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ABSTRACT
The input power-induced transformation of the transverse 
intensity profile at the output of graded-index multimode 
optical fibers from speckles into a bell-shaped beam sitting 
on a low intensity background is known as spatial beam 
self-cleaning. Its remarkable properties are the output beam 
brightness improvement and robustness to fiber bending and 
squeezing. These properties permit to overcome the limita-
tions of multimode fibers in terms of low output beam quality, 
which is very promising for a host of technological applica-
tions. In this review, we outline recent progress in the under-
standing of spatial beam self-cleaning, which can be seen as a 
state of thermal equilibrium in the complex process of modal 
four-wave mixing. In other words, the associated nonlinear 
redistribution of the mode powers which ultimately favors 
the fundamental mode of the fiber can be described in the 
framework of statistical mechanics applied to the gas of pho-
tons populating the fiber modes. This description has been 
corroborated by a series of experiments by different groups. 
However, some open issues still remain, and we offer a per-
spective for future studies in this emerging and controversial 
field of research.
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1. Introduction: spatial beam self-cleaning in multimode fibers

As well known, transporting information over multimode fibers (MMF) suf-
fers from two main limitations. In the time domain, their capacity to transport 
high-bit-rate signals is hampered by the large dispersion of mode group ve-
locities. In the spatial domain, the capability of MMF to carry images is 
corrupted by multimode interference, owing to different modal phase ve-
locities. Moreover, the resulting finely speckled output intensity pattern is 
highly sensitive to any external perturbations such as stress or bending, which 
lead to mode power transfers via linear mode coupling. Because of these 
reasons, single-mode fibers (SMF) have prevailed for most optical data com-
munication and beam delivery applications. In these fibers only one mode is 
guided, so that modal dispersion is suppressed and the input laser Gaussian-
like beam shape is naturally preserved upon propagation [1]. The presence of 
the third-order nonlinearity or Kerr effect introduces in MMF an additional 
mechanism of mode coupling via four-wave mixing (FWM), and leads to dif-
ferential nonlinear phase shifts. The resulting interplay of linear and nonlinear 
mode coupling leads to highly complex, although controllable via the input 
power and laser beam coupling conditions, spatiotemporal wave dynamics 
[2–4].

In this context, it was both unexpected and striking to observe that the 
very Kerr effect could wash out the speckles and generate a stable and robust 
bell-shaped beam at the output of a few meters long graded-index (GRIN) 
MMF [5,6]: see Figure 1a-h. In terms of wave dynamics, this spatial beam 
self-organization provides an example of the emergence of order out of com-
plexity, and it is known as beam self-cleaning (BSC) [6,7]. Self-induced beam 
cleanup occurs whenever the input laser power grows larger than a certain 
threshold value, which depends on the fiber length. Specifically, BSC of laser 
pulses of tens of kilowatts of peak power is experimentally observed over a 
few meters long GRIN fiber.

On the other hand, the results of the fiber cut-back study which are il-
lustrated in Figure 2a-f, show how beam cleanup can also be obtained by 
increasing the propagation distance along the GRIN fiber while keeping the 
input peak power constant. This highlights that it is the accumulated non-
linear phase shift, which is proportional to the product of fiber length times 
power, which determines the occurrence of BSC, rather than a fixed power 
threshold as it occurs for nonlinear (e.g. Raman or Brillouin) scattering.

The nonlinear reshaping of the output highly multimode beam into a 
bell-shape is associated with a significant improvement of the beam qual-
ity parameter M2, from values, M2 ≃ 10 down to M2 ≃ 4 – 1 [6,8–10], 
which is of strong interest for many applications. As a matter of fact, cur-
rent SMF-based laser beam generation and transport technologies are limited 
in both pulse peak power and energy. This is due to the SMF small mode 
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size, which sets a relatively low power damage threshold. Whereas, owing to 
their large mode area, MMF have a greater endurance to high-power laser 
pulses [11,12]. Indeed, the benefit of combining the MMF high power deliv-
ery capability without paying a price in terms of beam quality thanks to BSC 
has already been demonstrated in the context of different laser technologies, 
from high peak-power mode-locked MMF lasers [9,13] to high-resolution 
nonlinear microscopy and endoscopy [14,15].

In spite of its different experimental demonstrations in GRIN fibers, which 
have been obtained with laser pulse durations ranging from 1 ns down to 
100 femtoseconds, and at wavelengths ranging across the entire transparency 
window of fibers, from the visible to the mid-infrared region, e.g., in fibers 

Figure 1. Experimental observation of BSC in a 12 m long GRIN MMF. a–d) Near-field images of 
the MMF output at different input peak powers. The white bars in a-d) are 10 μm long. e–h) Beam 
profiles versus x (y = 0 section), corresponding to a-d). [Reproduced with permission from [6], 
[Krupa, Katarzyna, et al., Nature Photonics 11.4 (2017): 237–241]. 

Figure 2. Cut-back analysis of BSC for fixed beam power of 44 kW. a–f) Output near-field profile 
for six different fiber lengths, filtered around the laser source wavelength (1064 nm). [Reproduced 
with permission from [6], [Krupa, Katarzyna, et al., Nature Photonics 11.4 (2017): 237–241]. 
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made of soft-glass materials [16], its physical mechanism is still the subject of 
a hot debate, and it remains highly controversial in the research community.

A simple explanation for the power-induced beam cleanup as a result of 
relatively higher nonlinear losses for the high-order modes (HOM) could be 
immediately ruled out, since the input/output power transmission remains 
strictly linear at all intensities involved [6]. Another possible mechanism of 
beam cleaning via the loss of spatial coherence resulting from, e.g. nonlin-
ear spectral broadening, was also quickly disproved in early experiments. 
Indeed, at the power threshold for BSC the self-phase-modulation induced 
spectral broadening remains negligible, in particular for sub-ns pulses [6]. In 
addition, self-cleaned beams maintain the spatial coherence of the source, as 
demonstrated by double slits experiments showing interference fringes result-
ing from different portions of the same beam [6], as well as from two beams, 
obtained by independently self-cleaning the same laser pulses coming from 
two different GRIN fibers [17].

Importantly, most experiments reveal that a significant fraction of the out-
put beam energy remains in HOM. When combined with the observation that 
the waist of central bell-shaped beam remains wider than that of the funda-
mental mode [18], one is led to conclude that BSC may be associated with 
a beam evolution towards a well-defined mode power distribution, rather 
than simply resulting from a continuous flow of power out of HOM, into the 
fundamental mode.

A series of recent experiments has precisely studied the mode power distri-
bution at the output of GRIN fibers, which accompanies BSC. It has been ob-
served that, for self-cleaned beams, the probability of occupation of the fiber 
modes is closely reproduced by the so-called Rayleigh-Jeans (RJ) law [19–21]. 
This important result naturally leads to describing the wave phenomenon of 
BSC as the termalization of a gas of photons, according to the principles of 
statistical mechanics. Providing a concise and self-contained overview of the 
thermodynamic approach to describe nonlinear wave dynamics in MMF is 
the purpose of this review paper.

As a matter of fact, a theoretical model based on weak wave turbulence was 
introduced in 2011 by Ascheri et al., which predicted the occurrence of clas-
sical wave condensation as the result of thermalization in a GRIN fiber [22]. 
Subsequently, it was both numerically and experimentally observed that BSC 
is analogous to 2D hydrodynamic turbulence: the mode power redistribu-
tion associated with BSC results from two different mechanisms. Specifically, 
a flow of energy towards the fundamental mode (known in hydrodynamics 
as inverse cascade) is accompanied by a simultaneous flow of energy into 
HOM (direct cascade), at the net expense of intermediate modes [23]. In 
2019, Wu et al. introduced a general description of wave thermalization in 
highly multimode photon systems, by linking the probabilistic description of 
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their microscopic state with classical macroscopic parameters, such as tem-
perature and chemical potential [24]. In this framework, a multimode beam 
is described as a gas of particles (photons), which obeys an equation of state at 
thermal equilibrium. Interestingly, both the wave turbulence theory and the 
gas of particles analogy lead to the same equilibrium distribution of the fiber 
mode occupation probability, i.e. the RJ law.

Indeed, both theoretical approaches rely on the same pillars, i.e. the fact 
that the propagating beam conserves its power (𝒫) and linear momentum, or 
Hamiltonian (H), in analogy with early works on nonlinear wave thermaliza-
tion [25–27]. Typical experimental conditions leading to the observation of 
BSC fulfill both conservation laws. Linear losses remain negligible, and the 
powers involved are orders of magnitude lower than the threshold for catas-
trophic self-focusing, which ensures that the nonlinear contribution to the 
Hamiltonian can be neglected with respect to its linear counterpart [1,11]. It 
should be noted, however, that BSC has also been experimentally observed 
under highly dissipative propagation conditions, e.g. in the presence of heavy 
loss or strong gain in active MMF [28,29]. This indicates that BSC is a more 
robust effect than one could anticipate from thermodynamic descriptions; 
however, extending the analysis of BSC to a dissipative environment goes 
beyond the scope of this paper.

In this short review, we present a comparative discussion of recent stud-
ies, which demonstrate that the mode power distribution associated with BSC 
may be described as the result of wave thermalization. Our purpose is to make 
such a thermodynamic approach accessible to experimentalists, who are not 
necessarily closely familiar with the formalism of statistical mechanics. To 
this end, before reporting the experimental results, in Sec. 2 we retrace the 
path that leads to the analogy between a multimode laser beam and a gas of 
particles. This permits us to derive the probability density function for the 
mode occupation. Next, in Sec. 3, we present the main experimental results. 
Our aim here is to provide the reader with useful recipes on how to link the 
experiments with theory. For example, how to determine macroscopic ther-
modynamic parameters (e.g. the beam temperature) from experimental data, 
and what are the main sources of error in doing so. Finally, we will give our 
perspective on what are the remaining challenges and open issues.

2. The thermodynamic theory in brief

Within the thermodynamic theory of nonlinear multimode systems, a self-
cleaned beam is as a state of thermal equilibrium for the gas of photons. We 
may describe this state in terms of just two macroscopic thermodynamic pa-
rameters, i.e. its temperature (T) and chemical potential (𝜇). On the other 
hand, the speckled patterns seen in Figure 1a and b are considered as repre-
senting out-of-equilibrium states. According to the thermodynamic theory, 
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upon its propagation a multimode beam evolves across successive out-of-
equilibrium states, while conserving its optical power (𝒫) and Hamiltonian 
(H). It is important to underline that BSC is activated by the Kerr nonlin-
earity or, equivalently, by modal FWM. Therefore, identifying the total beam 
Hamiltonian with its linear part (or linear momentum) is, a priori, incorrect. 
This consideration sets a bound on the validity of the thermodynamic ap-
proach, which can only be applied in the presence of a weak nonlinearity, 
i.e. at relatively low powers. This amounts to say that the linear mode struc-
ture of the fiber is not perturbed by nonlinearity: this condition would only be 
violated for powers approaching the threshold for catastrophic self-focusing, 
that is, at MW power levels. Of course, nonlinearity remains a necessary in-
gredient for ensuring mode interactions, leading to the observed mode power 
redistribution. Note that, in the absence of nonlinearity, a mode power redis-
tribution may also be introduced in long MMF spans by the presence of linear 
random mode coupling (RMC) or disorder [30,31].

Generally speaking, in physical systems a state of thermal equilibrium is 
only reached after a critical time, which depends on the system characteristics. 
In this sense, in the thermodynamic approach to nonlinear beam propaga-
tion in MMF, the role of time is played by the propagation length (z). As 
such, experiments such as those illustrated in Figure 2a-f show that a beam 
progressively self-cleans within a typical fiber distance of a few meters, for 
tens of kW input power levels. Note that the irreversibility of beam propaga-
tion, which is caused by intrinsic perturbations of the fiber leading to RMC, is 
a key condition for the observation of nonlinearity-induced thermalization. 
As a matter of fact, the presence of either noise or disorder breaks the time-
symmetry, i.e., the reversibility of the propagation equation, which otherwise 
would conduce to Fermi-Pasta-Ulam-Tsingou (FPUT) recurrences [32,33].

The thermodynamic theory of BSC only involves the spatial properties of 
a multimode beam, i.e. it only gives information on the mode occupancy of 
monochromatic continuous waves. The theory can be derived by statistical 
mechanics considerations, which lead to an RJ distribution of the mode power 
fractions at thermal equilibrium. In this section, we first outline the simplest 
derivation of the RJ distribution for the fiber mode occupations at thermal 
equilibrium. In order to do so, we recur to the analogy between weakly non-
linear guided waves and the particles of a gas, as discussed in Ref. [34]. Next, 
we are going to derive the equation of state at thermal equilibrium. This 
law permits to link together different thermodynamic parameters, e.g., the 
temperature, chemical potential, and the volume. Finally, we emphasize the 
relationship between the predictions of the thermodynamic theories of wave 
thermalization (and/or condensation) with the experimental demonstrations 
of BSC.
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2.1. Mathematical derivation of the Rayleigh-Jeans distribution

The main idea behind the thermodynamic approach consists of describ-
ing a laser beam propagating in an MMF in analogy with a gas of par-
ticles (photons), whose average occupation of a multitude of fiber modes 
irreversibly evolves towards an equilibrium value or distribution. The num-
ber of photons (N) is finite, and in the absence of losses it remains fixed upon 
propagation: it is proportional to the beam power 𝒫, i.e. 

N = nc𝒫, (1)

where nc represents the number of photons per unit of power. The number 
of fiber modes (M) is also finite, since it depends on the guiding properties 
of the MMF: generally speaking M ∝ V2, where V is the normalized fiber 
frequency at the operating wavelength. We label each mode with an index 
i, i = 1, 2, 3…, M, so that ni is the number of photons in the i-th mode, with 
propagation constant 𝛽i. Accordingly, the total number of particles is 

N =
M

∑
i=1

ni, (2)

and the linear part of the Hamiltonian reads as 

H =
M

∑
i=1

𝛽ini. (3)

Another quantity is conserved upon beam propagation in an MMF, i.e. the 
longitudinal component of the orbital angular momentum (OAM) of light 
(Ω), which can be written as 

Ω =
M

∑
i=1

mini. (4)

Note that, at variance with N, H, and Ω which represent constant quantities 
upon beam propagation, the expressions for 𝛽i and mi depend on the base 
which is chosen for the linear mode representation. Conserved quantities are 
what define a macrostate, that is associated with macroscopic thermodynamic 
parameters such as T and 𝜇. Now, a proper statistical mechanics descrip-
tion of the BSC effect should be developed in the so-called micro-canonical 
ensemble, i.e., the statistical ensemble where both N and H are conserved. 
However, the mathematical derivation of the RJ in this ensemble is a challeng-
ing task. For this reason, here we rely on the Gibbs theorem on the equivalence 
of ensembles, which states that the equilibrium distribution must be the same 
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in all statistical ensembles, if N ≫ 1 (thermodynamic limit) [35], which is 
the case for MMF.1 Therefore, for the sake of simplicity, we develop our the-
ory in the frame of the grand-canonical ensemble, where T and 𝜇 are fixed, 
at variance with H and N. In the grand canonical ensemble, the statistics of a 
photon gas is described by the Gibbs distribution, i.e. at thermal equilibrium 
the probability associated with a given set of mode occupancies {ni}, which 
is referred to as microstate, is given by [36] 

𝜌({ni})= e–(aN+bH+cΩ)

𝒵 , (5)

where 𝒵 is the so-called partition function, while a, b, and c are constants to be 
determined, associated with the presence of the three invariants N, H, and Ω, 
respectively. Being a probability function, 𝜌({ni}) is defined in a way, so that 
the integral over all microstates which correspond to the same macrostate, or, 
equivalently, over all possible mode occupations, is equal to 1, i.e. 

∫ 𝜌({ni})∏
i

dni = 1. (6)

Note that in (6), which provides an expression for 𝒵, the value of the mode 
occupancy ni goes from 0 to infinity. Moreover, it has to be mentioned that the 
statistical mechanics theory relies on the ergodic hypothesis. This states that 
macroscopic quantities, e.g., the average occupancy of a fiber mode, can be 
evaluated as an average over the microstates {ni}, instead of an average over 
‘time’. Moreover, it has to be mentioned that the Boltzmann distribution (5) is 
associated with the establishment of thermal equilibrium. Indeed, the Boltz-
mann distribution provides the maximum value of the entropy (S), which is 
defined as 

S = – ∫ 𝜌({ni})ln 𝜌({ni})∏
i

dni, (7)

and whose expression can be simplified, without any loss of generality, to 

S =
M

∑
i=1

ln ni, (8)

as it was proposed in Ref. [24]. A demonstration of the equivalence between 
(7) and (8) can be found in Ref. [34].
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By exploiting the definition of 𝜌({ni}), the average mode occupancy at 
thermal equilibrium can be calculated as 

⟨ni⟩ = ∫ ni𝜌({nj})∏
j

dnj, (9)

which, after a few algebraic steps, leads to the following generalized RJ 
distribution [36,37] 

ni = 1
a + b𝛽i + cmi

. (10)

For the sake of readability, we are omitting the average symbol ⟨⋅⟩. At this 
point, it is worth mentioning that most experimental demonstrations of BSC 
were carried out with beams which do not carry OAM. In [21] it was shown 
that modes with the same value of 𝛽i and opposite values of mi are equally 
populated. On the other hand, the generalized RJ distribution (10) has been 
validated in a recent experiment, where the thermalization of OAM-carrying 
beams was investigated [37]. For the time being, since our purpose is to com-
pare results obtained by different groups, we restrict our attention to the case 
where the OAM of light is not taken into account. Thus, by imposing c = 0, 
we find the RJ law, i.e. 

ni = 1
a + b𝛽i

. (11)

Here, we have provided a simple derivation of the RJ law, by imposing that 
the probability function 𝜌({ni}) follows the Boltzmann distribution (5). It 
should be pointed out that the same RJ equilibrium distribution can be found 
by recurring to other approaches. For instance, in Ref. [24], the RJ law for 
optical multimode systems was retrieved, within a quantum-like framework, 
as an approximation to the Bose-Einstein (BE) distribution. Whereas, in Refs 
[22,23], the RJ law was obtained by using a weak wave turbulence approach. 
The latter is particularly effective for capturing the features of the BSC effect, 
since it predicts that BSC can only occur in GRIN MMF, whose parabolic re-
fractive index profile greatly facilitates the energy exchange among modes 
via FWM processes. Specifically, according to the wave turbulence theory, 
only exact resonances, such as those provided by regularly spaced propaga-
tion constants (akin to energy levels) of modes, owing to the parabolic profile 
of the refractive-index of GRIN MMF (see next paragraph), contribute to 
the thermalization process [38]. On the contrary, in step-index MMF, the 
absence of a coherent superposition of the fiber modes upon beam prop-
agation does not ensure the presence of effectively phase-matched FWM 
processes. As a matter of fact, BSC has never been experimentally observed 
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in step-index fibers, so far (except for the case of few-mode fibers, where the 
thermodynamic description loses its validity [39]).

In a GRIN fiber, the M modes can be grouped in Q groups of non-
degenerate modes. Within each group, to which we associate an index q, 
q = 0, 1, 2, 3, …, Q – 1, the modes can be considered as degenerate, i.e., having 
the same propagation constant. Note that the mode group number q starts 
from 0, while the modes are usually numbered starting from i = 1. Accord-
ing to (11), degenerate modes with the same propagation constant also have 
the same probability of occupation at thermal equilibrium (equipartition of 
the particles belonging to the same group). Therefore, one may write the RJ 
distribution for the fiber modes as 

Nq = 1
a + b𝛽q

, (12)

where Nq is the number of photons per mode in the q-th group, to which 
belong all modes with equal propagation constant 𝛽q. As such, ∑q ggNq = N , 
where gq is the group degeneracy.

When decomposed in the Laguerre-Gauss base, the modes of GRIN fibers 
enjoy the unique property of equally spaced propagation constants, i.e. 

𝛽q = 𝛽0 – qΔ𝛽, (13)

where Δ𝛽 =
√

2Δ/rc (Δ and rc being the core/cladding refractive index dif-
ference and the core radius, respectively). Moreover, the mode degeneracy 
gq = 2(q + 1), where the factor 2 comes from the polarization degeneracy. 
Here 𝛽0 is the largest propagation constant, which characterizes the funda-
mental mode. Such a ladder structure of the mode propagation constants is 
shown by means of light blue bars in Figure 3.

The linear dependence of 𝛽q upon q in (13) is illustrated by a blue solid line 
in Figure 3. Whereas, the gray bars in Figure 3. correspond to a RJ distribution 
for the mode groups of a GRIN MMF, whose continuous representation in 
terms of (12) is shown by a red solid curve.

Moreover, since 𝛽0 ≫ Δ𝛽, it is customary to replace 𝛽i in (11) (or 𝛽q in 
(12)) with the difference between the propagation constant of that mode and 
that of the highest-order guided mode. Such a replacement can be taken into 
account by redefining the constant parameters a and b. This is equivalent to 
adding an arbitrary additive constant to the linear Hamiltonian, which does 
not modify the maximization of the entropy, nor the mathematical derivation 
of the RJ law. Nevertheless, caution must be exercised when fitting the RJ law 
with experimental data. As we will see in the following, in fact, state-of-the-
art mode decomposition (MD) methods only allow for determining a limited 
number of mode groups. Let us suppose that q = Q′ ≠ Q – 1 identifies the 
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Figure 3. Mode occupancy distribution normalized by N at thermal equilibrium in a GRIN MMF 
(gray histogram) and its mode propagation constants from (13) normalized by β0 (light blue his-
togram) vs. the mode group number q. The red and blue solid lines are plot of (12) and (13), 
treating q as a continuous variable. The parameters used in the plot are a = 𝛽0 + 2 mm–1,
b = –1, Δ = 0.0103, and rc = 50 μm. 

highest-order mode group that is detectable by the MD. As a result, when 
comparing different experiments, one has to take into account that different 
values of Q′ lead to different values of the parameters of the RJ distribution, 
hence, of thermodynamic parameters such as T and 𝜇.

2.2. The equation of state

In order to derive the equation of state, which links together the different ther-
modynamic variables at the point of thermal equilibrium, we need to define 
the internal energy of the system (U): this is proportional to H, i.e. 

ncU = –H. (14)

In this way, one can write 

aN + bH =
M

∑
i=1

a
a + b𝛽i

+
b𝛽i

a + b𝛽i
= M, (15)
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or, equivalently 

anc𝒫 – bncU = M. (16)

At this point, it is possible to give an interpretation in terms of thermo-
dynamic parameters of the Lagrangian multipliers a and b. Specifically, by 
imposing anc = –𝜇/T  and bnc = –1/T , one ends up with an equation of state 
[24], i.e., 

U – 𝜇𝒫 = MT , (17)

which allows for determining the values of T and 𝜇 by the mere knowledge 
of the mode occupancies at the fiber input. As we will see in Sec. 3, this as-
pect is crucial for the proper experimental validation of the thermodynamic 
approach.

2.3. Mode power fractions

Since in experiments one deals with optical power fractions, it is convenient 
to define the power carried by the i-th mode as |ci|2 = ni/nc, so that the RJ 
equilibrium distribution reads 

|ci|2 = – T
𝜇 + 𝛽i

. (18)

Moreover, it is convenient to write the conservation laws (2) and (3) in terms 
of |ci|2, i.e. 

𝒫 =
M

∑
i=1

|ci|2, (19)

and 

U = –
M

∑
i=1

𝛽i|ci|2, (20)

respectively. Whereas, the entropy (8) can be written as 

S =
M

∑
i=1

ln |ci|2 + M ln nc. (21)
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Since both M and nc are constant parameters, a more convenient definition 
of the entropy reads as 

S =
M

∑
i=1

ln |ci|2. (22)

For more details on the calculation of entropy from experimental data, see 
Appendix A.

2.4. Temperature dependence of key parameters

At this point, it is important to remember that macroscopic thermodynamic 
parameters, such as T and 𝜇, have a pure statistical meaning: i.e., the photon 
gas temperature cannot be measured with a thermometer! In our context, 
the temperature T of a specially prepared multimode beam may even reach 
negative values [40,41]: recent experiments have addressed this special prop-
agation regime in MMF [42]. Moreover, as it can be easily seen by inspecting 
Eq. (18), the RJ distribution has a singularity (i.e., it diverges to infinity) when-
ever –𝜇 equals the propagation constant of a given fiber mode. The process 
of approaching this divergence when the mode involved is the fundamental 
mode of the GRIN fiber has been referred to as wave condensation: in this 
limit case, the fundamental mode is the only mode with a macroscopic popu-
lation of photons [19,22,38]. Clearly, although BSC may be seen as expressing 
a tendency of the photon gas to condensate, practical observations of this ef-
fect never reach this limiting case, except for the trivial case when the input 
beam is already prepared in such a way that the fundamental mode is the only 
mode which is excited at the fiber input.

In Figure 4 we summarize the main properties of a multimode photon gas, 
in terms of its chemical potential (black curve in Figure 4a) and power frac-
tion in the fundamental mode (red curve in Figure 4a), as a function of its 
temperature. All plots are obtained by combining Equations (18) and (17) 
and taking into account of the physical condition |ci|2 ≥ 0. Here, we used 
the same propagation constant values as in Figure 3, and we normalized all 
quantities to the beam power, i.e., we set 𝒫 = 1.

Figure 4 shows that, whenever the temperature |T| −→ 0, the chemical po-
tential tends to a fixed value, which depends on the sign of T. The critical 
value of zero temperature, in fact, can be reached from either the positive or 
the negative side the horizontal axis in Figure 4. In the former case, the oc-
cupancy of the fundamental mode tends to unity (condensation). Whereas 
for negative temperatures, the fundamental mode is progressively depleted as 
T approaches zero. This corresponds to an opposite tendency with respect to 
the case of BSC, where the fundamental mode is always the most populated 
in the equilibrium mode power distribution. Note that in Figure 4 𝜇 seems to 
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have a discontinuity in T = 0. Moreover, the curve 𝜇 + 𝛽0 vs. T (black curve in 
Figure 4) is not resolved when T ∼ 0. This is because, according to the RJ law 
(18), the mode power fraction diverges whenever –𝜇 tends to any 𝛽i.. There-
fore, when –𝜇 ∈ [𝛽Q, 𝛽0] (which is the gap of the black curve in Figure 4), T is 
not associated with a unique value of 𝜇. It must be mentioned, however, that 
in practical demonstrations of BSC one has 𝜇 + 𝛽0 ≤ 0 [19–21].

2.5. A global thermodynamic perspective of beam self-cleaning

As discussed in the introduction, the generally accepted definition of BSC 
is the input power-induced reshaping of the output transverse intensity pro-
file emerging out of a length of multimode fiber, from fluctuating speckles 
to a robust bell-shape. In the absence of dissipative effects, the only mecha-
nism that can lead to such a reshaping is the energy transfer among modes 
via FWM interactions. The fact that BSC is facilitated in GRIN fibers can be 
explained by the presence of beam self-imaging, a direct result of their eq-
uispaced mode propagation constants [5]. In addition to phase-matching the 
input laser beam with spectrally distant sidebands growing from noise (an ef-
fect that has been called geometric parametric instability), the beam intensity 
oscillations due to self-imaging lead, via the Kerr effect, to a periodic dy-
namic (or light activated) grating, which may phase-match degenerate FWM 
processes, hence it will greatly enhance the mode redistribution process.

Now, in a lossless fiber these processes lead to a periodic or recurrent en-
ergy exchange for each FWM term taken individually. Therefore, one remains 
with the question, on how a stable or thermal equilibrium state can ever be 
reached, in a situation where energy is flowing back-and-forth with equal 
probability among the modes, so that no net energy transfer is observed on 
average. As a matter of fact, the very early FPUT experiments had surprisingly 
defied the common sense of their time, which expected a rapid thermalization 
to emerge in the evolution of chaotic (i.e. non-integrable) highly dimensional 

Figure 4. Dependence on the temperature T of the chemical potential (black curve) and of the 
occupancy of the fundamental mode (red curve). All parameters are normalized so that 𝒫=1. 
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multimode dynamical systems [43]. Nevertheless, recent progress in comput-
ing capabilities has permitted to show that even the FPUT system eventually 
thermalizes, albeit after a surprisingly long observation time.

Returning to MMF, there is no question that their evolution is ruled by a 
chaotic dynamical system, hence that thermalization is eventually to be ex-
pected: the only issue being, after how long propagation distance, or, in some 
sense equivalently, for what strength of the nonlinearity. In this respect, as 
previously mentioned, the unavoidable presence of RMC or noise will largely 
determine, in practical experiments, the actual threshold for thermalization 
to occur.

These considerations shift the attention from the question of what is the 
threshold for thermalization, something that any theory would likely be in-
capable of precisely determining, given that it is intrinsically determined by 
disorder, to answering the question about how the thermal state looks like, 
once that it is established. This is indeed the scope of a thermodynamic ap-
proach, which inherently deals with transitions between different states of 
equilibrium of matter, and not with out-of-equilibrium states that approach 
them.

That said, it proves helpful for the understanding of recent experiments 
dealing with wave thermalization in MMF, to resort to a phase plane visual-
ization of the different regions comprising either out-of-equilibrium or equi-
librium (thermalized) states for a multimode fiber system of finite length. In 
such a diagram, an example of which is schematically shown in Figure 5, ver-
tical and horizontal axes correspond to the two quantities that are conserved 
upon beam propagation, namely the optical power 𝒫 and the normalized 
internal energy U/𝒫, respectively.

Note that the laser coupling conditions at the fiber input unequivocally de-
termine the value of u ≡ –U/𝒫. In essence, the value of u measures how 
many modes are excited at the fiber input: larger values of u correspond to 
less modes, until the fundamental mode only is populated. Hence, the values 
of u range between a maximum of 𝛽0, which is attained whenever only the 
fundamental is excited, to a minimum of 𝛽Q–1, corresponding to the excita-
tion of modes belonging to the largest HOM group. The diagram of Figure 5 is 
split among two regions, which identify equilibrium and out-of-equilibrium 
beams at the fiber output, respectively. On the bottom left part (light blue 
area), i.e., at relatively low powers and highly multimode input beams, the 
output transverse intensity profile remains speckled (light blue framed inten-
sity pattern inset). Indeed, if either the input power is too low or the input 
mode occupancy is too far from the equilibrium RJ distribution, no wave 
thermalization may occur over the given fiber length.

On the contrary, in the green area in Figure 5, which is obtained for suf-
ficiently high values of u and/or input powers above the BSC threshold (𝒫c), 
one observes a bell-shaped beam at the fiber output (green framed inset in 
Figure 5). The separatrix curve between the two regions of the diagram (solid 
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Figure 5. Optical phase diagram describing wave thermalization in a finite length of MMF. The 
vertical axis indicates the optical power 𝒫, and the horizontal axis measures the internal energy, 
normalized by power, U/𝒫. The solid black line (whose exact position is somewhat arbitrary) sep-
arates states of thermal equilibrium from out-of-equilibrium states (which populate the light blue 
region). Among thermalized states, we may define as clean beam states, those states where the 
fractional population of the fundamental mode exceeds a certain threshold (upper-right (green) 
region). Note that U/𝒫 is fully determined by fixing the input laser beam coupling conditions into 
the MMF. The two dashed arrows indicate two orthogonal paths for crossing the solid line, i.e. for 
wave thermalization to occur. The vertical arrow corresponds to increasing the input power: this 
is done in BSC experiments. Moving along the horizontal arrow means keeping the input power 
constant while changing the input coupling, so that less modes are progressively excited at the 
output: this route has been referred to in the literature as thermalization via condensation. In the 
upper-right (red) region of the diagram, the beam is at thermal equilibrium, but generally, it does 
not have a bell-shape, because of the high population of HOM. Images on the inset show exam-
ples of output beam intensities in the green, red and blue regions, along with their corresponding 
mode power distributions.

line in Figure 5) describes the dependence of the critical power on the num-
ber of excited modes. Although the exact shape of this separatrix remains 
elusive, recent experiments reported in Ref. [44] have shown that 𝒫c grows 
larger exponentially with the incidence angle of the input beam into a GRIN 
MMF, which is roughly proportional to the number of excited modes. Such 
a trend was confirmed in experiments of BCS in the anomalous dispersion 
regime, carried out with a few-mode input beam, showing a dramatic de-
crease by at least two orders of magnitude of the BSC power threshold [8], 
when compared with earlier experiments involving highly multimode input 
beams [6].

We emphasize that crossing the separatrix in Figure 5 does not provide an 
abrupt change of the beam shape. On the contrary, the transformation from 
speckles to a bell-shape takes place gradually. Moreover, it has to be kept 
in mind that the whole phase diagram varies with the fiber length, e.g. the 



ADVANCES IN PHYSICS: X  17

power threshold for triggering the BSC effect decreases as the fiber length 
grows larger [45]. Accordingly, the area of the blue region in the diagram in 
Figure 5 progressively quenches when increasing the fiber length. Eventually, 
at virtually infinite propagation distances, all beams would reach their ther-
mal equilibrium in a perfect fiber, i.e., without imperfections and losses. Thus, 
the diagram in Figure 5 would only contain the red and the green regions of 
thermalized beams.

Within the diagram in Figure 5, the transition from an out-of-equilibrium 
state (light blue area) into a thermalized one, and in particular, a stable bell-
shaped beam (green area) may occur by varying either the input power or 
the input coupling conditions. By definition, thermalization leading to BSC 
is obtained in experiments as a consequence of an input power increase, 
with fixed coupling conditions (u = const.), see the vertical arrow in Figure 5. 
Conversely, whenever the input power is fixed, one may adjust the input 
coupling conditions, or number of excited modes, until thermalization is 
achieved at the end of the fiber. This route to thermalization has been re-
ferred to as a classical wave condensation process [19], see the horizontal arrow
in Figure 5.

However, this terminology appears to be somewhat questionable, since the 
process must not be confused with the condensation phenomenon at T = 0, 
that we described in the former section (see Figure 4). This requires the cool-
ing of a beam which is already at thermal equilibrium. On the other hand, in 
the route to thermalization of [19] the input coupling conditions were varied, 
leading to a series of out-of-equlibrium states. As a result, the variation of T
is a consequence of the variation of U, and it is not driven by a source of heat.

We underline that in the theory described in the former Section, both 
𝒫 and U are fixed upon propagation. This is because the constrained max-
imization of entropy only leads to termalization at some point along the 
propagation distance (which is the system evolution variable), that in prin-
ciple might be very large. Whereas, the intensity patterns in Figure 5 are 
obtained at the output of a fiber of relatively short length. This means that the 
route to thermalization leading to BSC in Figure 5 involves passing through 
different out-of-equilibrium states via an increase of the input power in the 
experiments [6,20,21].

In other words, thermalization is a physical process which leads to the 
establishment of an equilibrium starting from an out-of-equilibrium state. 
According to the theory, such an out-of-equilibrium state lives at the fiber 
input, whereas in the experiments one usually refers to the beam shape at 
the fiber output (which is the one shown on the left side of the diagram in 
Figure 5). Therefore, the transformation of a speckled output pattern into a 
bell-shape via the increase of the power may also be referred to as a wave 
thermalization process.
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In the latter, the role of input power is that of measuring the strength of 
mode interactions via FWM. In this sense, increasing the power can be seen 
as a way for reducing the propagation distance which is needed to reach ther-
mal equilibrium. Having said that, it has to be noted that a bell-shaped beam 
can only be obtained if the statistical temperature of the beam is sufficiently 
low. Since the pair (𝒫, U) (or (H, N)) uniquely determines the pair (T , 𝜇) 
[46], a low temperature means favourable enough injection conditions (or 
a sufficiently low number of excited modes) for a given power. In this sense, 
the value of u permits to discriminate whether or not a beam has thermal-
ized, for a given input power and fiber length. Generally speaking, at thermal 
equilibrium, a higher value of u will result in a larger population of the funda-
mental mode. As a matter of fact, if u is too low, one may still reach thermal 
equilibrium at the fiber output, but the associated RJ distribution has such 
a high content of HOM that the resulting beam no longer looks clean, i.e. it 
lacks a bell-shape (see pink region and associated inset in Figure 5). On the 
other hand, high-quality beams are obtained for sufficiently high values of 
u. There is no consensus on the definition of the critical value of u, that dis-
criminates between bell-shaped and non-bell-shaped beams. This is of course 
related to the previously discussed definition of the black separatrix curve in 
Fig. 5). Yet, in Ref. [19] a critical value of u, say uc, was introduced, in order 
to discriminate whether the beam is sufficiently close to a clean beam. In the 
following, we are going to overview the main numerical and experimental 
demonstrations of wave thermalization processes in GRIN fibers.

2.6. Numerical demonstrations

The predictions of the thermodynamic approach for describing wave dy-
namics in GRIN fibers have been confirmed by numerical simulations 
based on different models, involving either the multi-dimensional nonlinear 
Schrödinger equation (NLSE), or coupled-mode equations. In Figures 6 and
7, we report results from Refs [22] and [20], respectively. For the results of 
Figure 6, the underlying model is the purely spatial NLSE which accounts for 
diffraction, a truncated parabolic refractive index (i.e. that of a GRIN MMF), 
and Kerr nonlinearity. As can be seen, there is an excellent agreement be-
tween numerics (red dots in Figure 6), and the analytical RJ distribution (solid 
and dashed lines in Figure 6), as far as the relative occupation of the funda-
mental mode is concerned. Here we show the normalized occupancy of the 
fundamental mode, i.e. n0/N  (=N0/N , since the fundamental mode is non-
degenerate), vs. the Hamiltonian H. The dashed green curve represents the 
power condensed in the fundamental mode at T = 0, i.e. at 𝜇 = 𝛽0, in agree-
ment with the black curve in Figure 3a at 𝜇 + 𝛽0 −→ 0 (note that in Ref. [22] 
The chemical potential is defined with an opposite sign with respect to here). 
Whereas, the solid blue line corresponds to the case of T ≠ 0.
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Figure 6. Occupancy of the fundamental mode, normalized by the total number of particles n0/N, 
vs. the Hamiltonian H. Red points are results of numerical simulations based on solving the 2D 
NLSE. Error bars for numerical simulations (red dots) denote the amount of fluctuations (standard 
deviation) of n0/N, once equilibrium is reached. Dashed green and solid blue lines refer to the 
case of beam condensation and thermalization, respectively. [Reproduced with permission from 
[22], [Aschieri, P., et al., Physical Review a 83.3 (2011): 033838.]]. Note that the Hamiltonian H is 
expressed in Wm–1, since in Ref. [22] H is defined as the opposite of the internal energy U in (20). 

Figure 7. Numerical simulations based on coupled-mode equations, describing the optical ther-
malization process leading to an RJ distribution. a) Mode power fraction in each degenerate group 
k. The simulations consider pulses of 200 fs with 52 kW input power, which propagate over 50 cm 
of GRIN MMF. Simulations involve the first 55 modes, i.e. k < 10. b) Comparison of numericalre-
sults (blue dots) with the theoretically predicted RJ distribution (solid blue line). The figure also 
shows the agreement with experimental results, which are discussed in Sec. 3. [Reproduced with 
permission from [20], [Pourbeyram, Hamed, et al., Nature Physics 18.6 (2022): 685–690]. 
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Numerical simulations describing thermalization of the mode power dis-
tribution according to the RJ law in GRIN MMF were also been reported in 
[20]. In that work, the Authors solved a system of coupled NLSEs for the tem-
poral envelopes of the spatial modes. The equations include Kerr and Raman 
nonlinearities, self-steepening, as well as chromatic and modal dispersions. 
A total of 55 transverse spatial modes of the fibre were taken into account in 
the model, i.e., all modes with q < 10 (𝛽9 = 20 mm–1). The results of simula-
tions are reported in Figure 7. Specifically, Figure 7a shows the evolution of 
the normalized mode power fraction vs. propagation distance (z). Note that 
in Figure 7, the symbol |ck|2 is equivalent to Nq/N  with k = q + 1, and it 
must not be confused with |ci|2, since the index k runs over the mode groups, 
and not over the single modes. As it can be seen, the mode power fraction 
reaches a steady value after a few tens of centimeters of propagation distance. 
In particular, the limit values of the mode occupancy were found to be in 
good agreement with the theoretical predictions of the RJ law, as shown in 
Figure 7b.

3. Experimental demonstrations of wave thermalization

3.1. Thermalization by varying input power

Direct experimental demonstrations of BSC as a result of wave thermaliza-
tion were reported in Refs [20] and [21]. In order to measure the output mode 
power composition from GRIN fibers, both groups used holographic mode 
decomposition (MD) methods. In Ref. [20], an interferometric system was 
used, whereas in Ref. [21] a phase-only liquid crystal spatial light modulator 
was exploited (see Ref. [47] for details). Besides the different MD techniques, 
the overall results of both studies are rather similar. The good agreement be-
tween the theoretical RJ distribution and the experimentally measured mode 
power fractions, as obtained in Ref. [20], is shown in Figure 7b. This con-
firms the numerical predictions of Figure 7, showing that the RJ distribution 
is well approached at the fiber output for a given input condition, i.e., with 
fixed values of 𝒫 and U.

In addition, experiments in Ref. [21] also confirmed that thermal equilib-
rium is approached at the fiber output when varying the input power (or the 
number of photons of the beam N) while keeping constant u. In particular, 
in Figure 8 we illustrate the process of thermalization that accompanies BSC 
of 7.6 ps pulses, injected into a 2 m long GRIN fiber. For clarity, and in agree-
ment with Figures 3 and 7, in Figure 8 we show the mode power fraction 
within each group Nq/N , i.e., the power in each group, divided by the group 
degeneracy.

Specifically, Figure 8a shows the evolution of the fundamental mode power 
fraction N0/N  vs. input peak power (𝒫). As it can be seen, at the lowest 



ADVANCES IN PHYSICS: X  21

Figure 8. Experimental demonstration of BSC as a wave thermalization process. a) Power fraction 
of the fundamental mode vs. input peak power. b,c) Output beam intensity profile at the lowest 
and highest values of input peak power, i.e., 0.11 and 8.11 kW, respectively. d) Normalized internal 
energy U/𝒫 and angular momentum Ω conservation. The error bars are associated to the accu-
racy of the mode decomposition method (see Ref. [21] for details). e-g) Mode power fraction per 
group vs. group number (bars) and expected RJ distribution (red line) at 0.11 (d), 4.64 (e), and 8.11 
kW (f ) of input peak power, respectively. Data are from Ref. [21]. 

power 𝒫= 0.1 kW, the fundamental mode is poorly populated. Correspond-
ingly, the beam at the fiber output remains speckled (cfr. Figure 8b). As the 
input power grows larger, the power fraction of the fundamental mode in-
creases, until eventually it acquires more than 60% of the total power. This 
nonlinear mode power redistribution is accompanied by the appearance of a 
bell-shape at the fiber output (cfr. Figure 8c), i.e. the BSC effect. At variance 
with this nonlinear change of mode occupancy, u = –U/𝒫 = H/N  and Ω
remain constant, as shown in Figure 8d. In particular, it was found that Ω = 0, 
in agreement with the assumption made in Sec. 2. Finally, Figure 8e-g com-
pares the experimental retrieved mode power fractions (histogram bars) with 
the thermal RJ distribution (red line) for three values of 𝒫, i.e. 0.11, 4.64, and 
8.11 kW, respectively. As it can be seen, a very good agreement between the-
ory and experiments was found at the highest power, which corresponds to a 
temperature T = 0.12 mm–1. On the contrary, whenever the power is too low, 
the beam does not reach thermal equilibrium upon its propagation, thus its 
associated mode distribution cannot be described by the RJ law.

3.2. Thermalization by varying the input coupling conditions

Baudin and co-workers [19] carried out a different experimental study of 
wave thermalization in a GRIN MMF. In their experiments, thermalization 
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was obtained in a fiber of finite length by varying the number of excited 
modes: these are determined by the input coupling conditions, which fix the 
value of the Hamiltonian H (or energy U). On the other hand, in those ex-
periments the number of particles N (or the input power 𝒫) was kept at a 
constant value: this permitted to shed light on the mechanism of BSC from 
a different perspective. Indeed, it was shown that BSC only occurs for suf-
ficiently large values of H; whereas, no beam cleaning was observed at low 
values of H, regardless of the beam power value 𝒫.

Their experiments were conducted with a 12 m long graded-index MMF, 
and using 400 ps laser pulses at 1064 nm. In order to provide a statistical rel-
evance to their measurements, i.e., to properly place the experimental results 
in a statistical mechanics framework, 1000 different realizations, i.e. input 
conditions, were imposed for each value of H. Obtaining such a large set of 
input conditions with exactly the same value of H is not trivial: it was ob-
tained by rotating a diffuser plate, which was placed right before the injection 
of light into the fiber core.

Generally speaking, the near-field intensity at the fiber output can be writ-
ten as the sum of two contributions, i.e., that due to the fundamental mode, 
which was called condensate fraction (Icond

NF ), and that given by the HOMs, 
called incoherent contribution (I inc

NF). By expressing the fiber modes within the 
Hermite-Gauss base, it is straightforward to derive the following expressions 
for Icond

NF  and I inc
NF vs. the radial coordinate r: 

Icond
NF = n2

0r2
0w2

0 ( r
r0

) , (23)

I inc
NF = 1

r2
0

M

∑
i=1

niw2
i ( r

r0
) , (24)

where r0 is the radius of the fundamental mode, respectively, while wi is the 
normalized i-th mode of the Hermite-Gauss base, which is invariant under 
Fourier transform. Analogous expressions also hold the far-field intensity 
profile (see Ref. [19]).

Experiments reported in [19] were in excellent agreement with the theo-
retical predictions, showing that the averaged observed mode field profile at 
the fiber output is close to that predicted by the RJ law (cfr. Figure 9). In-
deed, the experimentally measured near-field intensity profile (blue line in 
Figure 9a) is very close to the theoretical curve for INF vs. r (red dashed line 
in Figure 9). The latter is calculated as the sum of two contributions, i.e., from 
the fundamental mode, Icond

NF  (yellow area in Figure 9a) and from the HOMs, 
I inc
NF (gray area in Figure 9a). The former was found by imposing n0/N = 0.4 in 
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Figure 9. Experimental demonstration of wave thermalization over a finite fiber length, obtained 
by varying the input coupling conditions at constant input power. (a,b) Near- (a) and far-field (b) 
intensity profiles after 12 m of GRIN MMF. The blue line corresponds to the beam profile averaged 
over 1000 realizations, i.e., experiments were carried out with injection conditions that provide 
the same value of H: the resulting fundamental mode power fraction is equal to 40%. Yellow and 
gray regions in (a) correspond to the values of IcondNF  and IincNF , calculated from Eqs. (23) and (24), 
respectively. The sum of IcondNF  and IincNF  is shown as a red dashed line. Yellow and gray region, and 
red dashed line in (b) are the analogous of those in (a), but for the far-field (see Ref. [19] for details). 
The inset images in (a) and (b) show output intensity distributions, averaged over all realizations. 
Green lines show the averaged intensity profiles recorded at only 20 cm of beam propagation. 
(c)–(d) Individual realizations associated with the green blue lines in (a) and (b), respectively. Insets 
report the intensity profile corresponding to the black lines. [Reproduced with permission from 
[19], [Baudin, Kilian, et al., Physical Review Letters 125.24 (2020): 244101]. 

(23). Whereas, the latter was obtained by replacing Eq. (11) in (24). Similar 
results were found by analyzing the far-field profile (see Figure 9b).

The blue curves in Figure 9a,b were calculated from an average of over 1000 
different input diffuser positions. Some of the latter are reported as blue lines 
in Figure 9c,d. Moreover, in Figure 9a,b the green curves indicate the intensity 
profile averaged over 1000 realizations but obtained after only 10 cm of beam 
propagation. The short propagation distance measurements in Figure 9a,b 
were performed in cut-back experiments, whose single realizations are shown 
as green curves in Figure 9c,d respectively. These results demonstrate that the 
beam thermalizes along the propagation distance, as opposed to BSC, where 
wave thermalization is obtained by changing the input power.

Experimental thermodynamic parameters associated with the beam at 
thermal equilibrium were found by fitting the experimental data, e.g., the 
profile of either INF, with the sum of Icond

NF  and I inc
NF obtained from (23) and 

(24), respectively, when considering the mode occupancy following the RJ 
distribution. In this way, it was possible to verify the agreement between 
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experiments and theory as far as the dependence of T and 𝜇 on H is con-
cerned. In particular, it was found that, for H above a certain threshold, or 
equivalently u>uc, the fundamental mode remains as the only significantly 
populated mode, in agreement with the numerical predictions in Figure 6. 
In conclusion, these studies can be seen as providing a formal theoretical 
framework for describing the experimentally well-known property that, once 
that only the fundamental mode of a GRIN fiber is excited at the fiber input, 
this mode may remain stable and uncoupled to HOMs over relatively long 
distances.

3.3. Prediction of thermodynamics parameters

The method for determining thermodynamic parameters such as T and 𝜇
depends on the experimental approach for studying wave thermalization. 
Specifically, for the experiments of Sec. 3.2, temperature and chemical po-
tential are retrieved by fitting the shape of the output beam profile at thermal 
equilibrium, after averaging over several realizations. The fitting curve is ob-
tained by substituting the RJ distribution (18) in (24). The other way around, 
if the output mode power fraction is determined by means of holographic 
techniques, as it was done in the experiments of Sec. 3.1, T and 𝜇 can be 
directly computed, without recurring to any fitting procedures. Indeed, by 
knowing the mode power fractions, one can determine the values of H and N
or, equivalently, U and 𝒫. Therefore, by combining the equation of state (17), 
the definitions of 𝒫 and U, i.e., (19) and (20), and the RJ law (18), one obtains 
the following nonlinear equation for T 

𝒫 = –
M

∑
i=1

T
𝛽i + (U – MT)/𝒫 . (25)

Such an equation has one and only one physically acceptable solution, which 
ensures that the mode occupancy takes positive values for all modes [24,46]. 
Once that T is determined, 𝜇 can be easily calculated by using the equation 
of state (17).

Note that, being 𝒫 and U constant during beam propagation, the values 
of T and 𝜇 can be calculated by knowing the mode power fractions at any 
point along the fiber, even at the fiber input! As discussed in Sec. 2, T and 𝜇
are fixed by the coupling conditions between the laser beam and the fiber. As 
a matter of fact, the theoretical RJ distribution at high powers in Figure 8g 
was calculated by starting from the MD data at low powers, i.e. those in 
Figure 8e. This means that, although temperature and the chemical poten-
tial have a proper thermodynamic meaning at thermal equilibrium only, one 
may associate values of T and 𝜇 to nonequilibrium states as well.
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As a side note, we emphasize that a more complex algebraic problem 
is obtained when considering laser beams carrying OAM. In this case, an 
additional unknown has to be determined, i.e., the Lagrange’s multiplier as-
sociated with the conservation of the OAM. This leads to a system of two 
nonlinear equations in two unknowns, which reads 

⎧{
⎨{⎩

𝒫 = – ∑M
i=1 [(U

T
+ U

TL
– M)/𝒫 + 𝛽i

T
– mi

TL
]–1

U = – ∑M
i=1 𝛽i[(

U

T
+ U

TL
– M)/𝒫 + 𝛽i

T
– mi

TL
]–1 , (26)

where TL is a sort of ‘angular temperature’, which is associated to the La-
grange’s multiplier c in (10). As it occurs for Ω = 0 even in this case, there 
is a unique set of thermodynamic parameters that correspond to given values 
of 𝒫, U, and Ω. From Eqs. (25) and (26), it can be seen that a suitable num-
ber M of modes must be taken into consideration for the calculation of the 
beam temperature. In Appendix B, we discuss the error associated with cal-
culating the values of T and 𝜇 when a finite mode truncation is used, owing 
to practical experimental limitations.

3.4. The role of time in experiments

The thermodynamic approach to BSC only involves spatial properties of mul-
timode beams. Nevertheless, in its practical demonstrations, so far BSC has 
been observed by using ultrashort and intense laser pulses. This incongruity, 
however, is only apparent. As a matter of fact, although the time dimension is 
not included in the thermodynamic theory, its role in experiments is crucial. 
Time, in fact, allows for ensuring the averaging process which is at the basis 
of the statistical mechanics. As a matter of fact, time-resolved measurements 
of BSC have shown that the output beam profile significantly differs between 
the peak and the tails of a laser pulse. Consider, in particular, the results of 
Ref. [18], where it was shown that the bell-like shape at the fiber output is the 
result of a time-average carried out by the camera.

In this regard, it is worth noticing that experiments reported in Sec. 3.2 
were carried out by averaging the beam output profile over many realizations, 
i.e. over several input conditions, that are all associated with the same thermo-
dynamic parameters. In this way, it was possible to retrieve the output thermal 
equilibrium RJ mode distribution. On the other hand, in experiments car-
ried out with ultra-short pulses, such as those described in Sec. 3.1, averaging 
over different realizations is replaced by temporal averaging by the camera. 
Accordingly, for given injection conditions, thermodynamic parameters are 
expected to be independent of the duration of the laser pulses. This has been 
experimentally verified in [21] by using pulses with input temporal durations 
ranging from 174 fs up to 7.6 ps. In this regard, we emphasize that within 
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state-of-the-art MD tools, carrying out an experiment for decomposing the 
mode content of a single laser pulse is virtually impossible. At a first sight, in 
fact, one may think that lowering the laser repetition rate could be a practical 
approach. Nevertheless, currently available holographic MD tools only per-
mit to measure the phase and amplitude of single mode of the fiber at once; in 
other words, the measurement of different modes is a slow process that must 
be carried out in a serial fashion.

3.5. The interplay between linear disorder and Kerr nonlinearity

When considering the physical effects that are responsible for the power ex-
change among the modes of a MMF, inter-modal FWM is the most effective 
process at high powers [48]. However, another mechanism plays the role 
of mode energy scrambler during BSC, i.e., linear random mode coupling 
(RMC). This is induced by fiber bends, microbends, and imperfections [49], 
which one can generically refer to as linear disorder. As a matter of fact, al-
though typical BSC experiments involve relatively short fiber lengths L ∼
1–10 m, still multimode beam propagation is affected by the interplay be-
tween linear disorder and Kerr nonlinearity. Now, when dealing with the 
thermodynamic description of BSC, it is convenient to distinguish among 
two different possible manifestations of linear disorder in MMFs, which are 
generally referred to as weak and strong disorder, respectively [50,51]. In the 
former, random coupling only occurs among degenerate modes, whereas the 
latter permits a random transfer of energy among all, i.e., degenerate and 
nondegenerate, modes.

Under the action of weak disorder, the Hamiltonian is conserved upon 
beam propagation. Therefore, the whole thermodynamics description lead-
ing to the RJ distribution of a multimode beam at thermal equilibrium strictly 
holds. In particular, it has been shown that weak disorder has a beneficial ef-
fect on the practical observation of BSC. In fact, numerical and theoretical 
studies showed that RMC may strongly accelerate wave thermalization, thus 
making its observation possible in relatively short fiber spans at kW power 
levels, which are easily accessible to mode-locked laser sources [52,53]. On 
the other hand, in the absence of weak disorder, wave thermalization leading 
to BSC would require orders of magnitude longer fiber lengths, or peak power 
levels so high, that fiber damages may occur.

At variance with weak disorder, strong RMC among non-degenerate 
modes does not conserve the Hamiltonian. Therefore, the presence of strong 
disorder hinders wave thermalization towards the RJ equilibrium distribu-
tion. Nevertheless, in their recent work based on a wave turbulence approach, 
Berti et al. showed that, even in the strong disorder regime, multimode beams 
can still exhibit a nonequilibrium process of thermalization leading to BSC, 
albeit in a transient state [54]. In that work, an experimental demonstration 
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Figure 10. Experimental evidence of the transformation of a multimode beam from speckles (at 
6 m) into a bell-shape (at 830 nm) in nominally linear regime. Data are from Ref. [31]. 

was carried out by applying clamps to a few meter long GRIN MMF, in order 
to force the power exchange among non-degenerate modes. Such experimen-
tal ploy was in fact needed in a short piece of MMF, since strong RMC in silica 
fibers is only induced over distances of the order of a kilometer or more. The 
role of strong disorder associated with the action of linear RMC over long dis-
tances has been investigated since a long time by means of power-flow models 
[55]. Recent results have been reported with GRIN MMF made of either silica 
[56] or plastic materials [57], which provide stronger intrinsic perturbation 
effects over shorter distances.

Since RMC is the main source of mode scrambling at low powers, where 
FWM effects are negligible, power-flow models do not take into account the 
presence of Kerr nonlinearity. Hence, in the purely linear propagation regime 
beams do not spontaneously evolve toward an RJ thermalization. Neverthe-
less, RMC alone is able to produce, similarly to FWM, a steady-state output 
mode power distribution. In particular, recent experiments have shown that, 
even when the input power is several orders of magnitude lower than the 
threshold for BSC (𝒫 ≪ Pc), a bell-shaped output profile is observed after 
propagation distances of the order of a kilometer [31]. The beam shape at 
short and long propagation distances in a nominally linear regime is shown 
in Figures 10a,b respectively. In spite of its clean-looking profile, the mode 
power distribution associated with the beam in Figure 10 has been shown 
to follow a Bose-Einstein-like decay with mode number, instead of an RJ law 
[31]. This result can be explained by the predictions of the power-flow model, 
which describes the linear random mode coupling in GRIN fibers [30,57]. In 
this model, the linear coupling coefficient which is responsible for a power 
transfer from the modes of group q to q –1 is moderately larger than that from 
group q to q +1; this results into a net transfer of power towards lower-order 
modes, which are populated at the expense of the HOMs.
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4. Conclusions, perspectives, and open issues

The wave thermalization picture provides a theoretical framework which is 
useful for predicting some of the key properties of BSC. Nevertheless, it 
should be understood from the start that this approach also has its limita-
tions. The most notable one being, that thermodynamics at equilibrium does 
not explicitly rely on the degenerate four-wave-mixing, which is the very 
mechanism at the basis of the BSC effect! Indeed, one may reach the same 
equilibrium distribution, regardless of the type of photon–photon interaction 
mechanism involved [58].

In any case, the thermodynamic approach permits to design novel applica-
tions of nonlinear MMF, such as the all-optical control of the beam quality at 
the output of a MMF. The latter, in fact, is strictly related to the statistical tem-
perature T, which can be varied via optical thermodynamic transformations, 
i.e., via heat exchanges among different photon gases, as it occurs for a classi-
cal gas of particles. Heat exchanges between photon gases in MMF have been 
studied only recently: for the first time, experiments of optical calorimetry in 
MMF have been sucessfully carried out [59]. Specifically, it was demonstrated 
that two photon gases, which are allowed to interact by exchanging both en-
ergy and particles, eventually reach an equilibrium, i.e., the two gases have 
the same value of temperature and chemical potential. Moreover, thermo-
dynamics permits to accurately predict the final value of temperature. This 
means that macroscopic thermodynamic variables such as the temperature 
and the chemical potential do not merely represent fitting parameters for an 
equilibrium mode power distribution but reflect the presence of real phys-
ical forces acting at the microscopic level. Such a result, which might seem 
trivial when considering a classical gas of particles, is instead pivotal for vali-
dating the thermodynamic theory of multimode systems. As a matter of fact, 
it is only thanks to heat exchanges that one may ensure that the entropy is 
well-defined, i.e., that photon gases in MMF obey the second law of thermo-
dynamics. In this context, it is also worth mentioning that a similar concept 
has been recently introduced in Ref. [44], where BSC was exploited for the 
demonstration of an all-optical switch.

Before concluding, it is worth pointing out some of the aspects of BSC, 
which are not captured by the thermodynamic approach. For instance, BSC 
has been experimentally demonstrated in few-mode fibers [39], whereas the 
theory only applies to highly multimode systems. Moreover, a generalized 
BSC effect, where a robust beam profile at the output of a MMF that is highly 
correlated with that of HOMs, was experimentally reported [45,60]. Such an 
effect is likely to represent an out-of-equilibrium state, in the sense that, were 
the fiber length much longer than in the experiment, the beam would prob-
ably decay into a mode distribution which is dominated by the fundamental 
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mode [17], as predicted by the thermodynamic theory. Nevertheless, the lat-
ter does not allow for describing BSC into other modes but the fundamental, 
since the thermodynamic theory only applies to equilibrium states. In this 
regard, it has to be mentioned that a non-equilibrium theory, which is based 
on a wave turbulence approach and describes the weakly nonlinear regime of 
propagation of the optical field in a MMF, has indeed been developed [61]. 
Such a theory is capable of capturing the irreversibility of the nonlinear wave 
dynamics that characterizes BSC.

Furthermore, it has to be mentioned that the analogy between nonlinear 
electromagnetic waves and gas of particles, which is at the basis of the ther-
modynamic theory, properly holds only under certain strong assumptions. 
For instance, particles are described as scalar objects, while light intrinsically 
requires a vectorial description. As a matter of fact, the state of polariza-
tion of light has been shown to evolve non-trivially in the process of BSC. 
For instance, depending on the experimental conditions, light may experi-
ence either an increase or a decrease of its degree of polarization as the input 
power grows larger, as reported in Refs [62] and [59], respectively. Whereas, 
the thermodynamic theory of BSC does not explicitly consider the state of 
polarization of light. Only in the case of classical wave condensation, the de-
gree of polarization is expected to increase, since only one mode should be 
macroscopically populated at the fiber output [38].

Finally, the thermodynamic theory is intrinsically an incoherent theory. 
That is, it is not capable to describe the occurrence of any fixed phase re-
lationship between the modes, and the observed improvement of the beam 
quality upon beam propagation. However, interference experiments between 
two spatial regions of a single self-cleaned beam, or even between two self-
cleaned beams, have clearly demonstrated that the coherence of a laser beam 
is for the most part preserved in the process of BSC [17]. How to conjugate 
the experimental results of Ref. [17] and the thermodynamic theory of BSC 
remains, to date, an open question: we plan to address this important issue in 
forthcoming publications.

In conclusion, our overview has presented recent advances in the study of 
wave thermalization in highly multimode optical fibers. Although some im-
portant aspects, such as: the issue of beam polarization and coherence, the 
role of linear disorder, the study of highly nonlinear regimes, e.g., when op-
tical solitons are formed, will require significant further work and possibly 
extensions of the theory beyond the realm of the present statistical theory, the 
thermodynamic approach has been successful in predicting the mode power 
distributions that correspond to self-cleaned optical beams, as well as to com-
plex beams generated from nonlinear interactions among different individual 
beams.



30  M. FERRARO ET AL.

Note

1. A more accurate definition of the thermodynamic limit requires that si-
multaneously N ≫ 1, Δ𝛽 ≪ 1, NΔ𝛽2 = const. and Δ𝛽

√
M = const, 

where Δ𝛽 is the spacing among the mode propagation constants, as 
discussed in Ref. [22].
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Appendix A. Entropy calculation from experimental data

Among the thermodynamic parameters, the entropy S is the most delicate to 
estimate from experimental data. At first sight, when using the definition of 
entropy in Eq. (22), i.e., S = ∑i ln |ci|2, one would think that the entropy di-
verges whenever any given mode has zero occupation. Nevertheless, this must 
not scare, because such a divergence only occurs because, in this case, the ap-
proximation that leads from the definition of entropy (7) to (8) is invalid. 
Indeed, in one recurs to the original definition of the entropy, modes with 
ni = 0, i.e., |ci|2 = 0, do not contribute to S. Therefore, one can reformulate the 
entropy as follows: 

S = ∑
i

Si, (27)

where 

Si = { ln |ci|2 if |ci|2 ≠ 0
0 if |ci|2 = 0 . (28)

Experimentally, one often finds that some modes have a power fraction 
which is lower than the accuracy of the MD method. For instance, at thermal 
equilibrium, HOMs are associated with relatively low power fractions when 
the mode group number grows larger, as predicted by the RJ distribution (18). 
Therefore, in order to meaningfully evaluate the beam entropy, it is necessary 
to take into account the limited accuracy of the MD method on ni, say Δn. 
In this way, one can provide an experimentally meaningful definition of the 
entropy as follows: 

Si = { ln |ci|2 if |ci|2 ≳ Δn
0 if |ci|2 ≲ Δn . (29)

Finally, it must be noted that, according to its definition (22), S grows larger 
with input power 𝒫. Therefore, with the goal of studying the entropy growth 
due to a nonlinear mode power redistribution during the thermalization pro-
cess that accompanies BSC, it is convenient to define the entropy per particle, 
say, ̃S. The latter can be determined by writing the entropy S as 

S = ̃S + M ln𝒫, (30)

where 

̃S =
M

∑
i=1

ln(
|ci|2

∑j |cj|2 ) . (31)
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Appendix B. Mode truncation error

The number of guided modes in an MMF depends on several factors, such as 
the laser wavelength, the geometrical properties of the fiber, and the refrac-
tive index difference between core and cladding. Generally speaking, standard 
GRIN fibers propagate hundreds of modes at wavelengths around 1 𝜇m. 
Whereas, owing to intrinsic limitations, state-of-the-art MD techniques do 
not permit to resolve all of the fiber modes with sufficient precision. There-
fore, a mode truncation errors inevitably affect the results of MD experiments. 
In this regard, it is interesting to note that mode truncations do not affect the 
estimation of the chemical potential. Indeed, the latter can be computed by 
the bare knowledge of the ratio between the power fraction of any pair of 
modes. At thermal equilibrium, in fact, the mode occupancy obeys the RJ 
law, so that the ratio between the power fraction per mode of the q-th and 
r-th mode groups reads 

|cq|2

|cr|2 =
𝜇 + 𝛽r
𝜇 + 𝛽q

, (32)

which provides a unique value for 𝜇, provided that r ≠ q.
On the other hand, when estimating the temperature T from MD data, 

mode truncation introduces a significant source of error. In fact, at variance 
with 𝜇, the value of T strongly depends on the number of groups of guided 
modes Q –1. By determining T from the equation of state, i.e., 

T =
– ∑Q–1

q gq𝛽q|cq|2 – 𝜇 ∑Q–1
q gq|cq|2

∑Q–1
q gq

, (33)

it is straightforward to see that T depends on Q. 
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