, it is minimal.

Lemma 3 ([36], Lemma 8). If no two clauses of F resolve, then a clause of F is superredundant if and only
if F contains a clause that is a strict subset of it.

Lemma 4 ([36] Lemma 11). If a clause c of F is superredundant, it is also superredundant in F ∪ {c′}.

Lemma 5 ([36] Lemma 12). A clause c of F [true/x] is superredundant if it is superredundant in F , it contains
neither x nor ¬x and F does not contain c ∨¬x. The same holds for F [false/x] if F does not contain c ∨x.

Superirredundancy differs from the related concepts of irredundancy [28,35], essentiality [29,7,9], and
membership in all minimal formulae. This is shown by the clause a in the formula F = {a, ¬a ∨ b, ¬b ∨ a}:
it is not superirredundant, but is irredundant, is an essential prime implicate and is in all minimal formulae
that are equivalent to F .

• the resolution closure of F is {a, b, ¬a ∨ b, ¬b ∨ a}, where a is redundant; therefore, a is superredundant
in F , not superirredundant;

• removing a from F results in {¬a ∨ b, ¬b ∨ a}, which does not entail a; therefore, a is irredundant in F ;
• the prime implicates of F are a and b; the only CNF formula equivalent to F comprising prime implicates

is {a, b}, which contains a; therefore, a is an essential prime implicate of F ;
• the prime implicates a and b of F do not resolve; therefore, the resolution closure of the set of prime

implicates of F is {a, b}; neither two clauses of F nor two clauses of {a, b} resolve in a; therefore, {a} is
both essential and prime essential for F , its set of prime implicates, the resolution closure of its set of
prime implicates and its represented Boolean function;

• the only minimal-size formula equivalent to F is {a, b}; as a result, a belongs to all minimal-size formulae
equivalent to F .

Essentiality and superirredundancy differ. They both prove membership to all minimal-size formulae
equivalent to the formula, but superirredundancy follows from Lemma 3, Lemma 4 and Lemma 5. These
lemmas shorten the formula by replacing certain variables with true or false until its resolution closure is
easy to calculate in full.

3. Forgetting

A Boolean function over a set of n variables is a mapping {0, 1}n → {0, 1}. Forgetting some variables
results in a Boolean function over the remaining variables.

8 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
Definition 5. Forgetting all variables but Y from a Boolean function over variables X is the Boolean function
g over variables Y such that g(M) = 1 where M is a model over Y if and only if there exists a model M ′

over X\Y such that f(M ∪M ′) = 1.

Forgetting is typically applied to formulae [32] rather than functions. A common definition is: the formula
over the remaining variables that entails the same consequences over the remaining variables. Being based on
the semantical concept of entailment, this definition is unaffected by the syntax of the formula. All equivalent
formulae are the same when forgetting. The result of forgetting is the same as its equivalent formulae. The
semantical definition solves the ambiguity since equivalent formulae represent the same Boolean function.

The definition of forgetting on formulae follows. A formula represents a Boolean function. Variables are
forgotten from the Boolean function. The resulting Boolean function is represented by another formula. This
other formula is the result of forgetting. Actually, every formula representing the same Boolean function is
the result of forgetting. Every such formula expresses forgetting.

Definition 6. A formula B expresses forgetting all variables except Y from a formula A over variables X if
forgetting all variables but Y from the Boolean function represented by A results in the Boolean function
represented by B.

The definition sets a constraint over B rather than uniquely defining a specific formula. Every formula
B fits it as long as it is built over the right variables and represents the same Boolean function.

Syntax is irrelevant to this definition. As it should: every B′ that is syntactically different but equivalent
to B carries the same information. There is no reason to confer A[true/x] ∨ A[false/x] a special status
among all formulae holding the same information. Every formula equivalent to it is an equally valid result
of forgetting.

The definition captures this parity among formulae by not defining forgetting as a single specific formula
and then delegating the identification of its alternatives to equivalence. If B expresses forgetting some
variables from A and B′ is equivalent to B and contains the same variables, then B′ also expresses forgetting.

The common definition of forgetting based on entailment becomes a consequence: A and B entail the
same formulae over the variables Y . This is proved in steps. The first is that A and B are equisatisfiable
with the same sets of literals that mentions exactly the variables Y . This result is also used in the hardness
proofs.

Theorem 1. A formula B over the variables Y expresses forgetting all variables except Y from A if and only
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y that mention all variables in
Y .

The condition based on equisatisfiability extends from sets of literals to arbitrary formulae.

Theorem 2. A formula B over the variables Y expresses forgetting all variables from A except Y if and only
if A ∧D is equisatisfiable with B ∧D for every formula D over variables Y .

The usual definition of forgetting in terms of consequences turns into a theorem.

Theorem 3. A formula B over variables Y expresses forgetting all variables from A except Y if and only if
B |= C is the same as A |= C for all formulae C such that Var(C) ⊆ Y .

The condition that S mentions all variables of Y can be dropped from the equisatisfiability of S ∪A and
S ∪B.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 9
Theorem 4. A formula B over the variables Y expresses forgetting all variables except Y from A if and only
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y .

The following Section 3.1 discusses the main focus of the analysis of this article: the size of a formula
when forgetting variables; the following Section 3.2 shows how to actually compute forgetting in general
and in two specific cases; finally, Section 3.3 proves that in some cases, certain literals are always in the
result of forgetting, which is important when computing the size after forgetting.

3.1. Size of forgetting

Many formulae B express forgetting the same variables X from a formula A. Some may be large and
some may be small. Producing an artificially large formula is straightforward: if {a ∨ b, b ∨ c} expresses
forgetting, also {a ∨ b, b ∨ c, ¬a ∨ a, a ∨ b ∨ ¬c} does: adding tautologies and consequences does not change
the semantics of a formula. The question is not whether a large expression of forgetting exists.

The question is whether a small expression of forgetting exists. In this context, “small” means “of poly-
nomial size”. Technically: given a formula A and a set of variables X, does any formula of size polynomial
in that of A express forgetting X from A?

Forgetting each variable x from the CNF formula A is expressed by Boole elimination [6] A[true/x] ∨
A[false/x], which can be converted back into a CNF of quadratic size. Forgetting many variables this way
produces an exponentially large formula. Yet, this formula may be equivalent to a short one.

This is not the case for all formulae [32]. Yet, it is the case for some formulae. It depends on the formula.
For example, forgetting variables from negation-free CNF formulae amounts to removing the clauses that
contain these variables. The question is the existence of a small formula expressing forgetting from a specific
formula. This will be proved Dp-hard and in Σp

2 for Horn formulae by the following Theorem 6 and Dp
2-hard

and in Σp
3 for unrestricted CNF formulae by the following Theorem 7.

3.2. How to forget

Three properties related to computing forgetting are proved: it can be performed one variable at time, it
can be performed by resolution, and it may be performed on the independent parts of the formula, if any.

Lemma 6 ([16]). If B expresses forgetting the variables Y from A and C expresses forgetting the variables
Z from B, then C expresses forgetting Y ∪ Z from A.

Forgetting can be done by resolution with the Davis-Putnam elimination method [15,18,53,16]. The
function resolve(A, B) provided by Definition 4 gives the clauses obtained by resolving each clause of A
with each clause of B, if they resolve. The notation A ∩ l introduced in Definition 2 gives the clauses of A
that contain the literal l.

Theorem 5 ([53, Theorem 6], [16, Theorem 6]). The formula A\(A ∩ x)\(A ∩ ¬x) ∪ resolve(A ∩ x, A ∩ ¬x)
expresses forgetting x from A.

Forgetting a single variable is not a limitation because Lemma 6 tells that forgetting a set of variables
can be performed one variable at time: forgetting x first and Y \{x} then is the same as forgetting Y .

The problem is that forgetting this way may produce non-minimal formulae even from minimal ones. For
example, A = {a ∨ b ∨x, ¬x ∨ c, a ∨ c} is minimal, but resolving x out to forget it produces {a ∨ b ∨ c, a ∨ c},
which is not minimal since the first clause is entailed by the second. The proof that A is minimal is long
and tedious, and is therefore omitted. The formulae in the outresolve.py file of minimize.py show similar

10 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
examples where the formula obtained by resolving out a variable either contains a redundant literal or is
irredundant although not minimal.

Since resolving Horn clauses produces Horn clauses, this theorem indirectly shows that forgetting variables
from Horn formulae is expressed by a Horn formula [18]. That formula may not be minimal, yet its minimal
equivalent formulae cannot be non-Horn: as mentioned in Section 2.2, resolution derives all clauses of all
minimal equivalent formulae.

When a formula comprises two independent parts with no shared variable, forgetting from the formula is
the same as forgetting from the two parts separately. This property is used in the following hardness proofs
that merge two polynomial-time reductions.

Lemma 7 ([13,32]). Let A and B be two formulae built over disjoint alphabets: Var(A) ∩ Var(B) = ∅. A
formula C expresses forgetting the variables Y from A and D expresses forgetting the variables Y from B
if and only if C ∪D expresses forgetting the variables Y from A ∪B.

3.3. Necessary literals

Finding a minimal version of a formula is difficult [40,49,26]. Finding a minimal formula expressing
forgetting is further complicated by the addition of forgetting. Determining the exact complexity of this
problem proved difficult; not so much for membership to classes in the polynomial hierarchy but for hardness.
Fortunately, proving hardness does not require finding the minimal size of arbitrary formulae, just for the
formulae that are targets of the reduction. NP-hardness is for example proved by translating a formula
(to be checked for satisfiability) to another formula and a set of variables (where the variables have to be
forgotten from the formula). Such a reduction does not generate all possible formulae. Only for the ones
generated by the reduction, the minimal size after forgetting is necessary.

This is good news, because reductions do not generate all possible formulae. Rather the opposite: they
usually produce formulae of a very specific form. Still better, a reduction can be altered to simplify computing
the minimal size of the formulae it produces. If the minimal size is difficult to assess for the formulae produced
by a reduction, the reduction itself can be changed to simplify them.

The reductions used in this article rely on two tricks to allow for simple proofs. The first is that some
clauses of the formulae they generate are in all minimal-size equivalent formulae; this part of the minimal
size is therefore always the same. The second is that the rest of the minimal size depends on the presence
or absence of certain literals in all formulae expressing forgetting; where these literals occur if present does
not matter, only whether they are present or not.

The first trick is based on superredundancy [36], defined in Section 2.
The second requires proving that a literal is contained in all formulae that express forgetting. This is

preliminarily proved when no forgetting is involved.

Lemma 8. If S is a set of literals such that S∪A is consistent, but S\{l} ∪{¬l} ∪A is not, the CNF formula
A contains a clause that contains l.

Since consistency with S and with S\{l} ∪{¬l} is unaffected by syntactic changes, they are the same for
all formulae equivalent to A. In other words, if the conditions of the lemma hold for A they also hold for
every formula equivalent to A.

This property carries over to formulae expressing forgetting by constraining S to only contain variables
not to be forgotten.

Lemma 9. If S∪{l} is a set of literals over the variables Y such that S∪A is consistent, but S\{l} ∪{¬l} ∪A

is not, every CNF formula that expresses forgetting all variables except Y from A contains a clause that
contains l.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 11
How is this lemma used? To prove that reductions from a problem to the problem of minimal size of
forgetting work. Not all reductions can be proved correct this way. The ones used in this article are built to
allow that. They generate a formula that contains a clause that contains a certain literal l that may or may
not meet the condition of the lemma. Depending on this, l may or may not be necessary after forgetting. This
is a +0 or a +1 in the size of the minimal formulae expressing forgetting. If the other literals occurrences
are k, the minimal size is k + 0 or k + 1 depending on whether the conditions of Lemma 9 are met.

In order for this to work, the +0/ + 1 separation is not enough. Equally important to the k + 0 vs. k + 1
size is that the other addend k stays the same. This is the number of the other literal occurrences. The
formulae produced by the reduction may or may not contain a literal l, but this is useless if the rest of the
formula changes. For example, if k changes from 10 to 9 the total size is either 10 + 0 or 9 + 1, which are
the same. Lemma 9 concerns the presence of l in a formula, but this tells its overall size only when the rest
of the formula has a fixed form. This is ensured by superirredundancy [36], defined in Section 2.

4. Size after forgetting, Horn case

How much forgetting variables increases or decreases size? Given a formula A and a set of variables Y ,
how much space forgetting Y from A takes? Technically, how large is a formula expressing forgetting Y
from A? A complexity analysis of a decision problem requires turning it into a yes/no question. Given k, A
and Y , does a formula B of size bounded by k express forgetting?

This is a decision problem: each of its instances comprises a number k, a formula A and a set of variables
Y ; the solution is yes or no. Yet, it may not always capture the question of interest. For example, A may
be a formula of size 100 that can be reduced to size 20 by forgetting the variables Y . This looks like a
good result: the resulting formula takes much less space to be stored, checking what can be inferred from
it is usually easier, and its literals are probably related in some simple way. Yet, all of this may be illusory:
formula A has size 100, but only because it is extremely redundant; it could be reduced to size 10 just by
rearrangements, without forgetting anything. That forgetting can be expressed in size 20 no longer looks
good. It is not even a size decrease, it is a size doubling.

If forgetting was required independent on size, and checking size is a side question, the problem still
makes sense: is forgetting A expressed by a formula of size 20? If forgetting is done for size reasons, or
for reasons that depend on size, the problem is not this but rather “does forgetting reduce size?” or “how
much forgetting increases or decreases size?” These questions depend on the original size of the formula.
The answer is not “20”. It is rather “forgetting increases size from 10 to 20”. It is certainly not “forgetting
decreases size from 100 to 20”, since the formula can be shrunk more without forgetting.

The solution is to disallow formulae of size 100 that can be reduced to 10 without forgetting. A formula
of size 100 really has size 100. It is not the inflated version of a formula of size 10. This way, if size can be
reduced from 100 to 20 when forgetting, this reduction is only due to forgetting, not to the original formula
being larger than necessary.

The following lemmas and theorems include this assumption that the formula is minimal in size. For
example, the problem of checking the size after forgetting is proved hard for the complexity class Dp when
the formula is minimal. It is also proved to be in the class Σp

2. The proof of the latter also holds when the
formula is not minimal: it holds in both cases.

Checking whether forgetting Y from A can be expressed in space k is easy to be proved in Σp
2 if k is

unary or polynomially bounded by the size of A: all it takes is checking all formulae of size k for their
equisatisfiability with all sets of literals S over the remaining variables by Theorem 4. Hardness is not so
easy to prove, and in fact leaves a gap to membership: it is only proved Dp-hard in this article.

Not that Dp-hardness is easy to prove. It requires two long lemmas, one for a coNP-hardness reduction
and one for an NP-hardness reduction. These reductions have a form that allows them to be merged into a
single Dp-hardness reduction.

12 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
A generic NP-hardness reduction is “if F is satisfiable then forgetting takes space less than or equal to k
and greater otherwise”. It may not be merged. An additional property is required: forgetting can never be
expressed in size less than k. If this is also a property of a coNP-hardness reduction where the size bound is
l, the overall size is always k+ l or greater, with k+ l being only possible when the first formula is satisfiable
and the second unsatisfiable.

This explains why the lemmas are formulated with “equal to k” in one case and “greater than k” in the
other. Their other peculiarity, that the formula generated by the reduction is required to be minimal, is due
to the reasons explained above.

Lemma 10. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is
expressed by a Horn formula of size k if F is unsatisfiable and only by Horn formulae of size greater than
or equal to k + 2 if F is satisfiable.

This lemma shows a polynomial reduction from propositional unsatisfiability to the problem of forget
size in the Horn case. As for all polynomial reductions, it translates a formula F without knowing its
satisfiability, which however affects the minimal size of expressing forgetting.

Being a polynomial reduction from propositional unsatisfiability, it proves the forgetting size problem
coNP-hard. Yet, the lemma is not formulated this way. It instead predicates about the reduction itself. Only
this way it could include the additional property that the minimal size is either k or at least k + 2. This
allows merging it with another reduction to form a proof of Dp-hardness.

The following lemma also shows the problem NP-hard: a formula F is satisfiable if and only if forgetting
some variables from A can be expressed in a certain space. However, its statement refers to the reduction
itself for the same reason of the previous lemma: merging with the previous reduction into a Dp-hardness
reduction.

Lemma 11. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is
expressed by a Horn formula of size k if F is satisfiable and only by Horn formulae of size greater than k
otherwise.

The problem of size after forgetting is the target of both a reduction from propositional satisfiability and
from propositional unsatisfiability. This alone proves it both NP-hard and coNP-hard. These reductions
have the additional property that forgetting variables from the formulae they generate cannot be expressed
in size less than k. This allows merging them into a single Dp-hardness proof.

Lemma 12. Checking whether forgetting some variables from a minimal-size Horn formula is expressed by a
CNF or Horn formula bounded by a certain size is Dp-hard.

Proving hardness takes most of this section, but still leaves a gap between the complexity lower bound
it shows and the upper bound in the next theorem. The problem is Dp-hard, which is just a bit above
NP-hardness and coNP-hardness, but belongs to a class of the next level of the polynomial hierarchy: Σp

2.

Theorem 6. Checking whether forgetting some variables from a Horn formula is expressed by a CNF or Horn
formula bounded by a certain size expressed in unary is Dp-hard and in Σp

2, and remains hard even if the
formula is restricted to be of minimal size.

The assumption that the size bound is represented in unary is technical. When formulated as a decision
problem, the size of forgetting is the question whether forgetting certain variables X from a formula A is

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 13
expressed by a formula of size k, but the actual problem is to find such a formula. If k is exponential in the
size of A, a formula of size k may very well exist, but is unpractical to represent. Unless A is very small.
The requirement that k is in unary forces the input of the problem to be as large as the expected output.
If the available space is enough for storing a resulting formula of size k, it is also enough for storing an
input string of length k, which k in unary is. In the other way around, representing k in unary witnesses
the ability of storing a resulting formula of size k. The similar assumption “k is polynomial in the size of
A” fails to include the case where A is very small but the space available for expressing forgetting is large.

5. Size after forgetting, general case

The complexity analysis for general CNF formulae mimics that of the Horn case. Two reductions prove
the problem hard for the two basic classes of a level of the polynomial hierarchy. They are merged into a
single proof that slightly increases the lower bound. A membership proof for a class of the next level ends
the analysis.

The difference is that the level of the polynomial hierarchy is the second instead of the first. The two
reductions prove the problem hard for Πp

2 and Σp
2. They are merged into a Dp

2-hardness proof. Finally, the
problem is located within Σp

3.
As for the Horn case, the first lemma proves the problem Πp

2-hard, but is formulated in terms of the
reduction because the reduction is needed to raise the lower bound to Dp

2-hard.

Lemma 13. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size CNF
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables from A except XC is
expressed by a CNF formula of size k if ∀X∃Y.F is valid and only by CNF formulae of size k+2 or greater
otherwise.

The second lemma is again about a reduction. Its statement implies that the problem is Σp
2-hard, but it

predicates about the reduction rather than the hardness. This allows it to be merged with the first lemma
into a proof of Dp

2-hardness. The existing proof of Σp
2-hardness of the problem without forgetting [50] also

proves the problem with forgetting Σp
2-hard, but does not allow such a merging and does not hold in the

restriction of minimal formulae.

Lemma 14. There exists a polynomial algorithm that turns a DNF formula F = f1 ∨ · · · ∨ fm over variables
X ∪ Y into a minimal-size CNF formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all
variables except XC from A is expressed by a CNF formula of size k if ∃X∀Y.F is valid, and only by larger
CNF formulae otherwise.

As anticipated, the two reductions merge into one that proves the problem of forgetting size Dp
2-hard.

Lemma 15. Checking whether forgetting a given set of variables from a minimal-size CNF formula is ex-
pressed by a CNF formula bounded by a certain size is Dp

2-hard.

The next theorem adds a complexity class membership to the hardness of the problem of size of forgetting
proved in the previous lemma.

Theorem 7. Checking whether forgetting some variables from a CNF formula is expressed by a CNF formula
of a certain size expressed in unary is Dp

2-hard and in Σp
3, and remains hard even if the CNF formula is

restricted to be of minimal size.

14 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
The technical assumption that the size bound is expressed in unary is the same as in Theorem 6; it is
motivated after that theorem.

6. Related work

Reducing the size of a propositional formula when no forgetting is involved has been much studied [47,3,
11,50,12,7,8,31,30]. The practical problem of synthesizing a minimal formula representing a Boolean function
is formalized by the decision problem of deciding whether a propositional formula has an equivalent form
of a given size or less. This problem depends on the definition of size. Size may be the total number of
occurrences of literals in a formula [3,50,8,31,30], but may also be its clause count [3,7]. It may be the total
size of the bodies of the clauses [3] or a cost function obeying some constraints [11,12]. The problem changes
depending on the definition of size. While complexity may look the same, it requires specific proofs. The
ones for the number of occurrences of literals do not in general work for the number of clauses or the other
measures in the literature.

The existing literature provides mechanisms for forgetting variables from a formula and overall bounds
on the minimal size of expressing forgetting for all formulae. They leave open the question in between: the
minimal size of expressing forgetting for a specific formula. An example result of the first kind is: “Salient
features of the solution provided include linear time complexity, and linear size of the output of (iterated)
forgetting” [1]: forgetting generates linear formulae. An example result of the second kind is: “the size of
the result of forgetting may be exponentially large in the size of the input program” [16]: forgetting may
produce exponentially large formulae. It may, not must. For some formulae, forgetting may not increase size.
The only previous complexity result about the size of forgetting for a specific formula is discussed later [57].
Other authors reported worst-case results [23,22], and some the opposite, as certain forgetting mechanisms
of certain logics can be expressed in polynomial size [27]. These results are usually unaffected by whether
size is defined as total length or number of clauses.

Forgetting propositional variables is also called variable elimination, especially in the context of auto-
mated reasoning [19]: it is a way to simplify a formula before processing. As such, it has stricter efficiency
requirements than general forgetting. For example, the NiVER preprocessor “resolves away a variable only
if there will be no increase in space” [48]. A quadratic increase would be too much, given the aim of reducing
the overall runtime of automated reasoning.

Forgetting is often identified by its dual concept of uniform interpolation, especially in first-order, modal
and description logics [5]. While forgetting is always expressible in exponential space in propositional logics,
uniform interpolants in other logics may be larger, if they exist at all. For example, their size is at least
triple-exponential in certain description logics, provided that they exist [42]. Analogous to the question of
checking their size is checking their existence [2].

A way to forget in propositional logic is Boole elimination [6], but the resulting formula A[true/x] ∨
A[false/x] does not maintain the syntactic form of A: a CNF like a ∧ (x ∨ b ∨ c) becomes the non-CNF
((a) ∨(a ∧(b ∨c)). While this formula can be turned into CNF, directly combining clauses is more convenient
when working on CNFs.

An alternative is given by the Davis-Putnam elimination method [15], as proved by Delgrande and
Wassermann [18] in the Horn case and extended to the general case by Wang [53] and Delgrande [16].
Theorem 5 shows that forgetting is expressed by A\(A ∩ x)\(A ∩ ¬x) ∪ resolve(A ∩ x, A ∩ ¬x), where
resolve(A, B) gives the clauses obtained by resolving each clause of A with each clause of B if they resolve
and A ∩ l gives the clauses of A that contain the literal l.

Forgetting this way may produce non-minimal formulae even from minimal ones. For example, A =
{a ∨ b ∨ x, ¬x ∨ c, a ∨ c} is minimal, but resolving x out to forget it produces {a ∨ b ∨ c, a ∨ c}, which is not
minimal since the first clause is entailed by the second. The proof that A is minimal is long and tedious,
and is therefore omitted. The formulae in the outresolve.py file of minimize.py show similar examples

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 15
where the formula obtained by resolving out a variable either contains a redundant literal or is irredundant
although not minimal.

Lemma 11 incidentally proves the problem of forgetting size NP-hard. An alternative is given by The-
orem 2 by Zhou [57]. The formulae generated by the reduction in its proof are not Horn, but can be
straightforwardly turned so by switching the sign of some variables. However, they are not enforced to be
of size k or more as required by the Dp-hardness proof. While the Horn restriction is easy to satisfy, this
constraint does not look so.

Generating only minimal formulae is instead unattainable. The reduction in the proof of Theorem 2 by
Zhou [57] hinges on non-minimal formulae. It works by translating non-minimal formulae into non-minimal
formulae. The original formula is added three variables so that it is recovered by forgetting them. This is
the hearth of the reduction: the size after forgetting follows the size before the translation; this proves the
problem of size after forgetting as hard as the problem of size without forgetting, which is NP-hard [3,29]
in the Horn case. The addition of the three variables links the size of the formulae. Of all three formulae:
the original, the result of the translation and the result of forgetting. The reduction is an NP-hardness
proof because checking whether the original formula is equivalent to one of a certain size or less is NP-hard.
The translated formula before forgetting can only be made minimal by making the original minimal, which
trivializes the check.

While the reduction proves the problem NP-hard, proving NP-hardness is not the final aim. It is the
Dp-hardness when the formula is minimal. The Dp-hardness proof requires the bound on size. Converting
non-minimal formulae into non-minimal formulae turns the problem from size reduction by forgetting to
size reduction without forgetting. This also applies to the case of arbitrary formulae, proved Σp

2-hard by
reduction from the problem of formula minimization [50].

7. Conclusions

Forgetting variables from formulae may increase size, instead of decreasing it. This phenomenon is already
recognized as a problem [17,4]. Deciding whether it takes place or not for a specific formula and variables
to forget is difficult. While checking inference is polynomial in the Horn case, checking whether forgetting is
expressed by a formula of a certain size is at least Dp-hard, which implies it both NP-hard and coNP-hard;
the same for the general case, where inference is coNP-complete but checking size after forgetting is at least
Dp

2-hard.
The precise characterization of complexity is an open problem. For Horn formulae, Theorem 6 leaves a

gap between the lower bound of Dp-hardness and the upper bound of Σp
2-membership. According to what

proved so far, the problem could be as easy as Dp-complete or as hard as Σp
2-complete. Nothing in the

results obtained so far favors either possibility. Actually, nothing indicates for certain that the problem is
complete for either class; it could be complete for any class in between, like Δp

2[logn] or Δp
2.

Anecdotal evidence hints that the problem is Σp
2-complete. The analogous problems without forgetting

for unrestricted formulae kept a gap between NP and Σp
2 for twenty years before being closed as Σp

2-
complete [47,50]. Proving membership was easy; proving hardness was not.

This is a common pattern, not limited to formula minimization: in many cases, hardness is more difficult
to prove than membership. Not always, but hardness proofs are often more complicated than membership
proofs. The hardness and membership lemmas in this article are an example: several pages of proof for
hardness, ten lines for membership. A proof of Σp

2-hardness may very well exist but is just difficult to find.
As it was for the problem without forgetting.

All of this is anecdotal. Technically, the complexity of the problem could be anything in between Dp and
Σp

2.
As a personal opinion, not based on the technical results, the author of this article would bet on the

problem being Σp
2-complete. The missing proof of Σp

2-hardness could be an extension of that of Lemma 11,

16 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
since both Σp
2 and NP are based on an existential quantification. The extension of an already difficult proof

would be further complicated by the addition of an inner universal quantification.
A way to partly close the issue is to further restrict the Horn case to simplify the problem to Dp. The

gap would close to its lower end for such a class of formulae.
This is the first direction for further studies in how forgetting affects size. Another is the investigation in

subcases other than the general propositional case and its Horn restriction. Many are relevant. Forgetting is
very easy on formulae in DNNF [14], as it amounts to simply removing literals. It is also easy for the Krom
restriction [53] as resolving binary clauses always produces binary clauses, which are at most quadratically
many. It may not on other tractable cases in Post’s lattice [43].

Forgetting has variants and is defined for many logics other than propositional logic. The problem of size
applies to all of them. What is its complexity? This article characterizes it for one version of forgetting in
propositional logic. The other versions and the other logics are still open. Some results may apply to them
as well. Logic programs embed Horn clauses; the hardness results for the Horn case may hold for them as
well. More generally, how hard it is to check whether forgetting in logic programs is expressed within a
certain size? How hard it is in first-order logic? In description logics? How hard it is when forgetting literals
rather than variables?

The size after forgetting matters not only when forgetting variables, but also literals [32], possibly with
varying variables [41]. All variants inhibit the values of some variables to matter: forgetting variables makes
their values irrelevant to the satisfaction of the formula; forgetting literals makes only the true or false value
not to matter; varying variables allows some other variables to change. These variants generalize forgetting
variables, inheriting the problem of size with the same complexity at least.

Forgetting applies to frameworks other than propositional logic. The problem of size applies to them as
well.

Forgetting from logic programs [52,54,27] is usually backed by the need of solving conflicts rather than
an explicit need of reducing size. Yet, an increase in size is recognized as a problem: “Whereas relying on
such methods to produce a concrete program is important in the sense of being a proof that such a program
exists, it suffers from several severe drawbacks when used in practice: In general, it produces programs with
a very large number of rules” [4]; “It can also be observed that forgetting an atom results in at worst a
quadratic blowup in the size of the program. [...] While this may seem comparatively modest, it implies
that forgetting a set of atoms may result in an exponential blowup” [17].

Another common area of application of forgetting is first-order logic [37]. Size after forgetting is related
to bounded forgetting [58], which is forgetting with a constraint on the number of nested quantifiers. The
difference is that the bound is an additional constraint rather than a limit to check. Bounded forgetting
still involves a measure (the number of quantifiers), but forcing the result by that measure makes it close
to bounding PSPACE problems [34]. Enforcing size rather than checking it is another possible direction of
expansion of the present article.

As are the other logics where forgetting is applied like description logics [20,55] and modal logics [56,51],
where forgetting is often referred to as its dual concept of uniform interpolant, and also temporal logics [25],
logics for reasoning about actions [23,44], and defeasible logics [1].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 17
Appendix A. Proofs

Theorem 1. A formula B over the variables Y expresses forgetting all variables except Y from A if and only
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y that mention all variables in
Y .

Proof. The Boolean functions A, B and S represent are respectively denoted a(), b() and s(). The variables
of A are X∪Y , where X is to forget and Y is not. Every set of literals S that mentions exactly the variables
of Y has a single model over Y , denoted MS .

The satisfiability of S ∪ A is the existence of a model over variables X that satisfies both S and A.
Alternatively, it is the existence of two models M and M ′ respectively over Y and X\Y such that s(M ∪
M ′) = 1 and a(M ∪ M ′) = 1. Since S does not mention any variable in X\Y , the former subcondition
s(M ∪M ′) = 1 equates to s(M) = 1. This is also equivalent to M = MS since S is only satisfied by MS.
As a result, the satisfiability of S ∪ A simplifies to the existence of a model M and a model M ′ such that
M = MS and a(M ∪M ′) = 1. This is the same as the existence of a model M ′ such that a(MS ∪M ′) = 1.

For the same reasons, the satisfiability of S ∪ B equates to the existence of a model M ′ such that
b(MS ∪ M ′) = 1. Since B only mentions the variables Y , this condition simplifies to the existence of a
model M ′ such that b(MS) = 1. The subcondition b(MS) = 1 does not mention M ′, negating the need of
quantifying over this model. The satisfiability of S ∪B eventually turns into just b(MS) = 1.

The equisatisfiability of S ∪ A and S ∪ B is the same as: b(MS) = 1 holds if and only if there exists
a model M ′ such that a(MS ∪ M ′) = 1 for every set of literals S that mentions all variables in Y . The
universal quantification over S is the same as a universal quantification of a model MS over variables Y .
The result is: for every model MS over variables Y , b(MS) = 1 holds if and only if there exists a model M ′

over variables X\Y such that a(MS ∪M ′) = 1”. This is the definition of B expressing forgetting X\Y from
A. �
Theorem 2. A formula B over the variables Y expresses forgetting all variables from A except Y if and only
if A ∧D is equisatisfiable with B ∧D for every formula D over variables Y .

Proof. Theorem 1 reformulates forgetting as the equisatisfiability of A and B with every set of literals S
that mentions exactly the variables Y . This is a special case of the equisatisfiability of A and B with every
formula D over Y . This proves one part of the theorem, from equisatisfiability to forgetting.

The other part is from forgetting to equisatisfiability: if B expresses forgetting then A ∧D and B ∧D

are equisatisfiable for every formula D over Y .
Every formula D over Y is equivalent to the disjunction of some sets of literals, each mentioning exactly

the variables Y . Formally, D is equivalent to S1 ∨ · · · ∨ Sm.
As a result, A ∧D is equivalent to A ∧ (S1 ∨ · · · ∨ Sm), which is equivalent to (A ∧ S1) ∨ · · · ∨ (A ∧ Sm).

Theorem 1 tells that each A ∧ Si is equisatisfiable with B ∧ Si. As a result, (A ∧ S1) ∨ · · · ∨ (A ∧ Sm) is
equisatisfiable with (B ∧ S1) ∨ · · · ∨ (B ∧ Sm), which is equivalent to B ∧D.

This chain of equivalences proves the equisatisfiability of A ∧D and B ∧D. �
Theorem 3. A formula B over variables Y expresses forgetting all variables from A except Y if and only if
B |= C is the same as A |= C for all formulae C such that Var(C) ⊆ Y .

Proof. The entailment B |= C is the same as the unsatisfiability of B ∪ ¬C. The same for A |= C. The
equivalence of A |= C and B |= C coincides with the equisatisfiability of B∪¬C and A ∪¬C. By Theorem 2,
this is the same as B expressing forgetting from A. �

18 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
Theorem 4. A formula B over the variables Y expresses forgetting all variables except Y from A if and only
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y .

Proof. The equisatisfiability in this theorem is a special case of that in Theorem 2, which is proved to hold
if B expresses forgetting.

The equisatisfiability in Theorem 1 is a special case of the one in this theorem, which therefore implies
that B expresses forgetting. �
Lemma 8. If S is a set of literals such that S∪A is consistent, but S\{l} ∪{¬l} ∪A is not, the CNF formula
A contains a clause that contains l.

Proof. Since S ∪A is consistent, it has a model M .
The claim is that A contains a clause that contains l. This is proved by contradiction, assuming that no

clause of A contains l. By construction S\{l} does not contain l either. As a result, A′ = S\{l} ∪ A does
not contain l. It is still satisfied by M because M satisfies its superset S ∪ A. Let M ′ be the model that
sets l to false and all other variables the same as M . Let l1 ∨ · · · ∨ lm be an arbitrary clause of A′. Since
M satisfies A, it satisfies at least one of these literals li. Since A does not contain l, this literal li is either
¬l or a literal over a different variable. In the first case M ′ satisfies li = ¬l because it sets l to false; in the
second because it sets li the same as M , which satisfies li. This happens for all clauses of A′, proving that
M ′ satisfies A′.

Since M ′ also satisfies ¬l because it sets l to false, it satisfies A′ ∪ {¬l} = S\{l} ∪ {¬l} ∪A, contrary to
its assumed unsatisfiability. �
Lemma 9. If S∪{l} is a set of literals over the variables Y such that S∪A is consistent, but S\{l} ∪{¬l} ∪A

is not, every CNF formula that expresses forgetting all variables except Y from A contains a clause that
contains l.

Proof. Let B be a formula expressing forgetting all variables from A but Y . By Theorem 4, since S is a set
of literals over Y , the consistency of S ∪A equates that of S ∪B. The same holds for S\{l} ∪{¬l} since its
variables are all in Y .

The lemma assumes the consistency of S ∪A and the inconsistency of S\{l} ∪ {¬l} ∪A. They imply the
consistency of S ∪B and the inconsistency of S\{l} ∪{¬l} ∪B. These two conditions imply that B contains
a clause that contains l by Lemma 8. �
Lemma 10. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is
expressed by a Horn formula of size k if F is unsatisfiable and only by Horn formulae of size greater than
or equal to k + 2 if F is satisfiable.

Proof. Let F = {f1, . . . , fm} be a CNF formula built over the alphabet X = {x1, . . . , xn}. The reduction
employs the fresh variables E = {e1, . . . , en}, T = {t1, . . . , tn}, C = {c1, . . . , cm} and {a, b}. The formula
A, the set of variables XC and the number k are:

A = {¬xi ∨ ¬ei,¬xi ∨ ti,¬ei ∨ ti | xi ∈ X} ∪

{¬xi ∨ cj | xi ∈ fj , fj ∈ F} ∪ {¬ei ∨ cj | ¬xi ∈ fj , fj ∈ F} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b} ∪

{a ∨ ¬b}

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 19
XC = X ∪ E ∪ {a, b}

k = 2 × n + 2

Before formally proving the claim, how the reduction works is summarized. Some literals are still necessary
after forgetting, and some of them are necessary only if F is satisfiable. The clauses ¬xi ∨ ¬ei make ¬xi

and ¬ei necessary. The clause a ∨ ¬b makes a and ¬b necessary. If F is always false, then for every value
of the variables X ∪ E either some ti can be set to false (if xi = ei = false) or some cj can be set to false
(because ei is the negation of xi, and at least a clause of F is false). This makes the clause

¬t1 ∨ · · · ∨¬tn ∨¬c1 ∨ · · · ∨¬cm ∨¬a ∨ b satisfied regardless of a and b. Instead, if the formula is satisfied
by an evaluation of X and E is its opposite, then all cj and ti have to be true, turning ¬t1 ∨ · · · ∨ ¬tn ∨
¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b into ¬a ∨ b. This makes ¬a and b necessary as well.

x1 n1 x2 t2 c1 c2n2

0 1

1 0 0 1

0 1 0 1

0/1 0/1 1

0/1

1 1 1 1

0/1 1

1 1

1 1 0 1

1 0 0 1

0 110

0/1

0/1

1

1

1

1

a ∨ ¬b

¬a ∨ b

t1

¬a, b necessary

a,¬b necessary

(all xi
= ni, all fj true)

(x1 = n1 = false)

(f1 false)

00

The figure shows three models as an example. In the first model, the assignments x1 = e1 = false allow t1
to take any value (denoted 0/1); regardless of the other variables (irrelevant values are marked −), t1 = false
satisfies the clause ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨¬a ∨ b without the need to also satisfy its subset ¬a ∨ b;
this subclause can be false and still A is true. In the second model the values of xi and ei are opposite to
each other for every i, but the clause f2 ∈ F is false; c1 can take any value, including false; this again allows
A to be true even if ¬a ∨ b is false. In the third model, the variables xi and ei are all opposite to each other
and all clauses of F true; all ti and ci are forced to be true, making ¬a ∨ b the only way to satisfy the clause
¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b. When removing the intermediate variables ti and ci, all that
matters is whether ¬a ∨ b was allowed to be false for some values of the removed variables or not. This is
the case for the first two models but not the third, where ¬a and b are necessary.

Minimality. The minimality of A is proved applying Lemma 5 to remove some clauses so that the remaining
ones do not resolve and Lemma 3 applies. Lemma 2 proves A minimal since it only contains superirredundant
clauses.

Substituting the variables a, b with false removes ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b and a ∨ ¬b
from A. The remaining clauses contain xi, ei only negative and ti, cj only positive. Therefore, these clauses
do not resolve. Since they do not contain each other, Lemma 3 proves them superirredundant. They are
also superirredundant in A by Lemma 5 since A does not contain any of their supersets.

20 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
The superirredundancy of the remaining two clauses is proved by substituting all xi, ei with false. This
substitution removes the clauses ¬xi ∨¬ei, ¬xi ∨ ti, ¬ei ∨ ti, ¬xi ∨ cj and ¬ei ∨ cj because they all contain
either ¬xi or ¬ei. The two remaining clauses are ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b and a ∨ ¬b.
They have opposite literals, but resolving them results in tautologies. As a result, F = ResCn(F). Since
none of the two entails the other, they are irredundant in ResCn(F) and are therefore superirredundant.
By Lemma 5, they are superirredundant in A as well since A does not contain a superset of them.

Formula F is unsatisfiable. Forgetting all variables except XC from A is expressed by B = {¬xi ∨¬ei | xi ∈
X} ∪{a ∨¬b}, a Horn formula of the required variables XC = X ∪E ∪{a, b} and size ||B|| = 2 ×n +2 = k.

Theorem 1 proves that B expresses forgetting if every set of literals S that contains exactly all variables
XC = X ∪ E ∪ {a, b} is satisfiable with A if and only if it is satisfiable with B. Two cases are possible.

{xi, ei} ⊆ S for some i ; the clause ¬xi ∨ ¬ei in both A and B is falsified by S; both A ∪ S and B ∪ S are
unsatisfiable;

{xi, ei} ⊆ S for no i ; since S contains either xi or ¬xi for each i and either ei or ¬ei for each i, either
¬xi ∈ S or ¬ei ∈ S; as a result, all clauses ¬xi ∨ ¬ei are satisfied in A ∪ S and B ∪ S, and can
therefore be disregarded from this point on; the only remaining clause of B is a ∨ ¬b;

if S contains ¬a and b, then B is not satisfied; but A contains the same clause a ∨ ¬b, so it is
not satisfied either; if S contains both a and b or both ¬a and ¬b, then B is satisfied, and A is also
satisfied by setting all variables ti and cj to true; therefore, the only sets S that may differ when
added to A and B are those containing a and ¬b; these sets are consistent with B; they make the
clause a ∨¬b of A redundant, and resolve with the clause ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm ∨¬a ∨ b

making it subsumed by ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm.
Two subcases are considered:

{¬xi,¬ei} ⊆ S for some i the remaining clauses of A are satisfied by setting ti to false, all tz with
z
= i to true and all cj to true; in particular, the clause ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm is
satisfied because of ti = false;

{¬xi,¬ei} ⊆ S for no i ; at this point, also {xi, ei} ⊆ S for no i; as a result, S contains either
{xi, ¬ei} or {¬xi, ei}, which means that it implies xi
≡ ei; the clauses ¬ei∨cj are therefore
equivalent to xi ∨ cj ; by assumption, at least a clause of F is false for every possible value
of the variables X; let fj be such a clause for the only truth evaluation on X that satisfies
S; by setting all variables ti and all cz with z
= j to true and cj to false, this assignment
satisfies all clauses; in particular, the clauses ¬xi ∨ cj and xi ∨ cj are satisfied even if cj is
false because fj is false in S, which implies that all literals xi and ¬xi it contains are false;
the clause ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm is satisfied because of cj = false.

All of this proves that B is the result of forgetting all variables except XC from A.

Minimal number of literals. Every CNF formula B that expresses forgetting all variables except XC =
X ∪E ∪{a, b} from A contains at least k = 2 ×n + 2 literal occurrences regardless of the satisfiability of F .

This is proved by showing that B contains the literals ¬xi, ¬ei, a and ¬b. This is in turn proved by
Lemma 9: for each of them l, a set S is shown consistent with A while S\{l} ∪ {¬l} is not.

For the literals ¬xi and a the set S contains all ¬xi, all ei, a and b. It is consistent with A because both
are satisfied by the model that sets all xi to false and all ei, ti, ci, a and b to true. Replacing ¬xi with xi

makes S inconsistent with ¬xi ∨ ¬ei. Replacing a with ¬a makes S inconsistent with a ∨ ¬b.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 21
For the literals ¬ei and ¬b, the set S contains all xi, all ¬ei, ¬a and ¬b. It is consistent with A because
both are satisfied by the model that assigns all xi, ti and ci to true and all ei, a and b to false. Replacing
¬ei with ei makes S inconsistent with ¬xi ∨ ¬ei. Replacing ¬b with b makes it inconsistent with a ∨ ¬b.

This proves that every formula obtained by forgetting all variables except XC from A contains all the
k = 2 × n + 2 literals ¬xi, ¬ei, a and ¬b.

Formula F is satisfiable. If this is the case, every CNF formula B that expresses forgetting all variables
except XC from A contains the literals ¬a and b. These two literals are in addition to the k literals of the
previous point, raising the minimal number of literals to k + 2.

That B contains ¬a is proved by exhibiting a set of literals S that is consistent with A while S\{l} ∪{¬l}
is not where l = ¬a. This implies that B contains ¬a by Lemma 9. A similar set with l = b shows that B
also contains b.

Let M be a model of F . The set of literals S contains xi or ¬xi depending on whether M satisfies xi; it
contains ei or ¬ei depending on whether M falsifies xi; it also contains ¬a and ¬b. This set is consistent
with A because they are both satisfied by the model that extends M by setting each ei opposite to xi, all
ti and ci to true and a and b to false. In particular, the clause ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b is
satisfied because it contains ¬a.

Replacing ¬a with a makes S no longer consistent with A. Let S′ = S\{¬a} ∪ {¬¬a}. This set has the
same literals over xi and ei of S. Since M satisfies F , for each of its clauses fj at least a literal in fj is
true in M . If this literal is xi, then S′ contains xi; since xi is in fj , formula A contains the clause ¬xi ∨ cj ;
therefore, S′ ∪ A |= cj . If the literal of fj that is true in M is ¬xi, then S′ contains ei; since ¬xi is in fj ,
formula A contains ¬ei ∨ cj ; therefore, S′ ∪A |= cj . This proves that regardless of whether the literal of fj
that is true in M is positive or negative, if F is consistent then S′ ∪A implies cj . This is the case for every
j since M satisfies all clauses of F . Since S′ contains either xi or ei for every i and A contains both ¬xj ∨ tj
and ¬ej ∨ tj for every j, S′ ∪ A also implies all variables tj . Since S′ = S\{¬a} ∪ {a} also contains a and
¬b, it is inconsistent with ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b. This proves that ¬a is in B.

The similar set S that contains a and b leads to the same point where all variables cj and ti are implied,
making ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b consistent with {a, b} but not with {a, ¬b}. This proves
that b is also in B. �
Lemma 11. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is
expressed by a Horn formula of size k if F is satisfiable and only by Horn formulae of size greater than k
otherwise.

Proof. Let the formula be F = {f1, . . . , fm} and X = {x1, . . . , xn} its variables. The formula A is built
over an extended alphabet comprising the variables X = {x1, . . . , xn} and the additional variables O =
{o1, . . . , on}, E = {e1, . . . , en}, P = {p1, . . . , pn}, T = {t1, . . . , tn}, C = {c1, . . . , cm}, R = {r1, . . . , rn},
S = {s1, . . . , sn} and q.

The formula A, the set of variables XC and the integer k are as follows.

A = AF ∪AT ∪AC ∪AB

AF = {xi ∨ ¬oi, oi ∨ ¬q | xi ∈ X} ∪ {ei ∨ ¬pi, pi ∨ ¬q | xi ∈ X}
AT = {¬xi ∨ ti,¬ei ∨ ti | xi ∈ X}
AC = {¬xi ∨ cj | xi ∈ fj , fj ∈ F} ∪ {¬ei ∨ cj | ¬xi ∈ fj , fj ∈ F}
AB = {¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xi ∨ ¬ri, ri ∨ ¬q | xi ∈ X} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ei ∨ ¬si, si ∨ ¬q | xi ∈ X}

22 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
XC = X ∪ E ∪ T ∪ C ∪R ∪ S ∪ {q}
k = 2 × n + ||AT || + ||AC || + ||AB ||

Before formally proving that the reduction works, a short summary of why it works is given. The variables
to forget are O ∪ P . A way to forget them is to turn AF into AR = {xi ∨ ¬q, ei ∨ ¬q | xi ∈ X}. The other
clauses of A are superirredundant: Lemma 1 proves they belong to all minimal equivalent formulae. The
bound k allows only one clause of AR for each i. Combined with the clauses of AT they entail ti ∨ ¬q. If F
is satisfiable, they also combine with the clauses AC to imply all clauses cj ∨ ¬q. Resolving these clauses
with AB produces all clauses xi∨¬q and ei∨¬q, including the ones not in the formula. This way, a formula
that contains one clause of AR for each index i implies all of AR, but only if F is satisfiable.

The following figure shows how e1∨¬q is derived from x1∨¬q and e2∨¬q, when the formula is F = {f1, f2}
where f1 = x1∨x2 and f2 = ¬x1∨¬x2. These clauses translate into AC = {¬x1∨c1, ¬x2∨c1, ¬e1∨c2, ¬e2∨
c2}. The rest of the formula A does not depend on the specific clauses of F but only on the number of
variables and clauses it contains.

�
���
��

�
���
��

�

�

�
��������

��������

�

¬x1 ∨ t1

¬e2 ∨ t2

x1 ∨ ¬q

e1 ∨ ¬q

x2 ∨ ¬q

e2 ∨ ¬q

¬q ∨ t1

¬q ∨ t2

¬x1 ∨ c1

¬e1 ∨ c2

¬x2 ∨ c1

¬q ∨ c1

¬e2 ∨ c2
¬q ∨ c2

¬t1 ∨ ¬t2 ∨ ¬c1 ∨ ¬c2 ∨ e1 ∨ ¬s1

¬q ∨ e1 ∨ ¬s1

s1 ∨ ¬q

e1 ∨ ¬q

For each index i, at least one among xi∨¬q and ei∨¬q is necessary for deriving ¬q∨ ti, which is required
for these derivations to work. Alternatively, ¬q ∨ ti may be selected. Either way, for each index i at least a
two-literal clause is necessary.

The claim is formally proved in four steps: first, a non-minimal way to forget all variables except XC

is shown; second, its superirredundant clauses are identified; third, an equivalent formula of size k is built
if F is satisfiable; fourth, the necessary clauses in every equivalent formula are identified; fifth, if F is
unsatisfiable every equivalent formula is proved to have size greater than k.

Effect of forgetting.
Theorem 5 proves that forgetting all variables not in XC , which are O ∪P , is expressed by resolving out

these variables. Since oi occurs only in xi ∨ ¬oi and oi ∨ ¬q, the result is xi ∨ ¬q. The same holds for pi.
The resulting clauses are denoted AR:

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 23
AR = {xi ∨ ¬q, ei ∨ ¬q | xi ∈ X}

Superirredundancy.
The claim requires A to be minimal, which follows from all its clauses being superirredundant by Lemma 2.

Most of them survive forgetting; the reduction is based on these being superirredundant. Instead of proving
superirredundancy in two different but similar formulae, it is proved in their union.

In particular, the clauses AF ∪AT ∪AC ∪AB are shown superirredundant in AF ∪AR ∪AT ∪AC ∪AB .
Lemma 4 implies that they are also superirredundant in its subsets AF∪AT∪AC∪AB and AR∪AT∪AC∪AB ,
the formula before and after forgetting.

To be precise, the latter is just one among the formulae expressing forgetting. Yet, its superirredundant
clauses are in all minimal CNF formulae equivalent to it as proved by Lemma 1. Therefore, all minimal
CNF formulae expressing forgetting contain them.

Superirredundancy is proved via Lemma 5: a substitution simplifies AF ∪AR ∪AT ∪AC ∪AB enough to
prove superirredundancy easily, for example because its clauses do not resolve and Lemma 3 applies.

• Replacing all variables xi, ei, ti and cj with true removes from AF ∪ AR ∪ AT ∪ AC ∪ AB all clauses
in AR ∪ AT ∪ AC , all clauses of AF but oi ∨ ¬q and pi ∨ ¬q and all clauses of AB but ri ∨ ¬q and
si ∨ ¬q. The remaining clauses contain only the literals oi, pi, ri, si and ¬q. Therefore, they do not
resolve. Since none is contained in another, they are all superirredundant by Lemma 3. This proves the
superirredundancy of all clauses oi ∨ ¬q, pi ∨ ¬q, ri ∨ ¬q and si ∨ ¬q.

• Replacing all variables q, oi, pi, ri and si with false removes from AF ∪AR ∪AT ∪AC ∪AB all clauses
but AT ∪AC . These clauses contain only the literals ¬xi, ¬ei, ti and cj . Therefore, they do not resolve.
Since they are not contained in each other, Lemma 3 proves them superirredundant.

• Replacing all variables q, ri and si with false and all variables ti and ci with true removes from AF ∪
AR ∪AT ∪AC ∪AB all clauses but xi ∨¬oi and ei ∨¬pi. They do not resolve because they do not share
variables. Lemma 3 proves them superirredundant because they do not contain each other.

• Replacing all variables with false except for all variables ti and cj and the two variables xh and rh removes
all clauses from AF ∪AR ∪AT ∪AC ∪AB but ¬xh ∨ th, ¬t1 ∨ · · · ∨¬tn ∨¬c1 ∨ · · · ∨¬cm ∨xh ∨¬rh and
all clauses ¬xh ∨ cj with xh ∈ fj . They only resolve in tautologies. Therefore, their resolution closure
only contains them. Removing ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨ ¬rh from the resolution closure
leaves only ¬xh∨ th and all clauses ¬xh∨cj with xh ∈ fj . They do not resolve since they do not contain
opposite literals. Since ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨ ¬rh is not contained in them, it is not
entailed by them. This proves it superirredundant. A similar replacement proves the superirredundancy
of each ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ eh ∨ ¬sh.

These points prove that the clauses AF ∪ AT ∪ AC ∪ AB are superirredundant in the formula before
forgetting and the clauses AT ∪ AC ∪ AB are superirredundant in the formula after forgetting. The only
clauses that may be superredundant are AR in the formula after forgetting.

Formula F is satisfiable.
Let M be a model satisfying F . Forgetting all variables except XC is expressed by A′

R ∪AT ∪AC ∪AB ,
where A′

R comprises the clauses xi ∨ ¬q such that M |= xi and the clauses ei ∨ ¬q such that M |= ¬xi.
This Horn formula has size k. It expresses forgetting because it is equivalent to AR ∪ AT ∪AC ∪AB . This
is proved by showing that it entails every clause in AR.

Since M satisfies every clause fj ∈ F , it satisfies at least a literal of fj : for some xi, either xi ∈ fj and
M |= xi or ¬xi ∈ fj and M |= ¬xi. By construction, xi ∈ fj implies ¬xi ∨ cj ∈ AC and ¬xi ∈ fj implies
¬ei ∨ cj ∈ AC . Again by construction, M |= xi implies xi ∨ ¬q ∈ A′

R and M |= ¬xi implies ei ∨ ¬q ∈ A′
R.

24 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
As a result, either xi ∨ ¬q ∈ A′
R and ¬xi ∨ cj ∈ AC or ei ∨ ¬q ∈ A′

R and ¬ei ∨ cj ∈ AC . In both cases, the
two clauses resolve in cj ∨ ¬q.

Since M satisfies either xi or ¬xi, either xi ∨ ¬q ∈ A′
R or ei ∨ ¬q ∈ A′

R. The first clause resolves with
¬xi ∨ ti and the second with ¬ei ∨ ti. The result is ti ∨ ¬q in both cases.

Resolving all these clauses ti∨¬q and cj∨¬q with ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨xi∨¬ri and then with
ri∨¬q, the result is xi∨¬q. In the same way, resolving these clauses with ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨ei∨¬si
and si ∨ ¬q produces ei ∨ ¬q. This proves that all clauses of AR are entailed.

Necessary clauses
All CNF formulae that are equivalent to AR∪AT ∪AC ∪AB and have minimal size contain AT ∪AC ∪AB

because these clauses are superirredundant, according to Lemma 1. Therefore, these formulae are AN ∪AT ∪
AC ∪AB for some set of clauses AN . This set AN is now proved to contain either xh∨¬q, xh∨¬rh, eh∨¬q,
eh ∨ ¬sh or th ∨ ¬q for each index h. Let M and M ′ be the following models.

M = {xi = ei = ti = true | i
= h} ∪ {xh = eh = th = false} ∪
{cj = true} ∪ {q = true} ∪ {ri = true, si = true}

M ′ = {xi = ei = ti = true | i
= h} ∪ {xh = eh = th = true} ∪
{cj = true} ∪ {q = true} ∪ {ri = true, si = true}

The five clauses are falsified by M . Since the two of them xh ∨ ¬q and eh ∨ ¬q are in AR, this set is
also falsified by M . As a result, M is not a model of AR ∪ AT ∪ AC ∪ AB . This formula is equivalent to
AN ∪AT ∪AC ∪AB , which is therefore falsified by M . In formulae, M
|= AN ∪AT ∪AC ∪AB .

The formula AN ∪AT ∪AC ∪AB contains a clause falsified by M . Since M |= AT ∪AC ∪AB , this clause
is in AN but not in AT ∪ AC ∪ AB. In formulae, M
|= c for some c ∈ AN and c
∈ AT ∪ AC ∪ AB . This
clause is entailed by AR ∪ AT ∪ AC ∪ AB because this formula entails all of AN ∪ AT ∪ AC ∪ AB , and c is
in AN . In formulae, AR ∪AT ∪AC ∪AB |= c.

This clause c contains either xh, eh or th. This is proved by deriving a contradiction from the assumption
that c does not contain any of these three literals. Since M
|= c, the clause c contains only literals that are
falsified by M . Not all of them: it does not contain xh, eh and th by assumption. It does not contain ¬xh,
¬eh and ¬th either because it would otherwise be satisfied by M . As a result, c is also falsified by M ′, which
is the same as M but for the values of xh, eh and th. At the same time, M ′ satisfies AR ∪ AT ∪ AC ∪ AB ,
contradicting AR ∪AT ∪AC ∪AB |= c. This contradiction proves that c contains either xh, eh or th.

From the fact that c contains either xh, eh or th, that is a consequence of AR ∪AT ∪AC ∪AB , and that
is in a minimal-size formula, it is now possible to prove that c contains either xh ∨ ¬q, xh ∨ ¬rh, eh ∨ ¬q,
eh ∨ ¬sh or th ∨ ¬q.

Since c is entailed by AR∪AT∪AC∪AB , a subset of c follows from resolution from it: AR∪AT∪AC∪AB � c′

with c′ ⊆ c. This implies AN ∪AT ∪AC ∪AB |= c′ by equivalence. If c′ ⊂ c, then AN ∪AT ∪AC ∪AB would
not be minimal because it contained a non-minimal clause c ∈ AN . Therefore, AR ∪AT ∪AC ∪AB � c.

The only two clauses of AR ∪AT ∪AC ∪AB that contain xh are xh ∨¬q and ¬t1 ∨ · · · ∨¬tn ∨¬c1 ∨ · · · ∨
¬cm ∨ xh ∨ ¬rh. They contain either ¬q or ¬rh. These literals are only resolved out by clauses containing
their negations q and rh. No clause contains q and the only clause that contains rh is rh∨¬q, which contains
¬q. If a result of resolution contains xh, it also contains either ¬q or ¬rh. This applies to c because it is a
result of resolution.

The same applies if c contains eh: it also contains either ¬q or ¬si.
The case of th ∈ c is a bit different. The only two clauses of AR ∪ AT ∪ AC ∪ AB that contain th are

¬xh ∨ th and ¬eh ∨ th. Since both are in AT and c
∈ AT , they are not c. The first clause ¬xh ∨ th only
resolves with xh ∨¬q or ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨¬rh, but resolving with the latter generates

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 25
a tautology. The result of resolving ¬xh ∨ th with xh ∨ ¬q is th ∨ ¬q; no clause contains q. Therefore, c can
only be th ∨ ¬q. The second clause ¬eh ∨ th leads to the same conclusion.

In summary, c contains either xh∨¬q, xh∨¬rh, eh∨¬q, eh∨¬sh or th∨¬q. In all these cases it contains
at least two literals. This is the case for every index h; therefore, AN contains at least n clauses of two
literals. Every minimal CNF formula equivalent to AR ∪AT ∪AC ∪AB has size at least 2 × n plus the size
of AT ∪AC ∪AB . This sum is exactly k. This proves that every minimal CNF formula expressing forgetting
contains at least k literal occurrences. Worded differently, every CNF formula expressing forgetting has size
at least k.

Formula F is unsatisfiable
The claim is that no CNF formula of size k expresses forgetting if F is unsatisfiable. This is proved by

deriving a contradiction from the assumption that such a formula exists.
It has been proved that every CNF formula expressing forgetting is equivalent to AR ∪ AT ∪ AC ∪ AB

and that the minimal equivalent CNF formulae are AN ∪ AT ∪ AC ∪ AB for some set AN that contains
clauses that include either xh ∨ ¬q, xh ∨ ¬rh, eh ∨ ¬q, eh ∨ ¬sh or th ∨ ¬q for each index h.

If AN contains other clauses, or more than one clause for each h, or these clauses contain other literals,
the size of AN ∪ AT ∪ AC ∪ AB is larger than k = 2 × n + ||AT || + ||AC || + ||AB ||, contradicting the
assumption. This proves that every formula of size k that is equivalent to AR ∪ AT ∪ AC ∪ AB is equal to
AN ∪AT ∪AC ∪AB where AN contains exactly one clause among xh ∨ ¬q, xh ∨ ¬rh, eh ∨ ¬q, eh ∨ ¬sh or
th ∨ ¬q for each index h.

The case xh ∨ ¬rh ∈ AN is excluded. It would imply
AR∪AT ∪AC∪AB |= xh∨¬rh, which implies the redundancy of ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨xh∨¬rh ∈

AB contrary to its previously proved superirredundancy. A similar argument proves eh ∨ ¬sh
∈ AN .
The conclusion is that every formula of size k that is equivalent to AR ∪ AT ∪ AC ∪ AB is equal to

AN ∪AT ∪AC ∪AB where AN contains exactly one clause among xh ∨ ¬q, eh ∨ ¬q, th ∨ ¬q for each index
h.

If F is unsatisfiable, all such formulae are proved to be satisfied by a model that falsifies AR∪AT∪AC∪AB ,
contrary to the assumed equivalence.

Let M be the model that assigns q = true and ti = true, and assigns xi = true and ei = false if
xi ∨ ¬q ∈ AN and xi = false and ei = true if ei ∨ ¬q ∈ AN or ti ∨ ¬q ∈ AN . All clauses of AN and AT are
satisfied by M .

This model M can be extended to satisfy all clauses of AC ∪AB . Since F is unsatisfiable, M falsifies at
least a clause fj ∈ F . Let M ′ be the model obtained by extending M with the assignments of cj to false,
all other variables in C to true and all variables ri and si to true. This extension satisfies all clauses of AB

either because it sets cj to false or because it sets ri and si to true. It also satisfies all clauses of AC that
do not contain cj because it sets all variables of C but cj to true.

The only clauses that remain to be proved satisfied are the clauses of AC that contain cj . They are
¬xi ∨ cj for all xi ∈ fj and ¬ei ∨ cj for all ¬xi ∈ fj . Since M ′ falsifies fj , it falsifies every xi ∈ fj ; therefore,
it satisfies ¬xi ∨ cj . Since M ′ falsifies fj , it falsifies every ¬xi ∈ fj ; since by construction it assigns ei
opposite to xi, it falsifies ei and therefore satisfies ¬ei ∨ cj .

This proves that M ′ satisfies AN ∪AT ∪AC ∪AB . It does not satisfy AR∪AT ∪AC ∪AB. If x1∨¬q ∈ AN ,
then M ′ sets x1 to true and e1 to false; therefore, it does not satisfy e1 ∨ ¬q ∈ AR. Otherwise, M ′ sets x1
to false and e1 to true; therefore, it does not satisfy x1 ∨ ¬q ∈ AN .

This contradicts the assumption that AN ∪ AT ∪ AC ∪ AB is equivalent to AR ∪ AT ∪ AC ∪ AB . The
assumption that it has size k is therefore false. �
Lemma 12. Checking whether forgetting some variables from a minimal-size Horn formula is expressed by a
CNF or Horn formula bounded by a certain size is Dp-hard.

26 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
Proof. For every CNF formula F , Lemma 10 ensures the existence of a minimal-size Horn formula A, a set
of variables XA and an integer k such that forgetting all variables except XA from A is expressed by a Horn
formula of size k if F is unsatisfiable and is only expressed by larger CNF formulae otherwise.

For every CNF formula G, Lemma 11 ensures the existence of a minimal-size Horn formula B, a set of
variables XB and an integer l such that forgetting all variables except XB from B is expressed by a Horn
formula of size l if G is satisfiable and is only expressed by larger CNF formulae otherwise.

The prototypical Dp-hard problem is that of establishing whether a formula F is satisfiable and another
G is unsatisfiable. If the alphabets of the two formulae G and F are not disjoint, they can be made so by
renaming one of them to fresh variables because renaming does not affect satisfiability. The same applies to
the formulae B and A respectively build from them according to Lemma 10 and Lemma 11 because renaming
does not change the minimal size of forgetting either. Lemma 7 proves that A ∪B can be minimally expressed
by C ∪ D where C minimally expresses forgetting from A and D from B. The size of these two formulae
is l and k if G is unsatisfiable and F satisfiable. If G is satisfiable, then D is larger than k while C is still
large at least l; the minimal expression of forgetting A ∪B is therefore strictly larger than k + l. The same
happens if F is unsatisfiable.

This proves that the problem of checking the satisfiability of a formula and the unsatisfiability of another
reduces to the problem of checking the size of the minimal expression of forgetting from Horn formulae. �
Theorem 6. Checking whether forgetting some variables from a Horn formula is expressed by a CNF or Horn
formula bounded by a certain size expressed in unary is Dp-hard and in Σp

2, and remains hard even if the
formula is restricted to be of minimal size.

Proof. The problem belongs to Σp
2 because it can be expressed as the existence of a formula of the given

size or less that expresses forgetting the given variables from the formula. In turn, expressing forgetting
is by Theorem 1 the same as the equiconsistency with a set of literals containing all variables not to be
forgotten. This condition can be expressed by the following metaformula where A is the formula, Y are the
variables not to be forgotten and k the size bound.

∃B . ||B|| ≤ k and ∀S . Var(S) ⊆ Y ⇒ (S ∪A
|= ⊥ ⇔ S ∪B
|= ⊥)

Both B and S are bounded in size: the first by k, the second by the number of variables in Y . Since
consistency is polynomial for Horn formulae, this is a ∃∀QBF, which proves membership to Σp

2.
Hardness for Dp is proved by Lemma 12. �

Lemma 13. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size CNF
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables from A except XC is
expressed by a CNF formula of size k if ∀X∃Y.F is valid and only by CNF formulae of size k+2 or greater
otherwise.

Proof. Let F = {f1, . . . , fm} and its variables be X = {x1, . . . , xn} and Y . Checking the validity of ∀X∃Y.F
remains Πp

2-hard even if F is satisfiable: if F is not satisfiable, ∀X∃Y.F can be turned into the equivalent
formula ∀X ∪ {s}∃Y.s ∨ F , and s ∨ F is satisfiable. The following assumes F satisfiable, which is proved
correct by this argument.

The reduction is based on an extended alphabet with the additional fresh variables E = {e1, . . . , en},
C = {c1, . . . , cm} and {a, b, q, r}. The formula A, the set of variables XC and the number k are:

A = {fj ∨ cj ∨ q | fj ∈ F} ∪
{¬cj ∨ r | fj ∈ F} ∪

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 27
{¬r ∨ ¬a ∨ b ∨ q} ∪
{a ∨ ¬b ∨ q} ∪
{xi ∨ ei | xi ∈ X}

XC = X ∪ E ∪ {a, b, q}
k = 2 × n + 3

A short explanation of how the reduction works precedes its formal proof. The key is how a model over
X ∪ {q} extends to a model of A, in particular its possible values of a and b. All models over X ∪ {q} that
satisfy q can be extended to satisfy A: all clauses not containing q are satisfied by setting r = true and ei
opposite to xi; satisfaction is not affected by the values a and b. The remaining models set q = false. For
these models, the satisfaction of a clause fj for some values of Y makes fj ∨ cj ∨q satisfied even if cj = false.
In turn, cj = false satisfies ¬cj ∨ r even if r = false, which satisfies ¬r∨¬a ∨ b ∨ q regardless of the values of
a and b; the values of a and b only need to satisfy a ∨¬b ∨ q. Otherwise, the falsity of fj for all values of Y
imposes cj = true to satisfy fj ∨ cj ∨ q, which makes ¬cj ∨r require r = true, which turns ¬r∨¬a ∨ b ∨ q into
¬a ∨ b ∨ q, making the literals ¬a and b necessary in addition to a and ¬b. A key point is that the variables
Y are part of the clauses fj, whose satisfiability affects the necessity of setting cj , but they disappear in the
minimal formulae as they are to be forgotten.

The proof comprises four steps: first, A is proved minimal as required by the claim of the lemma; second,
k literals that are in every formula that expresses forgetting regardless of the validity of the QBF are
identified; third, a formula of size k expressing forgetting when the QBF is valid is determined; fourth,
every formula expressing forgetting contains at least two further literals if the QBF is invalid.

Minimality of A.
Follows from Lemma 2 since all clauses of A are superirredundant. This is in turn proved by showing

substitutions that disallow all resolutions, which proves the superredundancy of the remaining clauses by
Lemma 5 and Lemma 3.

The substitution that replaces with true the variables a, b, r, all ei and all cj with j
= h for every given
h such that fh ∈ F removes all clauses but fh ∨ ch ∨ q, which is therefore superirredundant.

The clauses ¬cj ∨ r are proved superirredundant by substituting q and all variables ei with true, which
removes all other clauses. The clauses ¬cj ∨ r do not resolve because they do not contain opposite literals.

Two other clauses are proved superirredundant by the substitution that replaces all variables ei with true,
all cj with false, and X ∪ Y with some values that satisfy F ; such values exist because F is by assumption
satisfiable. This substitution removes all clauses but ¬r ∨ ¬a ∨ b ∨ q and a ∨ ¬b ∨ q, which only resolve in
tautologies.

Finally, the clauses xh ∨ eh are proved superirredundant by replacing q and r with true, which removes
all other clauses. Since the clauses xh ∨ eh only contain positive literals, they do not resolve.

Necessary literals.
Regardless of the validity of ∀X∃Y.F , the literals X ∪E ∪ {a, ¬b, q} are necessary in every CNF formula

that expresses forgetting all variables except XC from A. This is proved by Lemma 9, exhibiting a set of
literals S such that S ∪A is consistent, but S\{l} ∪ {¬l} ∪A is not for every l ∈ X ∪E ∪ {a, ¬b, q}.

The first set is S = {xi, ¬ei, a, b, ¬q}, which is consistent with A because of the model that satisfies S
and assigns r and all variables cj to true. Changing xi to ¬xi violates the clause xi ∨ ei. Changing a to false
violates a ∨ ¬b ∨ q. This proves that a and all variables xi are necessary by Lemma 9.

The second set is S = {¬xi, ei, ¬a, ¬b, ¬q}, which is consistent with A because of the model that satisfies
S and assigns r and all variables cj to true. Changing ei to ¬ei violates xi ∨ ei, changing b to true violates
a ∨ ¬b ∨ q. This proves that ei and ¬b are necessary by Lemma 9.

28 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
The third set is S = {xi, ei, ¬a, b, q}, which is consistent with A because of the model that satisfies S
and assigns r and all variables cj to true. Changing q to false violates the clause a ∨ ¬b ∨ q, proving that q
is necessary.

In summary, all literals in X∪E∪{a, ¬b, q} occur in every CNF formula expressing forgetting all variables
except XC from A. These literals are 2 × n + 3. This is a part of the claim: no CNF formula expressing
forgetting is smaller than 2 × n + 3.

Forgetting when ∀X∃Y.F is valid
If ∀X∃Y.F is valid, forgetting is expressed by B = {a ∨¬b ∨q} ∪{xi∨ei | xi ∈ X}, which has the required

size k = 2 × n + 3 and variables XC = X ∪ E ∪ {a, b, q}. Theorem 1 proves that this formula expresses
forgetting: every set S of literals of XC that contains all variables of XC is consistent with B if and only if
it is consistent with A.

Since B only contains clauses of A, every set of literals S that is consistent with A is also consistent
with B. The claim follows from proving the converse for every set of literals S over XC that mentions all
variables of XC .

The assumption is that S∪B is consistent; the claim is that S∪A is consistent. Since S∪B is consistent,
it has a model M . Let MX be its restriction to the variables X and M ′

Y to Y . By assumption, ∀X∃Y.F
is valid. Therefore, MX ∪MY satisfies F for some truth evaluation MY over Y . Since S is satisfied by M
and does not mention any variable Y , it is also satisfied by M\M ′

Y ∪ MY . The truth evaluation MC =
{cj = false | fj ∈ F} ∪ {r = false} satisfies all clauses ¬cj ∨ r and ¬r ∨ ¬a ∨ b ∨ q. Since MX ∪MY satisfies
all clauses fj ∈ F , the union M\M ′

Y ∪ MY ∪ MC satisfies all clauses fj ∨ cj ∨ q of A. This proves that
M\M ′

Y ∪MY ∪MC satisfies all clauses of A that B does not contain.

Forgetting when ∀X∃Y.F is invalid
All CNF formulae that express forgetting have been proved to mention X ∪E ∪ {a, ¬b, q}. If ∀X∃Y.F is

invalid, they all mention ¬a and b as well.
This is proved by Lemma 9: a set of literals S over XC is shown to be consistent with A while S\{¬a} ∪{a}

is not. A similar set is shown for b.
Since ∀X∃Y.F is invalid, for some interpretation MX over X the interpretation MX ∪MY falsifies F for

every interpretation MY over Y . The required set S is built from MX : it contains the literals over xi that
are satisfied by MX and ¬a, ¬b and ¬q.

S = {xi | MX |= xi} ∪ {¬xi | MX |= ¬xi} ∪ {¬a,¬b,¬q}

By construction, MX satisfies the first part of S. The model MO = {a = false, b = false, q = false} satisfies
the second. Therefore, MX ∪MO satisfies S.

The consistency of S ∪A is shown by proving that MX ∪MO can be extended to the other variables to
satisfy A. This extension is MX ∪ MY ∪ MO ∪ MN ∪ MC , where MY is an arbitrary model over Y , MN

assigns every ei opposite to xi in MX and MC is {cj = true | fj ∈ F} ∪ {r = true}. The clauses fj ∨ cj ∨ q

are satisfied because cj is true, the clauses ¬cj ∨ r because r is true, the clause ¬r ∨ ¬a ∨ b ∨ q because a is
false, a ∨ ¬b ∨ q because b is false, the clauses xi ∨ ei because MN |= ei if MX
|= xi.

This proves that MX ∪MO ∪MN ∪MC satisfies S ∪A, which is therefore satisfiable.
The claim is a consequence of S′ = S\{¬a} ∪ {a} being inconsistent with A.

S′ = {xi | MX |= xi} ∪ {¬xi | MX |= ¬xi} ∪ {a,¬b,¬q}

This is proved by contradiction: a model M ′ is assumed to satisfy S′ ∪A. Since M ′ satisfies S′, it assigns
the variables xi the same as MX . Let MY be the restriction of M ′ to the variables Y . By assumption, MX

is a model over X that cannot be extended to Y to satisfy F . As a result, MX ∪MY
|= F . Therefore, M ′

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 29
falsifies at least a clause fj ∈ F . Since M ′ satisfies fj ∨ cj ∨ q but falsifies both fj and q, it satisfies cj . It
also satisfies r because it satisfies ¬cj ∨ r and falsifies cj . Since M ′ satisfies S′ it satisfies a and falsifies b
and q. The conclusion is that all literals of ¬r ∨ ¬a ∨ b ∨ q ∈ A are false, contrary to the assumption that
M ′ satisfies A.

A similar set S with a and b in place of ¬a and ¬b proves that expressing forgetting also requires b. �
Lemma 14. There exists a polynomial algorithm that turns a DNF formula F = f1 ∨ · · · ∨ fm over variables
X ∪ Y into a minimal-size CNF formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all
variables except XC from A is expressed by a CNF formula of size k if ∃X∀Y.F is valid, and only by larger
CNF formulae otherwise.

Proof. Let F = f1 ∨ · · · ∨ fm be the DNF formula over variables X ∪ Y . The reduction employs additional
variables: O = {oi | xi ∈ X}, E = {ei | xi ∈ X}, P = {pi | xi ∈ X}, T = {ti | xi ∈ X}, D = {dj | fj ∈ F},
R = {ri | xi ∈ X}, S = {si | xi ∈ X} and q. The formula A, the alphabet XC and the number k are
as follows. The formula looks Horn when using ¬q in place of q, but is not: ¬(fj [ei/¬xi]) ∨ dj replaces all
negative occurrences of xi with ei, but does not touch the negative occurrences of yi. This clause is Horn
when Y is empty. This makes the lemma imply the analogous lemma for the Horn case only when Y is
empty, and therefore proves the NP-hardness of that restriction and not its Σp

2-hardness.

A = AF ∪AT ∪AD ∪AB

AF = {xi ∨ ¬oi, oi ∨ q | xi ∈ X} ∪ {ei ∨ ¬pi, pi ∨ q | xi ∈ X}
AT = {¬xi ∨ ti, ¬ei ∨ ti | xi ∈ X}
AD = {¬(fj [ei/¬xi]) ∨ dj | fj ∈ F}
AB = {¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ xi ∨ ¬ri, ri ∨ q | xi ∈ X , fj ∈ F} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ ei ∨ ¬si, si ∨ q | xi ∈ X, fj ∈ F}
XC = X ∪ E ∪ Y ∪ T ∪D ∪R ∪ S ∪ {q}
k = 2 × n + ||AT ∪AD ∪AB ||

The reduction works because every minimal CNF formula that expresses forgetting contains at least one
among xh ∨ q, eh ∨ q and th ∨ q for each h, and all of AT ∪ AD ∪ AB . This proves the lower bound k. If
the QBF is valid, for some evaluation over X the formula F is true regardless of Y . Choosing the clauses
xh ∨ q, eh ∨ q or th ∨ q that correspond to this model, some clause ¬(fj[ei/¬xi]) ∨ dj of AD implies q ∨ dj
because fj [ei/¬xi] is true for all values of Y . This allows AB to entail all remaining clauses. If the QBF is
not valid, no clause q ∨ dj is entailed.

The formal proof requires five steps: first, every formula expressing forgetting is equivalent to a certain
formula AR ∪AT ∪AD ∪AB; second, A is a minimal CNF formula and the clauses of AT ∪AD ∪AB are in
all minimal CNF formulae equivalent to AR ∪AT ∪AD ∪AB; third, forgetting is expressed by a formula of
size k if the QBF is valid; fourth, every minimal CNF formula expressing forgetting contains either xh ∨ q,
eh ∨ q or th ∨ q for each h; fifth, if the QBF is invalid then forgetting is only expressed by formulae larger
than k.

Effect of forgetting.
The variables to forget are O ∪ P . Each is contained only in two clauses of A, with opposite signs.

Resolving them produces the clauses in the following set AR.

AR = {xi ∨ q, ei ∨ q | xi ∈ X}

30 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
By Theorem 5, forgetting is expressed by AR ∪ AT ∪ AD ∪ AB . Therefore, all formulae that express
forgetting are equivalent to this formula.

Superirredundancy.
All clauses of AF ∪ AT ∪ AD ∪ AB are proved superirredundant in AF ∪ AR ∪ AT ∪ AD ∪ AB . Both A

and AR ∪AT ∪AD ∪AB are subsets of this formula; therefore, the superirredundant clauses are superirre-
dundant in both formulae by Lemma 4. Since A comprises exactly them, it is minimal thanks to Lemma 2.
Since all formulae expressing forgetting are equivalent to AR ∪ AT ∪ AD ∪ AB , where AT ∪ AD ∪ AB are
superirredundant, these clauses are in all formulae expressing forgetting, according to Lemma 1.

Superirredundancy is proved applying a substitution to the formula so that the resulting clauses do not
resolve and are not contained in one another. This condition proves them superirredundant by Lemma 3.
Lemma 5 implies their superirredundancy in the original formula.

Replacing all variables X, E, T and D with true removes from the formula AF ∪AR ∪AT ∪AD ∪AB all
clauses but oi ∨ q, pi ∨ q, ri ∨ q and si ∨ q. These clauses do not resolve because they only contain positive
literals. None is contained in another.

Replacing all variables R and S with false and all variables T , D and q with true removes from the
formula AF ∪AR ∪AT ∪AD ∪AB all clauses but the clauses xi ∨¬oi and ei ∨¬pi. They are not contained
in one another; they do not resolve because they do not contain opposite literals.

Replacing all variables O, P , R and S with false and D and q with true removes all clauses but ¬xi∨ti and
¬ei ∨ ti. These clauses do not resolve because they do not contain opposite literals; they are not contained
in one another.

Replacing all variables O, P , R and S with false and T , D\{dh} and q with true removes all clauses but
(¬fh[ei/¬xi]) ∨ dh, which is therefore superirredundant.

The last substitution replaces all variables X\{xh}, E, O, P , R\{rh} and S with false, all variables D\{dl}
and q with true, all variables yi such that yi ∈ ¬fl[ei/¬xi] to true and all such that ¬yi ∈ ¬fl[ei/¬xi] to
false. This substitution removes all clauses but ¬xh ∨ th, ¬t1 ∨ · · · ∨ ¬tn ∨ ¬dl ∨ xh ∨ ¬ri and possibly
¬(fl[ei/¬xi]) ∨ dl. The latter clause is removed if it contains some variable yi. It is removed if it contains
some literal ¬xi with i
= h. It is removed if it contains some literal ¬ei. The only other literals it may
contain are ¬xh and dl; it contains both: dl by construction, ¬xh because otherwise fl would be empty.
The remaining clauses are therefore ¬xh ∨ th, ¬t1 ∨ · · · ∨ ¬tn ∨¬dl ∨ xi ∨¬ri and possibly ¬xh ∨ dh. These
clauses only resolve in tautologies, which proves the second superirredundant. A similar argument holds for
¬t1 ∨ · · · ∨ ¬tn ∨ ¬dl ∨ ei ∨ ¬si.

Validity of ∃X∀Y.F .
Let M be a model over variables X that makes F true regardless of the values of Y . Let A′

R ⊆ AR be
the set of clauses xi ∨ q such that M |= xi and ei ∨ q such that M |= ¬xi. This set has size 2 ×n. Therefore,
A′

R∪AT ∪AD∪AB has size k = 2 ×n + ||AT ∪AD∪AB ||. This formula expresses forgetting if it is equivalent
to AR ∪ AT ∪ AD ∪ AB , which is the case if A′

R ∪ AT ∪ AD ∪ AB |= AR. The claim is proved by showing
that A′

R ∪AT ∪AD ∪AB entails AR.
Either xh ∨ q or eh ∨ q is in A′

R for every h and these clauses respectively resolve with ¬xh ∨ th and
¬eh ∨ th, producing th ∨ q in both cases. Each clause

¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ xh ∨ ¬rh resolve with them and with rh ∨ q to ¬dj ∨ xh ∨ q. This clause further
resolves with ¬(fj [ei/¬xi]) ∨ dj to produce ¬(fj [ei/¬xi]) ∨ xh ∨ q. This proves that A′

R ∪ AT ∪ AD ∪ AB

implies every clause ¬(fj [ei/¬xi]) ∨ xh ∨ q with fj ∈ F . The following equivalence holds.

{¬(fj [ei/¬xi]) ∨ xh ∨ q|fj ∈ F} ≡
(∧

{¬(fj [ei/¬xi]) | fj ∈ F}
)
∨ xh ∨ q

≡ ¬
(∨

{fj [ei/¬xi] | fj ∈ F}
)
∨ xh ∨ q

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 31
≡ ¬F [ei/¬xi] ∨ xh ∨ q

Since A′
R ∪ AT ∪ AD ∪ AB implies the first set, it implies the last formula: A′

R ∪ AT ∪ AD ∪ AB |=
¬F [ei/¬xi] ∨ xh ∨ q.

Since M satisfies F regardless of Y , it follows that {xi | M |= xi} ∪ {¬xi | M |= ¬xi} |= F . Replacing
each ¬xi with ei in both sides of this entailment turns it into {xi | M |= xi} ∪{ei | M |= ¬xi} |= F [ei/¬xi].
Disjoining both terms with q results into A′

R |= F [ei/¬xi] ∨ q.
This entailment and the previously proved A′

R ∪AT ∪AD ∪AB |= ¬F [ei/¬xi] ∨ xh ∨ q imply A′
R ∪AT ∪

AD ∪AB |= xh ∨ q.
The same holds for eh ∨ q by symmetry. Therefore, A′

R ∪AT ∪AD ∪AB implies every clause of AR.

Necessary clauses.
All formulae that express forgetting are equivalent to AR ∪ AT ∪ AD ∪ AB and therefore contain all its

superirredundant clauses AT ∪ AD ∪ AB , as Lemma 1 proves. As a result, they have the form AN ∪ AT ∪
AD ∪ AB for some set of clauses AN . It is now shown that all equivalent CNF formulae of minimal size
contain a clause that include either xh ∨ q, xh ∨ ¬rh, eh ∨ q, eh ∨ ¬sh, or th ∨ q for each h.

Since AN ∪AT ∪AD ∪AB is equivalent to AR ∪AT ∪AD ∪AB , it entails xh ∨ q ∈ AR. This clause is not
satisfied by the following model.

M = {xi = ei = ti = true | i
= h} ∪ {xh = eh = th = false} ∪
{dj = true | fj ∈ F} ∪ {ri = si = true} ∪ {q = false}

This model satisfies all clauses of AT ∪AD ∪AB . If AN also satisfied it, AN ∪AT ∪AD ∪AB would have
a model that falsifies xh ∨ q, which it instead entails. As a result, AN contains a clause c that M falsifies.
Since AN ∪AT ∪AD ∪AB is a formula of minimal size, it entails no proper subset of c. By equivalence, the
same applies to AR ∪AT ∪AD ∪AB.

M
|= c

AR ∪AT ∪AD ∪AB |= c

AR ∪AT ∪AD ∪AB |= c′ implies c′
⊂ c

If c contains neither xh, eh nor th, it would still be falsified by the model that is the same as M except that
it assigns xh, eh and th to true. This model satisfies AR∪AT ∪AD∪AB . As a result, AR∪AT ∪AD∪AB∪¬(c)
is consistent, contradicting AR ∪AT ∪AD ∪AB |= c. This proves that c contains either xh, eh or th.

Since these three variables are negative in M and M
|= c, they are positive in c. In other words, c contains
either xh, eh or th unnegated.

Since c is entailed by AR ∪AT ∪AD ∪AB , but none of its proper subsets does, it follows from resolution:
AR ∪AT ∪AD ∪AB � c.

If c contains xh, it also contains either q or ¬rh. This is proved as follows. Since c is the root of a
resolution tree and contains xh, this literal is also in one of the leaves of resolution. The only clauses of
AR ∪AT ∪AD ∪AB containing xh are xh ∨ q and all clauses ¬t1 ∨ · · · ∨¬tn ∨¬dj ∨ xh ∨¬rh. The first does
not resolve over q because the formula does not contain ¬q. The other clauses only resolve over rh with
rh ∨ q, which introduces q, which again cannot be removed by resolution. Since c is obtained by resolution,
if it contains xh it also contains either ¬rh or q.

By symmetry, if c contains eh it also contains either ¬sh or q.
The other case is that c contains th. The only clauses of AR ∪AT ∪AD ∪AB that contain th are ¬xh ∨ th

and ¬eh ∨ th. These clauses are satisfied by M while c is not, therefore c is not one of them. The first clause
¬xh∨th only resolves over xh with xh∨q and all clauses ¬t1∨· · ·∨¬tn∨¬dj∨xh∨¬rh, but resolving with the

32 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
latter only generates tautologies. Therefore, the first step of resolution is necessarily ¬xh∨ th, xh∨q � th∨q.
Since none of the involved clauses contains ¬q, every clause obtained from resolution that contains th also
contains q. This also includes c. The same holds by symmetry for ¬eh ∨ th.

This proves that every minimal-size CNF formula expressing forgetting contains a clause that includes
either xh ∨ q, xh ∨ ¬rh, eh ∨ q, eh ∨ ¬sh, or th ∨ q for each h.

Falsity of ∃X∀Y.F .
The falsity of ∃X∀Y.F contradicts the existence of a minimal-size CNF formula of size k expressing

forgetting. The relevant results proved so far are: every CNF formula expressing forgetting has size k or
more and is equivalent to AR ∪ AT ∪ AD ∪ AB ; the minimal-size such formulae are AN ∪ AT ∪ AD ∪ AB

where AN contains, for each h, a clause that includes either xh ∨ q, xh ∨ ¬rh, eh ∨ q, eh ∨ ¬sh, or th ∨ q.
A formula AN ∪AT ∪AD ∪AB of size k expressing forgetting, if any, is minimal since no smaller formula

expresses forgetting. Therefore, AN includes, for each h, a clause containing one of the five disjunctions.
Since these are not in AT ∪ AD ∪ AB , the size of such formulae is k = 2 × n + ||AT ∪ AD ∪ AB|| if every
clause of AN is exactly one of the above disjunctions for each h. If AN contains more than one clause for
some h or the clause for some h contains more than two literals or AN contains other clauses, the formula
is not minimal.

The case xh ∨ ¬rh ∈ AN can be excluded: it makes
¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ xh ∨ ¬rh ∈ AN redundant in AN ∪AT ∪AD ∪AB , contradicting the minimality

of this formula. The case eh ∨ ¬sh ∈ AN is excluded in the same way.
These exclusions leave AN to contain exactly one among xh ∨ q, eh ∨ q, and th ∨ q for each h and nothing

else.
The final step of the proof is that no such AN makes AN∪AT ∪AD∪AB equivalent to AR∪AT ∪AD∪AB if

∃X∀Y.F is invalid. Nonequivalence is proved by exhibiting a model of the first formula that does not satisfy
the second.

Let MX be the model over X that contains xi = true if xi ∨ q ∈ AN and xi = false otherwise. Let
MN be the model that assigns every ei opposite to xi and MT = {ti = true | ti ∈ T}. By construction,
MX ∪ MN ∪ MT ∪ {q = false} satisfies all clauses of AN . It also falsifies either xi ∨ q or ei ∨ q for each i
because it assigns false to q and to either xi or ei. It therefore falsifies AR.

Since ∃X∀Y.F is invalid, every interpretation over X falsifies F with an interpretation over Y . Let MY

be the interpretation over Y such that MX ∪MY |= ¬F . Since F = f1 ∨ · · · ∨ fm, it holds MX ∪MY |= ¬fj
for every fj ∈ F . It follows MX ∪MY ∪MN |= ¬fj [ei/¬xi] since MN assigns every ei opposite to xi.

Merging the results proved in the preceding two paragraphs, MX ∪MT ∪{q = false} ∪MN ∪MY satisfies
both AN and ¬fj [ei/¬xi] for every fj ∈ F .

This model can be extended to a model of AN ∪ AT ∪ AD ∪ AB by adding MO = {dj = false} ∪ {ri =
true} ∪ {si = true}. The clauses of AN are already proved satisfied. The clauses ¬xi ∨ ti ∈ AT are satisfied
because MT contains ti = true. The clauses (¬fj [ei/¬xi]) ∨ dj are satisfied because ¬fj [ei/¬xi] is. The
clauses of AB are satisfied because each contains either ¬dj , ri or si, and these literals are true in MO.

This proves that MX ∪MT ∪ {q = false} ∪MN ∪MY ∪MO satisfies AN ∪ AT ∪ AD ∪ AB . It does not
satisfy AR, which means that it falsifies AR ∪AT ∪AD ∪AB . This proves that AN ∪AT ∪AD ∪AB is not
equivalent to AR ∪AT ∪AD ∪AB .

In summary, assuming that the QBF is not valid and that a CNF formula of size k expresses forgetting,
it is proved that the formula does not express forgetting. This contradiction shows that no formula of size
k expresses forgetting if the QBF is not valid. �
Lemma 15. Checking whether forgetting a given set of variables from a minimal-size CNF formula is ex-
pressed by a CNF formula bounded by a certain size is Dp

2-hard.

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 33
Proof. For every ∀QBF Lemma 13 ensures the existence of a minimal-size CNF formula A, a set of variables
XA and an integer k such that forgetting all variables except XA from A is expressed by a CNF formula of
size k if the QBF is valid and is only expressed by larger CNF formulae otherwise.

For every ∃QBF Lemma 14 ensures the existence of a minimal-size CNF formula B, a set of variables
XB and an integer l such that forgetting all variables except XB from B is expressed by a CNF formula of
size l if the QBF is valid and is only expressed by larger CNF formulae otherwise.

A Dp
2-hard problem is that of establishing whether an ∃QBF and a ∀QBF are both valid. If their alphabets

are not disjoint, they can be made so by renaming one of them to fresh variables since renaming does
not affect validity. The same applies to the formulae B and A respectively build from them according to
Lemma 13 and Lemma 14 because renaming does not change the minimal size of forgetting either. Lemma 7
proves that forgetting from A ∪B is expressed by C ∪D where C expresses forgetting from A and D from
B. The minimal size of two such CNF formulae is respectively k and l. If the QBFs are both valid, they are
exactly k and l large. Otherwise, they are strictly larger than either k or l. The sum is k + l if both QBFs
are valid and is larger than k + l otherwise. �
Theorem 7. Checking whether forgetting some variables from a CNF formula is expressed by a CNF formula
of a certain size expressed in unary is Dp

2-hard and in Σp
3, and remains hard even if the CNF formula is

restricted to be of minimal size.

Proof. Membership to Σp
3 is proved first. The problem is the existence of a CNF formula of the given size

or less that expresses forgetting the given variables from the formula. Theorem 1 reformulates forgetting in
terms of equiconsistency with a set of literals containing all variables not to be forgotten. Forgetting withing
a certain size is formalized by the following metaformula where A is the formula, Y the variables not to be
forgotten and k the size bound.

∃B . Var(B) ⊆ Y, ||B|| ≤ k and ∀S . Var(S) ⊆ Y ⇒ (∃M . M |= S ∪A ⇔ ∃M ′ . M ′ |= S ∪B)

All four quantified entities are bounded in size: B by k, S and M ′ by the number of variables in Y and
M by the number of variables in A. This is therefore a ∃∀∃QBF, which proves membership to Σp

3.
Hardness to Dp

2 is proved by Lemma 15 in the restriction where A is minimal. �
References

[1] G. Antoniou, T. Eiter, K. Wang, Forgetting for defeasible logic, in: Proceedings of the Eighteenth Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR-18), in: Lecture Notes in Computer Science, vol. 7180,
Springer, 2012, pp. 77–91.

[2] A. Artale, J.C. Jung, A. Mazzullo, A. Ozaki, F. Wolter, Living without Beth and Craig: explicit definitions and interpolants
in description logics with nominals (extended abstract), in: Stefan Borgwardt, Thomas Meyer (Eds.), Proceedings of the
Thirdythird International Workshop on Description Logics (DL 2020), vol. 2663, 2020.

[3] G. Ausiello, A. D’Atri, D. Saccà, Minimal representation of directed hypergraphs, SIAM J. Comput. 15 (2) (1986) 418–431.
[4] M. Berthold, R. Gonçalves, M. Knorr, J. Leite, A syntactic operator for forgetting that satisfies strong persistence, Theory

Pract. Log. Program. 19 (5–6) (2019) 1038–1055.
[5] M. Bílková, Uniform interpolation and propositional quantifiers in modal logics, Stud. Log. 85 (1) (2007) 1–31.
[6] G. Boole, Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Proba-

bilities, Walton and Maberly, 1854.
[7] E. Boros, O. Cepek, A. Kogan, P. Kucera, Exclusive and essential sets of implicates of Boolean functions, Discrete Appl.

Math. 158 (2) (2010) 81–96.
[8] D. Buchfuhrer, C. Umans, The complexity of Boolean formula minimization, J. Comput. Syst. Sci. 77 (1) (2011) 142–153.
[9] O. Cepek, P. Kucera, P. Savický, Boolean functions with a simple certificate for CNF complexity, Discrete Appl. Math.

160 (4–5) (2012) 365–382.
[10] O. Čepek, P. Kučera, On the complexity of minimizing the number of literals in Horn formulae, RUTCOR Research Report

RRR 11-208, Rutgers University, 2008.
[11] O. Coudert, Two-level logic minimization: an overview, Integration 17 (2) (1994) 97–140.
[12] O. Coudert, T. Sasao, Two-level logic minimization, in: Logic Synthesis and Verification, Springer, 2002, pp. 1–27.

http://refhub.elsevier.com/S0168-0072(24)00054-X/bib94C042393F18644B27FAA51040FCF0FEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib94C042393F18644B27FAA51040FCF0FEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib94C042393F18644B27FAA51040FCF0FEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF678BA33623B99FB40B089180B3EAB40s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF678BA33623B99FB40B089180B3EAB40s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF678BA33623B99FB40B089180B3EAB40s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5342C2999D0843EE87C29482383DD9DAs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3DFC1A1701036C585DD24E17369C1D0Cs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3DFC1A1701036C585DD24E17369C1D0Cs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibE5C7C8961CABE3A251EE0390F7BD3FB1s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib752718C180D5AAB2404E7F34BE7FDDE3s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib752718C180D5AAB2404E7F34BE7FDDE3s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF0876B6D664C36ACC5E930F316ADFD89s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF0876B6D664C36ACC5E930F316ADFD89s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib42ED637F09AD24D05C65608B217FAD82s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibC6C02C9F94D71A83583B2160A90F02EFs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibC6C02C9F94D71A83583B2160A90F02EFs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5ECA3E326B881B97CC126DD1F7105AA1s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5ECA3E326B881B97CC126DD1F7105AA1s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibFFA91E2FEDFBF06C8DC1FAA9FA6293A4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib48074F8734568438D04C3A21B78B9B8Cs1

34 P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456
[13] A. Darwiche, Compiling knowledge into decomposable negation normal form, in: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI’99), 1999, pp. 284–289.

[14] A. Darwiche, Decomposable negation normal form, J. ACM 48 (4) (2001) 608–647.
[15] M. Davis, H. Putnam, A computing procedure for quantification theory, J. ACM 7 (1960) 201–215.
[16] J.P. Delgrande, A knowledge level account of forgetting, J. Artif. Intell. Res. 60 (2017) 1165–1213.
[17] J.P. Delgrande, K. Wang, A syntax-independent approach to forgetting in disjunctive logic programs, in: Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), AAAI Press, 2015, pp. 1482–1488.
[18] J.P. Delgrande, R. Wassermann, Horn clause contraction functions, J. Artif. Intell. Res. 48 (2013) 475–511.
[19] N. Eén, A. Biere, Effective preprocessing in SAT through variable and clause elimination, in: International Conference on

Theory and Applications of Satisfiability Testing, 2005, pp. 61–75.
[20] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, K. Wang, Forgetting in managing rules and ontologies, in: 2006 IEEE /

WIC / ACM International Conference on Web Intelligence (WI 2006), IEEE Computer Society Press, 2006, pp. 411–419.
[21] T. Eiter, G. Kern-Isberner, A brief survey on forgetting from a knowledge representation and perspective, Kuenstl. Intell.

33 (1) (2019) 9–33.
[22] T. Eiter, K. Wang, Forgetting and conflict resolving in disjunctive logic programming, in: Proceedings of the Twenty-First

National Conference on Artificial Intelligence (AAAI 2006), 2006, pp. 238–243.
[23] E. Erdem, P. Ferraris, Forgetting actions in domain descriptions, in: Proceedings of the Twenty-Second AAAI Conference

on Artificial Intelligence (AAAI 2007), AAAI Press, 2007, pp. 409–414.
[24] R. Fagin, J.Y. Halpern, Y. Moses, M. Vardi, Reasoning About Knowledge, The MIT Press, 1995.
[25] R. Feng, E. Acar, S. Schlobach, Y. Wang, W. Liu, On sufficient and necessary conditions in bounded CTL, Technical

Report arXiv :2003 .06492 [abs], Computing Research Repository (CoRR), 2020.
[26] P. Fišer, J. Hlavička, BOOM-a heuristic Boolean minimizer, Comput. Inform. 22 (1) (2012) 19–51.
[27] R. Gonçalves, M. Knorr, J. Leite, The ultimate guide to forgetting in answer set programming, in: Proceedings of the

Fifteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2016), AAAI Press/The
MIT Press, 2016, pp. 135–144.

[28] G. Gottlob, C.G. Fermüller, Removing redundancy from a clause, Artif. Intell. 61 (1993) 263–289.
[29] P.L. Hammer, A. Kogan, Optimal compression of propositional Horn knowledge bases: complexity and approximation,

Artif. Intell. 64 (1) (1993) 131–145.
[30] P.L. Hammer, A. Kogan, Quasi-acyclic propositional Horn knowledge bases: optimal compression, IEEE Trans. Knowl.

Data Eng. 7 (5) (1995) 751–762.
[31] E. Hemaspaandra, H. Schnoor, Minimization for generalized Boolean formulas, in: Proceedings of the Twenty-Second

International Joint Conference on Artificial Intelligence (IJCAI 2011), 2011, pp. 566–571.
[32] J. Lang, P. Liberatore, P. Marquis, Propositional independence — formula-variable independence and forgetting, J. Artif.

Intell. Res. 18 (2003) 391–443.
[33] C.T. Lee, A completeness theorem and computer program for finding theorems derivable from given axioms, PhD thesis,

Department of Electrical Engineering and Computer Science, University of California, 1967.
[34] P. Liberatore, Complexity issues in finding succinct solutions of PSPACE-complete problems, Technical Report

abs/cs/0503043, CoRR, 2005.
[35] P. Liberatore, Redundancy in logic I: CNF propositional formulae, Artif. Intell. 163 (2) (2005) 203–232.
[36] P. Liberatore, Superredundancy: a tool for Boolean formula minimization complexity analysis, Electronic Colloquium on

Computational Complexity, Technical Report 062, 2022.
[37] F. Lin, R. Reiter, Forget it!, in: Proceedings of the AAAI Fall Symposium on Relevance, 1994, pp. 154–159.
[38] D.W. Loveland, Part 1. Proof Theory, Princeton University Press, 2014, pp. 1–92.
[39] F. Martínez-Plumed, C. Ferri, J. Hernández-Orallo, M. Ramírez-Quintana, Knowledge acquisition with forgetting: an

incremental and developmental setting, Adapt. Behav. 23 (5) (2015) 283–299.
[40] E.J. McCluskey, Minimization of Boolean functions, Bell Syst. Tech. J. 35 (6) (1956) 1417–1444.
[41] Y. Moinard, Forgetting literals with varying propositional symbols, J. Log. Comput. 17 (5) (2007) 955–982.
[42] N. Nikitina, S. Rudolph, (Non-)succinctness of uniform interpolants of general terminologies in the description logic EL,

Artif. Intell. 215 (2014) 120–140.
[43] G. Nordh, B. Zanuttini, What makes propositional abduction tractable, Artif. Intell. 172 (10) (2008) 1245–1284.
[44] D. Rajaratnam, H.J. Levesque, M. Pagnucco, M. Thielscher, Forgetting in action, in: Proceedings of the Fourteenth

International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), AAAI Press, 2014.
[45] J. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1) (1965) 23–41.
[46] J.R. Slagle, C.L. Chang, R. Lee, Completeness theorems for semantic resolution in consequence-finding, in: Proceedings

of the First International Joint Conference on Artificial Intelligence (IJCAI’69), 1969, pp. 281–286.
[47] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1976) 1–22.
[48] S. Subbarayan, D.K. Pradhan, NiVER: non-increasing variable elimination resolution for preprocessing SAT instances, in:

International Conference on Theory and Applications of Satisfiability Testing, Springer, 2004, pp. 276–291.
[49] M. Theobald, S.M. Nowick, T. Wu, Espresso-HF: a heuristic hazard-free minimizer for two-level logic, in: Proceedings of

the Thirty-Third Design Automation Conference, 1996, pp. 71–76.
[50] C. Umans, The minimum equivalent DNF problem and shortest implicants, J. Comput. Syst. Sci. 63 (4) (2001) 597–611.
[51] H. van Ditmarsh, A. Herzig, J. Lang, P. Marquis, Introspective forgetting, Synthese 169 (2009) 809–827.
[52] K. Wang, A. Sattar, K. Su, A theory of forgetting in logic programming, in: Proceedings of the Twentieth National

Conference on Artificial Intelligence (AAAI 2005), AAAI Press/The MIT Press, 2005, pp. 682–688.
[53] Y. Wang, On forgetting in tractable propositional fragments, Technical Report 1502.02799, Computing Research Reposi-

tory (CoRR), 2015.
[54] Y. Wang, Y. Zhang, Y. Zhou, M. Zhang, Knowledge forgetting in answer set programming, J. Artif. Intell. Res. 50 (2014)

31–70.

http://refhub.elsevier.com/S0168-0072(24)00054-X/bib4851BBBE2626B6537E185DD02EF8AEE2s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib4851BBBE2626B6537E185DD02EF8AEE2s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibE9D235792EACD2BD4C9E9F7A8AA72A3As1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib504AFF8E6094A0E32DD4F2E1A6194DB4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5A7698D2426B0D8498415F9B06BAB7C1s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib1B0603F732A9AD38D420A3C4AF0C29B8s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib1B0603F732A9AD38D420A3C4AF0C29B8s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibA1355343F4A10475405C5E84AF3D10AAs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEB2AD7F027760B3B0FBEC89BEE8162A6s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEB2AD7F027760B3B0FBEC89BEE8162A6s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibD4EAAFE5F644A65CD6A156D7A27643A4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibD4EAAFE5F644A65CD6A156D7A27643A4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib49A85F269F4E7B79651A863103665DF3s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib49A85F269F4E7B79651A863103665DF3s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibE3A5B8D37BDE298F875DDD2D7E9FC9ADs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibE3A5B8D37BDE298F875DDD2D7E9FC9ADs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib93B01C8F922BE1635A12B63928AE6B2Bs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib93B01C8F922BE1635A12B63928AE6B2Bs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib91DF2EC07A042F7DA16F096783921696s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibA321D51CFF69AAB0CB3A04B80E4B21E0s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibA321D51CFF69AAB0CB3A04B80E4B21E0s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib40F4D9918B700B91239076C830E115FAs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3C801372A738FF51006C986EDD33A3C8s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3C801372A738FF51006C986EDD33A3C8s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3C801372A738FF51006C986EDD33A3C8s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib4182503BC7109FC564BF958C4D8170C2s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib2C886730762AF8266ECEA84C0D33D554s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib2C886730762AF8266ECEA84C0D33D554s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib9C5724A75AA50D2A28FE7BF1C32DB1CEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib9C5724A75AA50D2A28FE7BF1C32DB1CEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibBFE6095DF90363A8B0F16708065E3EA4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibBFE6095DF90363A8B0F16708065E3EA4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF4A197948CC40E4A7E6D60858A47B692s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF4A197948CC40E4A7E6D60858A47B692s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEB037E5125DA25FC6DB257CCF0F3B2BDs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEB037E5125DA25FC6DB257CCF0F3B2BDs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5EB6D4B36C13B39046B3A5AA06DF8467s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5EB6D4B36C13B39046B3A5AA06DF8467s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibD448A68D9C5091C629368D8A7D2D2243s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib339780FE5A7B32DA212D2CD6BA1AEDF0s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib339780FE5A7B32DA212D2CD6BA1AEDF0s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib256BCA71921160957A7FA98A1B0267B8s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib221C1F7F1554299D1876FBE77E0FF761s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib0E5F1595A53888690DD9CC5F754B2DFEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib0E5F1595A53888690DD9CC5F754B2DFEs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF5AB07F673096D836C6F3667D6DE8BE2s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib723DC2493F1155212E8D4CBD2F743992s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5AA30776758D9117F38A2F53AACE19E0s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib5AA30776758D9117F38A2F53AACE19E0s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEB43090E8976124CB08A09313F4FBA53s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib21A5EDD9F56440D8F5088226AD12044Es1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib21A5EDD9F56440D8F5088226AD12044Es1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib82C2FB147C5C6AC51CB8A74F0B3E6539s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib89161AB1DC532E609B3434C99C31C312s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib89161AB1DC532E609B3434C99C31C312s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib9646894D1A36BF8C583CC54688188B4Ds1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib9534B574F689DF9EB5F430BB41566733s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib9534B574F689DF9EB5F430BB41566733s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3F9A0D83BD0ABE4B717A26AB898BE6EAs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3F9A0D83BD0ABE4B717A26AB898BE6EAs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib134A5E97D61BDD4E2D634F724214EC5Cs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib871D7AACCFBE242AD2D2148DF6A9ECC4s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib713C2498C69569A5CD18C4ADDEFC71F5s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib713C2498C69569A5CD18C4ADDEFC71F5s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib572E7CA80754BF080F4D7311ECFF1D06s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib572E7CA80754BF080F4D7311ECFF1D06s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib2EFC99F6570759CE41AF3E1F6635137Fs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bib2EFC99F6570759CE41AF3E1F6635137Fs1

P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 35
[55] X. Zhang, Forgetting for distance-based reasoning and repair in DL-lite, Knowl.-Based Syst. 107 (2016) 246–260.
[56] Y. Zhang, Y. Zhou, Knowledge forgetting: properties and applications, Artif. Intell. 173 (2009) 1525–1537.
[57] Y. Zhou, Polynomially bounded forgetting, in: Proceedings of the Thirteenth Pacific Rim International Conference on

Artificial Intelligence (PRICAI 2014), 2014, pp. 422–434.
[58] Y. Zhou, Y. Zhang, Bounded forgetting, in: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

(AAAI 2011), AAAI Press, 2011.

http://refhub.elsevier.com/S0168-0072(24)00054-X/bib3C238457602DF726F831DDB3B8127AFDs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibFCC8015295E66A5593E47D8CADF92AD7s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEEEF33D5AA8890CB524F6E0A00901D4Cs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibEEEF33D5AA8890CB524F6E0A00901D4Cs1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF8D98FA0074C3912B9F54E020D3D1838s1
http://refhub.elsevier.com/S0168-0072(24)00054-X/bibF8D98FA0074C3912B9F54E020D3D1838s1

	The ghosts of forgotten things: A study on size after forgetting
	1 Introduction
	2 Preliminaries
	2.1 Formulae
	2.2 Resolution
	2.3 Superredundancy

	3 Forgetting
	3.1 Size of forgetting
	3.2 How to forget
	3.3 Necessary literals

	4 Size after forgetting, Horn case
	5 Size after forgetting, general case
	6 Related work
	7 Conclusions
	Declaration of competing interest
	Data availability
	Appendix A Proofs
	References

