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Abstract: At finite density, the spontaneous breakdown of an internal non-Abelian sym-
metry dictates, along with gapless modes, modes whose gap is fixed by the algebra and
proportional to the chemical potential: the gapped Goldstones. Generically the gap of
these states is comparable to that of other non-universal excitations or to the energy scale
where the dynamics is strongly coupled. This makes it non-straightforward to derive a
universal effective field theory (EFT) description realizing all the symmetries. Focusing
on the illustrative example of a fully broken SU(2) group, we demonstrate that such an
EFT can be constructed by carving out around the Goldstones, gapless and gapped, at
small 3-momentum. The rules governing the EFT, where the gapless Goldstones are soft
while the gapped ones are slow, are those of standard nonrelativistic EFTs, like for instance
nonrelativistic QED. In particular, the EFT Lagrangian formally preserves gapped Gold-
stone number, and processes where such number is not conserved are described inclusively
by allowing for imaginary parts in the Wilson coefficients. Thus, while the symmetry
is manifestly realized in the EFT, unitarity is not. We comment on the application of
our construction to the study of the large charge sector of conformal field theories with
non-Abelian symmetries.
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1 Introduction

Spontaneously broken symmetries have far reaching consequences in the study of physical
systems. That is mainly because of the existence of Nambu-Goldstone bosons [1, 2], whose
low-energy dynamics is largely dictated by symmetry, independently of other details of the
microscopic physics [3–5]. As a result, the experimental study of the dynamics of Goldstone
bosons at low energies and long distances allows to robustly infer the nature of fundamental
symmetries and the pattern of their spontaneous breaking.

In a standard Lorentz invariant setup there are as many Goldstones as broken gener-
ators, they are all massless and move at the speed of light. However, Nature is pervaded
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with systems that spontaneously break spacetime symmetries as well, in which case Gold-
stone theorem allows for a much richer set of possibilities (see, e.g., [6–9]). In this work we
focus on those systems that are at finite density for a certain spontaneously broken charge.
When the latter does not commute with other broken charges, the spectrum of the theory
contains the so-called gapped Goldstones [10–14].

More precisely, consider a relativistic system that is at finite density for a given charge
Q and whose time evolution is governed by a Hamiltonian H. In this case, the ground
state of the system can be found as the state with lowest eigenvalue with respect to the
modified Hamiltonian (see, for instance, [15])

H̄ = H + µQ , (1.1)

where µ is the chemical potential. In this work we focus on systems of this sort that
break boost invariance (like all condensed matter states [16]), time translations generated
by H, the internal charge Q, as well as another set of internal charges Qi. The modified
Hamiltonian H̄ is unbroken by construction. When Q does not commute with some of the
Qi’s, Goldstone theorem implies the existence of both gapless modes and gapped ones,1

whose gap, ω(k = 0) ∝ µ, is completely fixed nonperturbatively [10, 12]. Independently
of the presence of the gap, all Goldstone modes share a defining property: their scattering
amplitudes vanish with their 3-momentum — the so-called Adler’s zeros [18].2 In other
words, all Goldstone bosons are free when their 3-momentum vanishes. An effective field
theory (EFT) description of their dynamics should then focus on the regime of small 3-
momentum. For gapless modes this coincides with the regime of low energy, while for the
gapped ones it instead coincides with the regime of low kinetic energy or, equivalently,
low velocity.

The presence of both gapless and gapped modes, however, makes the piecing together
of an EFT approach not straightforward. This is immediately appreciated by considering
the process of annihilation of two gapped modes into two gapless ones; a process that is
generically allowed. Even if the spatial momentum of the incoming states approaches zero,
their total energy is of order µ, and so are the momenta of the final state quanta. Now, when
the underlying microscopic dynamics is strong, the gap scale µ should coincide, by simple
dimensional analysis, with the momentum scale where the gapless modes become strongly
coupled.3 In that case, while the amplitude is still suppressed at small initial momenta, the
emission and exchange of additional gapless modes will contribute O(1) relative corrections
to the total rate, thus making it practically incalculable. In other words the interaction
among slow gapped modes can lead to the production of very energetic gapless ones, beyond
the reach of the ordinary EFT description of their dynamics.

1Strictly speaking, nonrelativistic Goldstone theorem requires the existence of zero-momentum excita-
tions, but does not say anything about finite momentum ones. For instance, phonons in superfluids have a
finite width, which vanishes in the limit where their momentum goes to zero (see, e.g., [17]).

2Note that the presence of Adler’s zeros for gapless Goldstones is not always guaranteed due to possible
kinematic singularities, cf. [18]. On the other hand, the gap of the gapped Goldstones precludes these
singularities, and Adler’s zeros for them are always present.

3That is, for instance, the case in QCD, where the ρ mass parametrically coincides with the scale where
π interactions become strong.
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The question is then how to properly describe this state of affairs. On the one hand, the
gapped Goldstones are free at zero momentum/velocity, as dictated by symmetry, while on
the other, at arbitrarily small velocity, the processes involving them do not seem calculable.
Integrating out the gapped modes in favor of an ordinary EFT for the gapless ones, while
certainly doable, does not seem satisfactory, as it would preclude describing those aspects
of the dynamics that are dictated by symmetry (like the relation between the gap and the
chemical potential or the freedom of gapped modes at zero velocity). Relatedly that would
make the underlying symmetry breaking pattern not visible in the EFT.4 In this paper we
address the problem by constructing a proper EFT that allows for a more limited but sys-
tematic description of the gapped Goldstone dynamics. The construction is fully analogous
to the nonrelativistic EFT (NREFT) used, for instance, to describe positronium [20]. Like
in the positronium case, the price to pay is the existence of absorbitive (imaginary) terms
in the effective action [21, 22]. Within this NREFT approach, we shall illustrate how to
describe the dynamics in a systematic small momentum expansion.

Besides the above mentioned conceptual issues, understanding the consequences of
a spontaneously broken non-Abelian symmetry at finite density is also a question of phe-
nomenological relevance. Indeed, gapped Goldstones appear in many different contexts [14],
ranging from condensed matter systems [23–25], to QCD at finite isospin density in the
chiral limit [26–29]. Furthermore, they are also relevant in conformal field theories, where
one can use the state/operator correspondence to map operators with large internal quan-
tum numbers to finite density states [19, 30–33]. As such, gapped Goldstones appear in
the description of the spectrum of deformations of critical points in statistical physics.

In this paper we illustrate our ideas by focusing on a simple system with an SU(2)
symmetry fully broken by the finite density of one of its charges. The resulting spectrum
features a gapless and a gapped Goldstone, whose gap is precisely µ. In section 2 we
introduce a simple model that exhibits this symmetry breaking pattern and verify the
presence of Adler’s zero in the amplitudes for the gapped Goldstones. This will be our
benchmark for the rest of the paper. In section 3 we construct a nonrelativistic effective
field theory for gapless and gapped Goldstones at small 3-momentum, showing how their
interactions are constrained by the full symmetry group. Remarkably, such a construction
is applicable for any value of the chemical potential, even when it is of the same order
as the UV cutoff of the theory. In order to account for the gapped Goldstone’s decay or
annihilation, we argue that the NREFT must contain imaginary coefficients, which makes it
non-unitary. The lack of unitarity is simply due to the limited class of degrees of freedom
that make up our EFT, and is of course not a fundamental property. Power counting
and interactions in such a theory are analyzed in detail. Finally, in section 4 we discuss
the reasons why there is no remnant of the non-Abelian part of the broken symmetry at
energies much smaller than the chemical potential. In the Conclusions we comment on
possible applications of this NREFT, with particular attention to the case of a strongly
interacting conformal O(3) model.

4For instance in the case of a fully broken non-Abelian group G the gapless modes are purely described
by the spontaneous breaking of the Cartan subgroup of G [19], with seemingly no visible low-energy remnant
of the non-Abelian nature of the original group.
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2 A benchmark model: the linear triplet

In this section we present a simple model with internal SU(2) symmetry, admitting a finite
density state for one of the charges where SU(2) and time translations are broken down
to a diagonal subgroup, H × SU(2) → H̄. We study perturbations around such state,
identify the gapped Goldstone modes and examine the amplitudes for their scattering and
annihilation in the regime where their 3-momentum is small. The model is weakly coupled
and renormalizable, and hence all observables can be computed perturbatively. Because
of that, we will use it as the main example to match the effective theory developed in the
rest of the paper.

2.1 The model

Consider the following renormalizable Lagrangian for an O(3) triplet Φ in four spacetime
dimensions:

L = 1
2(∂Φ)2 − m2

2 Φ2 − λ

4 Φ4 , (2.1)

where λ > 0, and we do not make any assumptions on the sign on m2. The classical field
configuration that realizes the desired symmetry breaking pattern is

Φ0 = e−iµtQ3

φ0
0
0

 , φ2
0 = µ2 −m2

λ
> 0 , (2.2)

where (Qi)jk = −iεijk are the generators in the defining representation of SO(3). If m2 > 0
then spontaneous symmetry breaking happens only for µ2 > m2. The state described
by this configuration is indeed at finite density for the charge Q3, as one can check by
computing the corresponding Noether’s current. Moreover, since it depends explicitly on
time, this vacuum expectation value (VEV) breaks both boosts and time translations.5

On top of that, it also breaks the internal O(3) symmetry down to Z2 corresponding to
Φ3 → −Φ3, but preserves the combination H̄ = H + µQ3. This is then precisely a setup
where the charge at finite density does not commute with other broken charges.

Before studying the full spectrum, let us give a simple argument for the existence of
gapped Goldstones. Starting from the configuration (2.2) and performing, say, a small
rotation along Q1, one obtains another solution, where the third component of the triplet
oscillates with precisely frequency µ: δΦ3(x) = −φ0 sinµt. The existence of a mode with
energy µ when at rest is therefore dictated by SU(2). This is parallel to what happens with
a rotation generated by Q3, which instead ensures the existence of a gapless mode. At the

5Note that the VEV (2.2) also breaks Galilei boosts in the non-relativistic limit. This can be seen
in different ways. Most simply, since it singles out a particular reference frame, boosts must be broken
regardless on whether one is considering Lorentz or Galilei. Equivalently, one can notice that both groups
feature the same number of charges, while this theory preserves a smaller number of them. Or, more
explicitly, we have that, under a boost with velocity v, the phase transforms as ψ → ψ+ tv ·∇ψ− v·x

c2 ∂0ψ+
1
2
v2

c2 t∂0ψ + O(1/c4), and hence the chemical potential (µ ∼ mc2 [34]) transforms under non-relativistic
boosts (c→∞) as µt→ µt−mv · x+ 1

2mv
2t, making the VEV not invariant.
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same time, this provides an intuitive argument for why gapped Goldstones are free when
they are at rest: their zero-mode corresponds to nothing but a global transformation.6

The fluctuations around equilibrium can be conveniently parametrized in terms of
three real fields, ψ(x), θ(x) and h(x):

Φ(x) = e−i(µt+ψ(x)/φ0)Q3

φ0 + h(x)
0

θ(x)

 . (2.3)

The unbroken Z2 acts as θ → −θ. The Lagrangian then reads

L = 1
2(∂θ)2 − µ2

2 θ
2 + 1

2(∂ψ)2 + 1
2(∂h)2 + 2µhψ̇ − λφ2

0h
2 (2.4)

− λφ0h
(
h2 + θ2

)
− λ

4
(
h4 + θ4 + 2h2θ2

)
+ µ

φ0
h2ψ̇ + 1

φ0
h(∂ψ)2 + 1

2φ2
0
h2(∂ψ)2 .

Extracting the propagator from (2.4), one finds that, as expected, the spectrum of the
theory consists of

• A gapless Goldstone, π3, with dispersion relation

ω2
k = k2 + 3µ2 −m2 −

√
(3µ2 −m2)2 + 4k2µ2

= µ2 −m2

3µ2 −m2k
2 +O

(
k4

µ2

)
. (2.5)

• A gapped Goldstone, θ, with gap µ:

ω2
k = k2 + µ2 . (2.6)

• A radial mode, ρ, with gap m2
ρ = 6µ2 − 2m2 and dispersion relation:

ω2
k = k2 + 3µ2 −m2 +

√
(3µ2 −m2)2 + 4k2µ2

= 6µ2 − 2m2 + 5µ2 −m2

3µ2 −m2k
2 +O

(
k4

µ2

)
.

The masses of the gapless and the gapped Goldstone are fixed by symmetry and cannot
be renormalized by loop effects [12, 35]. Notice that due to the mixing term in (2.4), the
radial mode and the gapless one are interpolated both by ψ and h — which decouple only
for µ = 0.

Finally note that if chemical potential is large enough, µ2 & |m2|, the mass of the
radial mode and that of the gapped Goldstone can be of the same order, mρ ∼ µ. At
low energies, mρ sets the cutoff of the standard quasi-relativistic effective theory for the
Goldstone bosons. In the setup we are considering, the gapped Goldstones might hence lie
outside the regime of validity of such EFT.

6Note that, at infinite volume, the action of the global charges is not defined, and consequently neither
is the zero-mode. Strictly speaking one should work at finite volume, and add an infinitesimal perturbation
explicitly breaking the symmetry before taking the infinite volume limit [5, 9].
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2.2 Interactions of slow gapped Goldstones

Given the action (2.4) we can now compute the amplitudes for the two processes involving
the gapped Goldstone on the external legs: the θθ → θθ scattering and the θθ → π3π3
annihilation. We examine the amplitudes in the limit when the gapped Goldstones are slow.
The reason for doing that is twofold. First, we verify the existence of Adler’s zero in the
amplitudes when one of the gapped Goldstones is at rest. Note that the interaction strength
is not manifestly controlled by the gapped Goldstone’s 3-momentum. Consequently, when
the latter vanishes, the amplitude does not vanish diagram by diagram, but only once all
of them are taken into account. Second, we will use these results as our reference point to
match the NREFT we will build in the next sections. In particular, the second process does
not preserve the number of gapped Goldstones and, as anticipated in the Introduction, will
be included in the NREFT through an imaginary part for some of the effective coefficients.

Note that, because of the kinetic mixing between h and ψ, the calculation of the scat-
tering amplitude is rather tedious (but straightforward). We spare the reader the details.

Consider first the elastic scattering, θ(pa) + θ(pb)→ θ(pc) + θ(pd), in the limit where
the gapped Goldstones are slow. In the presence of a slow massive particle, it is customary
to power-count interactions in terms of its velocity, v � 1 [36], which is related to its
momentum and kinetic energy by p = µv and ε = ω − µ ∼ µv2. We then expand the
tree-level matrix element for the scattering in powers of velocity:

M =M(1) +M(2) + . . . , with M(n) ∼ O(p2n/µ2n) . (2.7)

The leading order contribution is O(v2) and is given by

M(1) = λ

µ2 −m2

[
(p 2
a − p 2

c )2

(pa − pc)2 + (p 2
a − p 2

d )2

(pa − pd)2 − (pa + pb)2
]
. (2.8)

Setting one of the momenta to zero, say pa = 0, this amplitude vanishes by conservation
of energy, which implies p2

b = p2
c + p2

d at the lowest order in velocity. Notice also that the
amplitude is bounded albeit discontinuous in the collinear limits, pa → pc or pa → pd.

For the purpose of matching with the NREFT it is also instructive to compute the
next order amplitude, which reads

M(2) = λ

µ2(µ2 −m2)

{
µ2

µ2 −m2

(
p 2
ap

2
b + p 2

c p
2
d

)
− µ2 +m2

4(µ2 −m2)(p2
a + p2

b)2

+ 7µ2 +m2

µ2 −m2 (pa · pb)2 + 2µ2

µ2 −m2 [(pa · pc)(pb · pd) + (pa · pd)(pb · pc)]

− 2µ2

µ2 −m2 (p 2
a + p 2

b )(pa · pb) (2.9)

+ (p 2
a − p 2

c )2

(pa − pc)2

[
3µ2 −m2

4(µ2 −m2)
(p 2
a − p 2

c )2

(pa − pc)2 −
1
2(p2

a + p2
b) + 1

2
p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

c )

]

+ (p 2
a − p 2

d )2

(pa − pd)2

[
3µ2 −m2

4(µ2 −m2)
(p 2
a − p 2

d )2

(pa − pd)2 −
1
2(p2

a + p2
b) + 1

2
p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

d )

]}
.
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Again one can check the existence of Adler’s zero when one of the 3-momenta vanishes.
Note also that s-channel exchange of the radial mode ρ gives terms whose expansion in
momenta is controlled by p2

m2
ρ−4µ2 ∝ p2

µ2−m2 . The expansion therefore breaks down for
momenta p ∼

√
µ2 −m2 or, alternatively, in the limit µ2 → m2 where the expectation

value φ2
0 ∝ (µ2 −m2) vanishes and the symmetry is restored.

Since the internal symmetry group is fully broken, there is no symmetry left to protect
the number of gapped Goldstones. Indeed, two of them may annihilate into two gapless
Goldstones via the process θ(pa) + θ(pb)→ π3(ka) + π3(kb). Since the gapped Goldstones
have energies ≥ µ, the final products of this annihilation have momenta and energies ≥ µ.
Consequently, in the regime µ ∼ mρ, this process is beyond the regime of applicability of
an ordinary low-energy EFT.

At the leading order in the gapped Goldstones’ velocities the annihilation amplitude
reads

M = λ

µ2 −m2

[
α (pa · pb) + β

(pa · k)(pb · k)
µ2

]
+O

(
p2(p · k)

µ4

)
, (2.10)

where at the lowest order ka = −kb ≡ k, with |k| = µ, and the dimensionless coefficients
α and β can be found in appendix A.1. Once again the amplitude vanishes when either
initial 3-momenta is set to zero. The leading order total annihilation cross section reads

σann '
1

2µ|pa − pb|

[
(γ + δ) (pa · pb)2

µ4 + δ
p2
a p

2
b

µ4

]
, (2.11)

where γ and δ are dimensionless coefficients again given in appendix A.1.

Intermezzo: gapped Goldstone decay

Notice that θ is odd under the unbroken Z2 symmetry. Processes with an odd number of
θ legs are thus forbidden, and θ is stable. The Z2 symmetry is an accident of the simple
model under consideration and not a structural property of gapped Goldstones. That is
appreciated, for instance, by showing that the addition of a new field allows to write Z2-
breaking terms and induce θ-decay—see appendix A.2 for an explicit construction using a
complex U(2) doublet. One finds that the decay amplitude vanishes when the 3-momentum
of θ approaches zero. The total decay rate for a gapped Goldstone with momentum p to
leading order in velocity reads

Γ = c
p2

µ
, (2.12)

where c is a dimensionless coefficient which depends on the couplings.
In summary, just like for standard Goldstones, the interaction strength of gapped

Goldstones is set by their spatial momentum. This is due to the fact that the zero mode
of θ is not dynamical, but corresponds to a symmetry transformation of the vacuum, as
discussed in section 2.1. More precisely, one can prove the existence of Adler’s zeros [5]
for the matrix elements of gapped Goldstones at rest [18]. Lastly, since no symmetry
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protects the number of gapped Goldstones, they may decay and/or annihilate into final
states with energies of order µ. When µ ∼ mρ such final states cannot be described within
any low-energy EFT, which is valid at energies much smaller than mρ itself. However, in
this very situation, the decay and annihilation processes happen within a short distance
scale. As we shall see, that allows to consistently describe these effects via local operators
in the NREFT. These operators are however non-Hermitian, which makes the NREFT
non-unitary.

3 The nonrelativistic EFT: the universal description of slowly moving
gapped Goldstones

In the presence of spontaneous symmetry breaking one expects the low-energy dynamics
to be effectively describable in terms of symmetries, and through a systematic derivative
expansion. Such a construction (also known in jargon as coset or CCWZ construction) is
expected to apply universally, i.e. purely on the basis of the symmetry breaking pattern and
independently of the details of the underlying microscopic physics. In the known examples,
it applies equally well to cases that purely involve the breaking of internal symmetries [3, 4],
and to cases that involve the breaking of the spacetime ones (see, e.g., [13, 37, 38]).

In the presence of gapped Goldstone bosons the situation can however be more in-
volved. That depends on the existence of two in principle distinguished scales: the chem-
ical potential µ, which controls the gap of some of the Goldstones, and the scale Λ which
controls the gap of non-Goldstone degrees of freedom, as well as the derivative expansion.7

The existence of a hierarchy, µ � Λ, should generically correspond to the existence and
smoothness of the limit µ→ 0, where the charge density goes to zero, Lorentz invariance is
recovered and the Goldstone bosons are the only light modes. An example of this situation
is given by the linear σ-model of the previous section for the choice m2 < 0, where the
symmetry is broken already at µ = 0, where the density vanishes. Generically, µ� Λ thus
corresponds to the situation where the internal symmetry is partially broken already at
zero density, and where the state with finite charge density (and the corresponding Lorentz
breaking) is fully described as a particular solution of the original relativistic Goldstone
EFT. Previous studies of the finite density systems based on the EFT methods [13, 14, 18]
have all focused on this case. In this setup the construction of the effective Lagrangian for
the Goldstones proceeds in a way similar to the Lorentz invariant case, where there is a well
defined derivative expansion, whose strength is controlled by Λ itself. For µ� Λ, besides
the counting of Goldstone degrees of freedom, there are no major structural novelties with
respect to the standard relativistic CCWZ construction.

The novelties appear when there is basically a single mass scale, µ ∼ Λ, which is indeed
a minimal option for a system at finite density. Again, intuitively this regime corresponds
to the situation where all symmetry breaking is fully dominated by the presence of finite
density. The limit µ → 0 cannot therefore be smooth. An example of this situation
is given by the linear σ-model in the regime µ2 � m2 > 0, where µ controls both the

7We are working under the simplifying assumption that the typical speed of the excitations around the
cut of scale Λ are O(1) so that there is no need to distinguish energy and momentum cutoffs.
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gap of the Goldstones and the gap of the radial non-Goldstone mode ρ. In fact, this
situation is unavoidably realized whenever the system is (approximately) scale invariant
with µ representing the dominant spontaneous source of breaking of scale invariance. This
class of systems includes the physically relevant cases of conformal field theories (CFTs)
in the large charge regime [19, 30–32], and finite density QCD with large isospin chemical
potential µI & ΛQCD [26–29].

The goal of this section is to present general, systematic and self-consistent rules for
constructing the effective Lagrangian. The relevant degrees of freedom will be the small
3-momentum modes: soft gapless and slow gapped. The first step will be to show ex-
plicitly how to organize the derivative expansion, which involves of course both time and
space derivatives, as an expansion in the 3-momentum. Secondly, we will have to prop-
erly interpret the result according to the rules of nonrelativistic EFTs. In particular, the
conservation of the number of gapped Goldstones will emerge as a formal symmetry of
the effective action. Processes where the gapped Goldstone number is not conserved will
then be described consistently, but in an inclusive manner only, by allowing for absorbitive
imaginary coefficients in the effective Lagrangian.

We shall focus on the general class of models where a global SU(2) is nonlinearly
realized at finite chemical potential µ. The triplet model discussed in the previous section
is a particular weakly coupled renormalizable example. It will serve as template and test
case for our results. Our discussion wants to be general, and applies in particular to the
case µ ∼ Λ. In fact, our EFT construction will even apply to the case where non-Goldstone
degrees of freedom with gap Λ � µ have been integrated out. However for economy of
thought we shall mostly stick to the case µ ∼ Λ when picturing our scenario. Under
our assumptions, any process where the number of gapped Goldstones is not conserved
necessarily leads to the production of states with momentum ∼ µ (either gapless Goldstones
or non-Goldstone states with gap less than µ) that lie outside the domain of validity of
the EFT. Our effective Lagrangian must thus necessarily be endowed with an effectively
conserved gapped Goldstone number. We will concretely see how this happens.

As specified in the Introduction, we are interested in systems which spontaneously
break an SU(2) internal symmetry, as well as time translations and boosts, leaving un-
broken the combination H̄ = H + µQ3. In general we could parametrize the degrees of
freedom of our EFT using the coset construction generalized to include spacetime sym-
metries [13, 37, 38]. This construction is illustrated in appendix B. We however find it
more convenient to employ an equivalent approach: we define our fields in terms of the
Lorentz-preserving SU(2) coset which involves three Goldstone fields, and then consider
a generic time-dependent solution which further breaks spacetime symmetries down to
spatial rotations, spatial translations and the modified time translation H̄ = H + µQ3.

Our dynamical variable just corresponds to a general SU(2) matrix, Ω(x), on which
the group acts on the left:

Ω(x) → gΩ(x) , g ∈ SU(2) . (3.1)

We can now choose local Lie parameters, the Goldstone fields, to parametrize Ω. We will
work with two different parametrizations, each showing advantages and disadvantages. The
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first parametrization, which we will name “Left”, is

Ω(χ, α) = eiχQ3eiα
Q+
2 +iα∗ Q−

2 ≡ eiχQ3 ΩL(α) , (3.2)

where χ and α ≡ α1 + iα2, represent the three real Goldstone scalars, and Q± ≡ Q1± iQ2.
Notice that ΩL parametrizes the coset SU(2)/U3(1), with obvious notation. The other
parametrization, which we dub as “Right”, is instead

Ω(χ, π) = eiπ
Q+
2 +iπ∗ Q−

2 eiχQ3 ≡ ΩR(π) eiχQ3 , (3.3)

with similar comments. The mapping between Left and Right parametrization is simply
given by π = eiχα.

3.1 Building the EFT with the left parametrization

The CCWZ prescription [3, 4] allows to construct an SU(2) invariant Lagrangian for the
Goldstone fields χ and α. Explicitly, the Maurer-Cartan one-form defines the covariant
derivatives of the Goldstones [38] as

Ω−1∂µΩ = i∂µχΩ−1
L Q3ΩL + Ω−1

L ∂µΩL

≡ iDµχQ3 + iDµα
Q+
2 + iDµα

∗Q−
2 , (3.4)

where

Dµχ = ∂µχ cos (|α|) + iα∗∂µα− iα∂µα∗

|α|2
sin2 (|α|/2) , (3.5)

Dµα = i∂µχα
sin (|α|)
|α|

+ 1
2∂µα

(
1 + sin |α|

|α|

)
+ α

2α∗∂µα
∗
(

1− sin |α|
|α|

)
. (3.6)

Then the most general SU(2) invariant Lagrangian for χ and α is an arbitrary function
of the covariant derivatives in (3.4) and ∂µ:

L = F [Dµχ,Dµα,Dµα
∗, ∂µ] , (3.7)

with spacetime indices contracted in a Lorentz invariant way.
We are interested in a setup where spacetime symmetries are spontaneously broken as

well. To this aim, we notice that the equations of motion deriving from (3.7) generically
admit a solution of the form

χ = µt , α = v , (3.8)

where v is a constant whose value depends on µ. This is particularly easy to show using
the Left parametrization (3.2). Indeed, the Euler-Lagrange equation for the field χ takes
the form

−∂µ
∂L

∂(∂µχ) + ∂µ∂ν
∂L

∂(∂µ∂νχ) + . . . = 0 , (3.9)
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which is automatically satisfied since the Lagrangian and its derivatives do not depend on
x on the ansatz (3.8). Similarly, the only nontrivial contribution from the equation for α is

∂L
∂α

= µ

{
−v
∗ sin(|v|)

2|v|
∂F

∂D0χ
+ 1

2

[
cos(|v|) + sin(|v|)

|v|

]
∂F

∂D0α

+v∗

2v

[
cos(|v|)− sin(|v|)

|v|

]
∂F

∂D0α∗

}
= 0 , (3.10)

where the derivatives of the Lagrangian are evaluated on the ansatz. This is an algebraic
equation determining the complex value of v ≡ v(µ).

It is convenient to perform a field redefinition of the form

Ω(χ, α) ≡ Ω(χ′, α′) exp
[
iv
Q+
2 + iv∗

Q−
2

]
(3.11)

to bring the solution (3.8) to the form

χ′ = µt , α′ = 0 . (3.12)

With the field redefinition (3.11), the covariant derivatives in (3.4) are a linear combination
of the ones for χ′ and α′, computed from Ω−1(χ′, α′)∂µΩ(χ′, α′). Hence, by redefining its
coefficients, the Lagrangian (3.7) takes an analogous form in terms of the fields χ′ and
α′, and we can work equivalently with the primed fields. The use of the primed variables
corresponds to the request of tadpole cancellation imposed in ref. [13].8 In the following
we shall drop the prime superscript.

The solution (3.12) spontaneously breaks time translations and boosts while being
invariant under the action of H̄. Therefore, to explicitly realize a symmetry breaking
pattern of the desired form it is enough to expand the generic Lagrangian in (3.7) around
the background (3.12).

Notice that in this way of proceeding we did not need to introduce Goldstone fields
for the broken boost generators. It is indeed known that, in order to realize spacetime
symmetries nonlinearly, one normally needs fewer Goldstones than the number of broken
generators [39]. In the procedure detailed in appendix B, where one introduces a coset
parametrizing the full spacetime symmetry group [13, 37, 38], the boost Goldstone bosons
are eliminated via an inverse Higgs constraint [40]. The final result is equivalent to the
simple construction presented above.

The field parametrization in eq. (3.2), expanded around the background (3.12), makes
clear the origin of the gap for the massive Goldstone. Indeed, as a consequence of the SU(2)
symmetry, the Goldstone fields admit a solution where χ(x) = µt and the α field oscillate
in time with frequency µ. To see this, it is enough to show that such a configuration is
generated by a symmetry transformation of the background (3.12). Acting with a rotation
generated by, say, Q1 on the coset element one gets

eiξQ1Ω(χ, α) = eiχQ3
(
e−iχQ3eiξQ1eiχQ3

)
ΩL(α)

= eiχQ3e
iξ

(
e−iχ Q+

2 +eiχ Q−
2

)
ΩL(α) ≡ eiχ̃Q3ΩL(α̃) .

(3.13)

8In ref. [19] it was wrongly concluded that tadpoles imply a deviation of the gap from µ. This wrong
conclusion has however no further consequence on the results there derived.
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When one acts on the background χ = µt and α = 0, the transformed field, α̃ = e−iµtξ, is
oscillating with frequency µ.

When spacetime symmetries are unbroken, the Goldstone fields transform with a con-
stant shift under an infinitesimal group transformation of the background. Standard rela-
tivistic EFTs describe the dynamics of slowly varying fields, corresponding to those config-
urations which are indistinguishable from a symmetry transformation at short distances.
The situation is quite different when considering a background of the form (3.12). Indeed,
we saw in eq. (3.13) that an SU(2) rotation can generate a configuration oscillating in time
with a frequency of the order of the cutoff of the theory. This is the main disadvantage of
the Left parametrization. Then, to proceed formulating the EFT, it is more convenient to
use the alternative field parametrization (3.3), for which the group action takes a different
form.

3.2 Building the EFT with the right parametrization

In the field parametrization (3.3), the background solution reads as in (3.12):

χ = µt+ π3 , π3 = π = 0 . (3.14)

However, the group action takes now a different form. As a result, a generic infinitesimal
SU(2) transformation acting on the background provides a solution of the form π3 =
constant and π = constant, precisely like in a Poincarè invariant coset. In analogy with
that case the EFT will thus be limited to the slowly varying field configurations, ∂π �
µπ , ∂π3 � µπ3, in the Right parametrization (3.3).

Notice that, despite π = constant being a solution, the field π describes a gapped mode
with frequency µ. To see this, recall that the gap is measured by the action of the unbroken
generator of time translations: H̄ = H + µQ3. It is then possible to verify that under the
action of H̄, the field acquires a phase proportional to µ: π(t,x)→ e−iµδtπ(t+δt,x). Thus,
in this parametrization, low frequency modes for the field π are associated with slowly
moving gapped Goldstones. The EFT thus consists of modes with small 3-momentum,
and with eigenvalues of H̄ = H + µQ3 around respectively 0 for π3 and µ for π. Modes
that do not satisfy these requirements should be thought as having been integrated out.

Because of the unusual transformation property of the field π under the unbroken time
translations, the Lagrangian (3.7), written in the Right parametrization, is correspondingly
unusual: it is explicitly time dependent when expanded in fluctuations around (3.12). To
see this explicitly, let us compute the Maurer-Cartan one-form. Using (3.3), we write it as
follows

Ω−1∂µΩ = e−iχQ3Ω−1
R ∂µΩRe

iχQ3 + i∂µχQ3

= e−iχQ3

(
idµπ

Q+
2 + idµπ

∗Q−
2 + iAµQ3

)
eiχQ3 + i∂µχQ3

= i

(
e−iχdµπ

Q+
2 + eiχdµπ

∗Q−
2 +DµχQ3

)
. (3.15)
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Here dµπ and Aµ are the covariant derivative and the connection for the SU(2)/U3(1) coset,
given by

dµπ = π
π∗∂µπ − π∂µπ∗

2|π|3
sin
(
|π|
)

+ π
π∗∂µπ + π∂µπ

∗

2|π|2
, (3.16)

Aµ = i
π∗∂µπ − π∂µπ∗

|π|2
sin2 (|π|/2) . (3.17)

The full SU(2) covariant derivatives (3.4) are written in terms of these as

Dµα = e−iχdµπ , Dµχ = ∂µχ+Aµ . (3.18)

By eqs. (3.15)–(3.18) a generic invariant Lagrangian, through the factor eiχ, contains terms
that explicitly depend on time on the background. This seems a rather unpleasant property.
However one must keep in mind that our EFT only contains low frequency/low momentum
modes (∂π � µπ , ∂π3 � µπ3). Then, by simple Fourier analysis, Lagrangian terms
involving a non-trivial power of eiχ integrate to zero in the action, as its fast oscillation
cannot be compensated by any finite combination of EFT modes. Only terms featuring no
power of eiχ survive. These are invariant under an emergent U(1) symmetry, Uπ(1), acting
as dµπ → eiξdµπ,9 which is nothing but the particle number conservation of nonrelativistic
theories (see e.g. [41]). As typical of a nonrelativistic limit, this property emerges naturally
after factoring out the mass contribution from the time evolution of the gapped fields, as
we did switching from the Left to the Right parametrization.

The emergence of this U(1) symmetry does not allow to describe processes where the
number of gapped Goldstones is changed, such as decay or annihilation. Physically this
is because they necessarily feature modes with momentum ∼ µ in the final state, outside
the regime of validity of the effective theory. As a consequence the resulting nonrelativistic
EFT cannot be unitary. Indeed, through the optical theorem, these processes give rise
to imaginary parts in the gapped Goldstone propagators and matrix elements, which can
only be matched in the nonrelativistic EFT by allowing for imaginary parts in the Wilson
coefficients [22]. We will discuss this matching in some detail for the linear triplet model
in the following sections.

We would now like to expand the Lagrangian (3.7) in a series of higher derivative terms.
In order to power count, it is useful to indicate by ∂s � µ the small derivatives of our
EFT modes. More precisely, the spacial part ∂ obviously represents the small momentum
for both π3 and π, while ∂t, represents respectively energy and kinetic energy for π3 and
π. Remember indeed that in the Right parametrization we have in practice subtracted µ

from the oscillation frequency of π excitations.
The parametrization (3.3) shows that the naïve derivative expansion must be reorga-

nized when working around the typical background we are interested in. Consider, in fact,
the derivative of the Maurer-Cartan form:

∂µ
[
Ω−1∂νΩ

]
= −i∂µχ

[
Q3,Ω−1∂νΩ

]
+ e−iχQ3∂µ

(
Ω−1
R ∂νΩR

)
eiχQ3

+ i∂µ∂νχQ3 .
(3.19)

9This coincides with the U(1) generated by the action of Q3 on the right of the coset.

– 13 –



J
H
E
P
0
2
(
2
0
2
1
)
0
6
8

The last two terms are genuinely suppressed by two EFT derivatives, O(∂2
s ). However,

around the background χ = µt, the first term counts as a one-derivative term, O(µ∂s),
unsuppressed with respect to µΩ−1∂νΩ. This shows that some reorganization of terms is
needed in order to write the Lagrangian in a manifest expansion in powers of ∂s. Notice
for that purpose that the first term in (3.19) is not a new independent object; instead, it is
proportional to the commutator of Q3 with the Maurer Cartan form (3.4). This indicates
how to proceed: one can simply subtract the first term on the right hand side of eq. (3.19),
so that the remaining terms are O(∂2

s ). Although this term is not SU(2) invariant, there
is a simple SU(2) invariant Lorentz vector that is proportional to ∂µχ at linear order, i.e.
Dµχ. We therefore can define a nonrelativistic derivative in the following way:

∂̂µ ≡ ∂µ + iDµχ
[
Q3, ·

]
, (3.20)

where by
[
Q3, ·

]
we mean the action of the commutator and the derivative is meant to

act on the Maurer-Cartan form.10 By its definition, the action of any power of ∂̂ on the
Maurer-Cartan form is suppressed by the corresponding power of ∂s:

∂̂µ1 · · · ∂̂µn
[
Ω−1∂νΩ

]
� µ ∂̂µ1 · · · ∂̂µn−1

[
Ω−1∂νΩ

]
. (3.21)

The action on the covariant derivatives of (3.18) reads:

∂̂µDνχ = ∂µDνχ , ∂̂µDνα = (∂µ + iDµχ)Dνα = e−iχ (∂µ + iAµ) dνπ. (3.22)

Since the second term in eq. (3.20) is not a new object, formulating the EFT in terms
of ∂̂ just amounts to rearranging the terms in the action so as to make the expansion in
powers of ∂s manifest. The new derivative allows us to define a consistent power counting
in the small spatial momentum for both the gapless and gapped Goldstones.

We remark that eq. (3.20) is not the only possible choice for the definition of the
nonrelativistic derivative. For instance, it is possible to multiply Dµχ by an arbitrary
function of

√
DµχDµχ/µ without affecting the property (3.21).

In summary, to construct an effective action for the Goldstones that is invariant under
the full symmetry group SU(2)×Poincarè, and that has a consistent expansion in the limit
of slow gapped Goldstones one needs to (i) use the coset construction to build terms that
are manifestly invariant under the unbroken group, (ii) consider only operators that are
invariant under an additional Uπ(1) particle conservation symmetry, and (iii) construct
higher derivative terms using the nonrelativistic covariant derivative (3.20). This recipe
can be generalized to different symmetry breaking patterns.

At the lowest derivative order, one finds three invariants under Lorentz and Uπ(1):
DµχD

µχ,
∣∣DµχD

µα
∣∣2 and DµαD

µα∗. It is convenient to organize them in terms of opera-
tors whose expectation value vanishes on the background (3.12). To match to the spacetime

10Formally, eq. (3.20) corresponds to the covariant derivative for an SU(2) gauge group acting on the
right of the coset (3.3), with a gauge connection given by AIµ = δI3Dµχ.

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
0
6
8

coset construction reported in appendix B, we reorganize them in the following way:

∇0π3 ≡
√
DµχDµχ− µ ,

∣∣∇0α
∣∣2 ≡ ∣∣DµχD

µα
∣∣2

DνχDνχ
=
∣∣Dµχd

µπ
∣∣2

DνχDνχ
,

∣∣∇iα∣∣2 ≡ ∣∣DµχD
µα
∣∣2

DνχDνχ
−DµαD

µα∗ =
∣∣Dµχd

µπ
∣∣2

DνχDνχ
− dµπ dµπ∗ .

(3.23)

At the leading order in derivatives, the effective nonrelativistic Lagrangian then takes
the form:

Leff = c(1)µ3∇0π3,+c(2)
1 µ2(∇0π3)2 + c

(2)
2 µ2|∇0α|2 − c(2)

3 µ2|∇iα|2 +O
(
µ∂̂3

)
. (3.24)

The action up to the fourth order in derivatives is given in appendix C.1. In the next
sections we discuss the degrees of freedom in this EFT and illustrate the power counting
by calculating several sample processes.

3.3 The NREFT to quadratic order

Let us expand the Lagrangian (3.24) to quadratic order in the fields:

Leff ⊃c
(2)
1 µ2(∂0π3)2 − 1

2c
(1)µ2(∇π3)2 + 1

4c
(1)µ3 [iπ∗∂0π + c.c.]

− c(2)
3 µ2|∇π|2 + c

(2)
2 µ2 |∂0π|2 .

(3.25)

We focus on configurations with small derivatives. From eq. (3.25) one finds that π3
interpolates a gapless mode with dispersion relation

ω2
k = c2

sk
2 +O

(
k 4/µ2

)
, c2

s ≡
c(1)

2c(2)
1

. (3.26)

The quantization of π3 then proceeds as usual, i.e.

π3(x) = cs

µ
√
c(1)

∫
d3k

(2π)3√2ωk
ake
−iωkt+ik·x + h.c. , [ak, a†p] = (2π)3δ3(k − p) . (3.27)

To quantize the π field, we notice that the last term in (3.25) contains two time derivatives
and can be treated as a higher derivative perturbation of the third one, which contains
only one. Indeed, π has the kinetic term of a nonrelativistic field and is quantized as

π(x) =
√

2
c(1)µ3

∫
d3p

(2π)3 bpe
−iεpt+ip·x , [bp, b†k] = (2π)3δ3(p− k) , (3.28)

with dispersion relation given by

εp = cm
p2

2µ +O
(
p 4/µ3

)
, cm ≡

4c(2)
3

c(1) . (3.29)

As commented before, due to its transformation properties under H̄, π really is a gapped
field. The ladder operator b†p then creates a gapped Goldstone state with energy Ep =
µ+ εp.11

11For the sake of the discussion, we are momentarily considering a theory in which the gapped Goldstone
cannot decay.
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The nonrelativistic complex field π only contains annihilation operators (and π∗ con-
tains only creation ones) and thus propagates one degree of freedom.12 As anticipated, the
present effective theory describes a gapless mode and a nonrelativistic gapped mode. As a
consistency check, one can see that including higher derivative corrections, such as the last
term in (3.25) or terms constructed with (3.20), generates both new poles as well as cor-
rection to the dispersion relation (3.29). The new poles generically appear for frequency
or momenta of order µ and are outside the regime of validity of our EFT; they should
therefore be discarded. The corrections to the dispersion relation are instead higher order
in the low-momentum expansion, showing that these additional terms can consistently be
considered as perturbations in the EFT.

3.4 Gapped Goldstone number conservation and non-unitarity

The NREFT enjoys a Uπ(1) invariance, π → eiξπ, corresponding to particle number con-
servation for the gapped Goldstones. As already remarked, this does not correspond to a
symmetry of the microscopic theory, but it is rather a consequence of the small momentum
and energy window which characterizes the degrees of freedom of our EFT. In particular
the EFT does not contain degrees of freedom with energy and momentum such that the π
can decay or annihilate into them [41]. Hence the conservation of π-number. On the other
hand, in the full theory these processes will in general exist, with final states involving π3
modes with momentum ∼ µ, and also, possibly, other non-Goldstone degrees of freedom
with gap ∼ µ.

The EFT cannot describe the π decay or annihilation processes exclusively, since the
final states have short wavelengths. It can however describe them inclusively. Indeed,
by the optical theorem, these processes give rise to imaginary parts in the π propagator
and matrix elements, which can be matched in the NREFT by assigning proper imaginary
parts to the Wilson coefficients. For instance, an imaginary part for the “kinetic energy
coefficient” cm corresponds to a decay width of the gapped Goldstone:

Γp = −2 Im [Ep] = −Im [cm] p
2

µ
. (3.30)

Notice that the above momentum dependence matches the explicit result we found in
eq. (2.12). The resulting theory is therefore non-unitary and is sometimes called a complex
NREFT [22].

Physically, annihilation and decay can be matched by means of local terms since these
processes are determined by short distance dynamics. More precisely, to match the imag-
inary parts of the propagator or scattering amplitudes for a slow π of the full theory via
local terms in the NREFT, requires the latter to be analytical in the spatial momentum.

12Alternatively one could use the equations of motion to eliminate one of the two real components of the
field α = α1 + iα2 of the Right parametrization (3.2) in terms of the other. Doing so would change the
description of the gapped Goldstone mode from a complex field with one time derivative kinetic term to
a two derivatives real scalar field. To leading order in derivatives, this procedure formally coincides with
imposing an extra inverse Higgs constraint of the form Re[∇0α] = 0. The same inverse Higgs constraint,
but with a different physical interpretation, was discussed in [13] for the case in which the EFT cutoff is
much larger than the chemical potential, Λ� µ. We provide a more detailed discussion in appendix B.1.
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This is expected to be true as long as the relevant kinematic region is separated by a finite
gap from any excitation which was not included in the NREFT.

Notice also that since the zero gapped Goldstone sector, π = 0, of the theory reduces
to an EFT of a single gapless superfluid Goldstone, which should be unitary, the effective
coefficients that multiply operators which do not contain Dµπ should always be real. Con-
sistently, we will see that this is the case when we will match our EFT to the linear triplet
in the next section.

3.5 Interactions and power counting

In this section we describe some interaction processes arising in the NREFT we built.
In particular, we focus on two peculiar aspects: power counting and non-unitarity. The
techniques described here are heavily inspired by nonrelativistic QED (NRQED) [20] and
nonrelativistic QCD (NRQCD) [42], which describe the interactions of heavy fermions in
the presence of light gauge fields. Like in those theories, we will find convenient to power
count amplitudes in powers of the velocity v ∼ p/µ of the heavy field.

Consider first the expansion of the covariant derivatives (3.18),

Dµπ3 = ∂µπ3 + iπ∗∂µπ − iπ∂µπ∗

4 − |π|2 iπ
∗∂µπ − iπ∂µπ∗

48 +O(π6) ,

Dµπ = e−iχ
[
∂µπ + iπ

iπ∗∂µπ − iπ∂µπ∗

12 +O(π5)
]
.

(3.31)

We see that all terms in the action display derivatives acting on all the fields, making
manifest the vanishing of the interaction strength with the 3-momentum, or equivalently
with the gapped Goldstone velocity, in agreement with the results in section 2.2.

In deriving the dispersion relation (3.29), we realized that time and space derivatives
of the on-shell gapped Goldstone field scale differently — namely ∇π ∼ µv and ∂0π ∼ µv2

— and some care is thus required in power counting.13 Indeed, even after subtracting
the mass contribution, a simple power counting in derivatives ∂/µ does not distinguish
between v and v2, retaining more terms than needed at a fixed order in v. As in NRQED
and NRQCD, the power counting in velocity is complicated by the presence of states with
two different forms of dispersion relation [43, 44].

We will now match the results of our NREFT to those of the model presented in
section 2. In particular, this means the gapped Goldstone is stable and its dispersion
relation real, which allows us to put its external legs on-shell.

To facilitate power counting it is convenient to split each field in components with
support on different regions of phase space [36, 44–46]. In particular, we write π3 =
πs3 + πp3 + πus3 and π = πs + πp + πus, where the labels stand respectively for soft, potential
and ultrasoft. We define the different components according to the scaling of their energy

13For processes involving only the gapless mode the power counting is similar to the relativistic case.
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and momemtum (i.e. time and space derivatives) with velocity:14

soft: (ω,k) ∼ (µv, µv) ,
potential: (ω,k) ∼ (µv2, µv) ,
ultrasoft: (ω,k) ∼ (µv2, µv2) .

(3.32)

Note that on-shell gapless Goldstones are contained in both πs3 and πus3 , while on-shell
gapped Goldstones are contained in πp. The potential mode for π3, as well as the ultrasoft
and soft modes of π, which are well within our EFT, are instead never on-shell. Indeed,
they can be considered as auxiliary fields that can, in principle, be integrated out. This is
customarily done in commonly studied non-relativistic EFTs, such as NRQCD, at the price
of introducing non-local interaction vertices between the on-shell modes [44]. However, in
our case, since the nonlinear action of the internal SU(2) group mixes the different modes
of the Goldstone fields, we prefer to keep track of all the modes in the EFT, both the
on-shell and the off-shell ones, and work with a local Lagrangian.15

Our classification (3.32) thus differs from the standard NRQCD language, where the
off-shell modes for the massive field never appear. Moreover to simplify the notation we
have classified modes as soft, potential and ultrasoft purely according to the scaling of
their energy and momentum, rather then by the scaling of their propagator. The result
is that the propagators of πs3, π

p
3 , π

us
3 scale respectively like 1/v2, 1/v2, 1/v4 while those of

πs, πp, πus respectively scale like 1/v, 1/v2, 1/v2.
The rules are now the following: for each process under consideration one has to

determine which field is participating in the different vertices of the diagrams, perform the
expansion of π and π3 mentioned above, and determine what are the relevant interaction
terms at the given order in velocity. As already mentioned, the propagators of gapless and
gapped Goldstones will feature different scalings in v and thus the resulting power counting
will differ.

For leading order applications, it might still be useful in practice to first extract Feyn-
man rules in a ∂/µ expansion and perform v counting only afterwards. In appendix C.2
we provide a list of Feynman rules to leading order in ∂/µ.

Let us start discussing the π(pa) + π(pb)→ π(pc) + π(pd) scattering at tree-level. In
the NREFT only contact interactions and π3 exchange diagrams contribute to this process,
as in figure 1. By momentum conservation, the exchanged π3 is an off-shell potential field.
Given that, the leading O(v2) amplitude is fully determined by the vertices of the leading

14Note that for off-shell Goldstones there is a fourth possibility, namely (ω,k) ∼ (µv, µv2); this never
appears in scattering processes [44], but might be relevant in other contexts. For example, when an external
probe coupled to the system releases finite energy but almost vanishing spatial momentum [47].

15The situation bears some similarity with the case of supersymmetry. For an action that includes the
auxiliary fields, supersymmetry is manifest and the field transformations are independent of the Lagrangian.
Upon integrating them out, supersymmetry is preserved, but the field transformations depend on the
Lagrangian itself. Similarly, integrating out the off-shell modes from the Lagrangian (3.24) makes the
SU(2) transformations of the remaining fields coupling-dependent.
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Figure 1. Diagrams contributing to ππ → ππ at tree-level.

Lagrangian (3.24) in the derivative expansion:

Leff ⊃ −
ics

2µ2
√
c(1)

(
πp ∗∇πp − πp∇πp ∗

)
·∇πp3

+ (2cm − 3)
24c(1)µ4

(
πp ∗∇πp − πp∇πp ∗

)2 − |πp|2

12c(1)µ3
(
πp ∗π̇p − πpπ̇p ∗

)
,

(3.33)

where we canonically normalized fields as π3 → cs
µ
√
c(1)π3 and π →

√
2

c(1)µ3π. To order
O(v2) the corresponding matrix element reads

M(1)
NR = 1

4c(1)µ4

[(p 2
a − p 2

c )2

(pa − pc)2 + (p 2
a − p 2

d )2

(pa − pd)2 + (2cm − 3) (pa + pb)2

+ 2(1− cm)
(
p 2
a + p 2

b

) ]
.

(3.34)

Once the coefficient cm is fixed by the dispersion relation (3.29), this only depends on the
overall coefficient c(1). Below we will match its value to the linear triplet model. Eq. (3.34)
correctly vanishes in the limit where any of the gapped Goldstones is at rest, again in
agreement with [18]. One can similarly compute the O(v4) correction. To this end one has
to consider the action up to the fourth order in covariant derivatives, which is presented
in appendix C.1. The resulting correction to the amplitude reads:

M(2)
NR = 1

µ6[c(1)]2

{(
b1 −

c(1)c2
m

16c2
s

)
(p2
a + p2

b)2 + c(1)

8

(
c2
m

c2
s

− c(2)
m

)(
p 2
ap

2
b + p 2

c p
2
d

)
+ b2(p 2

a + p 2
b )pa · pb + b3(pa · pb)2

+ b4 [(pa · pc)(pb · pd) + (pa · pd)(pb · pc)] (3.35)

+ (p 2
a − p 2

c )2

(pa − pc)2

[
c(1)c2

m

16c2
s

(p 2
a − p 2

c )2

(pa − pc)2 − b1(p2
a + p2

b) + c(1)c
(2)
m

8cm
p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

c )

]

+ (p 2
a − p 2

d )2

(pa − pd)2

[
c(1)c2

m

16c2
s

(p 2
a − p 2

d )2

(pa − pd)2 − b1(p2
a + p2

b) + c(1)c
(2)
m

8cm
p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

d )

]}
.

Here c2
s is defined in (3.26) and c(2)

m is defined by the gapped Goldstone dispersion relation
at subleading order (3.29)

εp = cm
p2

2µ − c
(2)
m

p4

8µ3 +O
(
p6/µ5

)
. (3.36)
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We also introduced four independent coefficients, b1, b2, b3 and b4, given in terms of the
Lagrangian parameters in appendix C.3. One can show that loop corrections do not con-
tribute to the matrix element at this order — see appendix C.4.

A non-trivial check of our NREFT construction is obtained by comparing the above
results to those obtained in section 2 for the benchmark model. Eqs. (2.6), (2.8) and (2.9)
should match respectively eqs. (3.36), (3.34) and (3.35). The matching beautifully works,
fixing16

1
c(1) = λµ2

µ2 −m2 , cm = c(2)
m = 1 , c2

s = µ2 −m2

3µ2 −m2 , (3.37)

b1
c(1) = 1

4 ,
b2
c(1) = m2 + µ2

4(m2 − µ2) ,
Re[b3]
c(1) = 7µ2 +m2

4(µ2 −m2) ,
Re[b4]
c(1) = µ2

2(µ2 −m2) .

Notice in particular that the dispersion relation fixes cm = 1 at lowest order, which imme-
diately gives eq. (3.34) the same momentum dependence as (2.8).

This is however not the end of the story. As already discussed, our benchmark model
allows for the process in which two gapped Goldstones annihilate into two gapless ones.
The corresponding amplitude is outside the regime of applicability of the NREFT. Indeed,
by energy conservation, the final state consists of modes whose 3-momentum is of the
order of the mass of the gapped Goldstones µ, while, as explained, what we have built is
an EFT valid for processes in which all the external legs are characterized by 3-momenta
much smaller than the chemical potential. Nonetheless, because of the optical theorem,
the annihilation rate gives rise to an imaginary part in the 2 → 2 scattering amplitude of
slow gapped Goldstones.17 That in turn can be reproduced in the NREFT by assigning an
imaginary part to the Wilson coefficients, which then retain some information about the
annihilation process. In conclusion, while our EFT is so constructed as to properly realize
the symmetry on low momentum amplitudes, the existence of processes that involve large
momenta in the final state implies that it cannot be unitary.

We expect the above statements to be true in general, for both weakly and strongly
coupled theories. However an explicit check can only be given in the former case. Fo-
cussing on the weakly coupled model of section 2, we will now show that, by perturbatively
matching the UV and IR descriptions, one does obtain the expected structure of the Wilson
coefficients, imaginary parts included.

Notice first that unitarity of the theory at π = 0 implies that the coefficient c(1) and
the sound speed c2

s of the gapless Goldstone are real — see eq. (3.25). Furthermore, the
accidental Z2 symmetry, which forbids gapped Goldstone decay in the linear triplet model,
implies that the coefficients of the dispersion relation (3.36) and, more in general, of all
the operators contributing to amplitudes with only one (slow) gapped Goldstone and an

16In the matching one must consider that in the triplet model we used the relativistic normalization
of states, while in the NREFT (see (3.28)) we used the nonrelativistic one which differs by a momentum
dependent factor: |p, µ〉triplet =

√
2Ep |p, µ〉NREFT.

17The imaginary part induced by elastic scattering itself can be computed within the NREFT and it is
of higher order in the velocity.
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Figure 2. Diagrams contributing to π3π → π3π at tree-level.

arbitrary number of (soft) gapless modes in the initial and final states must be real.18

From inspection of eqs. (C.6), (C.17) and (C.18), this implies that cm, c(2)
m , b1 and b2

are real as well. Overall, we find that the scattering amplitude must be real at leading
order in velocity, while at the subleading order we can use only the imaginary parts of
the coefficients b3 and b4 to match the annihilation contribution. To check that is enough,
notice that from the annihilation cross section (2.11) of the UV theory one finds

Im [Melastic] ' γ
(pa · pb)2

µ4 + δ
(pa · pc)(pb · pd) + (pa · pd)(pb · pc)

µ4 . (3.38)

Non-trivially, this contribution is local and it precisely has the structure to be matched in
the NREFT via an imaginary part for b3 and b4:

Im[b3]
[c(1)]2

= γ

4 ,
Im[b4]
[c(1)]2

= δ

4 . (3.39)

As one last example, to further clarify the procedure of power counting in velocity,
consider the scattering π(pa) + π3(k1) → π(pb) + π3(k2). The relevant diagrams are
presented in figure 2. As before, we take all external 3-momenta of order O(µv). One can
see that momentum conservation requires the intermediate π3 of the second diagram to be a
potential mode, and the intermediate π of the last two to be soft. One then needs to isolate
the relevant interaction terms in the effective Lagrangian, after which it is straightforward
to extract the Feynman rules and compute the matrix elements.

One finds that the leading order result is O(v3) and receives contribution from all
diagrams in figure 2 but the second, which starts contributing at O(v4). The matrix
element reads19

M = 1
2µ4c(1)

1
cs|k1|

{
(c2
s − 1)c2

sk
2
1(k1 + k2) · (pa + pb)

+ 2c2
s [(pa · k2)(pb · k1)− (pa · k1)(pb · k2)]

}
+O

(
v4
)
.

(3.40)

This expression vanishes when any of the momenta approaches zero.
A final comment concerns the calculation and power counting of loop diagrams. As

well-known from NRQCD, the formulation of the NREFT at the quantum level is more
18This is because, in the linear triplet, the only possible intermediate states contributing to all possible

cuts of such amplitudes are those included in the NREFT.
19Notice that to leading order in v energy conservation implies |k1| = |k2|.
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subtle than in the standard relativistic case, even when using a mass independent regulator,
like dimensional regularization. A consistent treatment, first given in [45, 46] and refined
in [48], relies crucially on the splitting into soft, potential and ultrasoft modes performed
in (3.32). The prescription explained there applies straightforwardly to our case. We review
some details and provide few examples in appendix C.4.

4 Integrating out the gapped Goldstones: a less effective field theory

As we already discussed in the Introduction, in quantum field theory with unbroken
Poincaré symmetry, the presence of Goldstone modes in the IR has very nontrivial con-
sequences. In particular, Goldstones associated to a coset G/H signals the existence of
a symmetry group G × G′ in the UV. G is spontaneously broken, and G′ is any other
distinct group which either is trivial or such that all the states charged under it are heavy
and absent in the G/H effective theory. This is for instance the case in QCD, where
G = SU(Nf )L × SU(Nf )R, with Nf the number of light quarks, is broken down to the
isospin group H = SU(Nf )V , and the corresponding Goldstones are the light mesons. In
this case G′ is the baryon number, U(1)B, which is unbroken and whose lightest charged
state is the proton.

One might then wonder what happens to our finite density system when the involved
energies, as measured by the unbroken Hamiltonian H̄ = H + µQ3, are much smaller than
the chemical potential µ. One could be tempted to treat the gapped Goldstones just like
protons in QCD. However, while, on the one hand, they can be integrated out in the EFT
at energies E � µ, on the other they are needed to non-linearly realize the full non-Abelian
symmetry. Is there any hint left of the original symmetry once we have integrated them
out? In other words, is the information about the non-Abelian nature of the group lost at
low energies, similarly like for U(1)B in QCD?

It is easy to show that in the zero-π sector (π = 0 in the action), the invariants built out
of the coset construction reduce to those of a simple Abelian U(1) group, i.e. Dµπ = 0 and
Dµχ = ∂µχ. It cannot be otherwise, since the internal SU(2) algebra cannot be nontrivially
realized on a single field. Physically, when we integrate out the gapped Goldstone we specify
boundary conditions for it to vanish at infinity. In our case that clearly breaks the non-
Abelian symmetry since, as argued in section 2.1, symmetry transformations produce a
fast oscillating mode that does not decay at infinity.

That is also evident in the linear triplet model (2.4). At low energies one can, in fact,
integrate out explicitly the heavy fields h(x) and θ(x). At tree level the resulting effective
Lagrangian is

Leff = 1
2

(
1 + 2µ2

λφ2
0

)
ψ̇2 − 1

2(∇ψ)2 + µ

λφ3
0
ψ̇(∂ψ)2 +O

(
∂4/µ4

)
, (4.1)

which is a Lagrangian for the Goldstone boson of an ordinary (Abelian) relativistic super-
fluid, but no other symmetry is manifest.20

20In fact, due to the Z2 symmetry, integrating out θ at tree level accounts to setting it to zero in the
Lagrangian (2.4), which turns it into an O(2) doublet theory.
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To clarify this situation, it is helpful to think in terms of the Hilbert space of the
low-energy EFT for the gapless Goldstone only. The latter is obtained by restricting the
Hilbert space H of the full theory to the subspace HEFT specified by the condition:

|ψ〉 ∈ HEFT ⇐⇒ 〈ψ|H̄|ψ〉 = 〈ψ|H + µQ3|ψ〉 � µ . (4.2)

Despite the theory being SU(2) invariant, the presence of Q3 in the modified Hamiltonian
that we use to specify the configurations that are part of the EFT explicitly breaks the
symmetry. As a concrete illustration, consider a free quantum mechanical particle living
on a sphere, with Lagrangian L = I

2

(
θ̇2 + sin2 θ φ̇2

)
, where I is the moment of inertia.

The states of the theory are organized in SO(3) multiplets, |`,m〉, with energy E` =
`(`+ 1)/2I. The quantum number ` specifies the representation and m is the value of the
angular momentum along the z-axis: −` ≤ m ≤ `. If we take m to be fixed, negative
and large, the state with minimum energy is |`,m = −`〉 and the chemical potential is
µ = ∂E`=−m/∂m ≈ m/I [19]; any other state in the same SO(3) multiplet has a gap of at
least |µ| ≈ |m|/I as measured by H̄. Thus, for every fixed value of the third component of
the angular momentum, the low-energy EFT is made of the single state |`,m = −`〉, which
is not invariant under the full rotation group. At the Lagrangian level, the restriction to
such states corresponds to “integrating out” the polar angle, θ, considering an effective
theory for the azimuthal angle, φ, spinning around the z-axis. Indeed, a single excitation
of θ describes a state with total angular momentum increased by a unity, ` + 1, but with
the same projection along the z-axis, m = −`. This corresponds to a state with gap |µ|
at large angular momentum [19]. This is analogous to the gapped Goldstone, providing a
simple illustration of its key role in the nonlinear realization of the full symmetry group.21

The condition in eq. (4.2) implies that the theory without the gapped Goldstone can
only be used to compute correlators whose long-distance behaviour is determined by inter-
mediate states with small energy under H̄. However, since time evolution is still controlled
by the Hamiltonian H, not all correlation functions having a non-trivial long-distance limit
satisfy this property. In other words, the operators corresponding to such correlation func-
tion cannot be matched in the low-energy EFT for the gapless Goldstone only, and they
would simply be lost. In contrast, if one employs the NREFT we described so far, the
previous correlators can be consistently reproduced within its regime of applicability. As
an illustration, consider the time component of the Noether currents for the Q+ and Q−
generators of SU(2). It is clear that, in an EFT that only contains the gapless Goldstones,
such operators cannot be matched. Indeed, in such a theory, only the Abelian subgroup
of SU(2) is realized nontrivially, and the Noether currents associated to Q± cannot be
computed. On the other hand, working in the NREFT, in which the full non-Abelian
symmetry group is realized, it is straightforward to compute them from Noether theorem
and, at leading order in fields and derivatives, we find

J0
−(t,x) ' −ic(1)µ3π(t,x) , J0

+(t,x) ' ic(1)µ3π∗(t,x) . (4.3)
21In field theory (at infinite volume) the action of the spontaneously broken charges on the Hilbert space

of the theory is not well-defined and we cannot classify state according to representation of the broken group;
this however does not invalidate our main point, that the restriction (4.2) explicitly breaks the symmetry.
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As it could have been expected from the conservation of the global charges, these are
written purely in terms of the slow field π of the Right parametrization (3.3). We can now
compute their correlators at large time separation and spatial distance. For instance, the
spatial Fourier transform of the two-point function of these currents can be computed from
the gapped Goldstone propagator and reads∫

d3x e−ip·x 〈µ|T
{
J0
−(t,x)J0

+(0,0)
}
|µ〉 = 2c(1)µ3θ(t)e−iεpt , (4.4)

where T is the time-ordered product and εp is the (possibly complex) kinetic energy of
the gapped Goldstone, given by eq. (3.29) at leading order in 3-momentum. For long
wavelengths, |p| � µ, the correlator (4.4) oscillates slowly in time — i.e. it has nontrivial
long time tails. Nonetheless, it cannot be computed from the low-energy EFT without the
gapped Goldstone, as already anticipated.22 This is clear when the gapped Goldstone is
stable and εp is real, in which case the result in eq. (4.4) is interpreted as the free evolution
in time of a single π mode. Such a simple interpretation does not exist in more general
cases, but this does not affect the main picture presented above.23

In summary, in the low-energy EFT specified by eq. (4.2) no signature of the non-
Abelian nature of the symmetry is present. To obtain a fully SU(2) covariant descrip-
tion one should work within the NREFT presented in this work, which reduces to the
Abelian superfluid in the zero gapped Goldstone sector. In particular, our construction
shows that the non-Abelian structure of the group constrains the dynamics at small spa-
tial momenta, similarly to the relativistic case, but around non-zero frequencies which
are multiples of the chemical potential. The NREFT further provides access to certain
non-trivial correlation functions at large spacetime separations, which cannot be matched
without the gapped Goldstone due to the difference between the fundamental Hamiltonian
H and H̄. We illustrated that point by discussing the two-point function of the SU(2)
Noether current; we leave a systematic analysis of operator matching in the NREFT for
future work. These considerations, we believe, clarify previous works [19, 31, 32], which,
at large chemical potential, restricted their attention to the Abelian component of the
spontaneously broken internal symmetry. We conclude this section marking the differences
between the present case and the relativistic case, i.e. a broken internal symmetry with
unbroken Poincarè invariance.

In the relativistic case symmetry constrains all the Goldstone bosons to have
4-momentum on the lightcone. Then, given a coset G/H, the gapless Goldstone bosons
carry all the information about the symmetry breaking and, as made evident by the CCWZ
construction, all degrees of freedom falling into gapped H-multiplets can be integrated out
preserving the full G symmetry. As concerns instead the role of an additional unbroken G′

22That this result cannot be obtained by somehow matching the currents in the low-energy theory is also
manifest from the fact that the correlator oscillates with frequency εp ∼ p2/µ, while no state with such
dispersion relation is present in the EFT for the gapless Goldstone only.

23Equivalently, one could look at the operator J̄0
±(t,x) ≡ eiH̄tJ0

±(0,x)e−iH̄t, which instead evolves with
H̄. It is simple to show that the two-point correlator for this (non-conserved) current oscillates with
frequency µ. Consequently, it can never be obtained from the EFT for the gapless Goldstones only, which
has support only on frequencies � µ, as measured by H̄.
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factor in the fundamental symmetry, if all the states charged over G′ are gapped, then the
corresponding Noether currents do not have low frequency components. In view of that
in no way the low energy modes can match them, and the information about G′ is lost
in the EFT. A similar situation arises for gapped Goldstones, which cannot be integrated
out while still preserving the full G symmetry. However, in this case the currents that in-
terpolate for the gapped Goldstones do have low frequency components — see eq. (4.4) —
and there must therefore exist a way to recover that information via an EFT construction,
ours indeed.

5 Conclusions and future directions

The breaking of internal symmetries has qualitatively different implications on low-energy
physics, depending on whether or not it is accompanied by the breaking of spacetime
symmetries. One crucial difference arises for the spectrum of excitations. With unbro-
ken Poincarè invariance, Goldstone theorem dictates the presence of one stable particle
with light-like dispersion relation, E(k) = |k|, for each spontaneously broken symme-
try generator. With the spontaneous breaking of the Poincarè group, Goldstone theorem
leaves instead space for a greater variety of options, as concerns the counting of modes,
their dispersion relations and their stability. A particularly interesting case is offered by
non-Abelian superfluids, which are characterized by chemical potentials µI for the Cartan
charges QI . Here Goldstone theorem implies the presence of a set of modes, labeled by
a = 1, . . . , N , whose energy satisfies Ea(k = 0) = caIµI , with caI real coefficients that
are fully dictated by group theory [12]. Generically one then has both gapless modes,
Ea(0) = 0 and gapped ones Ea(0) 6= 0. Moreover one has variety in the functional de-
pendence of Ea(k) on k, including the possibility for imaginary parts, associated, when
allowed, with the decay of the modes at k 6= 0.

Symmetry controls not only the spectrum, but also the interaction of the Goldstone
bosons. In the Poincaré invariant case, this results in a low-energy EFT whose main
features are universal and rather independent of the details of the microphysics. In finite
density systems constraints on the structure of the interactions are expected, and, to some
extent, have been studied. However, with gapped Goldstones, the EFT construction also
raises issues of technical and conceptual nature. One concerns universality, and stems
from the generic possibility of other, non-Goldstone degrees of freedom in the range of
energies and momenta O(µ). Those are, for instance, expected in systems like CFTs,
where µ is the main dimensionful parameter. In that situation creation and destruction
of gapped Goldstones, even slow moving ones, entails momenta ∼ µ evading a universal
EFT description. Another issue concerns the possibility of reconstructing the pattern of
symmetry breaking by pure consideration of the dynamics at the lowest possible energies.
That is possible in the relativistic case, but seems impossible at finite density, as the gapped
Goldstones are integrated out at E � µ.24

24An interesting question regards whether gapped Goldstones can be excited by some light external probe
charged under the internal symmetry. We leave this investigation for future work.
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In this paper we have clarified the above questions. We have shown that the EFT that
universally implements the information on the symmetry breaking pattern has degrees of
freedom given by the Goldstone modes, all of them, at low 3-momentum, k. In particu-
lar the gapped Goldstones are limited to small velocity, which also manifestly controls the
strength of their interactions, in agreement with [18]. Such EFT cannot produce amplitudes
that violate gapped Goldstone number (GGN), as these necessarily involve external legs
with large 3-momentum ∼ µ. Consequently GGN is an “emergent” symmetry of the EFT
where time evolution proceeds without transitions between Hilbert spaces with different
GGN. This bars the calculability of physical processes where the GGN is not conserved.
The latter are nonetheless consistently described in an inclusive form through the optical
theorem, by allowing for imaginary parts in the local coefficients of operators in the EFT.
The price to pay is that the unitarity of the original theory is not manifest in the EFT.
The fact that GGN non-conservation involves short wavelength modes however allows to
describe it via local operators in the EFT. The resulting picture is fully analogous to that
of non-relativistic EFTs (NREFTs), like for instance non-relativistic QCD [42, 48] or the
EFT for nucleon-nucleon scattering [49, 50], which have indeed almost completely guided
our construction. We have illustrated our ideas by focussing on an SU(2) superfluid, where
we also checked that the results of the EFT construction match those of an explicit renor-
malizable model. We expect our results to be easily generalizable to arbitrary symmetry
breaking patterns, as well as to allow the inclusion of other possible relevant matter fields
in the action via standard techniques [5].

With the above picture in place it is evident that the complete information about
symmetry breaking in the microscopic theory is encoded in the full set of NREFTs Hilbert
spaces with all possible GGN. The subspace with zero GGN, which purely involves the soft
gapless modes, is only part of the picture and does not encode the complete information
about symmetry breaking. In particular it does not contain information about the spectrum
of gapped modes. This subspace also happens to correspond to the EFT describing the
lowest lying modes of the unbroken time translation generator H̄ = H + µIQI of the
superfluid. This Hamiltonian is only invariant under a subgroup of the original internal
symmetry, which makes it clear why such lowest energy EFT cannot describe the full
pattern of symmetry breaking. A more detailed discussion of this is given in section 4.

Before closing let us discuss a few possible applications of the gapped Goldstone
NREFT. As remarked in the introduction, gapped Goldstones appear in different phys-
ical systems [14]. An interesting example is given by QCD at finite density, as it is for
instance found in the interior of neutron stars [26–29]. Depending on the parameters, in
particular baryon density, it is conceivable that the system relaxes to a superfluid phase
for the non-abelian isospin symmetry. One concrete possibility is represented by Kaon
condensation [26]. The resulting scenario, given the approximate nature of the isospin
symmetry, broken by the small quark masses, would be approximated by the physical sit-
uation described in this paper: there would be pseudo-Goldstone bosons, whose gap and
interactions are controlled by symmetry breaking, spontaneous and explicit, very much
like in the QCD chiral Lagrangian around the vacuum. In particular in the regime where
the chemical potential is of the order of the strong interaction scale, our NREFT would
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capture, amid a hardly calculable strong dynamics, the universal features of the gapped
pseudo-Goldstones dynamics.

The underlying Lorentz invariance of the theory, if conceptually useful in understand-
ing the origin of the modified Hamiltonian H̄, is not necessary for the existence of both
gapless and gapped Goldstone bosons [14]. Indeed, our construction may be straightfor-
wardly applied to systems where either only the Galilean limit of Lorentz transformations
is considered, or boost invariance is not present from the beginning.25 Possibly relevant
examples of this kind include ferromagnets, anti-ferromagnets [24], electron gases [23] and
vortex lattices [51] where spin or angular momentum play the role of the non-Abelian
charges, while the role of the chemical potential is played by either a uniform magnetic
field [14] or by an externally induced angular velocity. In these examples the role of the
gapped Goldstones is played respectively by the magnons for spin systems and by the
Kohn mode for electron gases and vortex lattices. It would be interesting to investigate
the possibility to apply our NREFT methodology to such systems, searching in particu-
lar for situations where the Goldstone gap is comparable to or larger than the energy of
other potentially strongly coupled modes. Our methodology would allow to zoom on the
universal properties of otherwise hardly tractable strongly coupled systems.

Recently, effective field theory techniques have been applied in the study of large charge
operators in conformal field theories [19, 30–32]. By the state/operator correspondence,
these are associated with condensed matter phases [16, 52, 53], with the generalized super-
fluid described in this paper representing the simplest possibility. The NREFT discussed
here, when specialized to the cylinder, is then expected to apply in the large charge sector
of CFTs invariant under non-Abelian symmetry groups.

Interestingly, we can learn something about the spectrum of the strongly interacting
conformal O(3) model, using some inputs from the study of the linear triplet model in
section 2. Indeed, since the triplet describes the O(3) Wilson-Fisher fixed point in 4 − ε
dimension, we expect the large charge sector of the related 3d CFT to undergo the same
symmetry breaking pattern:26 O(3) → Z2. The Z2 crucially implies that single gapped
Goldstone states, being charged under the latter, are exact eigenstates of the Hamiltonian.
They are thus stable in the infinite volume limit. By the state-operator correspondence,
they are associated with Z2 odd operators of angular momentum J transforming in the
(2Q+1)-representation of the internal SO(3) in the corresponding three-dimensional CFT;
the NREFT then allows to compute their scaling dimension as

∆(J)
mNGB(Q) = ∆0(Q) + µ(Q) + cm

J(J + 1)
2µ(Q) +O

(
J4

µ3(Q)

)
, (5.1)

where ∆0(Q) is the scaling dimension of the lightest scalar operator in the SO(3) (2Q+ 1)
representation, given in a large Q expansion by

∆0(Q) = αQ3/2 + βQ1/2 − 0.0937256 + γQ−1/2 +O
(
Q−1

)
, (5.2)

25Physically, this means that boost invariance is broken by some more microscopic dynamics, typically
due to the presence of a lattice or some other fluid, whose associated hydrodynamics modes can be neglected
in first approximation.

26Where symmetry breaking is intended in the sense explained in [19].
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while µ = ∂∆0(Q)/∂Q ∼ Q1/2 is the chemical potential in units of the cylinder radius and
α, β, γ and cm are Wilson coefficients. As in the Abelian case, also massless phonon states
correspond to CFT operators [19, 30].

Notice that in a general SU(2) invariant CFT, there is no conserved Z2 and things are
made more involved by the mixing of the gapped Goldstone with states made out of lighter
particles, outside the validity of the NREFT. Such mixing however corresponds to the decay
of the gapped Goldstone state in the infinite volume limit. Therefore the NREFT approach
should allow the description of the resulting inclusive features, presumably encoded in the
spectral distribution. Relatedly, the NREFT should allow to match all the components of
the non-Abelian Noether current in terms of Goldstone fields, in a certain kinematic regime.
We plan to investigate the detailed predictions of the NREFT for CFTs with non-Abelian
symmetry in a future work.
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A Triplet model details

A.1 Coefficients of the gapped Goldstone annihilation

The coefficients in (2.10) are given by

α =
2
(

5µ2 − 3m2 −
√

4µ4 + (µ2 −m2)2
)

2µ2 +
√

4µ4 + (µ2 −m2)2
,

β = −8µ2 (µ2 −m2)2
29µ6 −m2µ4 + 3m4µ2 −m6 + (13µ4 + 2m2µ2 +m4)

√
4µ4 + (µ2 −m2)2

.

Those in (2.11) are

γ =
λ2µ3

[√
5µ4+m4−2m2µ2+m2

5µ4+m4−2m2µ2

]1/2

15π (µ2 −m2)6 ×

×
[
2085µ10 − 49m10 + 441m8µ2 − 1762m6µ4 + 3842m4µ6 − 4429m2µ8+

−
(
935µ8 + 55m8 − 432m6µ2 + 1314m4µ4 − 1808µ6m2

)√
5µ4 +m4 − 2m2µ2

]
,

δ =
−2λ2µ2 (µ2 −m2)2 (2µ+ 4µ3√

5µ4+m4−2m2µ2

)(√
5µ4 +m4 − 2m2µ2 +m2

)5/2

15π
[
29µ6 +m6 + 3µ2m4 −m2µ4 + (13µ4 +m4 + 2m2µ2)

√
5µ4 +m4 − 2µ2m2

]2 .
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A.2 Gapped Goldstone decay

In the linear triplet model discussed in the main text, the accidental discrete Z2 sym-
metry forbids the decay of the gapped Goldstone. However, in more general theories the
gapped Goldstone can decay into arbitrary lighter states. Here we provide a simple ex-
ample of such a modification of the Lagrangian (2.1). The resulting decay rate vanishes
with the 3-momentum of the gapped Goldstone, in agreement with the general discussion
of section 2.1.

To induce a decay channel for θ, we need to break explicitly the Z2 symmetry of the
Lagrangian (2.1). In order to do that, we couple the O(3) triplet Φ to a complex U(2)
doublet Ψ. We hence add the following term to the linear triplet model Lagrangian:

δL = |∂Ψ|2 −m2
Ψ |Ψ|

2 − λΨ
4 |Ψ|

4 − g
(

Ψ†σ2 Ψ
)
·Φ− γ

4 |Ψ|
2 Φ2 . (A.1)

Here σ = (σ1, σ2, σ3) are the Pauli matrices. Adding this term to (2.1), the resulting La-
grangian is the most general renormalizable theory of a doublet and a triplet preserving a
global SU(2)×U(1) symmetry. Crucially, the coupling g breaks the discrete Z2 symmetry
which prevented θ from decaying. All parameters are positive. When not specified other-
wise, all parameters with the same coupling and mass dimensions are assumed to be of the
same order [54].

We expand around the VEV (2.2) for the triplet with Ψ = 0, which is a minimum for

γ ≥ 2 g
φ0

+ µ2 − 4m2
Ψ

φ2
0

. (A.2)

This leaves the U(1) acting as Ψ 7→ eiαΨ unbroken. In this case the fluctuations for Φ are
parametrized as before (see eq. (2.3)) while Ψ can be written as

Ψ = e−i(µt+ψ(x)/φ0)σ3
2

(
Ψ1(x)
Ψ2(x)

)
, Ψ1, Ψ2 ∈ C. (A.3)

Notice that we explicitly factored out a time dependent rotation, which makes explicit that
unbroken time translations correspond to H + µQ3. To find the spectrum, consider the
quadratic contribution from δL:

δL(2) = |∂Ψ1|2 + |∂Ψ2|2 + 1
2 iµ

(
Ψ∗1Ψ̇1 −Ψ∗2Ψ̇2 − c.c.

)
− g

2φ0 (Ψ∗1Ψ2 + c.c.)

−
[
m2

Ψ + γ

4λm
2 + (γ/λ− 1)µ2/4

] (
|Ψ1|2 + |Ψ2|2

)
.

(A.4)

The fields Ψ1 and Ψ2 interpolate four quasi-particles: {|Ψ+(k)〉 , |Ψ−(k)〉 , |Ψ̄+(k)〉,
|Ψ̄−(k)〉}. Under the unbroken U(1), |Ψ±(k)〉 have positive charge while |Ψ̄±(k)〉 have
negative charge. As a consequence of the symmetry Ψ1 ↔ Ψ∗2 of the quadratic Lagrangian,
oppositely charged modes have dispersion relations equal in pair, given by:

ω2
±(k) = ω̄2

±(k) = µ2

4 +m2
Ψ + γ

4φ
2
0 + k2 ±

√
γµ2

4 φ2
0 + g2

4 φ
2
0 + µ2m2

Ψ + k2µ2 . (A.5)
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Here ω+(k) = ω̄+(k) is the dispersion relation of |Ψ+(k)〉 and |Ψ̄+(k)〉, while ω−(k) =
ω̄−(k) is the dispersion relation of |Ψ−(k)〉 and |Ψ̄−(k)〉. Notice further that, because of
the aforementioned symmetry of the quadratic Lagrangian, the wavefunctions of the fields
on the states {|Ψ−(k)〉 , |Ψ̄−(k)〉} satisfy

〈0|Ψ1/2(0)|Ψ−(k)〉 = eiα 〈0|Ψ∗2/1(0)|Ψ̄−(k)〉 , α ∈ R (A.6)

where eiα is an unphysical phase factor which depends upon the precise definition of the
states |Ψ−(k)〉 and |Ψ̄−(k)〉. We will use this relation in the following.

The gapped Goldstone couples linearly to the complex U(2) doublet through the Z2
breaking coupling g:

−g
(

Ψ†σ2 Ψ
)
·Φ ⊃ g

2θ
(
|Ψ2|2 − |Ψ1|2

)
. (A.7)

To induce a decay for θ, we need the gap of the modes {|Ψ−(k)〉 , |Ψ̄−(k)〉} to be less than
half of the gapped Goldstone mass: ω−(0) = ω̄−(0) ≤ µ/2. This happens for27

m2
Ψ + γ

4φ
2
0 −

√
γµ2

4 φ2
0 + g2

4 φ
2
0 + µ2m2

Ψ ≤ 0 . (A.8)

Under this condition, the following decay channel exists for θ

θ(p)→ Ψ−(k1) + Ψ̄−(k2) . (A.9)

It is easy to compute the associated matrix element induced by the vertex (A.7); we do not
report the details of the calculation. Notice however that the relation (A.6) implies that
the decay amplitude vanishes when the final states have the same momenta. Consequently,
a gapped Goldstone at rest cannot decay, as expected. Noticing that |k1| is generically of
order O(µ), to linear order in the velocity the matrix element reads

iM = iC
p · k1
|k1|

+O
(
p2/µ, (p · k1)2/µ3

)
, (A.10)

where C is

C = g2µφ0/2

2µ2
(√

g2φ2
0 + µ4 + µ2

)
+ g2φ2

0

×

√√√√√√√√
(

2
√
g2φ2

0 + µ4 + 2µ2 − γφ2
0 − 4m2

Ψ

)
3µ2 + 2

√
g2φ2

0 + µ4 − 2
√

2µ2
(√

g2φ2
0 + µ4 + µ2

)
+ g2φ2

0

. (A.11)

In the limit where µ is much bigger than all other mass parameters this expression simpli-
fies to

C = g2√4λ− γ
8λµ2 +O

(
µ−4

)
. (A.12)

27The conditions (A.2) and (A.8) are compatible, as it can be seen in the limit where µ is much bigger
than all other mass parameters where they reduce to λ ≤ γ ≤ 4λ.
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The total decay rate finally takes the following simple form

Γ = c
p2

µ
=
[
g4(4λ− γ)3/2

1536πλ5/2µ4 +O
(
µ−6

)] p2

µ
, (A.13)

where c is a dimensionless constant which we wrote in the µ→∞ limit for illustration in
the right hand side.

B The spacetime coset construction

In this section we review the standard coset construction in presence of broken spacetime
symmetries. Our goal is to show how to recover the Lagrangian in eq. (3.7) from this
approach. Furthermore, this construction provides a useful bookkeeping tool to build
higher derivative terms in our action, which we do in appendix C.1.

Consider a relativistic system with an internal SU(2) symmetry, whose charge Q3 is at
finite density. The ground state |µ〉 of such a system minimizes the modified Hamiltonian
H̄ = H + µQ3 [15], and it can be chosen to satisfy28

H̄ |µ〉 = (H + µQ3) |µ〉 = 0 . (B.1)

If Q3 is spontaneously broken so is H, the generator of time translations. The generators of
boosts, J0i, and the other internal generators, Q1 and Q2, are broken too. The symmetry
breaking pattern is then

unbroken =


H̄ = H + µQ3 time translations ,
P̄i = Pi space translations ,
Jij rotations ,

broken =

J0i boosts ,
Q3, Q1, Q2 internal symmetries .

(B.2)

Therefore we have a theory with a symmetry group, G, given by the product of Poincaré
and the internal SU(2), which is spontaneously broken down to the semidirect product
of the modified translations, generated by P̄µ = {H̄, P̄ }, and rotations. We denote the
unbroken group with G′. Following the standard CCWZ procedure, the coset G/G′ can be
parametrized as

Ω = eiP̄µx
µ
eiη

iJ0ieiπ3Q3eiα
Q+
2 +iα∗ Q−

2 . (B.3)

The way to construct an action which is invariant under the full symmetry group is to con-
sider the Maurer-Cartan form, Ω−1dΩ, and expand it in the basis of broken and unbroken
generators. Its general expression reads

Ω−1∂µΩ = ie a
µ

(
P̄a +∇aηiJ0i +∇aπ3Q3 +∇aα

Q+
2 +∇aα∗

Q−
2 + 1

2ω
ij
a Jij

)
. (B.4)

28In general, the ground state will satisfy H̄|µ〉 = λ|µ〉, with minimum λ. In the absence of gravity,
one can always add a cosmological constant term to the Hamiltonian to set λ = 0, with no physical
consequences [15].
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Here e a
µ transforms as a spacetime vielbein [38, 55], and we introduced Latin indices

a, b = 0, 1, 2, 3 and i, j = 1, 2, 3 to distinguish within the vielbein indices, as in the familiar
geometrical case. The coefficients of the broken generators, ∇aηi, ∇aπ3 and ∇aα, are the
covariant derivatives of the Goldstones. They have the property that, under the action of
any element of the full group, they transform as a linear representation of the unbroken
subgroup. Finally, ωija transforms as a spin connection [37], which can be used to build
higher covariant derivatives of the Goldstone fields:

∇Ha = e µ
a ∂µ + i

2ω
ij
a Jij . (B.5)

The previous derivative can also act on additional matter fields that transform in some
linear representation of the unbroken group G′. The most general Lagrangian for the
Goldstones, which is invariant under nonlinearly realized symmetry G is then given by

Leff = F (∇aΨ,∇Ha ∇bΨ, . . . ) , (B.6)

where we have collectively represented the Goldstone fields as Ψ. Here F is any function
that depends on combinations of its arguments that are manifestly invariant under the
unbroken group.29

For the case at hand, let us define (e−iηiJ0i)aµ = (Λ−1)aµ = Λ a
µ and χ = µt+ π3 [19].

The quantities defined in (B.4) then read

e a
µ = Λ a

µ , ∇aηi = −Λµa(Λ−1∂µΛ)0i , ωija = −Λµa(Λ−1∂µΛ)ij ,
∇aπ3 = ΛµaDµχ− µδ0

a , ∇aα = ΛµaDµα ,
(B.7)

whereDµα andDµχ are the covariant derivatives for a Lorentz invariant EFT of completely
broken SU(2) symmetry in (3.4).

It often happens that, in presence of broken spacetime symmetries, some of the Gold-
stones can be algebraically eliminated in favor of the others. This is done imposing the
so-called inverse Higgs constraints [40]. In this case, we can eliminate the Goldstones
associated to the boost generators by imposing30

∇iπ3 = 0 =⇒ ηi

η
tanh η = −Diχ

D0χ
= −∂iπ3

µ
+ . . . . (B.8)

Crucially, thanks to the transformation properties of the covariant derivative, this con-
straint is compatible with all the symmetries. Consequently it is always possible to impose
it. The physical reason is that, when the system breaks spacetime symmetries, the same
physical fluctuation may be described as the action of different generators. In this case,

29In this case, this just means that space indices i, j, . . . should be contracted in a rotationally invari-
ant way.

30We use that, in our convention, the boost matrix can be written as [38]

Λ0
0 = γ Λ0

i = γβi Λi 0 = γβi Λi j = δi j + (γ − 1)β
iβj
β2 ,

with the velocity related to the Goldstone by βi = ηi
η

tanh η and γ2 = 1
1−β2 .
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a small fluctuation generated by a boost could be obtained from the action of Q3 as
well [13, 39], making the field ηi redundant.

Once the condition (B.8) has been imposed, all the remaining invariants are expressed
in terms of Dµχ and Dµα only — i.e. the covariant derivatives of the simpler completely
broken SU(2) theory. Without making further calculations, we know that the most general
SU(2) and Lorentz invariant Lagrangian written in terms of these objects is given by
eq. (3.7).

We can also see this explicitly by writing the invariants obtained combining (B.7)
and (B.5). To this aim, it is convenient to notice that eq. (B.8) implies

Λ 0
µ = Dµχ√

DµχDµχ
≡ nµ , Λ i

µΛ i
ν = −ηµν + nµnν ≡ Pµν . (B.9)

Here we have conveniently defined a unit four-vector nµ ' δ0
µ + . . . in the direction of the

superfluid velocity and a projector Pµν orthogonal to it. Using these quantities, the leading
order invariants take the form:

∇0π3 = nµDµχ− µ ,
∇iα∇iα∗ = DµαP

µνDνα
∗ ,

∇0α = nµDµα ,

∇iα∇iα = DµαP
µνDνα .

(B.10)

The first three expressions here agree with eq. (3.23) when written in terms of the fields
in (3.3) using (3.18). Higher order invariants are similarly obtained, for instance:

∇iηi = ∂µn
µ ,

∇H0 ∇0π3 = nµ∂µ(nρDρχ) ,
∇iα∗∇H0 ∇iα = −Dµα

∗Pµσnρ∂ρ(PσνDνα) ,
∇jηi∇jηi = −Pµν∂µnρ∂νnρ ,
∇0η

i∇0η
i = −(nµ∂µnρ)ηρσ(nν∂νnσ) ,

(∇j∇iα∗)(∇j∇iα) = −P ρσ∂σ (PµνDνα
∗) ∂ρ

(
PµλD

λα
)
. (B.11)

We checked up to fourth order in derivatives that all invariants obtained combining (B.7)
and (B.5) can be written contracting in a Lorentz invariant way ∂µ, Dµχ and Dµα, as in
eq. (3.7).

B.1 The inverse Higgs constraint in the NREFT

Within the spacetime coset construction presented in the previous section, there exists
also the possibility of imposing an extra Inverse-Higgs constraint of the form31 ∇0α1 =
Re[∇0α] ' α̇1 +µα2 = 0, which eliminates one of the two real components of α = α1 + iα2.
Here we discuss the interpretation of this constraint within the NREFT.

In section 3.3 we showed that the NREFT describes two modes, corresponding to the
gapless and the gapped Goldstones. In particular, the complex field π = eiχα interpolates
a single degree of freedom, as typical of a nonrelativistic field. However, there exists an

31Of course, one could alternatively consider ∇0α2 = Im[∇0α] ' α̇2 − µα1 = 0.
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analogous description in terms of a real field. To see this, let us rewrite the quadratic
action (3.25) to leading order in derivatives in terms of the real fields α1 and α2, with all
time derivatives acting on the first and discarding total derivatives. One gets

L ⊃ −c(1)µ3
[
α2α̇1 + µ

α2
1 + α2

2
2

]
− c(2)

3 µ2[(∇α1)2 + (∇α2)2] . (B.12)

Since there is no time derivative acting on it, α2 is an auxiliary field, which can be integrated
out on its equation of motion. This gives

0 = α̇1 + µα2 +O
(
∇2/µ

)
' ∇0α1 +O

(
∇2/µ

)
. (B.13)

We hence recovered the inverse Higgs constraint32 ∇0α1 = 0. Since we integrated out an
auxiliary field, the number of degrees of freedom and all the other properties of the action
are unaffected. Indeed, plugging back the solution of (B.13) in the Lagrangian we find that
α1 becomes a real field with gap µ. In practice, in a nonrelativistic setting it is easier to
work with a complex field, which makes particle number conservation manifest. We did
not explore the possibility of building the action using only two real fields from start, e.g.
working with an SU(2)/U(1) coset Ω = eiχQ3eiα1Q1 around the background χ = µt, α1 = 0.

This inverse Higgs constraint was also discussed in [13]. However, the authors there
focused on a different setup, where the derivative expansion is controlled by a scale Λ� µ.
In that case, imposing or not the inverse Higgs constraint leads to physically distinct
theories, providing a different interpretation for it. Let us briefly review these previous
findings, in order to compare them with our construction.

When the inverse Higgs constraint is imposed, the construction of [13] leads to an EFT
describing the gapless and the gapped Goldstone, with cutoff Λ � µ. In this setup, the
symmetry is partially restored in the limit µ→ 0, if this limit exists.33 As discussed in the
introduction of section 3, this EFT applies for instance in the linear sigma model for m2 < 0
when the radial mode is much heavier than the gapped Goldstone, i.e. when |m2| � µ2.

The situation is different when the inverse Higgs constraint is not imposed. Indeed,
when Λ � µ, the leading order quadratic Lagrangian for the complex field α is second
order in time derivatives, implying that α interpolates two modes rather than one as in
our nonrelativistic construction. One mode is the gapped Goldstone, while the mass of the
other depends on the coefficients of the Lagrangian and it is formally proportional to µ.
This mode is usually referred to as a gapped Goldstone with unfixed gap [13]. In this case,
if the limit µ → 0 is smooth, the theory breaks the internal SU(2) symmetry completely
also at zero chemical potential; the extra mode then provides the third Goldstone required
by the relativistic Goldstone theorem.

32With the current parametrization the inverse Higgs constraint corresponds to the equations of motion
of α2 only to linear order in the fields. However, the equality is true at all nonlinear orders in the Euler
parametrization of the Goldstones: Ω = eiχQ3eiα1Q1eiα2Q2 . In other words, there is a field redefinition for
which to impose the inverse Higgs constraint corresponds to integrate out α2 to leading orders in derivatives
but to all orders in the field expansion.

33This is not obvious even for Λ� µ, since the cutoff itself might depend on the chemical potential, e.g.
as Λ2 ∼ fµ with f � µ; see [13] for details.
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In general, the presence of the unfixed gap mode and its properties are not fixed by
the symmetry breaking pattern only and depend on the structure of the theory at scales
Λ � µ. Thus, for the purposes of our construction in which the chemical potential itself
provides the cutoff, this mode, if present in the UV theory, behaves rather like any other
matter field and is thus integrated out in our setup. The nonrelativistic EFT, similarly to
the standard relativistic CCWZ construction, provides the minimal structure required to
realize nonlinearly all the symmetries; in practice, this means that the NREFT describes
only the gapless and the gapped Goldstones. Of course, while we expect this simple setup
to correspond to the most generic situation, specific theories may contain additional light
degrees of freedom, e.g. gauge fields, which can be added to the EFT in the standard way.

C NREFT details

C.1 NREFT action to O(∂4)

In this section, we write the Lagrangian for the non-relativistic effective theory to fourth
order in derivatives. To this aim, we find a convenient bookkeeping tool to use the invariants
written using the spacetime coset construction presented in appendix B. We assume parity
invariance for simplicity.

The effective nonrelativistic Lagrangian is written using the prescription presented in
section 3.1, namely imposing the U(1) invariance π → eiξπ and using the nonrelativistic
derivative (3.20). In the notation of the previous section, the latter amounts at building
higher derivative terms using, rather than the one given in eq. (B.5), the following covariant
derivative:

e µ
a ∂̂µ + i

2ω
ij
a Jij = ∇Ha + i (µ+∇0π3) δ0

a[Q3, ·] . (C.1)

In practice, we performed calculations using the following

∇̂Ha ≡ ∇Ha + i µδ0
a[Q3, ·] . (C.2)

This definition corresponds to a slightly different form of the nonrelativistic derivative,
obtained multiplying Dµχ in eq. (3.20) by µ/

√
DµχDµχ. As commented below that equa-

tion, this redefinition does not affect the key property (3.21), which is needed in order to
have a well-structured derivative expansion.

We can now proceed to formally write the Lagrangian in a ∇/µ expansion as

L = L(1)
∇ + L(2)

∇ + L(3)
∇ + L(4)

∇ + . . . , (C.3)

where L(i)
∇ contains all terms which are of order i in terms of ∇’s covariant derivatives.

We have:

L(1)
∇ /µ3 = c(1)∇0π3 , (C.4)

L(2)
∇ /µ2 = c

(2)
1 (∇0π3)2 + c

(2)
2 |∇0α|2 − c(2)

3 |∇iα|
2 , (C.5)

L(3)
∇ /µ = c

(3)
1 (∇0π3)3 + c

(3)
2 ∇0π3|∇0α|2 + c

(3)
3 ∇0π3|∇iα|2

+ c
(3)
4

[
i∇0α

∗∇̂H0 (∇0α) + c.c.
]

+ c
(3)
5

[
i∇iα∗∇̂H0 (∇iα) + c.c.

]
+ c

(3)
6

[
∇iα∗∇̂Hi (∇0α) + c.c.

]
+ c

(3)
7

[
i∇iα∗∇̂Hi (∇0α) + c.c.

]
+ c

(3)
8 ∇0π3(µ∇iηi) . (C.6)
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We can expand these in terms of the SU(2) covariant derivatives in eq. (3.4) and their
derivatives. Doing so and defining Dµπ3 ≡ Dµχ − µδ0

µ, we can rewrite the Lagrangian in
a standard derivative expansion:

L(1)/µ3 = c(1)D0π3 , (C.7)

L(2)/µ2 = c
(2)
1 (D0π3)2 − c(1)

2 (Diπ3)2 + c
(2)
2 |D0α|2 − c(2)

3 |Diα|2 , (C.8)

L(3)/µ =
[
c(1)

2 − c
(2)
1

]
D0π3(Diπ3)2 +

[
c

(2)
2 − c

(2)
3 − c

(3)
7

]
(D0α

∗DiαDiπ3 + c.c.)

+ c
(3)
6 (iDiα

∗Diπ3D0α+ c.c.) + c
(3)
1 (D0π3)3 + c

(3)
2 D0π3|D0α|2 + c

(3)
3 D0π3|Diα|2

+ c
(3)
4 [iD0α

∗(∂0 + iµ) (D0α) + c.c.] + c
(3)
5 [iDiα

∗(∂0 + iµ) (Diα) + c.c.] (C.9)

+ c
(3)
6 [Diα

∗∂i (D0α) + c.c.] + c
(3)
7 [iDiα

∗∂i (D0α) + c.c.]− c(3)
8 D0π3(∂iDiπ3) .

Notice that terms with Diπ3 always appear from the expansion of the ∇ covariant deriva-
tives in connection with lower derivative ones.

The fourth order in derivatives can be constructed similarly. Here we just report the
fourth order term in (C.3)

L(4)
∇ = c

(4)
1 (∇0π3)4 + c

(4)
2 (∇0π3)2|∇0α|2 + c

(4)
3 (∇0π3)2|∇iα|2

+ c
(4)
4 |∇0α|4 + c

(4)
5 |∇0α|2|∇iα|2 + c

(4)
6

[
(∇iα)2(∇0α

∗)2 + c.c.
]

+ c
(4)
7

[
i(∇iα)2(∇0α

∗)2 + c.c.
]

+ c
(4)
8 |∇iα|

2|∇jα|2

+ c
(4)
9 (∇iα)2(∇jα∗)2 + c

(4)
10 (∇̂H0 ∇0π3)|∇0α|2 + c

(4)
11 (∇0π3)

[
i∇0α

∗∇̂H0 ∇0α+ c.c.
]

+ c
(4)
12 (∇̂H0 ∇0π3)|∇iα|2 + c

(4)
13 (∇0π3)

[
i∇iα∗∇̂H0 ∇iα+ c.c.

]
+ c

(4)
14 (∇̂Hi ∇0π3) [∇iα∗∇0α+ c.c.] + c

(4)
15 (∇̂Hi ∇0π3) [i∇iα∗∇0α+ c.c.]

+ c
(4)
16 ∇0π3

[
∇̂Hi (∇0α)∇iα∗ + c.c.

]
+ c

(4)
17 ∇0π3

[
i∇̂Hi (∇0α)∇iα∗ + c.c.

]
+ c

(4)
18 (∇̂H0 ∇0π3)2 + c

(4)
19 (∇̂Hi ∇0π3)2 + c

(4)
20 |∇̂

H
0 ∇0α|2

+ c
(4)
21 |∇̂

H
i ∇0α|2 + c

(4)
22

[
∇̂Hi ∇iα∗∇̂H0 ∇0α+ c.c.

]
+ c

(4)
23

[
i∇̂Hi ∇iα∗∇̂H0 ∇0α+ c.c.

]
+ c

(4)
24 |∇̂

H
0 ∇iα|2 + c

(4)
25 |∇̂

H
i ∇iα|2 + c

(4)
26 |∇̂

H
j ∇iα|2 + c

(4)
27 µ

2∇0η
i∇0η

i + c
(4)
28 µ

2(∇iηi)2

+ c
(4)
29 µ

2∇iηj∇iηj + c
(4)
30 µ∇iη

i∇̂H0 ∇0π3 + c
(4)
31 µ(∇0π3)2∇iηi + c

(4)
32 µ|∇0α|2∇iηi

+ c
(4)
33 µ|∇iα|

2∇jηj + c
(4)
34 µ∇iη

j [∇iα∇jα∗ + c.c.] + c
(4)
35 µ∇iη

j [i∇iα∇jα∗ + c.c.]

+ c
(4)
36 µ∇0η

i [∇iα∇0α
∗ + c.c.] + c

(4)
37 µ∇0η

i [i∇iα∇0α
∗ + c.c.] . (C.10)

We did not write terms which effectively contribute at fifth order in derivatives after ex-
panding the ∇’s as before.

C.2 Feynman rules to leading order in ∂/µ

Before introducing a process dependent velocity power counting, it might be useful to
consider a power counting in ∂/µ. Here we list the Feynman rules to leading order within
this counting. We use the field parametrization (3.3). Black solid lines correspond to
gapped Goldstones with four-momentum p = (µ + ε,p), while dashes stand for gapless
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Goldstones, whose four-momentum is denoted as k = (ω,k).

• |π|2π3 vertex:

(C.11)

• π3
3 vertex:

(C.12)

• |π|4 vertex:

(C.13)

• |π|2π2
3 vertex:

(C.14)
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• π4
3 vertex:

(C.15)

C.3 Coefficients of ππ scattering to order O(v4)

The coefficients of the π dispersion relation (3.36) to subleading order is given by

c(2)
m = 16

c(1)
[
c(1)

(
c

(4)
25 + c

(4)
26

)
+ 4c(2)

3

(
c

(3)
5 + c

(3)
7

)]
+ 4c(2)

2

(
c

(2)
3

)2

(c(1))3 . (C.16)

The bi’s in (3.35) are

b1 = −
c(1)c2

m(cs − 1)− 4cs
[
cm(c(2)

2 + c
(3)
3 ) + 2c(3)

5 (cm − 1)− 2c(3)
7

]
8cs

, (C.17)

b2 = 1
4
(
cm
[
4c(3)

3 − 3c(1)cm + 4c(2)
2 (2cm + 3)

]
− 2c(1)c(2)

m

)
+ 6c(3)

5 (cm − 1) + c
(3)
7 (4cm − 6) , (C.18)

b3 = −4
(
2c(3)

5 − 4c(4)
9 + 2c(4)

26 + c
(4)
29 + 2c(4)

35

)
, (C.19)

b4 = 2
(
2c(3)

5 + 4c(4)
8 + 2c(4)

26 + c
(4)
29 + 2c(4)

35

)
. (C.20)

C.4 Loops in dimensional regularization

We can regulate the NREFT at quantum level with a hard space cutoff Λ . µ. However
powers of the cutoff spoil power counting [50] and complicate computations. It is hence
preferable to use a mass independent regulator, such as dimensional regularization. In a
nonrelativistic EFT, if this is done naïvely retaining the standard form of propagators,
loops involving both massive and massless particle become dominated by hard momenta
|k| ∼ µ, which should not enter in the NREFT computations (c.f [43] within the context
of NRQCD). This is due to the fact that the gapped dispersion relation k0 ∼ k2/µ and
the gapless one k0 ∼ |k| can be simultaneously satisfied only for |k| ∼ µ. A consistent
formulation of NREFTs with both heavy and light fields was devised by Griesshammer [45,
46], as a development of the method of regions [56], and then further refined with the
formulation of vNRQCD [48, 57]. In this appendix we review the key points and their
application to our EFT, focusing on the power counting of diagrams. We refer to the
original works for details.

The first step is to identify a consistent set of modes, according to their scaling with
velocity v. According to standard NRQCD results [43, 44], these are given by soft, potential
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and ultrasoft modes listed in (3.32). Fields are split accordingly as explained in section 3.5.
To enforce power counting, one should retain in the denominators of propagators only
momenta with the same scaling in v, expanding the subleading ones in an infinite series.
In particular, they will be given by34

Gs
π3(ω,k) = Gus

π3(ω,k) = i

ω2 − c2
sk

2 , Gp
π3(ω,k) = −i

c2
sk

2

∞∑
n=0

(
ω2

c2
sk

2

)n
,

Gs
π(ε,p) = Gus

π (ε,p) = i

ε

∞∑
n=0

(
cmp

2

2µε

)n
, Gp

π(ε,p) = i

ε− cmp2

2µ
,

(C.21)

where we omitted the +i0 prescription. For instance, the soft Gs
π(ε,p) propagator and

the potential Gp
π(ε,p) propagators are not equivalent beyond tree-level, since infinite sums

and integration do not commute in dimensional regularization [56]. After the splitting into
different modes is performed, and hence all propagators are properly expanded, all loops in
dimensional regularization are made only of light scales. This also makes it straightforward
to power count diagrams in v.

As a simple illustration, consider the one-loop correction to the Gpπ(ε,p) propagator35

(C.22)

where in a hard cutoff approach we would write the loop integral as

Iππ = −i
∫

d4k

(2π)4

[
(2ε− k0)k0 − c2

s(2p− k) · k
]2[

(ε− k0)− cm (p−k)2

2µ + i0
] (
k2

0 − c2
sk

2 + i0
) . (C.23)

To perform this computation in d = 4 − ε dimensions, we need to take into account four
different integrals, depending on the specific modes running in the loop:

1. πs3 : (k0,k) ∼ (µv, µv) and πs : (ε− k0,p− k) ∼ (µv, µv);

2. πp3 : (k0,k) ∼ (µv2, µv) and πp : (ε− k0,p− k) ∼ (µv2, µv);

3. πp3 : (k0,k) ∼ (µv2, µv) and πus : (ε− k0,p− k) ∼ (µv2, µv2);

4. πus3 : (k0,k) ∼ (µv2, µv2) and πp : (ε− k0,p− k) ∼ (µv2, µv).
34Naively performing these expansions inside loops sometimes leads to unphysical pinch singularities,

e.g. in box integrals. However, a careful analysis shows that these arise from an over-counting of the
contribution of a certain region and that loops are indeed regular after the proper zero-bin subtractions
have been performed [57]. These subtleties do not affect the simple power counting rules that we discuss
here, hence we will neglect them in what follows.

35We neglected a scaleless tadpole vanishing in dimensional regularization.
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Consider for illustration the πs − πs3 loop. We have k0 � ε, (p − k)2/µ, hence we should
enforce this expanding the gapped Goldstone propagator in an infinite series

i

(ε− k0)− cm (p−k)2

2µ + i0
−→ i

−k0 + i0

1 +
ε− cm (p−k)2

2µ
k0 − i0

+ . . .

 (C.24)

The integral here is:

I(1)
ππ = −iM ε

∫
ddk

(2π)d
[. . .]2

(−k0 + i0)
(
k2

0 − c2
sk

2 + i0
)
1 +

ε− cm (p−k)2

2µ
k0 − i0

+ . . .

 = 0, (C.25)

where M is the sliding scale. The loop vanishes since, after performing the k0 integration
with the residue’s theorem, the integral can be divided in a sum of contributions propor-
tional to

∫
dd−1k/|k|n = 0. Similarly one can check that the πp3 − πp and πp3 − πs loops

vanish36 to all orders in v.
The only nontrivial contribution comes from the ultrasoft πus3 − πp loop. We have

k2 � p2, implying that the πp propagator should be expanded as

i

(ε− k0)− cm (p−k)2

2µ + i0
−→ i

(ε− k0)− cm p2

2µ + i0

1−
cm

p·k
µ

ε− k0 − cm p2

2µ
+ . . .

 .
(C.26)

We can power count the measure according to the momentum of the softest propagator,
which sets the size of the integration box. In this case thus d4k ∼ µ4v8. The leading
contribution is

I(4)
ππ = M ε

∫
ddk

(2π)d
−ic4

s(p · k)2[
(ε− k0)− cm p2

2µ + i0
] (
k2

0 − c2
sk

2 + i0
) ∼ O (v8

)
. (C.27)

The integral is simple to perform, giving an O(v8) contribution:

I(4)
ππ =

p2
(
ε− cm p2

2µ

)3

3π2cs

1
ε
− log

ε− cm p2

2µ + i0
−csM

− γ

2 + 4
3 + log π

2

 . (C.28)

The divergence renormalizes the Lagrangian term 1
µ5∇iπ∗

(
i∇̂H0 − cm

2µ ∇̂
H
i ∇̂Hi

)3
∇iπ =

1
µ5D

λπ∗Pλµ

{[
inρ∂̂ρ − cm

2µ ∂̂ρ
(
P ρσ∂̂σ

)]3
PµνDνπ

}
, in the notation of appendix B. In prac-

tice many tree-level higher derivative terms have to be taken into account at the lower
orders.

In (C.28) we found a ∼ log
(
µv2/M

)
contribution. Indeed in general ultrasoft loops

give rise to logarithms of the ultrasoft scale µv2. Instead soft and potential loops lead to
36Within this approach this is a common fact, for instance one can prove that πus never contributes inside

loops [45].
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logarithms of the soft scale µv [48]. For instance, the leading loop contribution to πp3π
p
3

potential propagator comes from a soft loop and takes the form

(C.29)

Finally, one can now consistently power count loop contributions to the ππ elastic scatter-
ing, computed to O(v4) at tree-level in section 3.5. Using the Feynman rules in C.2, one
easily concludes that the first corrections arise only at O(v5). Specifically, three kinds of
loop corrections exist. First, corrections to the Gp

π3 propagator in exchange diagrams of
figure 2, which however start at O(v8) as eq. (C.29) shows. Then corrections to the πp3 |πp|2

vertex appearing in the same kind of diagrams. For instance, the leading correction in this
class is given by a loop of πp and πp3 :

(C.30)

Here we showed explicitly the scaling of the vertices with v and we power counted the
result as measure×propagators×vertices. Finally we have those that we can interpret as
corrections to the contact vertex in figure 1. The leading corrections in this class are also
O(v5) and are displayed in figure 3.

We remark that this formulation of the NREFT differs in some points from the modern
vNRQCD [48]. First, we did not separate explicitly the fields momenta in soft, potential
and ultra-soft components in the Lagrangian, as it is customarily done in NRQCD [44].
Of course, this is possible and it might be useful in performing more refined computations,
especially to account for the proper zero-bin subtractions [57]. Furthermore, here off-shell
modes are not integrated out explicitly and the pull-up mechanism is not explicitly imple-
mented [48], i.e. we do not renormalize soft and ultrasoft fields separately. These differences
stem from the fact that we want to preserve the nonlinearly realized SU(2) invariance in
the Lagrangian, which relates the different modes of π3 and π. In particular, this implies
that all modes of a given operator have the same anomalous dimensions [46], differently
than in vNRQCD. There, renormalizing them separately allows to efficiently resum loga-
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Figure 3. Leading loop topologies which correct the contact interaction in ππ scattering. The
scaling of vertices and the modes in the loop are displayed.

rithms of both the soft and ultrasoft scale, via the velocity Renormalization Group.37 This
is not possible within our approach, but it is only a minor drawback. Indeed, as typical for
Goldstone bosons, all interactions are irrelevant, so that logarithms are always multiplied
by powers of the velocity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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