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Forgetting is removing variables from a logical formula while preserving the 
constraints on the other variables. In spite of reducing information, it does not 
always decrease the size of the formula and may sometimes increase it. This article 
discusses the implications of such an increase and analyzes the computational 
properties of the phenomenon. Given a propositional Horn formula, a set of variables 
and a maximum allowed size, deciding whether forgetting the variables from the 
formula can be expressed in that size is Dp-hard in Σp

2. The same problem for 
unrestricted CNF propositional formulae is Dp

2 -hard in Σp
3.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Several articles mention simplification as an advantage of forgetting, if not its motivation. Forgetting 
means deleting pieces of knowledge, and less is more. Less knowledge is easier to remember, easier to work 
with, easier to interpret. To cite a few:

• “With an ever growing stream of information, bounded memory and short response time suggest that 
not all information can be kept and treated in the same way. [...] forgetting [...] helps us to deal with 
information overload and to put a focus of attention” [21].

• “For example, in query answering, if one can determine what is relevant with respect to a query, then 
forgetting the irrelevant part of a knowledge base may yield more efficient query-answering” [17].

• “Moreover, forgetting may be applicable in summarizing a knowledge base by suppressing lesser details, 
or for reusing part of a knowledge base by removing an unneeded part of a larger knowledge base, or in 
clarifying relations between predicates” [16].
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Fig. 1. An example of forgetting some variables. Arrows stand for propositional implications.

• “For performing reasoning tasks (planning, prediction, query answering, etc.) in an action domain, not 
all actions of that domain might be necessary. By instructing the reasoning system to forget about these 
unnecessary/irrelevant actions, without changing the causal relations among fluents, we might obtain 
solutions using less computational time/space” [23].

• “There are often scenarios of interest where we want to model the fact that certain information is 
discarded. In practice, for example, an agent may simply not have enough memory capacity to remember 
everything he has learned” [24].

• “The most immediate application of forgetting is to model agents with limited resources (e.g., robots), 
or agents that need to deal with vast knowledge bases (e.g., cloud computing), or more ambitiously, 
dealing with the problem of lifelong learning. In all such cases it is no longer reasonable to assume that 
all knowledge acquired over the operation of an agent can be retained indefinitely” [44].

• “For example, we have a knowledge base K and a query Q. It may be hard to determine if Q is true 
or false directly from K. However, if we discard or forget some part of K that is independent of Q, the 
querying task may become much easier” [52].

• “To some extent, all of these can be reduced to the problem of extracting relevant segments out of large 
ontologies for the purpose of effective management of ontologies so that the tractability for both humans 
and computers is enhanced. Such segments are not mere fragments of ontologies, but stand alone as 
ontologies in their own right. The intuition here is similar to views in databases: an existing ontology is 
tailored to a smaller ontology so that an optimal ontology is produced for specific applications” [20].

These authors are right: if forgetting simplifies the body of knowledge then it is good for reducing the 
amount of information to store, for increasing the efficiency of querying it, for clarifying the relationships 
between facts, for obtaining solutions more easily, for retaining by agents of limited memory, for tailoring 
knowledge to a specific application. If forgetting simplifies the body of knowledge, all these motivations are 
valid.

If.
What if not? What if forgetting does not simplify the body of knowledge? What if it complicates it? 

What if it enlarges instead of shrinking it?
This looks impossible. Forgetting is removing. Removing information, but still removing. Removing some-

thing leaves less, not more. What remains is less than what before, not more. Forgetting about d, e, f and 
g in the formula depicted on the left of Fig. 1 only leaves information about a, b and c.

The only information that remains is that a and b imply c. All the rest, like c implying d or f implying 
b is forgotten. What is left is smaller than what before because it is only a part of that.

This is the prototypical scenario of forgetting, the first that comes to mind when thinking about removing 
information: some information goes away, the rest remains. The rest is a part of the original. Smaller. Simpler. 
Easier than that to store, to query, to interpret. But prototypical does not mean exclusive.

Forgetting x from the formula on the left of Fig. 2 complicates it instead of simplifying it. Whenever a, b
and c are the case so is x. And x implies n, m and l. Like the neck of an hourglass, x funnels the first three 
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Fig. 2. A formula that is complicated instead of simplified by forgetting.

variables in the upper bulb to the last three in the lower. Without it, these links need to be spelled out one 
by one: a, b and c imply n; a, b and c imply m; a, b and c imply l. The variable x acts like a shorthand for 
the first three variables together. Removing it forces repeating them.

Forgetting x deletes x but not its connections with the other variables. The lines that go from a, b and 
c to n, l and m survive. Like a ghost, x is no longer there in its body, but in its spirit: its bonds. These 
remain, weaved where x was.

The formula resulting from forgetting is still quite short, but this is only because the example is designed 
to be simple for the sake of clarity. Cases with larger size increase due to forgetting are easy to find. 
Forgetting a single variable never increases size much, but forgetting many may increase size exponentially.

The size of the formula resulting from forgetting matters for all reasons cited by the authors above. To 
summarize, it is important for:

1. sheer memory needed;
2. the cost of reasoning; formulae that are difficult for modern solvers are typically large; while efficiency 

is not directly related to size, small formulae are usually easy to solve;
3. interpreting the information; the size of a formula tells something about how much the forgotten variables 

are related to the others.

These points are relevant to different research areas: for example, Delgrande and Wang [17] mention 
the second point regarding disjunctive logic programming; Erdem and Ferraris [23] do the same in the 
context of reasoning about actions. The third point is cited in the general survey on forgetting by Eiter and 
Kern-Isberner [21] and in the article that generalizes forgetting across different logics by Delgrande [16].

This witnesses that the problem of size after forgetting is relevant to different logics. Many of them 
generalize or can express propositional logic or Horn logic as a subcase. These are the two logics considered 
here, as greater common divisors of them.

The figures visualize forgetting as a cut between what is remembered and what is forgotten. This cut 
may divide parts that are easy to separate like in the first figure or parts that are not natural to separate 
like in the second figure. The first cut glides following the direction of the fabric of the knowledge base. The 
second is resisted by the connections it cuts.

The number of these connections does not tell the difference. How closely they hold together the parts 
across the cut does. Even if the links in the first example were c → d1, . . . , c → d100 instead of c → d, the 
result would be the same. What matters is not how many links connect the parts across the cut, but how 
they do.
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An increase of size gauges the complexity of these connections. The first example is easy to cut because its 
implications are easy to ignore: c may imply d, but if d is forgotten this implication is removed and nothing 
else changes. The second example is not so easy to cut: forgetting x does not just remove its implication 
from a, b and c; it shifts its burden to the remaining variables.

A size increase suggests that the forgotten variables are closely connected to the remaining ones. If 
forgetting is aimed at subdividing knowledge, it would be like the chapter on Spain next to that of Samoa 
and far away from France in an atlas. The natural division is by continents, not initials of the name. 
In general, the natural divisions are by topics, so that things closely connected stay close to each other. 
Forgetting about Samoa when describing Spain is easier than forgetting about France. Neglecting some 
obscure diplomatic relations is more natural than neglecting a bordering country.

Forgetting may be abstracting [39]. Cold weather increases virus survival, which facilitates virus trans-
mission, which causes flu. Forgetting about viruses: cold weather causes flu. But forgetting is not always 
natural as an abstraction. A low battery level, a bad UPS unit and a black-out cause a laptop not to 
start; which causes a report not to be completed, a movie not to be watched and a game not to be played. 
Forgetting about the laptop is a complication more than an abstraction: the three preconditions cause the 
first effect, they cause the second effect, and they cause the third effect. If x is the laptop not starting, this 
is the example in the second figure, where forgetting increases size. That cold weather causes cold is short, 
simple, a basic fact of life for most people. Brevity is the soul of abstraction.

In summary, a short formula is preferred for storage and computational reasons. The size of the formula 
after forgetting is important for epistemological reason, to evaluate how natural a partition or abstraction 
of knowledge is. Either way, the question is: how large is a formula after forgetting variables?

The question is not as obvious as it looks. Several formulae represent the same piece of knowledge. For 
example, a ∨ (¬a ∧ b) is the same as the shorter a ∨ b. The problem of formula size without forgetting eluded 
complexity researchers for twenty years: it was the prototypical problem for which the polynomial hierarchy 
was created in the seventies [47], but framing it exactly into one of these classes only succeeded at the end 
of the nineties [50]. This is the problem of whether a formula is equivalent to another of a given size.

The problem studied in this article is whether forgetting some variables from a formula is equivalent to 
a formula of given size.

Forgetting is not complicated. A simple recipe for forgetting x from F is: replace x with true in F , replace 
x with false in F , disjoin the two resulting formulae [32]. If F is in conjunctive normal form, another recipe 
is: replace all clauses containing x with the result of resolving them [53,16,45]. The first solution may not 
maintain the syntactic form of the formula. None of them is guaranteed to produce a minimal one.

Forgetting no variable from a formula results in the formula itself. Insisting on forgetting something does 
not change complexity: every formula F is the result of forgetting x from F ∧ x if x is a variable not in 
F . The complexity of the size of F is a subcase of the size of forgetting x from F . It is however not an 
interesting subcase: the question is how much size decreases or increases due to forgetting. If F has size 100 
before forgetting and 10 after, this looks like a decrease, but is not if F is equivalent to a formula of size 5 
before forgetting and to none of size 9 or less afterwards. This is a size increase, not a decrease.

The main results of this article are the complexity characterization of this problem in the Horn and 
general propositional case where size is the total number of occurrences of literals. The problem is Dp-hard 
and belongs to Σp

2 when the formula is Horn; it is Dp
2-hard and in Σp

3 for arbitrary CNF formulae. A detailed 
plan of the article follows.

After Section 2 introduces some basic concepts like resolution, Section 3 formally defines forgetting and 
gives some results about size. Some equivalent formulations of forgetting are given, as well as some ways to 
compute forgetting.

Section 4 shows the complexity of the problem in the Horn restriction. It comes before the general case 
because of its slightly simpler proofs. The problem is Dp-hard and belongs to Σp

2.
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Section 5 shows that the problem is Dp
2-hard and belongs to Σp

3 for arbitrary CNF formulae. In both cases, 
hardness is more difficult to prove than membership; on the other hand, it extends to logics that include 
propositional or Horn logics as subcases. For example, since modal logics extend propositional logics, the 
problem of size of forgetting is Dp

2-hard.
Section 6 compares the results in this article with previous work. Section 7 discusses future directions of 

study.
A number of examples and counterexamples rely on calculating the resolution closure of a formula, 

its minimal equivalent formulae, the result of forgetting a variable from it and the minimal formu-
lae equivalent to that. The program minimize.py does these operations on the formula it reads from 
another file, for example allvariables.py or outresolve.py. It is currently available at https://
github .com /paololiberatore /minimize .py together with the files that contain the formulae mentioned 
in this article.

2. Preliminaries

2.1. Formulae

The formulae in this article are all propositional in conjunctive normal form (CNF): they are sets of 
clauses, a clause being the disjunction of some literals and a literal a propositional variable or its negation. 
This is not truly a restriction, as every formula can be turned into CNF without changing its semantics. A 
clause is sometimes identified with the set of literals it contains. For example, a subclause is a subset of a 
clause.

If l is a negative literal ¬x, its negation ¬l is defined as x.
The variables a formula A contains are denoted Var(A).

Definition 1. The size ||A|| of a formula A is the number of variable occurrences it contains.

This is not the same as the cardinality of Var(A) because a variable may occur multiple times in a 
formula. For example, A = {a, ¬a ∨ b, a ∨ ¬b} has size five because it contains five literal occurrences even 
if its variables are only two. The size is obtained by removing from the formula all propositional operators, 
commas and parentheses and counting the number of symbols left.

The definition of size implies the definition of minimality: a formula is minimal if it is equivalent to no 
formula smaller than it. Given a formula, a minimal equivalent formula is a possibly different but equivalent 
formula that is minimal. As an example, A = {a, ¬a ∨ b, a ∨ ¬b} has size five since it contains five literal 
occurrences; yet, it is equivalent to B = {a, b}, which only contains two literal occurrences. No formula 
equivalent to A or B is smaller than that: B is minimal. Minimizing a formula means obtaining a minimal 
equivalent formula. This problem has long been studied [40,47,11,50,31,10].

Definition 2. The clauses of a formula A that contain a literal l are denoted by A ∩ l = {c ∈ A | l ∈ c}.

This notation is unambiguous: when is between two sets, the symbol ∩ denotes their intersection; when 
is between a set and a literal, it denotes the clauses of the set that contain the literal. This is like seeing 
A ∩ l as the shortening of A ∩ clauses(l), where clauses(l) is the set of all possible clauses that contain the 
literal l.

2.2. Resolution

Resolution is a syntactic derivation mechanism that produces a clause that is a consequence of two clauses: 
c1 ∨ l and c2 ∨ ¬l generate the clause c3 that results from removing repetitions from c1 ∨ c2. Resolution is 

https://github.com/paololiberatore/minimize.py
https://github.com/paololiberatore/minimize.py
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denoted c1 ∨ l, c2 ∨ ¬l � c3. Sometimes �R is used in place of � to emphasize the use of resolution as the 
syntactic derivation rule. This is unnecessary in this article since no other derivation rule is ever mentioned.

Unless noted otherwise, tautologic clauses are excluded. Writing c1 ∨ a, c2 ∨ ¬a � c3 implicitly assumes 
that none of the three clauses is a tautology unless explicitly stated. Two clauses that would resolve in 
a tautology are considered not to resolve, which is not a limitation [38]. Tautologic clauses are forbidden 
in formulae, which is not a limitation either since tautologies are always satisfied. This assumption has 
normally little importance, but is crucial to superredundancy, a concept defined in the next section.

In what follows tautologies are excluded from formulae and from resolution derivations. As a result, 
resolving two clauses always generates a clause different from them.

A resolution proof F � G is a binary forest where the roots are the clauses of G, the leaves are the clauses 
of F and every parent is the result of resolving its two children.

Definition 3. The resolution closure of a formula F is the set ResCn(F ) = {c | F � c} of all clauses that 
result from applying resolution zero or more times from F .

The clauses of F are derivable by zero-step resolutions from F . Therefore, F � c and c ∈ ResCn(F ) hold 
for every c ∈ F .

The resolution closure is similar to the deductive closure but not identical. For example, a ∨ b ∨ c is in 
the deductive closure of F = {a ∨ b} but not in the resolution closure. It is a consequence of F but is not 
obtained by resolving clauses of F .

All clauses in the resolution closure ResCn(F ) are in the deductive closure but not the other way around. 
The closures differ because resolution does not expand clauses: a ∨ b ∨ c is not a resolution consequence of 
a ∨ b. Adding expansion kills the difference [33,46].

F |= c if and only if c′ ∈ ResCn(F ) for some c′ ⊆ c

That resolution does not include expansion may suggest that it cannot generate any clause that strictly 
contains other entailed clauses. That would be too good to be true, since the shortest entailed clauses 
would be exactly the ones generated by resolution. In fact, it is not the case, as seen in the formula 
{a ∨ b ∨ c, a ∨ b ∨ e, ¬e ∨ c ∨ d}: the second and third clauses resolve to a ∨ c ∨ b ∨ d, which contains the first 
clause of the formula, a ∨ b ∨ c.

What is the case is that resolution generates all prime implicates [33,46], the minimally entailed clauses. 
The relation between ResCn(F ) and the deductive closure of F tells that if a clause is entailed, a subset of 
it is generated by resolution; since the only entailed subclause of a prime implicate is itself, it is the only 
one resolution may generate. Removing all clauses that contain others from ResCn(F ) results in the set of 
the prime implicates of F .

While ResCn(F ) contains all clauses generated by an arbitrary number of resolutions, some properties 
used in the following require the clauses obtained by a single resolution step.

Definition 4. The resolution of two formulae is the set of clauses obtained by resolving each clause of the 
first formula with each clause of the second:

resolve(A,B) = {c | c′, c′′ � c where c′ ∈ A and c′′ ∈ B}

If either of the two formulae comprises a single clause, the abbreviations resolve(A, c) = resolve(A, {c}), 
resolve(c, B) = resolve({c}, B) and resolve(c, c′) = resolve({c}, {c′}) are used.
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This set contains only the clauses that results from resolving a single clause of A with a single clause of 
B. Exactly one resolution of one clause with one clause. Not zero, not multiple ones. A clause of A is not 
by itself in resolve(A, B) unless it is also the resolvent of another clause of A with a clause of B.

2.3. Superredundancy

A clause of a formula is superredundant if it is redundant in the resolution closure of the formula [36]: 
ResCn(F )\{c} |= c. The following properties of superredundancy and superirredundancy are used in this 
article.

Lemma 1 ([36], Lemma 2). If c is a superirredundant clause of F , it is contained in every minimal CNF 
formula equivalent to F .

Lemma 2 ([36], Lemma 5). If a formula contains only superirredundant clauses, it is minimal.

Lemma 3 ([36], Lemma 8). If no two clauses of F resolve, then a clause of F is superredundant if and only 
if F contains a clause that is a strict subset of it.

Lemma 4 ([36] Lemma 11). If a clause c of F is superredundant, it is also superredundant in F ∪ {c′}.

Lemma 5 ([36] Lemma 12). A clause c of F [true/x] is superredundant if it is superredundant in F , it contains 
neither x nor ¬x and F does not contain c ∨¬x. The same holds for F [false/x] if F does not contain c ∨x.

Superirredundancy differs from the related concepts of irredundancy [28,35], essentiality [29,7,9], and 
membership in all minimal formulae. This is shown by the clause a in the formula F = {a, ¬a ∨ b, ¬b ∨ a}: 
it is not superirredundant, but is irredundant, is an essential prime implicate and is in all minimal formulae 
that are equivalent to F .

• the resolution closure of F is {a, b, ¬a ∨ b, ¬b ∨ a}, where a is redundant; therefore, a is superredundant 
in F , not superirredundant;

• removing a from F results in {¬a ∨ b, ¬b ∨ a}, which does not entail a; therefore, a is irredundant in F ;
• the prime implicates of F are a and b; the only CNF formula equivalent to F comprising prime implicates 

is {a, b}, which contains a; therefore, a is an essential prime implicate of F ;
• the prime implicates a and b of F do not resolve; therefore, the resolution closure of the set of prime 

implicates of F is {a, b}; neither two clauses of F nor two clauses of {a, b} resolve in a; therefore, {a} is 
both essential and prime essential for F , its set of prime implicates, the resolution closure of its set of 
prime implicates and its represented Boolean function;

• the only minimal-size formula equivalent to F is {a, b}; as a result, a belongs to all minimal-size formulae 
equivalent to F .

Essentiality and superirredundancy differ. They both prove membership to all minimal-size formulae 
equivalent to the formula, but superirredundancy follows from Lemma 3, Lemma 4 and Lemma 5. These 
lemmas shorten the formula by replacing certain variables with true or false until its resolution closure is 
easy to calculate in full.

3. Forgetting

A Boolean function over a set of n variables is a mapping {0, 1}n → {0, 1}. Forgetting some variables 
results in a Boolean function over the remaining variables.
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Definition 5. Forgetting all variables but Y from a Boolean function over variables X is the Boolean function 
g over variables Y such that g(M) = 1 where M is a model over Y if and only if there exists a model M ′

over X\Y such that f(M ∪M ′) = 1.

Forgetting is typically applied to formulae [32] rather than functions. A common definition is: the formula 
over the remaining variables that entails the same consequences over the remaining variables. Being based on 
the semantical concept of entailment, this definition is unaffected by the syntax of the formula. All equivalent 
formulae are the same when forgetting. The result of forgetting is the same as its equivalent formulae. The 
semantical definition solves the ambiguity since equivalent formulae represent the same Boolean function.

The definition of forgetting on formulae follows. A formula represents a Boolean function. Variables are 
forgotten from the Boolean function. The resulting Boolean function is represented by another formula. This 
other formula is the result of forgetting. Actually, every formula representing the same Boolean function is 
the result of forgetting. Every such formula expresses forgetting.

Definition 6. A formula B expresses forgetting all variables except Y from a formula A over variables X if 
forgetting all variables but Y from the Boolean function represented by A results in the Boolean function 
represented by B.

The definition sets a constraint over B rather than uniquely defining a specific formula. Every formula 
B fits it as long as it is built over the right variables and represents the same Boolean function.

Syntax is irrelevant to this definition. As it should: every B′ that is syntactically different but equivalent 
to B carries the same information. There is no reason to confer A[true/x] ∨ A[false/x] a special status 
among all formulae holding the same information. Every formula equivalent to it is an equally valid result 
of forgetting.

The definition captures this parity among formulae by not defining forgetting as a single specific formula 
and then delegating the identification of its alternatives to equivalence. If B expresses forgetting some 
variables from A and B′ is equivalent to B and contains the same variables, then B′ also expresses forgetting.

The common definition of forgetting based on entailment becomes a consequence: A and B entail the 
same formulae over the variables Y . This is proved in steps. The first is that A and B are equisatisfiable 
with the same sets of literals that mentions exactly the variables Y . This result is also used in the hardness 
proofs.

Theorem 1. A formula B over the variables Y expresses forgetting all variables except Y from A if and only 
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y that mention all variables in 
Y .

The condition based on equisatisfiability extends from sets of literals to arbitrary formulae.

Theorem 2. A formula B over the variables Y expresses forgetting all variables from A except Y if and only 
if A ∧D is equisatisfiable with B ∧D for every formula D over variables Y .

The usual definition of forgetting in terms of consequences turns into a theorem.

Theorem 3. A formula B over variables Y expresses forgetting all variables from A except Y if and only if 
B |= C is the same as A |= C for all formulae C such that Var(C) ⊆ Y .

The condition that S mentions all variables of Y can be dropped from the equisatisfiability of S ∪A and 
S ∪B.
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Theorem 4. A formula B over the variables Y expresses forgetting all variables except Y from A if and only 
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y .

The following Section 3.1 discusses the main focus of the analysis of this article: the size of a formula 
when forgetting variables; the following Section 3.2 shows how to actually compute forgetting in general 
and in two specific cases; finally, Section 3.3 proves that in some cases, certain literals are always in the 
result of forgetting, which is important when computing the size after forgetting.

3.1. Size of forgetting

Many formulae B express forgetting the same variables X from a formula A. Some may be large and 
some may be small. Producing an artificially large formula is straightforward: if {a ∨ b, b ∨ c} expresses 
forgetting, also {a ∨ b, b ∨ c, ¬a ∨ a, a ∨ b ∨ ¬c} does: adding tautologies and consequences does not change 
the semantics of a formula. The question is not whether a large expression of forgetting exists.

The question is whether a small expression of forgetting exists. In this context, “small” means “of poly-
nomial size”. Technically: given a formula A and a set of variables X, does any formula of size polynomial 
in that of A express forgetting X from A?

Forgetting each variable x from the CNF formula A is expressed by Boole elimination [6] A[true/x] ∨
A[false/x], which can be converted back into a CNF of quadratic size. Forgetting many variables this way 
produces an exponentially large formula. Yet, this formula may be equivalent to a short one.

This is not the case for all formulae [32]. Yet, it is the case for some formulae. It depends on the formula. 
For example, forgetting variables from negation-free CNF formulae amounts to removing the clauses that 
contain these variables. The question is the existence of a small formula expressing forgetting from a specific 
formula. This will be proved Dp-hard and in Σp

2 for Horn formulae by the following Theorem 6 and Dp
2-hard 

and in Σp
3 for unrestricted CNF formulae by the following Theorem 7.

3.2. How to forget

Three properties related to computing forgetting are proved: it can be performed one variable at time, it 
can be performed by resolution, and it may be performed on the independent parts of the formula, if any.

Lemma 6 ([16]). If B expresses forgetting the variables Y from A and C expresses forgetting the variables 
Z from B, then C expresses forgetting Y ∪ Z from A.

Forgetting can be done by resolution with the Davis-Putnam elimination method [15,18,53,16]. The 
function resolve(A, B) provided by Definition 4 gives the clauses obtained by resolving each clause of A
with each clause of B, if they resolve. The notation A ∩ l introduced in Definition 2 gives the clauses of A
that contain the literal l.

Theorem 5 ([53, Theorem 6], [16, Theorem 6]). The formula A\(A ∩ x)\(A ∩ ¬x) ∪ resolve(A ∩ x, A ∩ ¬x)
expresses forgetting x from A.

Forgetting a single variable is not a limitation because Lemma 6 tells that forgetting a set of variables 
can be performed one variable at time: forgetting x first and Y \{x} then is the same as forgetting Y .

The problem is that forgetting this way may produce non-minimal formulae even from minimal ones. For 
example, A = {a ∨ b ∨x, ¬x ∨ c, a ∨ c} is minimal, but resolving x out to forget it produces {a ∨ b ∨ c, a ∨ c}, 
which is not minimal since the first clause is entailed by the second. The proof that A is minimal is long 
and tedious, and is therefore omitted. The formulae in the outresolve.py file of minimize.py show similar 
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examples where the formula obtained by resolving out a variable either contains a redundant literal or is 
irredundant although not minimal.

Since resolving Horn clauses produces Horn clauses, this theorem indirectly shows that forgetting variables 
from Horn formulae is expressed by a Horn formula [18]. That formula may not be minimal, yet its minimal 
equivalent formulae cannot be non-Horn: as mentioned in Section 2.2, resolution derives all clauses of all 
minimal equivalent formulae.

When a formula comprises two independent parts with no shared variable, forgetting from the formula is 
the same as forgetting from the two parts separately. This property is used in the following hardness proofs 
that merge two polynomial-time reductions.

Lemma 7 ([13,32]). Let A and B be two formulae built over disjoint alphabets: Var(A) ∩ Var(B) = ∅. A 
formula C expresses forgetting the variables Y from A and D expresses forgetting the variables Y from B
if and only if C ∪D expresses forgetting the variables Y from A ∪B.

3.3. Necessary literals

Finding a minimal version of a formula is difficult [40,49,26]. Finding a minimal formula expressing 
forgetting is further complicated by the addition of forgetting. Determining the exact complexity of this 
problem proved difficult; not so much for membership to classes in the polynomial hierarchy but for hardness. 
Fortunately, proving hardness does not require finding the minimal size of arbitrary formulae, just for the 
formulae that are targets of the reduction. NP-hardness is for example proved by translating a formula 
(to be checked for satisfiability) to another formula and a set of variables (where the variables have to be 
forgotten from the formula). Such a reduction does not generate all possible formulae. Only for the ones 
generated by the reduction, the minimal size after forgetting is necessary.

This is good news, because reductions do not generate all possible formulae. Rather the opposite: they 
usually produce formulae of a very specific form. Still better, a reduction can be altered to simplify computing 
the minimal size of the formulae it produces. If the minimal size is difficult to assess for the formulae produced 
by a reduction, the reduction itself can be changed to simplify them.

The reductions used in this article rely on two tricks to allow for simple proofs. The first is that some 
clauses of the formulae they generate are in all minimal-size equivalent formulae; this part of the minimal 
size is therefore always the same. The second is that the rest of the minimal size depends on the presence 
or absence of certain literals in all formulae expressing forgetting; where these literals occur if present does 
not matter, only whether they are present or not.

The first trick is based on superredundancy [36], defined in Section 2.
The second requires proving that a literal is contained in all formulae that express forgetting. This is 

preliminarily proved when no forgetting is involved.

Lemma 8. If S is a set of literals such that S∪A is consistent, but S\{l} ∪{¬l} ∪A is not, the CNF formula 
A contains a clause that contains l.

Since consistency with S and with S\{l} ∪{¬l} is unaffected by syntactic changes, they are the same for 
all formulae equivalent to A. In other words, if the conditions of the lemma hold for A they also hold for 
every formula equivalent to A.

This property carries over to formulae expressing forgetting by constraining S to only contain variables 
not to be forgotten.

Lemma 9. If S∪{l} is a set of literals over the variables Y such that S∪A is consistent, but S\{l} ∪{¬l} ∪A

is not, every CNF formula that expresses forgetting all variables except Y from A contains a clause that 
contains l.



P. Liberatore / Annals of Pure and Applied Logic 175 (2024) 103456 11
How is this lemma used? To prove that reductions from a problem to the problem of minimal size of 
forgetting work. Not all reductions can be proved correct this way. The ones used in this article are built to 
allow that. They generate a formula that contains a clause that contains a certain literal l that may or may 
not meet the condition of the lemma. Depending on this, l may or may not be necessary after forgetting. This 
is a +0 or a +1 in the size of the minimal formulae expressing forgetting. If the other literals occurrences 
are k, the minimal size is k + 0 or k + 1 depending on whether the conditions of Lemma 9 are met.

In order for this to work, the +0/ + 1 separation is not enough. Equally important to the k + 0 vs. k + 1
size is that the other addend k stays the same. This is the number of the other literal occurrences. The 
formulae produced by the reduction may or may not contain a literal l, but this is useless if the rest of the 
formula changes. For example, if k changes from 10 to 9 the total size is either 10 + 0 or 9 + 1, which are 
the same. Lemma 9 concerns the presence of l in a formula, but this tells its overall size only when the rest 
of the formula has a fixed form. This is ensured by superirredundancy [36], defined in Section 2.

4. Size after forgetting, Horn case

How much forgetting variables increases or decreases size? Given a formula A and a set of variables Y , 
how much space forgetting Y from A takes? Technically, how large is a formula expressing forgetting Y
from A? A complexity analysis of a decision problem requires turning it into a yes/no question. Given k, A
and Y , does a formula B of size bounded by k express forgetting?

This is a decision problem: each of its instances comprises a number k, a formula A and a set of variables 
Y ; the solution is yes or no. Yet, it may not always capture the question of interest. For example, A may 
be a formula of size 100 that can be reduced to size 20 by forgetting the variables Y . This looks like a 
good result: the resulting formula takes much less space to be stored, checking what can be inferred from 
it is usually easier, and its literals are probably related in some simple way. Yet, all of this may be illusory: 
formula A has size 100, but only because it is extremely redundant; it could be reduced to size 10 just by 
rearrangements, without forgetting anything. That forgetting can be expressed in size 20 no longer looks 
good. It is not even a size decrease, it is a size doubling.

If forgetting was required independent on size, and checking size is a side question, the problem still 
makes sense: is forgetting A expressed by a formula of size 20? If forgetting is done for size reasons, or 
for reasons that depend on size, the problem is not this but rather “does forgetting reduce size?” or “how 
much forgetting increases or decreases size?” These questions depend on the original size of the formula. 
The answer is not “20”. It is rather “forgetting increases size from 10 to 20”. It is certainly not “forgetting 
decreases size from 100 to 20”, since the formula can be shrunk more without forgetting.

The solution is to disallow formulae of size 100 that can be reduced to 10 without forgetting. A formula 
of size 100 really has size 100. It is not the inflated version of a formula of size 10. This way, if size can be 
reduced from 100 to 20 when forgetting, this reduction is only due to forgetting, not to the original formula 
being larger than necessary.

The following lemmas and theorems include this assumption that the formula is minimal in size. For 
example, the problem of checking the size after forgetting is proved hard for the complexity class Dp when 
the formula is minimal. It is also proved to be in the class Σp

2. The proof of the latter also holds when the 
formula is not minimal: it holds in both cases.

Checking whether forgetting Y from A can be expressed in space k is easy to be proved in Σp
2 if k is 

unary or polynomially bounded by the size of A: all it takes is checking all formulae of size k for their 
equisatisfiability with all sets of literals S over the remaining variables by Theorem 4. Hardness is not so 
easy to prove, and in fact leaves a gap to membership: it is only proved Dp-hard in this article.

Not that Dp-hardness is easy to prove. It requires two long lemmas, one for a coNP-hardness reduction 
and one for an NP-hardness reduction. These reductions have a form that allows them to be merged into a 
single Dp-hardness reduction.
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A generic NP-hardness reduction is “if F is satisfiable then forgetting takes space less than or equal to k
and greater otherwise”. It may not be merged. An additional property is required: forgetting can never be 
expressed in size less than k. If this is also a property of a coNP-hardness reduction where the size bound is 
l, the overall size is always k+ l or greater, with k+ l being only possible when the first formula is satisfiable 
and the second unsatisfiable.

This explains why the lemmas are formulated with “equal to k” in one case and “greater than k” in the 
other. Their other peculiarity, that the formula generated by the reduction is required to be minimal, is due 
to the reasons explained above.

Lemma 10. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn 
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is 
expressed by a Horn formula of size k if F is unsatisfiable and only by Horn formulae of size greater than 
or equal to k + 2 if F is satisfiable.

This lemma shows a polynomial reduction from propositional unsatisfiability to the problem of forget 
size in the Horn case. As for all polynomial reductions, it translates a formula F without knowing its 
satisfiability, which however affects the minimal size of expressing forgetting.

Being a polynomial reduction from propositional unsatisfiability, it proves the forgetting size problem
coNP-hard. Yet, the lemma is not formulated this way. It instead predicates about the reduction itself. Only 
this way it could include the additional property that the minimal size is either k or at least k + 2. This 
allows merging it with another reduction to form a proof of Dp-hardness.

The following lemma also shows the problem NP-hard: a formula F is satisfiable if and only if forgetting 
some variables from A can be expressed in a certain space. However, its statement refers to the reduction 
itself for the same reason of the previous lemma: merging with the previous reduction into a Dp-hardness 
reduction.

Lemma 11. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn 
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is 
expressed by a Horn formula of size k if F is satisfiable and only by Horn formulae of size greater than k
otherwise.

The problem of size after forgetting is the target of both a reduction from propositional satisfiability and 
from propositional unsatisfiability. This alone proves it both NP-hard and coNP-hard. These reductions 
have the additional property that forgetting variables from the formulae they generate cannot be expressed 
in size less than k. This allows merging them into a single Dp-hardness proof.

Lemma 12. Checking whether forgetting some variables from a minimal-size Horn formula is expressed by a 
CNF or Horn formula bounded by a certain size is Dp-hard.

Proving hardness takes most of this section, but still leaves a gap between the complexity lower bound 
it shows and the upper bound in the next theorem. The problem is Dp-hard, which is just a bit above
NP-hardness and coNP-hardness, but belongs to a class of the next level of the polynomial hierarchy: Σp

2.

Theorem 6. Checking whether forgetting some variables from a Horn formula is expressed by a CNF or Horn 
formula bounded by a certain size expressed in unary is Dp-hard and in Σp

2, and remains hard even if the 
formula is restricted to be of minimal size.

The assumption that the size bound is represented in unary is technical. When formulated as a decision 
problem, the size of forgetting is the question whether forgetting certain variables X from a formula A is 
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expressed by a formula of size k, but the actual problem is to find such a formula. If k is exponential in the 
size of A, a formula of size k may very well exist, but is unpractical to represent. Unless A is very small. 
The requirement that k is in unary forces the input of the problem to be as large as the expected output. 
If the available space is enough for storing a resulting formula of size k, it is also enough for storing an 
input string of length k, which k in unary is. In the other way around, representing k in unary witnesses 
the ability of storing a resulting formula of size k. The similar assumption “k is polynomial in the size of 
A” fails to include the case where A is very small but the space available for expressing forgetting is large.

5. Size after forgetting, general case

The complexity analysis for general CNF formulae mimics that of the Horn case. Two reductions prove 
the problem hard for the two basic classes of a level of the polynomial hierarchy. They are merged into a 
single proof that slightly increases the lower bound. A membership proof for a class of the next level ends 
the analysis.

The difference is that the level of the polynomial hierarchy is the second instead of the first. The two 
reductions prove the problem hard for Πp

2 and Σp
2. They are merged into a Dp

2-hardness proof. Finally, the 
problem is located within Σp

3.
As for the Horn case, the first lemma proves the problem Πp

2-hard, but is formulated in terms of the 
reduction because the reduction is needed to raise the lower bound to Dp

2-hard.

Lemma 13. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size CNF 
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables from A except XC is 
expressed by a CNF formula of size k if ∀X∃Y.F is valid and only by CNF formulae of size k+2 or greater 
otherwise.

The second lemma is again about a reduction. Its statement implies that the problem is Σp
2-hard, but it 

predicates about the reduction rather than the hardness. This allows it to be merged with the first lemma 
into a proof of Dp

2-hardness. The existing proof of Σp
2-hardness of the problem without forgetting [50] also 

proves the problem with forgetting Σp
2-hard, but does not allow such a merging and does not hold in the 

restriction of minimal formulae.

Lemma 14. There exists a polynomial algorithm that turns a DNF formula F = f1 ∨ · · · ∨ fm over variables 
X ∪ Y into a minimal-size CNF formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all 
variables except XC from A is expressed by a CNF formula of size k if ∃X∀Y.F is valid, and only by larger 
CNF formulae otherwise.

As anticipated, the two reductions merge into one that proves the problem of forgetting size Dp
2-hard.

Lemma 15. Checking whether forgetting a given set of variables from a minimal-size CNF formula is ex-
pressed by a CNF formula bounded by a certain size is Dp

2-hard.

The next theorem adds a complexity class membership to the hardness of the problem of size of forgetting 
proved in the previous lemma.

Theorem 7. Checking whether forgetting some variables from a CNF formula is expressed by a CNF formula 
of a certain size expressed in unary is Dp

2-hard and in Σp
3, and remains hard even if the CNF formula is 

restricted to be of minimal size.
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The technical assumption that the size bound is expressed in unary is the same as in Theorem 6; it is 
motivated after that theorem.

6. Related work

Reducing the size of a propositional formula when no forgetting is involved has been much studied [47,3,
11,50,12,7,8,31,30]. The practical problem of synthesizing a minimal formula representing a Boolean function 
is formalized by the decision problem of deciding whether a propositional formula has an equivalent form 
of a given size or less. This problem depends on the definition of size. Size may be the total number of 
occurrences of literals in a formula [3,50,8,31,30], but may also be its clause count [3,7]. It may be the total 
size of the bodies of the clauses [3] or a cost function obeying some constraints [11,12]. The problem changes 
depending on the definition of size. While complexity may look the same, it requires specific proofs. The 
ones for the number of occurrences of literals do not in general work for the number of clauses or the other 
measures in the literature.

The existing literature provides mechanisms for forgetting variables from a formula and overall bounds 
on the minimal size of expressing forgetting for all formulae. They leave open the question in between: the 
minimal size of expressing forgetting for a specific formula. An example result of the first kind is: “Salient 
features of the solution provided include linear time complexity, and linear size of the output of (iterated) 
forgetting” [1]: forgetting generates linear formulae. An example result of the second kind is: “the size of 
the result of forgetting may be exponentially large in the size of the input program” [16]: forgetting may 
produce exponentially large formulae. It may, not must. For some formulae, forgetting may not increase size. 
The only previous complexity result about the size of forgetting for a specific formula is discussed later [57]. 
Other authors reported worst-case results [23,22], and some the opposite, as certain forgetting mechanisms 
of certain logics can be expressed in polynomial size [27]. These results are usually unaffected by whether 
size is defined as total length or number of clauses.

Forgetting propositional variables is also called variable elimination, especially in the context of auto-
mated reasoning [19]: it is a way to simplify a formula before processing. As such, it has stricter efficiency 
requirements than general forgetting. For example, the NiVER preprocessor “resolves away a variable only 
if there will be no increase in space” [48]. A quadratic increase would be too much, given the aim of reducing 
the overall runtime of automated reasoning.

Forgetting is often identified by its dual concept of uniform interpolation, especially in first-order, modal 
and description logics [5]. While forgetting is always expressible in exponential space in propositional logics, 
uniform interpolants in other logics may be larger, if they exist at all. For example, their size is at least 
triple-exponential in certain description logics, provided that they exist [42]. Analogous to the question of 
checking their size is checking their existence [2].

A way to forget in propositional logic is Boole elimination [6], but the resulting formula A[true/x] ∨
A[false/x] does not maintain the syntactic form of A: a CNF like a ∧ (x ∨ b ∨ c) becomes the non-CNF 
((a) ∨(a ∧(b ∨c)). While this formula can be turned into CNF, directly combining clauses is more convenient 
when working on CNFs.

An alternative is given by the Davis-Putnam elimination method [15], as proved by Delgrande and 
Wassermann [18] in the Horn case and extended to the general case by Wang [53] and Delgrande [16]. 
Theorem 5 shows that forgetting is expressed by A\(A ∩ x)\(A ∩ ¬x) ∪ resolve(A ∩ x, A ∩ ¬x), where 
resolve(A, B) gives the clauses obtained by resolving each clause of A with each clause of B if they resolve 
and A ∩ l gives the clauses of A that contain the literal l.

Forgetting this way may produce non-minimal formulae even from minimal ones. For example, A =
{a ∨ b ∨ x, ¬x ∨ c, a ∨ c} is minimal, but resolving x out to forget it produces {a ∨ b ∨ c, a ∨ c}, which is not 
minimal since the first clause is entailed by the second. The proof that A is minimal is long and tedious, 
and is therefore omitted. The formulae in the outresolve.py file of minimize.py show similar examples 
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where the formula obtained by resolving out a variable either contains a redundant literal or is irredundant 
although not minimal.

Lemma 11 incidentally proves the problem of forgetting size NP-hard. An alternative is given by The-
orem 2 by Zhou [57]. The formulae generated by the reduction in its proof are not Horn, but can be 
straightforwardly turned so by switching the sign of some variables. However, they are not enforced to be 
of size k or more as required by the Dp-hardness proof. While the Horn restriction is easy to satisfy, this 
constraint does not look so.

Generating only minimal formulae is instead unattainable. The reduction in the proof of Theorem 2 by 
Zhou [57] hinges on non-minimal formulae. It works by translating non-minimal formulae into non-minimal 
formulae. The original formula is added three variables so that it is recovered by forgetting them. This is 
the hearth of the reduction: the size after forgetting follows the size before the translation; this proves the 
problem of size after forgetting as hard as the problem of size without forgetting, which is NP-hard [3,29]
in the Horn case. The addition of the three variables links the size of the formulae. Of all three formulae: 
the original, the result of the translation and the result of forgetting. The reduction is an NP-hardness 
proof because checking whether the original formula is equivalent to one of a certain size or less is NP-hard. 
The translated formula before forgetting can only be made minimal by making the original minimal, which 
trivializes the check.

While the reduction proves the problem NP-hard, proving NP-hardness is not the final aim. It is the 
Dp-hardness when the formula is minimal. The Dp-hardness proof requires the bound on size. Converting 
non-minimal formulae into non-minimal formulae turns the problem from size reduction by forgetting to 
size reduction without forgetting. This also applies to the case of arbitrary formulae, proved Σp

2-hard by 
reduction from the problem of formula minimization [50].

7. Conclusions

Forgetting variables from formulae may increase size, instead of decreasing it. This phenomenon is already 
recognized as a problem [17,4]. Deciding whether it takes place or not for a specific formula and variables 
to forget is difficult. While checking inference is polynomial in the Horn case, checking whether forgetting is 
expressed by a formula of a certain size is at least Dp-hard, which implies it both NP-hard and coNP-hard; 
the same for the general case, where inference is coNP-complete but checking size after forgetting is at least 
Dp

2-hard.
The precise characterization of complexity is an open problem. For Horn formulae, Theorem 6 leaves a 

gap between the lower bound of Dp-hardness and the upper bound of Σp
2-membership. According to what 

proved so far, the problem could be as easy as Dp-complete or as hard as Σp
2-complete. Nothing in the 

results obtained so far favors either possibility. Actually, nothing indicates for certain that the problem is 
complete for either class; it could be complete for any class in between, like Δp

2[logn] or Δp
2.

Anecdotal evidence hints that the problem is Σp
2-complete. The analogous problems without forgetting 

for unrestricted formulae kept a gap between NP and Σp
2 for twenty years before being closed as Σp

2-
complete [47,50]. Proving membership was easy; proving hardness was not.

This is a common pattern, not limited to formula minimization: in many cases, hardness is more difficult 
to prove than membership. Not always, but hardness proofs are often more complicated than membership 
proofs. The hardness and membership lemmas in this article are an example: several pages of proof for 
hardness, ten lines for membership. A proof of Σp

2-hardness may very well exist but is just difficult to find. 
As it was for the problem without forgetting.

All of this is anecdotal. Technically, the complexity of the problem could be anything in between Dp and 
Σp

2.
As a personal opinion, not based on the technical results, the author of this article would bet on the 

problem being Σp
2-complete. The missing proof of Σp

2-hardness could be an extension of that of Lemma 11, 
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since both Σp
2 and NP are based on an existential quantification. The extension of an already difficult proof 

would be further complicated by the addition of an inner universal quantification.
A way to partly close the issue is to further restrict the Horn case to simplify the problem to Dp. The 

gap would close to its lower end for such a class of formulae.
This is the first direction for further studies in how forgetting affects size. Another is the investigation in 

subcases other than the general propositional case and its Horn restriction. Many are relevant. Forgetting is 
very easy on formulae in DNNF [14], as it amounts to simply removing literals. It is also easy for the Krom 
restriction [53] as resolving binary clauses always produces binary clauses, which are at most quadratically 
many. It may not on other tractable cases in Post’s lattice [43].

Forgetting has variants and is defined for many logics other than propositional logic. The problem of size 
applies to all of them. What is its complexity? This article characterizes it for one version of forgetting in 
propositional logic. The other versions and the other logics are still open. Some results may apply to them 
as well. Logic programs embed Horn clauses; the hardness results for the Horn case may hold for them as 
well. More generally, how hard it is to check whether forgetting in logic programs is expressed within a 
certain size? How hard it is in first-order logic? In description logics? How hard it is when forgetting literals 
rather than variables?

The size after forgetting matters not only when forgetting variables, but also literals [32], possibly with 
varying variables [41]. All variants inhibit the values of some variables to matter: forgetting variables makes 
their values irrelevant to the satisfaction of the formula; forgetting literals makes only the true or false value 
not to matter; varying variables allows some other variables to change. These variants generalize forgetting 
variables, inheriting the problem of size with the same complexity at least.

Forgetting applies to frameworks other than propositional logic. The problem of size applies to them as 
well.

Forgetting from logic programs [52,54,27] is usually backed by the need of solving conflicts rather than 
an explicit need of reducing size. Yet, an increase in size is recognized as a problem: “Whereas relying on 
such methods to produce a concrete program is important in the sense of being a proof that such a program 
exists, it suffers from several severe drawbacks when used in practice: In general, it produces programs with 
a very large number of rules” [4]; “It can also be observed that forgetting an atom results in at worst a 
quadratic blowup in the size of the program. [...] While this may seem comparatively modest, it implies 
that forgetting a set of atoms may result in an exponential blowup” [17].

Another common area of application of forgetting is first-order logic [37]. Size after forgetting is related 
to bounded forgetting [58], which is forgetting with a constraint on the number of nested quantifiers. The 
difference is that the bound is an additional constraint rather than a limit to check. Bounded forgetting 
still involves a measure (the number of quantifiers), but forcing the result by that measure makes it close 
to bounding PSPACE problems [34]. Enforcing size rather than checking it is another possible direction of 
expansion of the present article.

As are the other logics where forgetting is applied like description logics [20,55] and modal logics [56,51], 
where forgetting is often referred to as its dual concept of uniform interpolant, and also temporal logics [25], 
logics for reasoning about actions [23,44], and defeasible logics [1].
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Appendix A. Proofs

Theorem 1. A formula B over the variables Y expresses forgetting all variables except Y from A if and only 
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y that mention all variables in 
Y .

Proof. The Boolean functions A, B and S represent are respectively denoted a(), b() and s(). The variables 
of A are X∪Y , where X is to forget and Y is not. Every set of literals S that mentions exactly the variables 
of Y has a single model over Y , denoted MS .

The satisfiability of S ∪ A is the existence of a model over variables X that satisfies both S and A. 
Alternatively, it is the existence of two models M and M ′ respectively over Y and X\Y such that s(M ∪
M ′) = 1 and a(M ∪ M ′) = 1. Since S does not mention any variable in X\Y , the former subcondition 
s(M ∪M ′) = 1 equates to s(M) = 1. This is also equivalent to M = MS since S is only satisfied by MS. 
As a result, the satisfiability of S ∪ A simplifies to the existence of a model M and a model M ′ such that 
M = MS and a(M ∪M ′) = 1. This is the same as the existence of a model M ′ such that a(MS ∪M ′) = 1.

For the same reasons, the satisfiability of S ∪ B equates to the existence of a model M ′ such that 
b(MS ∪ M ′) = 1. Since B only mentions the variables Y , this condition simplifies to the existence of a 
model M ′ such that b(MS) = 1. The subcondition b(MS) = 1 does not mention M ′, negating the need of 
quantifying over this model. The satisfiability of S ∪B eventually turns into just b(MS) = 1.

The equisatisfiability of S ∪ A and S ∪ B is the same as: b(MS) = 1 holds if and only if there exists 
a model M ′ such that a(MS ∪ M ′) = 1 for every set of literals S that mentions all variables in Y . The 
universal quantification over S is the same as a universal quantification of a model MS over variables Y . 
The result is: for every model MS over variables Y , b(MS) = 1 holds if and only if there exists a model M ′

over variables X\Y such that a(MS ∪M ′) = 1”. This is the definition of B expressing forgetting X\Y from 
A. �
Theorem 2. A formula B over the variables Y expresses forgetting all variables from A except Y if and only 
if A ∧D is equisatisfiable with B ∧D for every formula D over variables Y .

Proof. Theorem 1 reformulates forgetting as the equisatisfiability of A and B with every set of literals S
that mentions exactly the variables Y . This is a special case of the equisatisfiability of A and B with every 
formula D over Y . This proves one part of the theorem, from equisatisfiability to forgetting.

The other part is from forgetting to equisatisfiability: if B expresses forgetting then A ∧D and B ∧D

are equisatisfiable for every formula D over Y .
Every formula D over Y is equivalent to the disjunction of some sets of literals, each mentioning exactly 

the variables Y . Formally, D is equivalent to S1 ∨ · · · ∨ Sm.
As a result, A ∧D is equivalent to A ∧ (S1 ∨ · · · ∨ Sm), which is equivalent to (A ∧ S1) ∨ · · · ∨ (A ∧ Sm). 

Theorem 1 tells that each A ∧ Si is equisatisfiable with B ∧ Si. As a result, (A ∧ S1) ∨ · · · ∨ (A ∧ Sm) is 
equisatisfiable with (B ∧ S1) ∨ · · · ∨ (B ∧ Sm), which is equivalent to B ∧D.

This chain of equivalences proves the equisatisfiability of A ∧D and B ∧D. �
Theorem 3. A formula B over variables Y expresses forgetting all variables from A except Y if and only if 
B |= C is the same as A |= C for all formulae C such that Var(C) ⊆ Y .

Proof. The entailment B |= C is the same as the unsatisfiability of B ∪ ¬C. The same for A |= C. The 
equivalence of A |= C and B |= C coincides with the equisatisfiability of B∪¬C and A ∪¬C. By Theorem 2, 
this is the same as B expressing forgetting from A. �
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Theorem 4. A formula B over the variables Y expresses forgetting all variables except Y from A if and only 
if S ∪A is equisatisfiable with S ∪B for all sets of literals S over variables Y .

Proof. The equisatisfiability in this theorem is a special case of that in Theorem 2, which is proved to hold 
if B expresses forgetting.

The equisatisfiability in Theorem 1 is a special case of the one in this theorem, which therefore implies 
that B expresses forgetting. �
Lemma 8. If S is a set of literals such that S∪A is consistent, but S\{l} ∪{¬l} ∪A is not, the CNF formula 
A contains a clause that contains l.

Proof. Since S ∪A is consistent, it has a model M .
The claim is that A contains a clause that contains l. This is proved by contradiction, assuming that no 

clause of A contains l. By construction S\{l} does not contain l either. As a result, A′ = S\{l} ∪ A does 
not contain l. It is still satisfied by M because M satisfies its superset S ∪ A. Let M ′ be the model that 
sets l to false and all other variables the same as M . Let l1 ∨ · · · ∨ lm be an arbitrary clause of A′. Since 
M satisfies A, it satisfies at least one of these literals li. Since A does not contain l, this literal li is either 
¬l or a literal over a different variable. In the first case M ′ satisfies li = ¬l because it sets l to false; in the 
second because it sets li the same as M , which satisfies li. This happens for all clauses of A′, proving that 
M ′ satisfies A′.

Since M ′ also satisfies ¬l because it sets l to false, it satisfies A′ ∪ {¬l} = S\{l} ∪ {¬l} ∪A, contrary to 
its assumed unsatisfiability. �
Lemma 9. If S∪{l} is a set of literals over the variables Y such that S∪A is consistent, but S\{l} ∪{¬l} ∪A

is not, every CNF formula that expresses forgetting all variables except Y from A contains a clause that 
contains l.

Proof. Let B be a formula expressing forgetting all variables from A but Y . By Theorem 4, since S is a set 
of literals over Y , the consistency of S ∪A equates that of S ∪B. The same holds for S\{l} ∪{¬l} since its 
variables are all in Y .

The lemma assumes the consistency of S ∪A and the inconsistency of S\{l} ∪ {¬l} ∪A. They imply the 
consistency of S ∪B and the inconsistency of S\{l} ∪{¬l} ∪B. These two conditions imply that B contains 
a clause that contains l by Lemma 8. �
Lemma 10. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn 
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is 
expressed by a Horn formula of size k if F is unsatisfiable and only by Horn formulae of size greater than 
or equal to k + 2 if F is satisfiable.

Proof. Let F = {f1, . . . , fm} be a CNF formula built over the alphabet X = {x1, . . . , xn}. The reduction 
employs the fresh variables E = {e1, . . . , en}, T = {t1, . . . , tn}, C = {c1, . . . , cm} and {a, b}. The formula 
A, the set of variables XC and the number k are:

A = {¬xi ∨ ¬ei,¬xi ∨ ti,¬ei ∨ ti | xi ∈ X} ∪

{¬xi ∨ cj | xi ∈ fj , fj ∈ F} ∪ {¬ei ∨ cj | ¬xi ∈ fj , fj ∈ F} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b} ∪

{a ∨ ¬b}
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XC = X ∪ E ∪ {a, b}

k = 2 × n + 2

Before formally proving the claim, how the reduction works is summarized. Some literals are still necessary 
after forgetting, and some of them are necessary only if F is satisfiable. The clauses ¬xi ∨ ¬ei make ¬xi

and ¬ei necessary. The clause a ∨ ¬b makes a and ¬b necessary. If F is always false, then for every value 
of the variables X ∪ E either some ti can be set to false (if xi = ei = false) or some cj can be set to false 
(because ei is the negation of xi, and at least a clause of F is false). This makes the clause

¬t1 ∨ · · · ∨¬tn ∨¬c1 ∨ · · · ∨¬cm ∨¬a ∨ b satisfied regardless of a and b. Instead, if the formula is satisfied 
by an evaluation of X and E is its opposite, then all cj and ti have to be true, turning ¬t1 ∨ · · · ∨ ¬tn ∨
¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b into ¬a ∨ b. This makes ¬a and b necessary as well.

x1 n1 x2 t2 c1 c2n2

0 1

1 0 0 1

0 1 0 1

0/1 0/1 1

0/1

1 1 1 1

0/1 1

1 1

1 1 0 1

1 0 0 1

0 110

0/1

0/1

1

1

1

1

a ∨ ¬b

¬a ∨ b

t1

¬a, b necessary

a,¬b necessary

(all xi 
= ni, all fj true)

(x1 = n1 = false)

(f1 false)

00

The figure shows three models as an example. In the first model, the assignments x1 = e1 = false allow t1
to take any value (denoted 0/1); regardless of the other variables (irrelevant values are marked −), t1 = false
satisfies the clause ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨¬a ∨ b without the need to also satisfy its subset ¬a ∨ b; 
this subclause can be false and still A is true. In the second model the values of xi and ei are opposite to 
each other for every i, but the clause f2 ∈ F is false; c1 can take any value, including false; this again allows 
A to be true even if ¬a ∨ b is false. In the third model, the variables xi and ei are all opposite to each other 
and all clauses of F true; all ti and ci are forced to be true, making ¬a ∨ b the only way to satisfy the clause 
¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b. When removing the intermediate variables ti and ci, all that 
matters is whether ¬a ∨ b was allowed to be false for some values of the removed variables or not. This is 
the case for the first two models but not the third, where ¬a and b are necessary.

Minimality. The minimality of A is proved applying Lemma 5 to remove some clauses so that the remaining 
ones do not resolve and Lemma 3 applies. Lemma 2 proves A minimal since it only contains superirredundant 
clauses.

Substituting the variables a, b with false removes ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b and a ∨ ¬b
from A. The remaining clauses contain xi, ei only negative and ti, cj only positive. Therefore, these clauses 
do not resolve. Since they do not contain each other, Lemma 3 proves them superirredundant. They are 
also superirredundant in A by Lemma 5 since A does not contain any of their supersets.
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The superirredundancy of the remaining two clauses is proved by substituting all xi, ei with false. This 
substitution removes the clauses ¬xi ∨¬ei, ¬xi ∨ ti, ¬ei ∨ ti, ¬xi ∨ cj and ¬ei ∨ cj because they all contain 
either ¬xi or ¬ei. The two remaining clauses are ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b and a ∨ ¬b. 
They have opposite literals, but resolving them results in tautologies. As a result, F = ResCn(F ). Since 
none of the two entails the other, they are irredundant in ResCn(F ) and are therefore superirredundant. 
By Lemma 5, they are superirredundant in A as well since A does not contain a superset of them.

Formula F is unsatisfiable. Forgetting all variables except XC from A is expressed by B = {¬xi ∨¬ei | xi ∈
X} ∪{a ∨¬b}, a Horn formula of the required variables XC = X ∪E ∪{a, b} and size ||B|| = 2 ×n +2 = k.

Theorem 1 proves that B expresses forgetting if every set of literals S that contains exactly all variables 
XC = X ∪ E ∪ {a, b} is satisfiable with A if and only if it is satisfiable with B. Two cases are possible.

{xi, ei} ⊆ S for some i ; the clause ¬xi ∨ ¬ei in both A and B is falsified by S; both A ∪ S and B ∪ S are 
unsatisfiable;

{xi, ei} ⊆ S for no i ; since S contains either xi or ¬xi for each i and either ei or ¬ei for each i, either 
¬xi ∈ S or ¬ei ∈ S; as a result, all clauses ¬xi ∨ ¬ei are satisfied in A ∪ S and B ∪ S, and can 
therefore be disregarded from this point on; the only remaining clause of B is a ∨ ¬b;

if S contains ¬a and b, then B is not satisfied; but A contains the same clause a ∨ ¬b, so it is 
not satisfied either; if S contains both a and b or both ¬a and ¬b, then B is satisfied, and A is also 
satisfied by setting all variables ti and cj to true; therefore, the only sets S that may differ when 
added to A and B are those containing a and ¬b; these sets are consistent with B; they make the 
clause a ∨¬b of A redundant, and resolve with the clause ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm ∨¬a ∨ b

making it subsumed by ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm.
Two subcases are considered:

{¬xi,¬ei} ⊆ S for some i the remaining clauses of A are satisfied by setting ti to false, all tz with 
z 
= i to true and all cj to true; in particular, the clause ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm is 
satisfied because of ti = false;

{¬xi,¬ei} ⊆ S for no i ; at this point, also {xi, ei} ⊆ S for no i; as a result, S contains either 
{xi, ¬ei} or {¬xi, ei}, which means that it implies xi 
≡ ei; the clauses ¬ei∨cj are therefore 
equivalent to xi ∨ cj ; by assumption, at least a clause of F is false for every possible value 
of the variables X; let fj be such a clause for the only truth evaluation on X that satisfies 
S; by setting all variables ti and all cz with z 
= j to true and cj to false, this assignment 
satisfies all clauses; in particular, the clauses ¬xi ∨ cj and xi ∨ cj are satisfied even if cj is 
false because fj is false in S, which implies that all literals xi and ¬xi it contains are false; 
the clause ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm is satisfied because of cj = false.

All of this proves that B is the result of forgetting all variables except XC from A.

Minimal number of literals. Every CNF formula B that expresses forgetting all variables except XC =
X ∪E ∪{a, b} from A contains at least k = 2 ×n + 2 literal occurrences regardless of the satisfiability of F .

This is proved by showing that B contains the literals ¬xi, ¬ei, a and ¬b. This is in turn proved by 
Lemma 9: for each of them l, a set S is shown consistent with A while S\{l} ∪ {¬l} is not.

For the literals ¬xi and a the set S contains all ¬xi, all ei, a and b. It is consistent with A because both 
are satisfied by the model that sets all xi to false and all ei, ti, ci, a and b to true. Replacing ¬xi with xi

makes S inconsistent with ¬xi ∨ ¬ei. Replacing a with ¬a makes S inconsistent with a ∨ ¬b.
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For the literals ¬ei and ¬b, the set S contains all xi, all ¬ei, ¬a and ¬b. It is consistent with A because 
both are satisfied by the model that assigns all xi, ti and ci to true and all ei, a and b to false. Replacing 
¬ei with ei makes S inconsistent with ¬xi ∨ ¬ei. Replacing ¬b with b makes it inconsistent with a ∨ ¬b.

This proves that every formula obtained by forgetting all variables except XC from A contains all the 
k = 2 × n + 2 literals ¬xi, ¬ei, a and ¬b.

Formula F is satisfiable. If this is the case, every CNF formula B that expresses forgetting all variables 
except XC from A contains the literals ¬a and b. These two literals are in addition to the k literals of the 
previous point, raising the minimal number of literals to k + 2.

That B contains ¬a is proved by exhibiting a set of literals S that is consistent with A while S\{l} ∪{¬l}
is not where l = ¬a. This implies that B contains ¬a by Lemma 9. A similar set with l = b shows that B
also contains b.

Let M be a model of F . The set of literals S contains xi or ¬xi depending on whether M satisfies xi; it 
contains ei or ¬ei depending on whether M falsifies xi; it also contains ¬a and ¬b. This set is consistent 
with A because they are both satisfied by the model that extends M by setting each ei opposite to xi, all 
ti and ci to true and a and b to false. In particular, the clause ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b is 
satisfied because it contains ¬a.

Replacing ¬a with a makes S no longer consistent with A. Let S′ = S\{¬a} ∪ {¬¬a}. This set has the 
same literals over xi and ei of S. Since M satisfies F , for each of its clauses fj at least a literal in fj is 
true in M . If this literal is xi, then S′ contains xi; since xi is in fj , formula A contains the clause ¬xi ∨ cj ; 
therefore, S′ ∪ A |= cj . If the literal of fj that is true in M is ¬xi, then S′ contains ei; since ¬xi is in fj , 
formula A contains ¬ei ∨ cj ; therefore, S′ ∪A |= cj . This proves that regardless of whether the literal of fj
that is true in M is positive or negative, if F is consistent then S′ ∪A implies cj . This is the case for every 
j since M satisfies all clauses of F . Since S′ contains either xi or ei for every i and A contains both ¬xj ∨ tj
and ¬ej ∨ tj for every j, S′ ∪ A also implies all variables tj . Since S′ = S\{¬a} ∪ {a} also contains a and 
¬b, it is inconsistent with ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b. This proves that ¬a is in B.

The similar set S that contains a and b leads to the same point where all variables cj and ti are implied, 
making ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a ∨ b consistent with {a, b} but not with {a, ¬b}. This proves 
that b is also in B. �
Lemma 11. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size Horn 
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables except XC from A is 
expressed by a Horn formula of size k if F is satisfiable and only by Horn formulae of size greater than k
otherwise.

Proof. Let the formula be F = {f1, . . . , fm} and X = {x1, . . . , xn} its variables. The formula A is built 
over an extended alphabet comprising the variables X = {x1, . . . , xn} and the additional variables O =
{o1, . . . , on}, E = {e1, . . . , en}, P = {p1, . . . , pn}, T = {t1, . . . , tn}, C = {c1, . . . , cm}, R = {r1, . . . , rn}, 
S = {s1, . . . , sn} and q.

The formula A, the set of variables XC and the integer k are as follows.

A = AF ∪AT ∪AC ∪AB

AF = {xi ∨ ¬oi, oi ∨ ¬q | xi ∈ X} ∪ {ei ∨ ¬pi, pi ∨ ¬q | xi ∈ X}
AT = {¬xi ∨ ti,¬ei ∨ ti | xi ∈ X}
AC = {¬xi ∨ cj | xi ∈ fj , fj ∈ F} ∪ {¬ei ∨ cj | ¬xi ∈ fj , fj ∈ F}
AB = {¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xi ∨ ¬ri, ri ∨ ¬q | xi ∈ X} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ ei ∨ ¬si, si ∨ ¬q | xi ∈ X}
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XC = X ∪ E ∪ T ∪ C ∪R ∪ S ∪ {q}
k = 2 × n + ||AT || + ||AC || + ||AB ||

Before formally proving that the reduction works, a short summary of why it works is given. The variables 
to forget are O ∪ P . A way to forget them is to turn AF into AR = {xi ∨ ¬q, ei ∨ ¬q | xi ∈ X}. The other 
clauses of A are superirredundant: Lemma 1 proves they belong to all minimal equivalent formulae. The 
bound k allows only one clause of AR for each i. Combined with the clauses of AT they entail ti ∨ ¬q. If F
is satisfiable, they also combine with the clauses AC to imply all clauses cj ∨ ¬q. Resolving these clauses 
with AB produces all clauses xi∨¬q and ei∨¬q, including the ones not in the formula. This way, a formula 
that contains one clause of AR for each index i implies all of AR, but only if F is satisfiable.

The following figure shows how e1∨¬q is derived from x1∨¬q and e2∨¬q, when the formula is F = {f1, f2}
where f1 = x1∨x2 and f2 = ¬x1∨¬x2. These clauses translate into AC = {¬x1∨c1, ¬x2∨c1, ¬e1∨c2, ¬e2∨
c2}. The rest of the formula A does not depend on the specific clauses of F but only on the number of 
variables and clauses it contains.
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¬x1 ∨ t1

¬e2 ∨ t2

x1 ∨ ¬q

e1 ∨ ¬q

x2 ∨ ¬q

e2 ∨ ¬q

¬q ∨ t1

¬q ∨ t2

¬x1 ∨ c1

¬e1 ∨ c2

¬x2 ∨ c1

¬q ∨ c1

¬e2 ∨ c2
¬q ∨ c2

¬t1 ∨ ¬t2 ∨ ¬c1 ∨ ¬c2 ∨ e1 ∨ ¬s1

¬q ∨ e1 ∨ ¬s1

s1 ∨ ¬q

e1 ∨ ¬q

For each index i, at least one among xi∨¬q and ei∨¬q is necessary for deriving ¬q∨ ti, which is required 
for these derivations to work. Alternatively, ¬q ∨ ti may be selected. Either way, for each index i at least a 
two-literal clause is necessary.

The claim is formally proved in four steps: first, a non-minimal way to forget all variables except XC

is shown; second, its superirredundant clauses are identified; third, an equivalent formula of size k is built 
if F is satisfiable; fourth, the necessary clauses in every equivalent formula are identified; fifth, if F is 
unsatisfiable every equivalent formula is proved to have size greater than k.

Effect of forgetting.
Theorem 5 proves that forgetting all variables not in XC , which are O ∪P , is expressed by resolving out 

these variables. Since oi occurs only in xi ∨ ¬oi and oi ∨ ¬q, the result is xi ∨ ¬q. The same holds for pi. 
The resulting clauses are denoted AR:
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AR = {xi ∨ ¬q, ei ∨ ¬q | xi ∈ X}

Superirredundancy.
The claim requires A to be minimal, which follows from all its clauses being superirredundant by Lemma 2. 

Most of them survive forgetting; the reduction is based on these being superirredundant. Instead of proving 
superirredundancy in two different but similar formulae, it is proved in their union.

In particular, the clauses AF ∪AT ∪AC ∪AB are shown superirredundant in AF ∪AR ∪AT ∪AC ∪AB . 
Lemma 4 implies that they are also superirredundant in its subsets AF∪AT∪AC∪AB and AR∪AT∪AC∪AB , 
the formula before and after forgetting.

To be precise, the latter is just one among the formulae expressing forgetting. Yet, its superirredundant 
clauses are in all minimal CNF formulae equivalent to it as proved by Lemma 1. Therefore, all minimal 
CNF formulae expressing forgetting contain them.

Superirredundancy is proved via Lemma 5: a substitution simplifies AF ∪AR ∪AT ∪AC ∪AB enough to 
prove superirredundancy easily, for example because its clauses do not resolve and Lemma 3 applies.

• Replacing all variables xi, ei, ti and cj with true removes from AF ∪ AR ∪ AT ∪ AC ∪ AB all clauses 
in AR ∪ AT ∪ AC , all clauses of AF but oi ∨ ¬q and pi ∨ ¬q and all clauses of AB but ri ∨ ¬q and 
si ∨ ¬q. The remaining clauses contain only the literals oi, pi, ri, si and ¬q. Therefore, they do not 
resolve. Since none is contained in another, they are all superirredundant by Lemma 3. This proves the 
superirredundancy of all clauses oi ∨ ¬q, pi ∨ ¬q, ri ∨ ¬q and si ∨ ¬q.

• Replacing all variables q, oi, pi, ri and si with false removes from AF ∪AR ∪AT ∪AC ∪AB all clauses 
but AT ∪AC . These clauses contain only the literals ¬xi, ¬ei, ti and cj . Therefore, they do not resolve. 
Since they are not contained in each other, Lemma 3 proves them superirredundant.

• Replacing all variables q, ri and si with false and all variables ti and ci with true removes from AF ∪
AR ∪AT ∪AC ∪AB all clauses but xi ∨¬oi and ei ∨¬pi. They do not resolve because they do not share 
variables. Lemma 3 proves them superirredundant because they do not contain each other.

• Replacing all variables with false except for all variables ti and cj and the two variables xh and rh removes 
all clauses from AF ∪AR ∪AT ∪AC ∪AB but ¬xh ∨ th, ¬t1 ∨ · · · ∨¬tn ∨¬c1 ∨ · · · ∨¬cm ∨xh ∨¬rh and 
all clauses ¬xh ∨ cj with xh ∈ fj . They only resolve in tautologies. Therefore, their resolution closure 
only contains them. Removing ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨ ¬rh from the resolution closure 
leaves only ¬xh∨ th and all clauses ¬xh∨cj with xh ∈ fj . They do not resolve since they do not contain 
opposite literals. Since ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨ ¬rh is not contained in them, it is not 
entailed by them. This proves it superirredundant. A similar replacement proves the superirredundancy 
of each ¬t1 ∨ · · · ∨ ¬tn ∨ ¬c1 ∨ · · · ∨ ¬cm ∨ eh ∨ ¬sh.

These points prove that the clauses AF ∪ AT ∪ AC ∪ AB are superirredundant in the formula before 
forgetting and the clauses AT ∪ AC ∪ AB are superirredundant in the formula after forgetting. The only 
clauses that may be superredundant are AR in the formula after forgetting.

Formula F is satisfiable.
Let M be a model satisfying F . Forgetting all variables except XC is expressed by A′

R ∪AT ∪AC ∪AB , 
where A′

R comprises the clauses xi ∨ ¬q such that M |= xi and the clauses ei ∨ ¬q such that M |= ¬xi. 
This Horn formula has size k. It expresses forgetting because it is equivalent to AR ∪ AT ∪AC ∪AB . This 
is proved by showing that it entails every clause in AR.

Since M satisfies every clause fj ∈ F , it satisfies at least a literal of fj : for some xi, either xi ∈ fj and 
M |= xi or ¬xi ∈ fj and M |= ¬xi. By construction, xi ∈ fj implies ¬xi ∨ cj ∈ AC and ¬xi ∈ fj implies 
¬ei ∨ cj ∈ AC . Again by construction, M |= xi implies xi ∨ ¬q ∈ A′

R and M |= ¬xi implies ei ∨ ¬q ∈ A′
R. 
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As a result, either xi ∨ ¬q ∈ A′
R and ¬xi ∨ cj ∈ AC or ei ∨ ¬q ∈ A′

R and ¬ei ∨ cj ∈ AC . In both cases, the 
two clauses resolve in cj ∨ ¬q.

Since M satisfies either xi or ¬xi, either xi ∨ ¬q ∈ A′
R or ei ∨ ¬q ∈ A′

R. The first clause resolves with 
¬xi ∨ ti and the second with ¬ei ∨ ti. The result is ti ∨ ¬q in both cases.

Resolving all these clauses ti∨¬q and cj∨¬q with ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨xi∨¬ri and then with 
ri∨¬q, the result is xi∨¬q. In the same way, resolving these clauses with ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨ei∨¬si
and si ∨ ¬q produces ei ∨ ¬q. This proves that all clauses of AR are entailed.

Necessary clauses
All CNF formulae that are equivalent to AR∪AT ∪AC ∪AB and have minimal size contain AT ∪AC ∪AB

because these clauses are superirredundant, according to Lemma 1. Therefore, these formulae are AN ∪AT ∪
AC ∪AB for some set of clauses AN . This set AN is now proved to contain either xh∨¬q, xh∨¬rh, eh∨¬q, 
eh ∨ ¬sh or th ∨ ¬q for each index h. Let M and M ′ be the following models.

M = {xi = ei = ti = true | i 
= h} ∪ {xh = eh = th = false} ∪
{cj = true} ∪ {q = true} ∪ {ri = true, si = true}

M ′ = {xi = ei = ti = true | i 
= h} ∪ {xh = eh = th = true} ∪
{cj = true} ∪ {q = true} ∪ {ri = true, si = true}

The five clauses are falsified by M . Since the two of them xh ∨ ¬q and eh ∨ ¬q are in AR, this set is 
also falsified by M . As a result, M is not a model of AR ∪ AT ∪ AC ∪ AB . This formula is equivalent to 
AN ∪AT ∪AC ∪AB , which is therefore falsified by M . In formulae, M 
|= AN ∪AT ∪AC ∪AB .

The formula AN ∪AT ∪AC ∪AB contains a clause falsified by M . Since M |= AT ∪AC ∪AB , this clause 
is in AN but not in AT ∪ AC ∪ AB. In formulae, M 
|= c for some c ∈ AN and c 
∈ AT ∪ AC ∪ AB . This 
clause is entailed by AR ∪ AT ∪ AC ∪ AB because this formula entails all of AN ∪ AT ∪ AC ∪ AB , and c is 
in AN . In formulae, AR ∪AT ∪AC ∪AB |= c.

This clause c contains either xh, eh or th. This is proved by deriving a contradiction from the assumption 
that c does not contain any of these three literals. Since M 
|= c, the clause c contains only literals that are 
falsified by M . Not all of them: it does not contain xh, eh and th by assumption. It does not contain ¬xh, 
¬eh and ¬th either because it would otherwise be satisfied by M . As a result, c is also falsified by M ′, which 
is the same as M but for the values of xh, eh and th. At the same time, M ′ satisfies AR ∪ AT ∪ AC ∪ AB , 
contradicting AR ∪AT ∪AC ∪AB |= c. This contradiction proves that c contains either xh, eh or th.

From the fact that c contains either xh, eh or th, that is a consequence of AR ∪AT ∪AC ∪AB , and that 
is in a minimal-size formula, it is now possible to prove that c contains either xh ∨ ¬q, xh ∨ ¬rh, eh ∨ ¬q, 
eh ∨ ¬sh or th ∨ ¬q.

Since c is entailed by AR∪AT∪AC∪AB , a subset of c follows from resolution from it: AR∪AT∪AC∪AB � c′

with c′ ⊆ c. This implies AN ∪AT ∪AC ∪AB |= c′ by equivalence. If c′ ⊂ c, then AN ∪AT ∪AC ∪AB would 
not be minimal because it contained a non-minimal clause c ∈ AN . Therefore, AR ∪AT ∪AC ∪AB � c.

The only two clauses of AR ∪AT ∪AC ∪AB that contain xh are xh ∨¬q and ¬t1 ∨ · · · ∨¬tn ∨¬c1 ∨ · · · ∨
¬cm ∨ xh ∨ ¬rh. They contain either ¬q or ¬rh. These literals are only resolved out by clauses containing 
their negations q and rh. No clause contains q and the only clause that contains rh is rh∨¬q, which contains 
¬q. If a result of resolution contains xh, it also contains either ¬q or ¬rh. This applies to c because it is a 
result of resolution.

The same applies if c contains eh: it also contains either ¬q or ¬si.
The case of th ∈ c is a bit different. The only two clauses of AR ∪ AT ∪ AC ∪ AB that contain th are 

¬xh ∨ th and ¬eh ∨ th. Since both are in AT and c 
∈ AT , they are not c. The first clause ¬xh ∨ th only 
resolves with xh ∨¬q or ¬t1 ∨ · · · ∨ ¬tn ∨¬c1 ∨ · · · ∨ ¬cm ∨ xh ∨¬rh, but resolving with the latter generates 
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a tautology. The result of resolving ¬xh ∨ th with xh ∨ ¬q is th ∨ ¬q; no clause contains q. Therefore, c can 
only be th ∨ ¬q. The second clause ¬eh ∨ th leads to the same conclusion.

In summary, c contains either xh∨¬q, xh∨¬rh, eh∨¬q, eh∨¬sh or th∨¬q. In all these cases it contains 
at least two literals. This is the case for every index h; therefore, AN contains at least n clauses of two 
literals. Every minimal CNF formula equivalent to AR ∪AT ∪AC ∪AB has size at least 2 × n plus the size 
of AT ∪AC ∪AB . This sum is exactly k. This proves that every minimal CNF formula expressing forgetting 
contains at least k literal occurrences. Worded differently, every CNF formula expressing forgetting has size 
at least k.

Formula F is unsatisfiable
The claim is that no CNF formula of size k expresses forgetting if F is unsatisfiable. This is proved by 

deriving a contradiction from the assumption that such a formula exists.
It has been proved that every CNF formula expressing forgetting is equivalent to AR ∪ AT ∪ AC ∪ AB

and that the minimal equivalent CNF formulae are AN ∪ AT ∪ AC ∪ AB for some set AN that contains 
clauses that include either xh ∨ ¬q, xh ∨ ¬rh, eh ∨ ¬q, eh ∨ ¬sh or th ∨ ¬q for each index h.

If AN contains other clauses, or more than one clause for each h, or these clauses contain other literals, 
the size of AN ∪ AT ∪ AC ∪ AB is larger than k = 2 × n + ||AT || + ||AC || + ||AB ||, contradicting the 
assumption. This proves that every formula of size k that is equivalent to AR ∪ AT ∪ AC ∪ AB is equal to 
AN ∪AT ∪AC ∪AB where AN contains exactly one clause among xh ∨ ¬q, xh ∨ ¬rh, eh ∨ ¬q, eh ∨ ¬sh or 
th ∨ ¬q for each index h.

The case xh ∨ ¬rh ∈ AN is excluded. It would imply
AR∪AT ∪AC∪AB |= xh∨¬rh, which implies the redundancy of ¬t1∨· · ·∨¬tn∨¬c1∨· · ·∨¬cm∨xh∨¬rh ∈

AB contrary to its previously proved superirredundancy. A similar argument proves eh ∨ ¬sh 
∈ AN .
The conclusion is that every formula of size k that is equivalent to AR ∪ AT ∪ AC ∪ AB is equal to 

AN ∪AT ∪AC ∪AB where AN contains exactly one clause among xh ∨ ¬q, eh ∨ ¬q, th ∨ ¬q for each index 
h.

If F is unsatisfiable, all such formulae are proved to be satisfied by a model that falsifies AR∪AT∪AC∪AB , 
contrary to the assumed equivalence.

Let M be the model that assigns q = true and ti = true, and assigns xi = true and ei = false if 
xi ∨ ¬q ∈ AN and xi = false and ei = true if ei ∨ ¬q ∈ AN or ti ∨ ¬q ∈ AN . All clauses of AN and AT are 
satisfied by M .

This model M can be extended to satisfy all clauses of AC ∪AB . Since F is unsatisfiable, M falsifies at 
least a clause fj ∈ F . Let M ′ be the model obtained by extending M with the assignments of cj to false, 
all other variables in C to true and all variables ri and si to true. This extension satisfies all clauses of AB

either because it sets cj to false or because it sets ri and si to true. It also satisfies all clauses of AC that 
do not contain cj because it sets all variables of C but cj to true.

The only clauses that remain to be proved satisfied are the clauses of AC that contain cj . They are 
¬xi ∨ cj for all xi ∈ fj and ¬ei ∨ cj for all ¬xi ∈ fj . Since M ′ falsifies fj , it falsifies every xi ∈ fj ; therefore, 
it satisfies ¬xi ∨ cj . Since M ′ falsifies fj , it falsifies every ¬xi ∈ fj ; since by construction it assigns ei
opposite to xi, it falsifies ei and therefore satisfies ¬ei ∨ cj .

This proves that M ′ satisfies AN ∪AT ∪AC ∪AB . It does not satisfy AR∪AT ∪AC ∪AB. If x1∨¬q ∈ AN , 
then M ′ sets x1 to true and e1 to false; therefore, it does not satisfy e1 ∨ ¬q ∈ AR. Otherwise, M ′ sets x1
to false and e1 to true; therefore, it does not satisfy x1 ∨ ¬q ∈ AN .

This contradicts the assumption that AN ∪ AT ∪ AC ∪ AB is equivalent to AR ∪ AT ∪ AC ∪ AB . The 
assumption that it has size k is therefore false. �
Lemma 12. Checking whether forgetting some variables from a minimal-size Horn formula is expressed by a 
CNF or Horn formula bounded by a certain size is Dp-hard.
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Proof. For every CNF formula F , Lemma 10 ensures the existence of a minimal-size Horn formula A, a set 
of variables XA and an integer k such that forgetting all variables except XA from A is expressed by a Horn 
formula of size k if F is unsatisfiable and is only expressed by larger CNF formulae otherwise.

For every CNF formula G, Lemma 11 ensures the existence of a minimal-size Horn formula B, a set of 
variables XB and an integer l such that forgetting all variables except XB from B is expressed by a Horn 
formula of size l if G is satisfiable and is only expressed by larger CNF formulae otherwise.

The prototypical Dp-hard problem is that of establishing whether a formula F is satisfiable and another 
G is unsatisfiable. If the alphabets of the two formulae G and F are not disjoint, they can be made so by 
renaming one of them to fresh variables because renaming does not affect satisfiability. The same applies to 
the formulae B and A respectively build from them according to Lemma 10 and Lemma 11 because renaming 
does not change the minimal size of forgetting either. Lemma 7 proves that A ∪B can be minimally expressed 
by C ∪ D where C minimally expresses forgetting from A and D from B. The size of these two formulae 
is l and k if G is unsatisfiable and F satisfiable. If G is satisfiable, then D is larger than k while C is still 
large at least l; the minimal expression of forgetting A ∪B is therefore strictly larger than k + l. The same 
happens if F is unsatisfiable.

This proves that the problem of checking the satisfiability of a formula and the unsatisfiability of another 
reduces to the problem of checking the size of the minimal expression of forgetting from Horn formulae. �
Theorem 6. Checking whether forgetting some variables from a Horn formula is expressed by a CNF or Horn 
formula bounded by a certain size expressed in unary is Dp-hard and in Σp

2, and remains hard even if the 
formula is restricted to be of minimal size.

Proof. The problem belongs to Σp
2 because it can be expressed as the existence of a formula of the given 

size or less that expresses forgetting the given variables from the formula. In turn, expressing forgetting 
is by Theorem 1 the same as the equiconsistency with a set of literals containing all variables not to be 
forgotten. This condition can be expressed by the following metaformula where A is the formula, Y are the 
variables not to be forgotten and k the size bound.

∃B . ||B|| ≤ k and ∀S . Var(S) ⊆ Y ⇒ (S ∪A 
|= ⊥ ⇔ S ∪B 
|= ⊥)

Both B and S are bounded in size: the first by k, the second by the number of variables in Y . Since 
consistency is polynomial for Horn formulae, this is a ∃∀QBF, which proves membership to Σp

2.
Hardness for Dp is proved by Lemma 12. �

Lemma 13. There exists a polynomial algorithm that turns a CNF formula F into a minimal-size CNF 
formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all variables from A except XC is 
expressed by a CNF formula of size k if ∀X∃Y.F is valid and only by CNF formulae of size k+2 or greater 
otherwise.

Proof. Let F = {f1, . . . , fm} and its variables be X = {x1, . . . , xn} and Y . Checking the validity of ∀X∃Y.F
remains Πp

2-hard even if F is satisfiable: if F is not satisfiable, ∀X∃Y.F can be turned into the equivalent 
formula ∀X ∪ {s}∃Y.s ∨ F , and s ∨ F is satisfiable. The following assumes F satisfiable, which is proved 
correct by this argument.

The reduction is based on an extended alphabet with the additional fresh variables E = {e1, . . . , en}, 
C = {c1, . . . , cm} and {a, b, q, r}. The formula A, the set of variables XC and the number k are:

A = {fj ∨ cj ∨ q | fj ∈ F} ∪
{¬cj ∨ r | fj ∈ F} ∪
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{¬r ∨ ¬a ∨ b ∨ q} ∪
{a ∨ ¬b ∨ q} ∪
{xi ∨ ei | xi ∈ X}

XC = X ∪ E ∪ {a, b, q}
k = 2 × n + 3

A short explanation of how the reduction works precedes its formal proof. The key is how a model over 
X ∪ {q} extends to a model of A, in particular its possible values of a and b. All models over X ∪ {q} that 
satisfy q can be extended to satisfy A: all clauses not containing q are satisfied by setting r = true and ei
opposite to xi; satisfaction is not affected by the values a and b. The remaining models set q = false. For 
these models, the satisfaction of a clause fj for some values of Y makes fj ∨ cj ∨q satisfied even if cj = false. 
In turn, cj = false satisfies ¬cj ∨ r even if r = false, which satisfies ¬r∨¬a ∨ b ∨ q regardless of the values of 
a and b; the values of a and b only need to satisfy a ∨¬b ∨ q. Otherwise, the falsity of fj for all values of Y
imposes cj = true to satisfy fj ∨ cj ∨ q, which makes ¬cj ∨r require r = true, which turns ¬r∨¬a ∨ b ∨ q into 
¬a ∨ b ∨ q, making the literals ¬a and b necessary in addition to a and ¬b. A key point is that the variables 
Y are part of the clauses fj, whose satisfiability affects the necessity of setting cj , but they disappear in the 
minimal formulae as they are to be forgotten.

The proof comprises four steps: first, A is proved minimal as required by the claim of the lemma; second, 
k literals that are in every formula that expresses forgetting regardless of the validity of the QBF are 
identified; third, a formula of size k expressing forgetting when the QBF is valid is determined; fourth, 
every formula expressing forgetting contains at least two further literals if the QBF is invalid.

Minimality of A.
Follows from Lemma 2 since all clauses of A are superirredundant. This is in turn proved by showing 

substitutions that disallow all resolutions, which proves the superredundancy of the remaining clauses by 
Lemma 5 and Lemma 3.

The substitution that replaces with true the variables a, b, r, all ei and all cj with j 
= h for every given 
h such that fh ∈ F removes all clauses but fh ∨ ch ∨ q, which is therefore superirredundant.

The clauses ¬cj ∨ r are proved superirredundant by substituting q and all variables ei with true, which 
removes all other clauses. The clauses ¬cj ∨ r do not resolve because they do not contain opposite literals.

Two other clauses are proved superirredundant by the substitution that replaces all variables ei with true, 
all cj with false, and X ∪ Y with some values that satisfy F ; such values exist because F is by assumption 
satisfiable. This substitution removes all clauses but ¬r ∨ ¬a ∨ b ∨ q and a ∨ ¬b ∨ q, which only resolve in 
tautologies.

Finally, the clauses xh ∨ eh are proved superirredundant by replacing q and r with true, which removes 
all other clauses. Since the clauses xh ∨ eh only contain positive literals, they do not resolve.

Necessary literals.
Regardless of the validity of ∀X∃Y.F , the literals X ∪E ∪ {a, ¬b, q} are necessary in every CNF formula 

that expresses forgetting all variables except XC from A. This is proved by Lemma 9, exhibiting a set of 
literals S such that S ∪A is consistent, but S\{l} ∪ {¬l} ∪A is not for every l ∈ X ∪E ∪ {a, ¬b, q}.

The first set is S = {xi, ¬ei, a, b, ¬q}, which is consistent with A because of the model that satisfies S
and assigns r and all variables cj to true. Changing xi to ¬xi violates the clause xi ∨ ei. Changing a to false 
violates a ∨ ¬b ∨ q. This proves that a and all variables xi are necessary by Lemma 9.

The second set is S = {¬xi, ei, ¬a, ¬b, ¬q}, which is consistent with A because of the model that satisfies 
S and assigns r and all variables cj to true. Changing ei to ¬ei violates xi ∨ ei, changing b to true violates 
a ∨ ¬b ∨ q. This proves that ei and ¬b are necessary by Lemma 9.
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The third set is S = {xi, ei, ¬a, b, q}, which is consistent with A because of the model that satisfies S
and assigns r and all variables cj to true. Changing q to false violates the clause a ∨ ¬b ∨ q, proving that q
is necessary.

In summary, all literals in X∪E∪{a, ¬b, q} occur in every CNF formula expressing forgetting all variables 
except XC from A. These literals are 2 × n + 3. This is a part of the claim: no CNF formula expressing 
forgetting is smaller than 2 × n + 3.

Forgetting when ∀X∃Y.F is valid
If ∀X∃Y.F is valid, forgetting is expressed by B = {a ∨¬b ∨q} ∪{xi∨ei | xi ∈ X}, which has the required 

size k = 2 × n + 3 and variables XC = X ∪ E ∪ {a, b, q}. Theorem 1 proves that this formula expresses 
forgetting: every set S of literals of XC that contains all variables of XC is consistent with B if and only if 
it is consistent with A.

Since B only contains clauses of A, every set of literals S that is consistent with A is also consistent 
with B. The claim follows from proving the converse for every set of literals S over XC that mentions all 
variables of XC .

The assumption is that S∪B is consistent; the claim is that S∪A is consistent. Since S∪B is consistent, 
it has a model M . Let MX be its restriction to the variables X and M ′

Y to Y . By assumption, ∀X∃Y.F
is valid. Therefore, MX ∪MY satisfies F for some truth evaluation MY over Y . Since S is satisfied by M
and does not mention any variable Y , it is also satisfied by M\M ′

Y ∪ MY . The truth evaluation MC =
{cj = false | fj ∈ F} ∪ {r = false} satisfies all clauses ¬cj ∨ r and ¬r ∨ ¬a ∨ b ∨ q. Since MX ∪MY satisfies 
all clauses fj ∈ F , the union M\M ′

Y ∪ MY ∪ MC satisfies all clauses fj ∨ cj ∨ q of A. This proves that 
M\M ′

Y ∪MY ∪MC satisfies all clauses of A that B does not contain.

Forgetting when ∀X∃Y.F is invalid
All CNF formulae that express forgetting have been proved to mention X ∪E ∪ {a, ¬b, q}. If ∀X∃Y.F is 

invalid, they all mention ¬a and b as well.
This is proved by Lemma 9: a set of literals S over XC is shown to be consistent with A while S\{¬a} ∪{a}

is not. A similar set is shown for b.
Since ∀X∃Y.F is invalid, for some interpretation MX over X the interpretation MX ∪MY falsifies F for 

every interpretation MY over Y . The required set S is built from MX : it contains the literals over xi that 
are satisfied by MX and ¬a, ¬b and ¬q.

S = {xi | MX |= xi} ∪ {¬xi | MX |= ¬xi} ∪ {¬a,¬b,¬q}

By construction, MX satisfies the first part of S. The model MO = {a = false, b = false, q = false} satisfies 
the second. Therefore, MX ∪MO satisfies S.

The consistency of S ∪A is shown by proving that MX ∪MO can be extended to the other variables to 
satisfy A. This extension is MX ∪ MY ∪ MO ∪ MN ∪ MC , where MY is an arbitrary model over Y , MN

assigns every ei opposite to xi in MX and MC is {cj = true | fj ∈ F} ∪ {r = true}. The clauses fj ∨ cj ∨ q

are satisfied because cj is true, the clauses ¬cj ∨ r because r is true, the clause ¬r ∨ ¬a ∨ b ∨ q because a is 
false, a ∨ ¬b ∨ q because b is false, the clauses xi ∨ ei because MN |= ei if MX 
|= xi.

This proves that MX ∪MO ∪MN ∪MC satisfies S ∪A, which is therefore satisfiable.
The claim is a consequence of S′ = S\{¬a} ∪ {a} being inconsistent with A.

S′ = {xi | MX |= xi} ∪ {¬xi | MX |= ¬xi} ∪ {a,¬b,¬q}

This is proved by contradiction: a model M ′ is assumed to satisfy S′ ∪A. Since M ′ satisfies S′, it assigns 
the variables xi the same as MX . Let MY be the restriction of M ′ to the variables Y . By assumption, MX

is a model over X that cannot be extended to Y to satisfy F . As a result, MX ∪MY 
|= F . Therefore, M ′
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falsifies at least a clause fj ∈ F . Since M ′ satisfies fj ∨ cj ∨ q but falsifies both fj and q, it satisfies cj . It 
also satisfies r because it satisfies ¬cj ∨ r and falsifies cj . Since M ′ satisfies S′ it satisfies a and falsifies b
and q. The conclusion is that all literals of ¬r ∨ ¬a ∨ b ∨ q ∈ A are false, contrary to the assumption that 
M ′ satisfies A.

A similar set S with a and b in place of ¬a and ¬b proves that expressing forgetting also requires b. �
Lemma 14. There exists a polynomial algorithm that turns a DNF formula F = f1 ∨ · · · ∨ fm over variables 
X ∪ Y into a minimal-size CNF formula A, a subset XC ⊆ Var(A) and a number k such that forgetting all 
variables except XC from A is expressed by a CNF formula of size k if ∃X∀Y.F is valid, and only by larger 
CNF formulae otherwise.

Proof. Let F = f1 ∨ · · · ∨ fm be the DNF formula over variables X ∪ Y . The reduction employs additional 
variables: O = {oi | xi ∈ X}, E = {ei | xi ∈ X}, P = {pi | xi ∈ X}, T = {ti | xi ∈ X}, D = {dj | fj ∈ F}, 
R = {ri | xi ∈ X}, S = {si | xi ∈ X} and q. The formula A, the alphabet XC and the number k are 
as follows. The formula looks Horn when using ¬q in place of q, but is not: ¬(fj [ei/¬xi]) ∨ dj replaces all 
negative occurrences of xi with ei, but does not touch the negative occurrences of yi. This clause is Horn 
when Y is empty. This makes the lemma imply the analogous lemma for the Horn case only when Y is 
empty, and therefore proves the NP-hardness of that restriction and not its Σp

2-hardness.

A = AF ∪AT ∪AD ∪AB

AF = {xi ∨ ¬oi, oi ∨ q | xi ∈ X} ∪ {ei ∨ ¬pi, pi ∨ q | xi ∈ X}
AT = {¬xi ∨ ti, ¬ei ∨ ti | xi ∈ X}
AD = {¬(fj [ei/¬xi]) ∨ dj | fj ∈ F}
AB = {¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ xi ∨ ¬ri, ri ∨ q | xi ∈ X , fj ∈ F} ∪

{¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ ei ∨ ¬si, si ∨ q | xi ∈ X, fj ∈ F}
XC = X ∪ E ∪ Y ∪ T ∪D ∪R ∪ S ∪ {q}
k = 2 × n + ||AT ∪AD ∪AB ||

The reduction works because every minimal CNF formula that expresses forgetting contains at least one 
among xh ∨ q, eh ∨ q and th ∨ q for each h, and all of AT ∪ AD ∪ AB . This proves the lower bound k. If 
the QBF is valid, for some evaluation over X the formula F is true regardless of Y . Choosing the clauses 
xh ∨ q, eh ∨ q or th ∨ q that correspond to this model, some clause ¬(fj[ei/¬xi]) ∨ dj of AD implies q ∨ dj
because fj [ei/¬xi] is true for all values of Y . This allows AB to entail all remaining clauses. If the QBF is 
not valid, no clause q ∨ dj is entailed.

The formal proof requires five steps: first, every formula expressing forgetting is equivalent to a certain 
formula AR ∪AT ∪AD ∪AB; second, A is a minimal CNF formula and the clauses of AT ∪AD ∪AB are in 
all minimal CNF formulae equivalent to AR ∪AT ∪AD ∪AB; third, forgetting is expressed by a formula of 
size k if the QBF is valid; fourth, every minimal CNF formula expressing forgetting contains either xh ∨ q, 
eh ∨ q or th ∨ q for each h; fifth, if the QBF is invalid then forgetting is only expressed by formulae larger 
than k.

Effect of forgetting.
The variables to forget are O ∪ P . Each is contained only in two clauses of A, with opposite signs. 

Resolving them produces the clauses in the following set AR.

AR = {xi ∨ q, ei ∨ q | xi ∈ X}
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By Theorem 5, forgetting is expressed by AR ∪ AT ∪ AD ∪ AB . Therefore, all formulae that express 
forgetting are equivalent to this formula.

Superirredundancy.
All clauses of AF ∪ AT ∪ AD ∪ AB are proved superirredundant in AF ∪ AR ∪ AT ∪ AD ∪ AB . Both A

and AR ∪AT ∪AD ∪AB are subsets of this formula; therefore, the superirredundant clauses are superirre-
dundant in both formulae by Lemma 4. Since A comprises exactly them, it is minimal thanks to Lemma 2. 
Since all formulae expressing forgetting are equivalent to AR ∪ AT ∪ AD ∪ AB , where AT ∪ AD ∪ AB are 
superirredundant, these clauses are in all formulae expressing forgetting, according to Lemma 1.

Superirredundancy is proved applying a substitution to the formula so that the resulting clauses do not 
resolve and are not contained in one another. This condition proves them superirredundant by Lemma 3. 
Lemma 5 implies their superirredundancy in the original formula.

Replacing all variables X, E, T and D with true removes from the formula AF ∪AR ∪AT ∪AD ∪AB all 
clauses but oi ∨ q, pi ∨ q, ri ∨ q and si ∨ q. These clauses do not resolve because they only contain positive 
literals. None is contained in another.

Replacing all variables R and S with false and all variables T , D and q with true removes from the 
formula AF ∪AR ∪AT ∪AD ∪AB all clauses but the clauses xi ∨¬oi and ei ∨¬pi. They are not contained 
in one another; they do not resolve because they do not contain opposite literals.

Replacing all variables O, P , R and S with false and D and q with true removes all clauses but ¬xi∨ti and 
¬ei ∨ ti. These clauses do not resolve because they do not contain opposite literals; they are not contained 
in one another.

Replacing all variables O, P , R and S with false and T , D\{dh} and q with true removes all clauses but 
(¬fh[ei/¬xi]) ∨ dh, which is therefore superirredundant.

The last substitution replaces all variables X\{xh}, E, O, P , R\{rh} and S with false, all variables D\{dl}
and q with true, all variables yi such that yi ∈ ¬fl[ei/¬xi] to true and all such that ¬yi ∈ ¬fl[ei/¬xi] to 
false. This substitution removes all clauses but ¬xh ∨ th, ¬t1 ∨ · · · ∨ ¬tn ∨ ¬dl ∨ xh ∨ ¬ri and possibly 
¬(fl[ei/¬xi]) ∨ dl. The latter clause is removed if it contains some variable yi. It is removed if it contains 
some literal ¬xi with i 
= h. It is removed if it contains some literal ¬ei. The only other literals it may 
contain are ¬xh and dl; it contains both: dl by construction, ¬xh because otherwise fl would be empty. 
The remaining clauses are therefore ¬xh ∨ th, ¬t1 ∨ · · · ∨ ¬tn ∨¬dl ∨ xi ∨¬ri and possibly ¬xh ∨ dh. These 
clauses only resolve in tautologies, which proves the second superirredundant. A similar argument holds for 
¬t1 ∨ · · · ∨ ¬tn ∨ ¬dl ∨ ei ∨ ¬si.

Validity of ∃X∀Y.F .
Let M be a model over variables X that makes F true regardless of the values of Y . Let A′

R ⊆ AR be 
the set of clauses xi ∨ q such that M |= xi and ei ∨ q such that M |= ¬xi. This set has size 2 ×n. Therefore, 
A′

R∪AT ∪AD∪AB has size k = 2 ×n + ||AT ∪AD∪AB ||. This formula expresses forgetting if it is equivalent 
to AR ∪ AT ∪ AD ∪ AB , which is the case if A′

R ∪ AT ∪ AD ∪ AB |= AR. The claim is proved by showing 
that A′

R ∪AT ∪AD ∪AB entails AR.
Either xh ∨ q or eh ∨ q is in A′

R for every h and these clauses respectively resolve with ¬xh ∨ th and 
¬eh ∨ th, producing th ∨ q in both cases. Each clause

¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ xh ∨ ¬rh resolve with them and with rh ∨ q to ¬dj ∨ xh ∨ q. This clause further 
resolves with ¬(fj [ei/¬xi]) ∨ dj to produce ¬(fj [ei/¬xi]) ∨ xh ∨ q. This proves that A′

R ∪ AT ∪ AD ∪ AB

implies every clause ¬(fj [ei/¬xi]) ∨ xh ∨ q with fj ∈ F . The following equivalence holds.

{¬(fj [ei/¬xi]) ∨ xh ∨ q|fj ∈ F} ≡
(∧

{¬(fj [ei/¬xi]) | fj ∈ F}
)
∨ xh ∨ q

≡ ¬
(∨

{fj [ei/¬xi] | fj ∈ F}
)
∨ xh ∨ q
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≡ ¬F [ei/¬xi] ∨ xh ∨ q

Since A′
R ∪ AT ∪ AD ∪ AB implies the first set, it implies the last formula: A′

R ∪ AT ∪ AD ∪ AB |=
¬F [ei/¬xi] ∨ xh ∨ q.

Since M satisfies F regardless of Y , it follows that {xi | M |= xi} ∪ {¬xi | M |= ¬xi} |= F . Replacing 
each ¬xi with ei in both sides of this entailment turns it into {xi | M |= xi} ∪{ei | M |= ¬xi} |= F [ei/¬xi]. 
Disjoining both terms with q results into A′

R |= F [ei/¬xi] ∨ q.
This entailment and the previously proved A′

R ∪AT ∪AD ∪AB |= ¬F [ei/¬xi] ∨ xh ∨ q imply A′
R ∪AT ∪

AD ∪AB |= xh ∨ q.
The same holds for eh ∨ q by symmetry. Therefore, A′

R ∪AT ∪AD ∪AB implies every clause of AR.

Necessary clauses.
All formulae that express forgetting are equivalent to AR ∪ AT ∪ AD ∪ AB and therefore contain all its 

superirredundant clauses AT ∪ AD ∪ AB , as Lemma 1 proves. As a result, they have the form AN ∪ AT ∪
AD ∪ AB for some set of clauses AN . It is now shown that all equivalent CNF formulae of minimal size 
contain a clause that include either xh ∨ q, xh ∨ ¬rh, eh ∨ q, eh ∨ ¬sh, or th ∨ q for each h.

Since AN ∪AT ∪AD ∪AB is equivalent to AR ∪AT ∪AD ∪AB , it entails xh ∨ q ∈ AR. This clause is not 
satisfied by the following model.

M = {xi = ei = ti = true | i 
= h} ∪ {xh = eh = th = false} ∪
{dj = true | fj ∈ F} ∪ {ri = si = true} ∪ {q = false}

This model satisfies all clauses of AT ∪AD ∪AB . If AN also satisfied it, AN ∪AT ∪AD ∪AB would have 
a model that falsifies xh ∨ q, which it instead entails. As a result, AN contains a clause c that M falsifies. 
Since AN ∪AT ∪AD ∪AB is a formula of minimal size, it entails no proper subset of c. By equivalence, the 
same applies to AR ∪AT ∪AD ∪AB.

M 
|= c

AR ∪AT ∪AD ∪AB |= c

AR ∪AT ∪AD ∪AB |= c′ implies c′ 
⊂ c

If c contains neither xh, eh nor th, it would still be falsified by the model that is the same as M except that 
it assigns xh, eh and th to true. This model satisfies AR∪AT ∪AD∪AB . As a result, AR∪AT ∪AD∪AB∪¬(c)
is consistent, contradicting AR ∪AT ∪AD ∪AB |= c. This proves that c contains either xh, eh or th.

Since these three variables are negative in M and M 
|= c, they are positive in c. In other words, c contains 
either xh, eh or th unnegated.

Since c is entailed by AR ∪AT ∪AD ∪AB , but none of its proper subsets does, it follows from resolution: 
AR ∪AT ∪AD ∪AB � c.

If c contains xh, it also contains either q or ¬rh. This is proved as follows. Since c is the root of a 
resolution tree and contains xh, this literal is also in one of the leaves of resolution. The only clauses of 
AR ∪AT ∪AD ∪AB containing xh are xh ∨ q and all clauses ¬t1 ∨ · · · ∨¬tn ∨¬dj ∨ xh ∨¬rh. The first does 
not resolve over q because the formula does not contain ¬q. The other clauses only resolve over rh with 
rh ∨ q, which introduces q, which again cannot be removed by resolution. Since c is obtained by resolution, 
if it contains xh it also contains either ¬rh or q.

By symmetry, if c contains eh it also contains either ¬sh or q.
The other case is that c contains th. The only clauses of AR ∪AT ∪AD ∪AB that contain th are ¬xh ∨ th

and ¬eh ∨ th. These clauses are satisfied by M while c is not, therefore c is not one of them. The first clause 
¬xh∨th only resolves over xh with xh∨q and all clauses ¬t1∨· · ·∨¬tn∨¬dj∨xh∨¬rh, but resolving with the 
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latter only generates tautologies. Therefore, the first step of resolution is necessarily ¬xh∨ th, xh∨q � th∨q. 
Since none of the involved clauses contains ¬q, every clause obtained from resolution that contains th also 
contains q. This also includes c. The same holds by symmetry for ¬eh ∨ th.

This proves that every minimal-size CNF formula expressing forgetting contains a clause that includes 
either xh ∨ q, xh ∨ ¬rh, eh ∨ q, eh ∨ ¬sh, or th ∨ q for each h.

Falsity of ∃X∀Y.F .
The falsity of ∃X∀Y.F contradicts the existence of a minimal-size CNF formula of size k expressing 

forgetting. The relevant results proved so far are: every CNF formula expressing forgetting has size k or 
more and is equivalent to AR ∪ AT ∪ AD ∪ AB ; the minimal-size such formulae are AN ∪ AT ∪ AD ∪ AB

where AN contains, for each h, a clause that includes either xh ∨ q, xh ∨ ¬rh, eh ∨ q, eh ∨ ¬sh, or th ∨ q.
A formula AN ∪AT ∪AD ∪AB of size k expressing forgetting, if any, is minimal since no smaller formula 

expresses forgetting. Therefore, AN includes, for each h, a clause containing one of the five disjunctions. 
Since these are not in AT ∪ AD ∪ AB , the size of such formulae is k = 2 × n + ||AT ∪ AD ∪ AB|| if every 
clause of AN is exactly one of the above disjunctions for each h. If AN contains more than one clause for 
some h or the clause for some h contains more than two literals or AN contains other clauses, the formula 
is not minimal.

The case xh ∨ ¬rh ∈ AN can be excluded: it makes
¬t1 ∨ · · · ∨ ¬tn ∨ ¬dj ∨ xh ∨ ¬rh ∈ AN redundant in AN ∪AT ∪AD ∪AB , contradicting the minimality 

of this formula. The case eh ∨ ¬sh ∈ AN is excluded in the same way.
These exclusions leave AN to contain exactly one among xh ∨ q, eh ∨ q, and th ∨ q for each h and nothing 

else.
The final step of the proof is that no such AN makes AN∪AT ∪AD∪AB equivalent to AR∪AT ∪AD∪AB if 

∃X∀Y.F is invalid. Nonequivalence is proved by exhibiting a model of the first formula that does not satisfy 
the second.

Let MX be the model over X that contains xi = true if xi ∨ q ∈ AN and xi = false otherwise. Let 
MN be the model that assigns every ei opposite to xi and MT = {ti = true | ti ∈ T}. By construction, 
MX ∪ MN ∪ MT ∪ {q = false} satisfies all clauses of AN . It also falsifies either xi ∨ q or ei ∨ q for each i
because it assigns false to q and to either xi or ei. It therefore falsifies AR.

Since ∃X∀Y.F is invalid, every interpretation over X falsifies F with an interpretation over Y . Let MY

be the interpretation over Y such that MX ∪MY |= ¬F . Since F = f1 ∨ · · · ∨ fm, it holds MX ∪MY |= ¬fj
for every fj ∈ F . It follows MX ∪MY ∪MN |= ¬fj [ei/¬xi] since MN assigns every ei opposite to xi.

Merging the results proved in the preceding two paragraphs, MX ∪MT ∪{q = false} ∪MN ∪MY satisfies 
both AN and ¬fj [ei/¬xi] for every fj ∈ F .

This model can be extended to a model of AN ∪ AT ∪ AD ∪ AB by adding MO = {dj = false} ∪ {ri =
true} ∪ {si = true}. The clauses of AN are already proved satisfied. The clauses ¬xi ∨ ti ∈ AT are satisfied 
because MT contains ti = true. The clauses (¬fj [ei/¬xi]) ∨ dj are satisfied because ¬fj [ei/¬xi] is. The 
clauses of AB are satisfied because each contains either ¬dj , ri or si, and these literals are true in MO.

This proves that MX ∪MT ∪ {q = false} ∪MN ∪MY ∪MO satisfies AN ∪ AT ∪ AD ∪ AB . It does not 
satisfy AR, which means that it falsifies AR ∪AT ∪AD ∪AB . This proves that AN ∪AT ∪AD ∪AB is not 
equivalent to AR ∪AT ∪AD ∪AB .

In summary, assuming that the QBF is not valid and that a CNF formula of size k expresses forgetting, 
it is proved that the formula does not express forgetting. This contradiction shows that no formula of size 
k expresses forgetting if the QBF is not valid. �
Lemma 15. Checking whether forgetting a given set of variables from a minimal-size CNF formula is ex-
pressed by a CNF formula bounded by a certain size is Dp

2-hard.
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Proof. For every ∀QBF Lemma 13 ensures the existence of a minimal-size CNF formula A, a set of variables 
XA and an integer k such that forgetting all variables except XA from A is expressed by a CNF formula of 
size k if the QBF is valid and is only expressed by larger CNF formulae otherwise.

For every ∃QBF Lemma 14 ensures the existence of a minimal-size CNF formula B, a set of variables 
XB and an integer l such that forgetting all variables except XB from B is expressed by a CNF formula of 
size l if the QBF is valid and is only expressed by larger CNF formulae otherwise.

A Dp
2-hard problem is that of establishing whether an ∃QBF and a ∀QBF are both valid. If their alphabets 

are not disjoint, they can be made so by renaming one of them to fresh variables since renaming does 
not affect validity. The same applies to the formulae B and A respectively build from them according to 
Lemma 13 and Lemma 14 because renaming does not change the minimal size of forgetting either. Lemma 7
proves that forgetting from A ∪B is expressed by C ∪D where C expresses forgetting from A and D from 
B. The minimal size of two such CNF formulae is respectively k and l. If the QBFs are both valid, they are 
exactly k and l large. Otherwise, they are strictly larger than either k or l. The sum is k + l if both QBFs 
are valid and is larger than k + l otherwise. �
Theorem 7. Checking whether forgetting some variables from a CNF formula is expressed by a CNF formula 
of a certain size expressed in unary is Dp

2-hard and in Σp
3, and remains hard even if the CNF formula is 

restricted to be of minimal size.

Proof. Membership to Σp
3 is proved first. The problem is the existence of a CNF formula of the given size 

or less that expresses forgetting the given variables from the formula. Theorem 1 reformulates forgetting in 
terms of equiconsistency with a set of literals containing all variables not to be forgotten. Forgetting withing 
a certain size is formalized by the following metaformula where A is the formula, Y the variables not to be 
forgotten and k the size bound.

∃B . Var(B) ⊆ Y, ||B|| ≤ k and ∀S . Var(S) ⊆ Y ⇒ (∃M . M |= S ∪A ⇔ ∃M ′ . M ′ |= S ∪B)

All four quantified entities are bounded in size: B by k, S and M ′ by the number of variables in Y and 
M by the number of variables in A. This is therefore a ∃∀∃QBF, which proves membership to Σp

3.
Hardness to Dp

2 is proved by Lemma 15 in the restriction where A is minimal. �
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