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Abstract
Community detection techniques are useful for social media plat-
forms to discover tightly connected groups of users who share
common interests. However, this functionality often comes at the
expense of potentially exposing individuals to privacy breaches
by inadvertently revealing their tastes or preferences. Therefore,
some users may wish to preserve their anonymity and opt out of
community detection for various reasons, such as affiliation with
political or religious organizations, without leaving the platform.
In this study, we address the challenge of community membership
hiding, which involves strategically altering the structural proper-
ties of a network graph to prevent one or more nodes from being
identified by a given community detection algorithm.We tackle this
problem by formulating it as a constrained counterfactual graph ob-
jective, and we solve it via deep reinforcement learning. Extensive
experiments demonstrate that our method outperforms existing
baselines, striking the best balance between accuracy and cost.

CCS Concepts
• Human-centered computing → Social network analysis;
• Security and privacy → Social network security and pri-
vacy; • Theory of computation→ Reinforcement learning; •
Computing methodologies → Markov decision processes.
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1 Introduction
Identifying communities is crucial for understanding the intricacies
of complex graph structures like social networks [9]. This is typ-
ically achieved by community detection algorithms, which group
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nodes based on shared characteristics or interactions, shedding
light on the underlying organization and dynamics of the network.

The successful detection of communities in complex network
graphs is useful in several application domains [17]. For instance,
the insights gained from accurately identifying communities can
significantly impact business strategies, leading to better monetiza-
tion opportunities through targeted advertising [27].

However, community detection algorithms also raise concerns
on individual privacy and data protection. In some cases, certain
nodes within the network might prefer not to be identified as part
of a particular community. These nodes could be associated with
sensitive or private groups (e.g., political or religious organizations)
or may wish to protect their anonymity for personal reasons. An
option for these users would be to leave the platform, but such a de-
cision might be too extreme. A more flexible approach would allow
users to opt out of community detection while staying on the plat-
form. This strategy strikes the optimal balance between preserving
privacy and maximizing the utility of community detection.

Motivated by the need above, in this paper, we address the in-
triguing challenge of community membership hiding.

Drawing inspiration from counterfactual reasoning [38, 39], par-
ticularly in the realm of graph data [23], we aim to provide users
with personalized recommendations that safeguard their anonymity
from community detection. To illustrate this with an example, con-
sider a scenario in which a social network is equipped with a tool
that offers guidance to its users on how to modify their connections
to prevent them from being recognized as members of a particular
community. For instance, a recommendation could take the form:
"If you unfollow users X and Y, you will no longer be recognized as a
member of community Z."

The core challenge of this problem lies in determining how to
strategically modify the structural properties of a network graph,
effectively excluding one or more nodes from being identified by a
given community detection algorithm. To the best of our knowledge,
we are the first to formulate the community membership hiding
problem as a constrained counterfactual graph objective. Further-
more, inspired by [5], we cast this problem into a Markov decision
process (MDP) framework and we propose a deep reinforcement
learning (DRL) approach to solve it.

Our method works as follows. We start with a graph and a set
of communities identified by a specific community detection algo-
rithm whose inner logic can be unknown or undisclosed. When
given a target node within a community, we aim to find the optimal
structural adjustment of the target node’s neighborhood. This ad-
justment should enable the target node to remain concealed when
the (same) community detection algorithm is reapplied to the mod-
ified graph. We refer to this as community membership hiding task,
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andwe consider it successful when a predefined similarity threshold
between the original community and the new community contain-
ing the target node is met. It is worth noting that while related,
this task differs significantly from the community deception task ex-
plored in existing literature [8]. Specifically, community deception
aims to hide an entire community from community detection algo-
rithms by rewiring connections of some members within the target
community. However, the community deception task, as defined
by Fionda and Pirrò [8], does not have a binary outcome, unlike
our community membership hiding goal. Instead, the authors intro-
duce a smooth measure, the Deception Score, that combines three
criteria for effective community masking: reachability, spreadness,
and hiding. While it might seem plausible to extend our method
for community deception by running multiple membership hiding
tasks for each node in the target community, this straightforward
strategy might be too aggressive due to our more stringent (i.e.,
binary) definition of deception goal. A more nuanced approach
could involve leveraging the structural properties of each node in
the community to mask (e.g., their degree) to cleverly select target
nodes for membership hiding. Further exploration of this strategy
is left for future research.

We validate our approach on five real-world datasets, and we
demonstrate that it outperforms existing baselines using standard
quality metrics. Notably, our method maintains its effectiveness
even when used in conjunction with a community detection algo-
rithm that was not seen during the training phase. We call this key
property: transferability.

Our main contributions are summarized below.
• We formulate the community membership hiding problem
as a constrained counterfactual graph objective.

• We cast this problem within an MDP framework and solved
it via DRL.

• We utilize a graph neural network (GNN) representation to
capture the structural complexity of the input graph, which
in turn is used by the DRL agent to make its decisions.

• We validate the performance of our method in comparison
with existing baselines using standard quality metrics.

• We publicly release both the source code and the data utilized
in this study to encourage reproducibility.1

The remainder of this paper is structured as follows. In Section 2,
we review related work. Section 3 contains background and pre-
liminaries. We present our problem formulation in Section 4. In
Section 5, we describe our method, which we validate through
extensive experiments in Section 6. Section 7 discusses the imple-
mentation challenges along with the potential security and ethical
impact of our method. Finally, we conclude in Section 8.

2 Related Work
Community Detection. Community detection algorithms are es-
sential tools in network analysis, aiming to uncover densely con-
nected groups of nodes within a graph. They apply to various
domains, such as social network analysis, biology, and economics.

These algorithms can be broadly categorized into two types:
non-overlapping and overlapping community detection.

1https://github.com/AndreaBe99/community_membership_hiding

Non-overlapping community detection assigns each node to a
single community, employing various techniques such as Modular-
ity Optimization [1], Spectrum Analysis [35], Random Walk [31],
or Label Propagation [32]. On the other hand, overlapping commu-
nity detection seeks to represent better real-world networks where
nodes can belong to multiple communities. Mature methods have
been developed for this purpose, including NISE (Neighborhood-
Inflated Seed Expansion) [42] and techniques based on minimizing
the Hamiltonian of the Potts model [34]. For a more comprehensive
overview, we recommend consulting the work by Jin et al. [15].
Community Deception. As already discussed in Section 1 above,
community deception is closely related to the community member-
ship hiding problem we investigate in this work. Somehow, it is
a specialization of community membership hiding, where the ob-
jective is to hide an entire community from community detection
algorithms. In essence, this should involve performing multiple
membership hiding tasks, one for each node within the community
to be masked. However, this is a pretty raw simplification of the
process since each node hiding task, for how we define it below,
may, once solved, already achieve a satisfactory degree of commu-
nity hiding (i.e., obtain a high Deception Score, according to [8]),
indirectly concealing multiple nodes within the same community.

Community deception can serve various purposes, such as pre-
serving the anonymity of sensitive groups of individuals in online
monitoring scenarios, like social networks, or aiding public safety
by identifying online criminal activities. Yet, these techniques also
pose risks, as malicious actors can use them to evade detection
algorithms and operate covertly, potentially violating the law.

Several techniques exist for hiding communities, such as those
based on the concept of Modularity. Notable examples in this cat-
egory include the approach proposed by Nagaraja [28], the DICE
algorithm introduced by Waniek et al. [41], and the method de-
veloped by Fionda and Pirrò [8]. Other deception techniques are
founded on the idea of Safeness, as defined by Fionda and Pirrò
[8] and further explored by Chen et al. [4], as well as the notion of
Permanence used by Mittal et al. [24]. An exhaustive summary of
these methods is provided by Kalaichelvi and Easwarakumar [16].

3 Background and Preliminaries
In this section, we briefly review the well-known community detec-
tion problem and utilize its definition as the basis for formulating
the community membership hiding problem.

Let G = (V, E) be an arbitrary (directed) graph, where V is
a set of 𝑛 nodes (|V| = 𝑛), and E ⊆ V × V is a set of 𝑚 edges
(|E | = 𝑚). Optionally, an additional set of 𝑝 node attributes may
also be present. In such cases, each node 𝑢 ∈ V is associated with
a corresponding 𝑝-dimensional real-valued feature vector 𝒙𝑢 ∈ R𝑝 .
Furthermore, the underlying link structure of G is represented
using a binary adjacency matrix 𝑨 ∈ {0, 1}𝑛×𝑛 , where 𝑨𝑢,𝑣 = 1 if
and only if the edge (𝑢, 𝑣) ∈ E, and it is 0 otherwise.

The community detection problem aims to identify clusters of
nodes within a graph, called communities. Due to the intricate
nature of the concept and its reliance on contextual factors, es-
tablishing a universally accepted definition for a "community" is
challenging. Intuitively, communities exhibit strong intra-cluster
connections and relatively weaker inter-cluster connections [43].
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More formally, in this work, we adhere to the definition widely
used in the literature [8, 20, 22, 24], and we consider a function
𝑓 (·) that takes a graph as input and generates a partition of its
nodesV into a set of non-empty, non-overlapping, communities
{C1, . . . , C𝑘 } as output, i.e., 𝑓 (G) = {C1, . . . , C𝑘 }, where 𝑘 is usually
unknown. Within this framework, every node 𝑢 ∈ V is assigned
to exactly one community. However, this can be extended to ac-
commodate scenarios with overlapping communities, where each
node can belong to multiple clusters. Indeed, to represent node-
community assignments, we can use a 𝑘-dimensional stochastic
vector 𝒄𝑢 , where 𝑐𝑢,𝑖 = 𝑃 (𝑢 ∈ C𝑖 ) measures the probability that
node 𝑢 belongs to community C𝑖 , and

∑𝑘
𝑖=1 𝑐𝑢,𝑖 = 1. Eventually,

we use the notation 𝑖∗𝑢 = argmax𝑖 (𝑐𝑢,𝑖 ) to define the index of the
community to which a specific node 𝑢 belongs based on the out-
come of 𝑓 (G). Note that in the case of hard node partitioning, the
vector 𝒄𝑢 has only one non-zero entry, which equals 1. We leave
the exploration of overlapping communities for future work.

Typically, community detection methods operate by maximizing
a specific score that measures the intra-community cohesiveness
(e.g., Modularity [30]). However, this usually translates into solving
NP-hard optimization problems. Hence, some convenient approxi-
mations have been proposed in the literature to realize 𝑓 (·) in prac-
tice, e.g., Louvain [1], WalkTrap [31], Greedy [2], InfoMap [3], Label
Propagation [32], Leading Eigenvectors [29], Edge-Betweeness [12],
SpinGlass [33]. Anyway, the rationale behind how communities
are found is irrelevant to our task, and, hereinafter, we will treat
the community detection technique 𝑓 (·) as a "black box."

4 Community Membership Hiding
In a nutshell, community membership hiding seeks to allow a target
node in a graph to avoid being identified as a member of a specific
node cluster, as determined by a community detection algorithm.
This objective is achieved by suggesting to the node in question
how to strategically modify its connections with other nodes. Our
primary focus is to change the graph’s structure, represented by
the adjacency matrix. While altering node features holds potential
interest, that aspect is reserved for future work.
Assumptions: Whoever runs our community membership hiding
algorithm must be able to execute the community detection algo-
rithm 𝑓 (·) even without access to its internal logic and possesses
full knowledge of the graph. Nevertheless, our method might work
under more relaxed conditions (e.g., partial graph knowledge), as
discussed in Section 7.1. We illustrate our approach in Figure 1.

4.1 Problem Formulation
Let G = (V, E) be a graph and 𝑓 (G) = {C1, . . . , C𝑘 } denote the
community arrangement derived from applying a detection algo-
rithm 𝑓 (·) to G. Furthermore, suppose that 𝑓 has identified node
𝑢 ∈ V as a member of the community C𝑖 ∈ 𝑓 (G) – i.e., 𝑖∗𝑢 = 𝑖

– denoted as 𝑢 ∈ C𝑖 . The aim of community membership hiding
is to formulate a function ℎ𝜽 (·), parameterized by 𝜽 , that takes
as input the initial graph G and produces as output a new graph
ℎ𝜽 (G) = G′ = (V, E′). Among all the possible graphs, we seek
the one which, when input to the community detection algorithm
𝑓 , disassociates a target node 𝑢 from its original community C𝑖 .
This might lead to formulating various objectives depending on

Figure 1: Given a graph G, a node 𝑢 (in this case 𝑢 = 𝐷), a bud-
get of actions 𝛽 , and the set of communities identified by the
community detection algorithm 𝑓 (·) (including the commu-
nity C𝑖 to which the node belongs), community membership
hiding consists of adding inter-community edges E+

𝑢,𝑖
(green

edges), or removing intra-community edges E−
𝑢,𝑖

(red edge),
so that the value returned by the similarity function 𝑠𝑖𝑚(·, ·),
between the new community to which the node belongs after
rewiring, and the original one, is lower than the 𝜏 constraint.

how we define community membership hiding. Let us consider the
scenario where the target node 𝑢 is associated with a new com-
munity C′

𝑖
∈ 𝑓 (G′). One possible way to characterize community

membership hiding for𝑢 is to aim for a small similarity between the
new community and the original community to which 𝑢 belonged.
Alternatively, one may opt to enforce specific changes, ensuring
that the target node 𝑢 no longer shares the same community with
some nodes. For example, if C𝑖 = {𝑠, 𝑡, 𝑢, 𝑣,𝑤, 𝑥,𝑦, 𝑧}, we might wish
to assign 𝑢 to a new community C′

𝑖
such that 𝑠,𝑤, 𝑧 ∉ C′

𝑖
.

In this work, we adopt the first definition, leaving exploration of
other possibilities for future research. Practically, we set a similarity
threshold between C′

𝑖
and C𝑖 , excluding the target node 𝑢, which

belongs to both communities by definition. This condition can be
expressed as 𝑠𝑖𝑚(C𝑖 −𝑢, C′

𝑖
−𝑢) ≤ 𝜏 , where 𝜏 ∈ [0, 1]. (Note: We as-

sume that 𝑠𝑖𝑚(·, ·) ranges between 0 and 1.) Several similarity mea-
sures can be used to measure 𝑠𝑖𝑚(·, ·) depending on the application
domain, e.g., the overlap coefficient (a.k.a. Szymkiewicz–Simpson
coefficient) [25], the Jaccard coefficient [14], and the Sørensen-Dice
coefficient [6]. Setting 𝜏 = 0 represents the most stringent scenario,
where we require zero overlaps between C′

𝑖
and C𝑖 , except for the

node 𝑢 itself. At the other extreme, when 𝜏 = 1, we adopt a more
tolerant strategy, allowing for maximum overlap between C′

𝑖
and

C𝑖 . However, note that except for the overlap coefficient, which can
yield a value of 1 even if one community is a subset of the other,
the Jaccard and Sørensen-Dice coefficients yield a value of 1 only
when the two communities are identical. In practice, setting 𝜏 = 1
may lead to the undesired outcome of C′

𝑖
being equal to C𝑖 , thus

contradicting the primary goal of community membership hiding.
Therefore, it is common to let 𝜏 ∈ [0, 1) to avoid this scenario.
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Moreover, it is essential to emphasize that executing 𝑓 on G′

instead of the original G could potentially influence (𝑖) the commu-
nity affiliations of nodes beyond the selected target, 𝑢, and (𝑖𝑖) the
eventual count of recognized communities (i.e., |𝑓 (G′) | = 𝑘′ ≠ 𝑘 =

|𝑓 (G)|), providing that 𝑓 does not need this number fixed apriori
as one of its inputs. Thus, community membership hiding must
strike a balance between two conflicting goals. On the one hand,
the target node 𝑢 must be successfully elided from the original
community C𝑖 ; on the other hand, the cost of such an operation –
i.e., the "distance" between G and G′, and between 𝑓 (G) and 𝑓 (G′)
– must be as small as possible.

Overall, we can define the following loss function associated
with the community membership hiding task:

L(ℎ𝜽 ;G, 𝑓 , 𝑢) = ℓdecept (G, ℎ𝜽 (G); 𝑓 ,𝑢) + 𝜆ℓdist (G, ℎ𝜽 (G); 𝑓 ). (1)

The first component (ℓdecept) penalizes when the goal is not
satisfied. Let Γ be the set of input graphs which do not meet the
membership hiding objective, i.e., those which retain node 𝑢 as part
of the community C𝑖 . More formally, let C̃𝑖 be the community to
which node 𝑢 is assigned when 𝑓 is applied to the input graph G̃.
We define Γ = {G̃ | 𝑠𝑖𝑚(C𝑖 − {𝑢}, C̃𝑖 − {𝑢}) > 𝜏}. Thus, we can
compute ℓdecept as follows:

ℓdecept (G, ℎ𝜽 (G); 𝑓 ) = 1Γ (ℎ𝜽 (G)), (2)

where 1Γ (ℎ𝜽 (G)) is the well-known 0-1 indicator function, which
evaluates to 1 if ℎ𝜽 (G) ∈ Γ, or 0 otherwise.

The second component, denoted as ℓdist, is a composite function
designed to assess the overall dissimilarity between two graphs and
their respective communities found by 𝑓 . This function serves the
dual purpose of (𝑖) discouraging the new graph ℎ𝜽 (G) from diverg-
ing significantly from the original graph G and (𝑖𝑖) preventing the
new community structure 𝑓 (ℎ𝜽 (G)) from differing substantially
from the prior community structure 𝑓 (G).

4.2 Counterfactual Graph Objective
Given the target community C𝑖 , from which we want to exclude
node 𝑢, we can classify the remaining nodesV − {𝑢} of G into two
categories: nodes that are inside the same community C𝑖 as 𝑢 and
nodes that belong to a different community from 𝑢. This categoriza-
tion helps us define which edges the target node 𝑢 can control and,
thus, directly manipulate under the assumption that G is a directed
graph.2 Specifically, following [8], we assume that 𝑢 can (𝑖) remove
existing outgoing edges to nodes that are inside 𝑢’s community (𝑖𝑖)
add new outgoing edges to nodes that are outside 𝑢’s community.
We intentionally exclude two possible actions: (𝑖𝑖𝑖) removing out-
going links to outside-community nodes and (𝑖𝑣) adding outgoing
links to inside-community nodes. Two primary reasons drive this
choice. On the one hand, allowing (𝑖𝑖𝑖) could isolate 𝑢 and its origi-
nal community C𝑖 further. On the other hand, allowing (𝑖𝑣) would
enhance connectivity between 𝑢 and other nodes in C𝑖 . Both events
contradict the goal of community membership hiding.

2We can easily extend this reasoning if G is undirected.

Overall, we can define the set of candidate edges to remove (E−
𝑢,𝑖

)
and to add (E+

𝑢,𝑖
) as follows:

E−
𝑢,𝑖 = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ C𝑖 ∧ (𝑢, 𝑣) ∈ E},

E+
𝑢,𝑖 = {(𝑢, 𝑣) | 𝑢 ∈ C𝑖 , 𝑣 ∉ C𝑖 ∧ (𝑢, 𝑣) ∉ E}.

If we suppose the target node 𝑢 has a fixed budget 𝛽 > 0, solv-
ing the community membership hiding task resorts to finding the
optimal model ℎ∗ = ℎ𝜽 ∗ as the one whose parameters 𝜽 ∗ minimize
Eq. (1), i.e., by solving the following constrained objective:

𝜽 ∗ = arg min
𝜽

{
L(ℎ𝜽 ;G, 𝑓 , 𝑢)

}
subject to: |B𝑢,𝑖 | ≤ 𝛽,

(3)

where B𝑢,𝑖 ⊆ E−
𝑢,𝑖

∪ E+
𝑢,𝑖

is the set of graph edge modifications
selected from the candidates.

Note that Eq. (3) resembles the optimization task to find the
best counterfactual graph G∗ = ℎ∗ (G) that, when fed back into 𝑓 ,
changes its output to hide the target node 𝑢 from its community.

4.3 Markov Decision Process
The community membership hiding problem defined in Eq. (3) re-
quires minimizing a discrete, non-differentiable loss function. Thus,
standard optimization methods like stochastic gradient descent are
unsuitable for this task. One potential solution is to smooth the loss
function using numerical techniques, such as applying a real-valued
perturbation matrix to the original graph’s adjacency matrix like
in [23, 40]. Another option is to directly define ℓdecept as a smooth
similarity between the original and the newly obtained community,
sacrificing control over the threshold 𝜏 . We leave the exploration
of these alternatives for future work. Instead, we take a different
approach and cast this problem as a sequential decision-making
process, following standard reinforcement learning principles.

In this framework, at each time step, an agent: (i) takes an action
(choosing to add or remove an edge based on the rules defined
above), and (ii) observes the new set of communities output by 𝑓

when this is fed with the graph modified according to the action
taken before. The agent also receives a scalar reward from the
environment. The process continues until the agent eventually
meets the specified node hiding-goal and the optimal counterfactual
graph G∗ – i.e., the optimal ℎ∗ – is found.

We formalize this scheme as a discounted Markov decision pro-
cess (MDP) denoted as M = {S,A,P, 𝑝0, 𝑟 , 𝛾} and detailed below.
States (S). At each time step 𝑡 , the agent’s state is 𝑆𝑡 = 𝑠𝑡 , where
𝑠𝑡 = G𝑡 ∈ S is the current modified input graph. In practice,
though, we can replace G𝑡 with its associated adjacency matrix
𝑨𝑡 ∈ {0, 1}𝑛×𝑛 . Initially, when 𝑡 = 0, G0 = G (𝑨0 = 𝑨).
Actions (A). The set of actions is defined by A = {𝑎𝑡 }, which
consists of all valid graph rewiring operations, assuming node 𝑢
belongs to the community 𝐶𝑖 .

A = {del(𝑢, 𝑣) | (𝑢, 𝑣) ∈ E−
𝑢,𝑖 } ∪ {add(𝑢, 𝑣) | (𝑢, 𝑣) ∈ E+

𝑢,𝑖 }. (4)

According to the allowed graph modifications outlined in Sec-
tion 4.2, the agent can choose between two types of actions: delet-
ing an edge from 𝑢 to any node within the same community 𝐶𝑖 or
adding an edge from 𝑢 to any node in a different community.
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Transitions Probability (P). Let 𝑎𝑡 ∈ A be the action taken by
the agent at iteration 𝑡 . This action deterministically guides the
agent’s transition from the state 𝑠𝑡 to the state 𝑠𝑡+1. In essence, the
transition function P : S × A × S → [0, 1], which associates a
transition probability with each state-action pair, assigns a transi-
tion probability of 1 when the subsequent state 𝑠𝑡+1 is determined
by the state-action pair (𝑠𝑡 , 𝑎𝑡 ) and 0 otherwise. Formally:

• P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) = 1 if 𝑠𝑡+1 is the next state resulting from the
application of action 𝑎𝑡 in state 𝑠𝑡 .

• P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) = 0 otherwise.
Reward (𝑟 ). The reward function of the action 𝑎𝑡 which takes the
agent from state 𝑠𝑡 to state 𝑠𝑡+1 can be defined as:

𝑟 (𝑠𝑡 , 𝑎𝑡 ) =
{
1 − 𝜆(ℓ𝑡dist − ℓ𝑡−1dist ) , if "the goal is met"
−𝜆(ℓ𝑡dist − ℓ𝑡−1dist ) , otherwise.

(5)

The goal is considered successfully achieved when 𝑓 (G𝑡 ) leads to
𝑢 ∈ C𝑡

𝑖
≠ C𝑖 such that 𝑠𝑖𝑚(C𝑖 − {𝑢}, C𝑡

𝑖
− {𝑢}) ≤ 𝜏 . In addition,

ℓ𝑡dist = ℓdist (G,G𝑡 ; 𝑓 ) measures the penalty computed on the graph
before and after action 𝑎𝑡 , and 𝜆 ∈ R>0 is a parameter that controls
its weight. More precisely, the penalty is calculated as follows:

ℓdist (G,G𝑡 ; 𝑓 ) = 𝛼 × 𝑑community + (1 − 𝛼) × 𝑑graph, (6)

where 𝑑community computes the distance between the community
structures 𝑓 (G) and 𝑓 (G𝑡 ), 𝑑graph measures the distance between
the two graphs G and G𝑡 , and the parameter 𝛼 ∈ [0, 1] balances
the importance between the two distances.

Hence, the reward function encourages the agent to take actions
that preserve the similarity between the community structures and
the graphs before and after the rewiring action.
Policy (𝜋𝜽 ).We first define a parameterized policy 𝜋𝜽 that maps
from states to actions. We then want to find the values of the policy
parameters 𝜽 that maximize the expected reward in the MDP. This
is equivalent to finding the optimal policy 𝜋∗, which is the policy
that gives the highest expected reward for any state. We can find
the optimal policy 𝜋∗ by minimizing the Eq. (3). This minimization
leads to the discovery of the optimal model ℎ∗, which is the model
that best predicts the rewards in the MDP.

𝜽 ∗ = arg min
𝜽

ℓdecept (ℎ𝜽 ;G, 𝑓 , 𝑢) + 𝜆ℓdist (G, ℎ𝜽 (G); 𝑓 )

= arg max
𝜽

− ℓdecept (ℎ𝜽 ;G, 𝑓 , 𝑢) − 𝜆ℓdist (G, ℎ𝜽 (G); 𝑓 )

= arg max
𝜽

𝑇∑︁
𝑡=1

{
1 − 𝜆(ℓ𝑡dist − ℓ𝑡−1dist ) , if "the goal is met"
−𝜆(ℓ𝑡dist − ℓ𝑡−1dist ) , otherwise

= arg max
𝜽

𝑇∑︁
𝑡=1

𝑟 (𝑠𝑡 , 𝜋𝜽 (𝑠𝑡 )),

(7)

where 𝑇 is the maximum number of steps per episode taken by
the agent and is therefore always less than the allowed number of
graph manipulations, i.e., 𝑇 ≤ 𝛽 .

5 Proposed Method
To learn the optimal policy for our agent defined above, we use
the Advantage Actor-Critic (A2C) algorithm [26], a popular deep
reinforcement learning technique that combines the advantages
of both policy-based and value-based methods. Specifically, A2C

defines two neural networks, one for the policy function (𝜋𝜽 ) and
another for the value function estimator (𝑉𝑣 ), such that:

∇𝜽J (𝜽 ) ∼
𝑇−1∑︁
𝑡=0

∇𝜽 log𝜋𝜽 (𝑎𝑡 |𝑠𝑡 )𝐴(𝑠𝑡 , 𝑎𝑡 ),

with 𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡+1 + 𝛾𝑉𝑣 (𝑠𝑡+1) −𝑉𝑣 (𝑠𝑡 ), (8)

where J (𝜽 ) is the reward function, and the goal is to find the opti-
mal policy parameters 𝜽 that maximize it.𝐴(𝑠𝑡 , 𝑎𝑡 ) is the advantage
function that quantifies how good or bad an action 𝑎𝑡 is compared
to the expected value of actions chosen based on the current policy.

Below, we describe the policy (actor) and value function (critic)
networks.
Policy Function Network (Actor). The policy function network is
responsible for generating a probability distribution over possible
actions based on the input, which consists of a list of nodes and
the graph’s feature matrix. However, some graphs may lack node
features. In such cases, we can extract continuous node feature
vectors (i.e., node embeddings) with graph representational learning
frameworks like node2vec [13]. These node embeddings serve as
the feature matrix.

Our neural network implementation comprises a primary graph
convolution layer (GCNConv [18]) for updating node features. The
output of this layer, along with skip connections, feeds into a block
consisting of three hidden layers. Each hidden layer includes multi-
layer perception (MLP) layers, ReLU activations, and dropout layers.
The final output is aggregated using a sum-pooling function. In
building our network architecture, we were inspired, in part, by
the work conducted by Gammelli et al. [11], adapting it to our task.
The policy is trained to predict the probability that node 𝑣 is the
optimal choice for adding or removing the edge (𝑢, 𝑣) to hide the
target node 𝑢 from its original community. The feasible actions
depend on the input node 𝑢 and are restricted to a subset of the
graph’s edges as outlined in Section 4.2. Hence, not all nodes 𝑣 ∈ V
are viable options for the policy.
Value Function Network (Critic). This network is similar to the
one used for the policy, with one distinction: it includes a global sum-
pooling operation on the convolution layer’s output. This pooling
operation results in an output layer with a size of 1, indicating the
estimated value of the value function. The role of the value function
is to predict the state value given a specific action 𝑎𝑡 and state 𝑠𝑡 .

6 Experiments
6.1 Experimental Setup
Datasets. We train our DRL agent on the real dataset words.3
This dataset strikes a favorable balance regarding the number of
nodes, edges, and discovered communities. In addition, we evaluate
the performance of our method on four additional datasets: kar3,
Wikipedia’s vote 4, pow3, and Facebook fb-754.
Community Detection Algorithms. The DRL agent is trained
using a single detection algorithm, namely the modularity-based
Greedy (greedy) algorithm [2]. However, at test time, we use two
additional algorithms: the Louvain (louvain) algorithm [1], which

3http://konect.cc/
4https://networkrepository.com
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Table 1: Properties of the datasets used along with the size of
the communities detected by greedy, louvain, and walktrap.

Dataset |V| |E | Community Detection Algorithm
greedy louvain walktrap

kar 34 78 3 4 5
words 112 425 7 7 25
vote 889 2,900 12 10 42
pow 4,941 6,594 40 41 364
fb-75 6,386 217,662 29 19 357

is in the same family as greedy, and WalkTrap (walktrap) [31],
which takes a distinct approach centered on Random Walks.

Table 1 provides an overview of the datasets used, including
key properties and the number of communities detected by each
community detection algorithm. The modularity-based algorithms
(greedy and louvain) yield comparable community counts, while
walktrap identifies a generally higher number of communities.
Similarity/Distance Metrics. To assess the achievement of the
community membership hiding goal, i.e., whether the new commu-
nity C𝑡

𝑖
of the target node𝑢 at step 𝑡 can no longer be considered the

same as the initial community C𝑖 , we need to define the 𝑠𝑖𝑚(·) func-
tion used within ℓdecept. We employ the Sørensen-Dice coefficient
[6], which is defined as follows:

DSC(C𝑖 , C𝑡
𝑖 ) =

2|C𝑖
⋂C𝑡

𝑖
|

|C𝑖 | + |C𝑡
𝑖
|
. (9)

This metric returns a value between 0 (no similarity) and 1 (strong
similarity). If that value is less than or equal to the parameter 𝜏 , we
consider the node-hiding goal successfully met.

Furthermore, as described in Eq. (6), we must specify the penalty
function (ℓdist), which consists of two mutually balanced factors,
namely𝑑community and𝑑graph. These factors quantify the dissimilar-
ity between community structures and graphs before and after the
action. During model training, we operationalize these distances us-
ing the Normalized Mutual Information (NMI) score for community
comparison and the Jaccard distance for graph comparison.

The NMI score [19, 36], utilized for measuring the similarity
between community structures, ranges from 0 (indicating nomutual
information) to 1 (indicating perfect correlation).

Following the formulation by [21], it can be expressed as follows:

NMI(K,K𝑡 ) = 𝐼norm (𝑋 : 𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 )
(𝐻 (𝑋 ) + 𝐻 (𝑌 ))/2 , (10)

where 𝐻 (𝑋 ) and 𝐻 (𝑌 ) denote the entropy of the random variables
𝑋 and 𝑌 associated with partitions K = 𝑓 (G) and K𝑡 = 𝑓 (G𝑡 ),
respectively, while 𝐻 (𝑋,𝑌 ) denotes the joint entropy. Since we
need to transform this metric into a distance, we calculate 1-NMI.

The Jaccard distance can be adapted to the case of two graphs,
as described in [7], as follows:

Jaccard(G,G𝑡 ) = |G⋃G𝑡 | − |G⋂G𝑡 |
|G⋃G𝑡 | =

∑
𝑖, 𝑗 |𝑨𝑖, 𝑗 −𝑨𝑡

𝑖, 𝑗
|∑

𝑖, 𝑗 max(𝑨𝑖,𝑗 ,𝑨𝑡
𝑖,𝑗
)
,

(11)
where 𝑨𝑖, 𝑗 denotes the (𝑖, 𝑗)-th entry of the adjacency matrix for
the original graph G. The Jaccard distance yields a value of 0 when
the two graphs are identical and 1 when they are entirely dissimilar.

6.2 Community Membership Hiding Task
Baselines.We compare the performance of ourmethod (DRL-Agent)
against the five baselines described below.
1) Random-based. This baseline operates by randomly selecting one
of the nodes in the graph. If the selected node is a neighbor of the
target node to be hidden (i.e., there is an edge between them), the
edge is removed; otherwise, it is added. The randomness of these
decisions aims to obscure the node’s true community membership.
2) Degree-based. This approach selects nodes with the highest de-
grees within the graph and rewires them. By prioritizing nodes with
higher degrees, this baseline seeks to disrupt the node’s central con-
nections within its initial community, thus promoting concealment.
3) Betweenness-based. This baseline prioritizes nodes with the high-
est betweenness centrality [10] as those candidates to be discon-
nected. The betweenness centrality of a node 𝑢, denoted as 𝑏 (𝑢), is
computed as 𝑏 (𝑢) = ∑

𝑠≠𝑢≠𝑡
𝜎𝑠,𝑡 (𝑢 )
𝜎𝑠,𝑡

, where 𝜎𝑠,𝑡 is the total number
of shortest paths from node 𝑠 to node 𝑡 and 𝜎𝑠,𝑡 (𝑢) is the number
of those paths that pass through 𝑢 (where 𝑢 is not an end point).
4) Roam-based. This method is based on the Roam heuristics [41],
originally designed to reduce a node’s centrality within the network.
It aims to diminish the centrality and influence of the target node
within its initial community, favoring its deception.
5) Greedy-based.We develop a "relaxed" greedy heuristic that selects
the most promising rewiring action without exhaustively exploring
all the possible operations by prioritizing higher-degree nodes.

Let 𝑢 be the target node to be masked from the community C. At
each step, we still can choose between (𝑖) adding an edge between𝑢
and a node 𝑣 outside the community or (𝑖𝑖) deleting an existing edge
between 𝑢 and a node𝑤 inside the same community. To greedily
determine what action provokes the largest loss reduction as of Eq.
(1), we restrict the two actions above as follows.

Concerning (𝑖), we do not consider all the possible nodes 𝑣 ∈
V \ C but only the node 𝑣∗ with the highest out-degree. Then, we
measure the loss reduction once the edge (𝑢, 𝑣∗) is added. The ratio-
nale is similar to the one already used in the Degree-based baseline,
where the goal is to connect𝑢 to a popular node and, hopefully, mit-
igate its "centrality" in its current community C. Concerning (𝑖𝑖),
we select the edge to remove as follows. For each node𝑤 ≠ 𝑢 that
belongs to the same community C, such that (𝑢,𝑤) ∈ E, we calcu-
late the intra-community degree 𝑑𝑒𝑔C (𝑤) = |{(𝑤, 𝑥) ∈ E|𝑥 ∈ C}|.
Then, we delete the edge (𝑢,𝑤∗) with the node 𝑤∗ having the
highest intra-community degree. The rationale of this choice is to
remove the link between 𝑢 and the node with the largest number
of connections within the community. By doing so, we expect to
increase the chance for 𝑢 to be masked from C. Again, we measure
the loss reduction if the edge (𝑢,𝑤∗) is deleted.

At each step, we decide between adding (𝑢, 𝑣∗) or deleting (𝑢,𝑤∗)
by selecting the action that results in the highest loss reduction.
This relaxed greedy approach is computationally more tractable
than the full-greedy heuristic, as it allows us to run the community
detection algorithm 𝑓 (·) only twice at each step, once for each of
the two actions. We keep doing this until the goal is achieved or
the budget 𝛽 is exhausted.
Evaluation Metrics.We measure the performance of each method
in solving the community membership hiding task using the fol-
lowing metrics.
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1) Success Rate (SR). This metric calculates the success rate of the
membership hiding algorithm by determining the percentage of
times the target node is successfully hidden from its original commu-
nity. If the target node no longer belongs to the original community
(as per Eq. (9) and the 𝜏 constraint), we consider the goal achieved.
By repeating this procedure for several nodes and communities, we
can estimate the algorithm’s success rate. A higher value of this
metric indicates better performance.
2) Normalized Mutual Information (NMI). To quantify the impact of
the functionℎ𝜽 (·) on the resulting community structure, denoted as
the output of 𝑓 (G′) where G′ is the graph created by modifying the
original graph G, we compute NMI(K,K′), as outlined in Eq. (10).
This score measures the similarity between the two structures,
K = 𝑓 (G) andK′ = 𝑓 (G′). A higher value for this metric indicates
a greater degree of similarity between the original and modified
community structures and, therefore, a smaller cost.

In general, SR and NMI are two contrastive metrics; a higher SR
corresponds to a lower NMI and vice versa. Therefore, similar to
the 𝐹1 score, which balances precision and recall, we calculate the
harmonic mean between SR and NMI using the formula 2×SR×NMI

SR+NMI
to evaluate which method achieves the optimal trade-off.

6.3 Results and Discussion
We assess our DRL-Agent’s performance against the baseline meth-
ods discussed in Section 6.2. We investigate various parameter
settings, including different values for the similarity constraint 𝜏
(0.3, 0.5, 0.8) and the budget 𝛽 ( 12 𝜇, 1𝜇, 2𝜇, where 𝜇 =

| E |
|V | ). We

evaluate all possible combinations of these parameters.
For each parameter combination, dataset, and community detec-

tion algorithm, we conducted a total of 100 experiments. In each
iteration, we randomly select a node from a different community
than the previous one for concealment. The reported results are
based on the average outcomes across all runs. Furthermore, we
explore two distinct setups: symmetric and asymmetric. In the sym-
metric case, our DRL-Agent is trained and tested using the same
community detection algorithm used for the membership hiding
task. Instead, the asymmetric setup evaluates the performance of
our method when tested on a community detection algorithm dif-
ferent from the one used for training. This second setting allows us
to assess the transferability of our method to community detection
algorithms unseen at training time. Specifically, the results below
showcase the outcome when we train our DRL-Agent using the
modularity-based greedy algorithm for both setups. In the symmet-
ric setting, greedy is also used at test time, while in the asymmetric
setup, we employ the louvain or walktrap algorithm.

All the experiments were conducted on a 4-core Intel Xeon CPU
running at 2.2 GHz with 18 GB RAM.

In Tables 2 and 3, we display the Success Rate (SR) as a function
of budget (𝛽) for each dataset in the symmetric and two asymmetric
settings, respectively, with a tolerance threshold of 𝜏 = 0.5.

In Figures 2, 3, and 4, we show the harmonic mean (𝐹1 score)
between the Success Rate and NMI for all datasets in symmetric
and asymmetric setups, still with a tolerance threshold of 𝜏 = 0.5
and a budget 𝛽 = 1𝜇.

From the results above, we emphasize two primary findings.
Firstly, our approach strikes the best balance between accuracy and

Figure 2: F1 score of SR and NMI in symmetric setting (train-
ing: greedy; testing: greedy; 𝝉 = 0.5; 𝜷 = 1𝝁).

Figure 3: F1 score of SR and NMI in asymmetric setting (train-
ing: greedy; testing: louvain; 𝝉 = 0.5; 𝜷 = 1𝝁).

Figure 4: F1 score of SR and NMI in asymmetric setting (train-
ing: greedy; testing: walktrap; 𝝉 = 0.5; 𝜷 = 1𝝁).

cost. Indeed, for a fixed budget value, our DRL-Agent achieves the
highest Success Rate in hiding the selected target node compared
to other competing methods. The only exception occurs in a single
dataset (pow) and for a specific budget value (𝛽 = 2𝜇), where the
method based on Betweenness outperforms all others. Moreover,
our approach pays a limited "price" for this success. Specifically,
the modified graph retains much of the structural properties of the
original. This is demonstrated by the highest 𝐹1 score between SR
and NMI compared to other methods.

The second key finding concerns the transferability of our DRL-
Agent to a different community detection algorithm than the one
seen during training (asymmetric setup). As illustrated in Table 2,
our approach generally works better in the symmetric setup (like
other baseline methods). Still, Table 3 shows that our DRL-Agent
also dominates over competitors in the asymmetric settings. This
quality makes our approach effective and applicable even when the
underlying community detection algorithm is unknown.
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Table 2: Success Rate (SR) vs. budget (𝜷) for community membership hiding task in the symmetric setting (𝝉 = 0.5).

Dataset 𝜷

Symmetric (training: greedy; testing: greedy)

DRL-Agent
(ours) Random Degree Betweenness Roam Greedy

kar

1
2 𝜇 26.3% ± 4.9% 22.0% ± 4.6% 16.3% ± 4.1% 14.6% ± 4.0% 13.6% ± 3.8% 0.6% ± 0.9%
1𝜇 54.0% ± 5.6% 31.6% ± 5.2% 42.3% ± 5.5% 46.0% ± 5.6% 12.6% ± 3.7% 45.3% ± 5.6%
2𝜇 70.3% ± 5.1% 46.6% ± 5.6% 43.6% ± 5.6% 55.6% ± 5.6% 13.6% ± 3.8% 38.3% ± 5.5%

words

1
2 𝜇 49.7% ± 5.7% 48.7% ± 5.7% 48.0% ± 5.7% 46.0% ± 5.6% 45.3% ± 5.6% 29.0% ± 5.1%
1𝜇 71.7% ± 5.1% 57.0% ± 5.6% 62.3% ± 5.5% 64.6% ± 5.4% 51.7% ± 5.7% 64.0% ± 5.4%
2𝜇 88.3% ± 3.6% 71.0% ± 5.1% 77.3% ± 4.7% 79.6% ± 4.5% 44.7% ± 5.6% 79.7% ± 4.5%

vote

1
2 𝜇 38.6% ± 5.5% 16.6% ± 4.2% 20.6% ± 4.5% 21.0% ± 4.6% 26.0% ± 4.9% 3.3% ± 2.0%
1𝜇 49.6% ± 5.6% 35.3% ± 5.4% 37.3% ± 5.4% 38.6% ± 5.5% 22.3% ± 4.7% 38.3% ± 5.5%
2𝜇 65.3% ± 5.3% 47.0% ± 5.6% 53.0% ± 5.6% 55.0% ± 5.6% 40.0% ± 5.5% 53.3% ± 5.6%

pow

1
2 𝜇 40.0% ± 5.5% 33.3% ± 5.3% 19.3% ± 4.4% 20.3% ± 4.5% 32.3% ± 5.2% 6.7% ± 2.8%
1𝜇 71.3% ± 5.1% 38.0% ± 5.4% 15.0% ± 4.0% 64.0% ± 5.4% 38.6% ± 5.5% 28.7% ± 5.1%
2𝜇 91.6% ± 3.1% 47.3% ± 5.6% 91.6% ± 3.1% 93.0% ± 2.8% 28.6% ± 5.1% 92.0% ± 3.0%

fb-75

1
2 𝜇 29.0% ± 5.1% 20.3% ± 4.5% 8.3% ± 3.1% 10.3% ± 3.4% 6.3% ± 2.7% 11.3% ± 3.6%
1𝜇 33.6% ± 5.3% 24.3% ± 4.8% 5.6% ± 2.6% 9.6% ± 3.3% 5.3% ± 2.5% 10.3% ± 3.4%
2𝜇 45.0% ± 5.6% 36.3% ± 5.4% 11.0% ± 3.5% 16.3% ± 4.1% 8.0% ± 3.0% 17.3% ± 4.3%

Table 3: Success Rate (SR) vs. budget (𝜷) community membership hiding task in two asymmetric settings (𝝉 = 0.5).

Dataset 𝜷

Asymmetric (training: greedy; testing: louvain) Asymmetric (training: greedy; testing: walktrap)

DRL-Agent
(ours) Random Degree Betweenness Roam Greedy

DRL-Agent
(ours) Random Degree Betweenness Roam Greedy

kar

1
2 𝜇 33.3% ± 5.3% 31.3% ± 5.2% 24.0% ± 4.8% 7.6% ± 3.0% 27.0% ± 5.0% 1.0% ± 1.1% 10.0% ± 3.4% 6.7% ± 2.8% 6.7% ± 2.8% 4.0% ± 2.2% 6.0% ± 2.7% 4.0% ± 2.2%
1𝜇 50.0% ± 5.6% 41.0% ± 5.5% 39.6% ± 5.5% 25.0% ± 4.9% 28.3% ± 5.1% 25.0% ± 4.9% 41.7% ± 5.6% 30.3% ± 5.2% 19.7% ± 4.5% 26.7% ± 5.0% 9.3% ± 3.3% 25.0% ± 4.9%
2𝜇 66.6% ± 5.3% 46.6% ± 5.6% 41.0% ± 5.5% 37.0% ± 5.4% 24.6% ± 4.8% 46.0% ± 5.6% 88.3% ± 3.6% 61.0% ± 5.5% 58.3% ± 5.6% 70.3% ± 5.2% 7.7% ± 3.0% 74.3% ± 4.9%

words

1
2 𝜇 57.6% ± 5.5% 44.0% ± 5.6% 48.6% ± 5.6% 52.0% ± 5.6% 50.6% ± 5.6% 50.0% ± 5.7% 43.0% ± 5.6% 35.7% ± 5.4% 20.3% ± 4.5% 29.7% ± 5.2% 32.0% ± 5.3% 21.0% ± 4.6%
1𝜇 68.3% ± 5.2% 51.6% ± 5.6% 54.6% ± 5.6% 60.3% ± 5.5% 59.3% ± 5.5% 60.0% ± 5.5% 64.0% ± 5.4% 52.7% ± 5.7% 41.0% ± 5.6% 31.3% ± 5.2% 26.0% ± 5.0% 43.7% ± 5.6%
2𝜇 84.0% ± 4.1% 61.6% ± 5.5% 59.6% ± 5.5% 69.0% ± 5.2% 56.3% ± 5.6% 83.0% ± 4.2% 76.7% ± 4.8% 66.3% ± 5.3% 65.0% ± 5.4% 51.7% ± 5.7% 42.0% ± 5.6% 57.0% ± 5.6%

vote

1
2 𝜇 22.0% ± 4.6% 19.0% ± 4.4% 14.3% ± 3.9% 8.0% ± 3.0% 20.3% ± 4.5% 7.0% ± 2.9% 27.0% ± 5.0% 23.0% ± 4.8% 13.3% ± 3.9% 12.7% ± 3.8% 25.0% ± 4.9% 7.0% ± 2.9%
1𝜇 35.6% ± 5.4% 28.6% ± 5.1% 23.0% ± 4.7% 16.3% ± 4.1% 29.6% ± 5.1% 26.7% ± 5.0% 45.7% ± 5.6% 35.3% ± 5.4% 38.7% ± 5.5% 39.3% ± 5.5% 32.0% ± 5.3% 29.7% ± 5.2%
2𝜇 45.0% ± 5.6% 35.6% ± 5.4% 39.6% ± 5.5% 21.6% ± 4.6% 31.0% ± 5.2% 40.0% ± 5.5% 66.7% ± 5.3% 51.3% ± 5.7% 64.0% ± 5.4% 65.0% ± 5.4% 42.7% ± 5.6% 64.7% ± 5.4%

pow

1
2 𝜇 56.6% ± 5.6% 41.3% ± 5.5% 19.3% ± 4.4% 15.0% ± 4.0% 45.3% ± 5.6% 11.3% ± 3.6% 49.7% ± 5.7% 37.7% ± 5.5% 29.0% ± 5.1% 5.3% ± 2.5% 65.3% ± 5.4% 7.3% ± 2.9%
1𝜇 63.3% ± 5.4% 46.6% ± 5.6% 21.6% ± 4.6% 49.6% ± 5.6% 45.6% ± 5.6% 25.0% ± 4.9% 56.0% ± 5.6% 42.7% ± 5.6% 33.0% ± 5.3% 8.0% ± 3.1% 64.0% ± 5.4% 24.7% ± 4.9%
2𝜇 82.3% ± 4.3% 55.3% ± 5.6% 32.3% ± 5.2% 96.0% ± 2.2% 47.0% ± 5.6% 43.3% ± 5.6% 62.0% ± 5.5% 46.0% ± 5.6% 48.0% ± 5.7% 27.7% ± 5.1% 44.3% ± 5.6% 36.3% ± 5.4%

fb-75

1
2 𝜇 48.3% ± 5.6% 42.0% ± 5.5% 37.0% ± 5.4% 41.0% ± 5.5% 36.3% ± 5.4% 41.0% ± 5.6% 31.7% ± 5.3% 20.3% ± 4.5% 10.3% ± 3.4% 12.0% ± 3.7% 12.0% ± 3.7% 14.3% ± 3.9%
1𝜇 56.0% ± 5.6% 48.6% ± 5.6% 41.6% ± 5.5% 43.3% ± 5.6% 34.3% ± 5.3% 42.3% ± 5.6% 32.3% ± 5.3% 27.0% ± 5.0% 13.0% ± 3.8% 19.0% ± 4.4% 12.3% ± 3.7% 23.3% ± 4.8%
2𝜇 66.3% ± 5.3% 63.6% ± 5.4% 60.0% ± 5.5% 64.0% ± 5.4% 48.0% ± 5.6% 62.0% ± 5.5% 36.0% ± 5.4% 33.7% ± 5.3% 16.3% ± 4.2% 22.3% ± 4.7% 18.3% ± 4.4% 25.7% ± 4.9%

6.4 Parameter Sensitivity
The effectiveness of our DRL-Agent relies on two critical parame-
ters: (𝑖) the similarity threshold (𝜏) used to determine whether the
node-hiding goal has been achieved or not, and (𝑖𝑖) the budget (𝛽)
to limit the effort – i.e., graph modifications – performed to achieve
the goal. In this section, we analyze their impact. Specifically, in
Table 4, we explore how the Success Rate for the community mem-
bership hiding task is influenced by varying the values of 𝜏 and 𝛽 ,
while keeping the detection algorithm 𝑓 (·) and dataset fixed. The
results shown refer to a specific symmetric setup using the greedy
community detection algorithm on the words dataset.

Table 4: The impact of 𝝉 and 𝜷 on Success Rate (SR), using the
greedy community detection algorithm on the words dataset.

𝝉 𝜷

Community Membership Hiding Algorithm

DRL-Agent
(ours) Random Degree Betweenness Roam Greedy

0.3
1
2 𝜇 41.7% ± 5.6% 39.0% ± 5.5% 39.3% ± 5.5% 40.7% ± 5.7% 36.7% ± 5.4% 26.7% ± 5.0%
1𝜇 61.7% ± 5.5% 46.0% ± 5.6% 53.7% ± 5.6% 55.0% ± 5.6% 41.3% ± 5.6% 54.7% ± 5.6%
2𝜇 77.7% ± 4.7% 62.7% ± 5.5% 64.7% ± 5.4% 67.7% ± 5.3% 50.7% ± 5.7% 71.0% ± 5.1%

0.5
1
2 𝜇 49.7% ± 5.7% 48.7% ± 5.7% 48.0% ± 5.7% 46.0% ± 5.6% 45.3% ± 5.6% 29.0% ± 5.1%
1𝜇 71.7% ± 5.1% 57.0% ± 5.6% 62.3% ± 5.5% 64.7% ± 5.4% 51.7% ± 5.7% 64.0% ± 5.4%
2𝜇 88.3% ± 3.6% 71.0% ± 5.1% 77.3% ± 4.7% 79.7% ± 4.6% 44.7% ± 5.6% 79.7% ± 4.5%

0.8
1
2 𝜇 62.7% ± 5.5% 55.3% ± 5.6% 52.0% ± 5.7% 49.0% ± 5.7% 45.3% ± 5.6% 32.0% ± 5.3%
1𝜇 90.0% ± 3.4% 73.7% ± 5.0% 75.0% ± 4.9% 77.7% ± 4.7% 58.0% ± 5.6% 71.0% ± 5.1%
2𝜇 96.3% ± 2.1% 82.3% ± 4.3% 86.3% ± 3.9% 88.3% ± 3.6% 62.0% ± 5.5% 92.7% ± 2.9%

As one might expect, by increasing the similarity threshold (𝜏),
the node deception goal is easier to achieve for our DRL-Agent
and, therefore, the Success Rate is higher (for a given fixed budget
𝛽). This happens because we pose a less strict requirement on the
distance between the original community of the target node to hide
and the one where it eventually ends up after the graph modifica-
tions induced by our method. Similarly, granting a larger budget
(𝛽) allows our method to alter more substantially the neighborhood
of the target node to hide, hence increasing its chance of success.

6.5 Computational Complexity
The size of the graph datasets used in our experiments ranges from
small to large (e.g., the Facebook dataset fb-75 has thousands of
nodes and hundreds of thousands of edges). However, we acknowl-
edge that real-world network graphs may count millions, if not
billions, of nodes. Therefore, we analyze the computational com-
plexity of our proposed method to assess its feasibility and potential
deployment into extremely large-scale production environments.

The primary computational challenge of our method lies in train-
ing our DRL-Agent. In each time step of the training process, the
agent can select from a set of actionsA. Each action corresponds to
either removing an existing edge or adding a new one, as detailed
in Section 4.2. Thus, |A| ≤ |V|2 = 𝑛2, considering the worst-case
scenario of the target node being part of a fully connected graph.
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The number of possible states (S), instead, equates to the potential
adjacency matrices for a graph with |V| = 𝑛 nodes, i.e., |S| = 2𝑛

2
.

In general, given a discounted MDP M = {S,A,P, 𝑝0, 𝑟 , 𝛾} and
assuming that sampling state-action pairs from the transition func-
tionP takes𝑂 (1) time, Sidford et al. [37] show that the upper bound
on the time spent and number of samples taken for computing an
𝜖-optimal policy with probability 1 − 𝛿 is:

𝑂

[
|S| |A|

(1 − 𝛾)3𝜖2
log

(
|S| |A|
(1 − 𝛾)𝛿𝜖

)
log

(
1

(1 − 𝛾)𝜖

)]
.

Given the exponential number of states in our worst case setting,
our DRL-Agent may result impractical to train for graphs with a
large number 𝑛 of nodes. Nonetheless, in practice, the number of
states and actions allowed are significantly smaller. Experimental
results, even on graphs with thousands of nodes like fb-75, demon-
strate that convergence to the optimal policy occurs at a faster rate,
and the theoretical complexity bound above might not be tight.

7 Discussion
7.1 Who Can Run Our Method?
In our scenario, we assume that a social network runs the commu-
nity detection algorithm 𝑓 (·). Moreover, this social network may
offer its end-users the capability to opt out of being detected, accom-
modating their privacy needs. In such a case, the platform has full
knowledge of the graph, and our community membership hiding
algorithm can be run seamlessly. Thus, the resulting counterfactual
graph can be used to suggest to the target end-user what links they
should add/remove to meet their deception goal.

On the contrary, if the social network does not offer this opt-out
feature, the end-user may still attempt to remain concealed from the
community detection algorithm. However, in this case, two critical
considerations come into play, as the average end-user typically:
(𝑖) lacks access to the full graph structure, and (𝑖𝑖) cannot directly
execute the community detection algorithm 𝑓 (·).

To address (𝑖), the target end-user who wants to get masked off
using our community membership hiding algorithm must first per-
form web scraping to obtain their local graph structure, albeit only
the community to which they belong. For example, this community
can be constructed by examining the followers of the people the
target end-user follows. However, complications may arise, partic-
ularly on platforms like Instagram or Facebook, where viewing a
user’s followers is generally possible if you follow them back.

To tackle (𝑖𝑖), the target end-user must establish empirical indica-
tors that serve as proxies to determine if their hiding goal has been
met. For instance, this could involve criteria such as "not receiving
any more following suggestions or advertisements that are clearly
targeted for the community they want to be masked from."

Moreover, in a real-world scenario, multiple nodes may require
concealment independently. There is a risk that modifications aid-
ing the concealment of one node might hinder another’s, potentially
reducing the overall success rate. This issue arises when the nodes
to be hidden share non-trivial neighborhood overlaps. To address
this, we propose extending our framework to handle node sets
rather than individuals, akin to a multi-agent reinforcement learn-
ing (MARL) problem. Each agent, representing a node, collaborates
to achieve their hiding objectives.

7.2 Security and Ethical Implications
As highlighted in the motivation for this work, community member-
ship hiding algorithms can serve as valuable tools for safeguarding
the privacy of social network users. Furthermore, these methods
can be used to protect individuals at risk, including journalists or
opposition activists, in regions governed by authoritarian regimes.
Additionally, these techniques can combat online criminal activities
by modifying network connections to infiltrate espionage agents
or disrupt communications among malicious users.

However, node-hiding techniques can also be exploited to pursue
harmful goals. For instance, malicious individuals can strategically
use these methods to evade network analysis tools, often employed
by law enforcement for public safety, enabling them to mask their
illicit or criminal activities on the network. Furthermore, in this
work, we focus on a single node 𝑢 to be hidden from a community
without considering potential side effects on other nodes 𝑣 . As we
only manipulate edges controlled by 𝑢, the chance of another node
𝑣 unintentionally joining the community without any direct action
from 𝑣 itself (e.g., adding a link to a node𝑤 in the community) seems
rare, albeit possible. To deal with such potential side effects, we can
either limit the set of feasible actions or conduct post-processing
sanity checks to ensure that no node that was not originally part
of the community ends up included therein.

Overall, for a social network offering community membership
hiding capabilities, it is essential to thoroughly assess the impact
of this feature before granting users the actual ability to conceal
themselves from community detection algorithms.

8 Conclusion and Future Work
This paper tackled the challenge of community membership hiding,
which entails strategically modifying the structural characteristics
of a network graph to prevent a target node from being detected
by a community detection algorithm. To address this problem, we
formulated it as a constrained counterfactual graph objective and
solved it via deep reinforcement learning. We conducted exten-
sive experiments to validate our method’s effectiveness. Results
demonstrated that our approach strikes the best balance between
achieving the desired node-hiding goal and the required cost of
graph modifications compared to existing baselines.

In future work, we aim to explore different definitions of commu-
nity membership hiding and incorporate node feature modifications
alongside structural alterations to the counterfactual graph objec-
tive. Furthermore, we plan to apply our method to extremely large
network graphs. Finally, we will generalize our method to address
the community deception task or scenarios where multiple users
simultaneously request node membership hiding.
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