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Abstract
Quasi‐chaotic generators are used for producing a pseudorandom behaviour that can be
used for encryption/decryption and secure communications, introducing an imple-
mentation of them based on quantum technology. Namely, the authors propose a quasi‐
chaotic generator based on quantum modular addition and quantum modular multipli-
cation and they prove that quantum computing allows the parallel processing of data,
paving the way for a fast and robust multi‐channel encryption/decryption scheme. The
resulting structure is validated by means of several experiments, which assessed the
performance with respect to the original VLSI solution and ascertained the desired noise‐
like behaviour.
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1 | INTRODUCTION

Quasi‐chaotic (QC) generators represent a particular class of
pseudorandom number generators (PRNGs) with a range of
implementations in different sectors. They aim at generating a
pseudorandom behaviour of some produced digital sequences
in order to mask the information to be processed or transmitted
in a secure way [1–5]. In particular, QC generators are extremely
suitable for encryption and, more in general, for encoding/
decoding signals for secure communication [6–8]. Therefore,
QC generators are considered particularly suitable to exploit the
potentiality of discrete‐time circuits in the area of secure and
covert data transmission. In the past, Residue Number System
(RNS) architectures have been proposed to implement QC
generators [9], as they make use of modular arithmetic by which
the pseudorandom behaviour can be obtained in a straight-
forward manner and with interesting properties regarding Very
Large Scale Integration (VLSI) deploying, modularity, speed,
fault tolerance and low‐power consumption [10].

In this paper, we focus on the use of modular arithmetic,
not necessarily based on RNS, in order to obtain a flexible
implementation of a QC generator that can be successively
mapped into a quantum digital circuit. To this end, a QC
generator can be implemented by means of the nonlinear

Infinite Impulse Response (IIR) filter shown in Figure 1, which
is characterised by the following difference equation:

x½k� ¼ u½k� þ
XN

i¼1
wi x½k − i�

* +

M

; ð1Þ

where all algebraic operations are defined modulo M and all
elements of input and output time series, as well as the filter
coefficients wi, i = 1…N, belong to the ring R(M) of the in-
tegers modulo M. Usually, u[k] is the input time series to be
encrypted, while x[k] is the resulting encrypted version; the
N‐order IIR QC generator is characterised by the set of co-
efficients wi, which can be considered as the encryption key for
secure communication [11].

The inverse Finite Impulse Response (FIR) system that al-
lows the decoding of themodulated input u[k] from the received
sequence ~x½k� is obtained by the following difference equation:

~u½k� ¼ ~x½k� −
XN

i¼1
wi ~x½k − i�

* +

M

; ð2Þ

where ~u½k� is the decoder output, that is, the decoded time
series relative to u[k], while the decoder input ~x½k� is the
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sequence received on the other side of a communication
channel. For the sake of simplicity, given the symmetric nature
of any encoder/decoder pair, only the encoder system is
considered in the present paper. In other words, the involved
algebraic operations are the same and hence, the quantum
implementation of both systems follows the same main rules.

In order to measure the strength of the QC modulation
obtained by Equation (1), the noise‐like behaviour of the zero‐
input response x[k], k ≥ 0, is measured when u[k] is set to zero
and the IIR filter is used as a QC oscillator with given initial
conditions on x[−1], x[−2], up to x[−N]:

x½k� ¼
XN

i¼1
wi x½k − i�

* +

M

: ð3Þ

The advent of quantum communication can become an
enabler for the development of new cryptography techniques.
In particular, QC generators have the potential to be at the
core of this development. To the best of our knowledge, no-
body has so far implemented or discussed a quantum imple-
mentation of a nonlinear IIR filter acting as a QC generator.
The original contribution of this work pertains to the design of
a quantum QC oscillator through modular quantum arithmetic
operations. To the best of our knowledge, it is impossible to
find direct comparisons with other literature due to the novelty
of our work in implementing a quantum version of a nonlinear
IIR digital filter; in fact, apart from Quantum Fourier Trans-
form [12], there are no consistent works pertaining to the
implementation of quantum digital filters for signal processing.
There are instead some approaches based on the generation of

pseudorandom quantum states [13, 14]. Comparative studies in
this regard are out of the scope of this paper, which is devoted
to the introduction of the aforementioned approach. None-
theless, despite the technological issues that still affect real
quantum systems [15], we provide a preliminary circuit
implementation of a QC system in the quantum framework.

QC generators could benefit from quantum computing in
several ways, by using parallel encryption/decryption schemes
[12] or even adopting computationally efficient neural net-
works via quantum superposition [16, 17]. As a matter of fact,
while classical computers are based on bits as elementary units
of information, with mutually exclusive values of 0 and 1,
quantum devices use qubits as building blocks of the compu-
tation: the 0 and 1 states coexist simultaneously in a probabi-
listic superposition. The latter properly allows quantum
computers to process data in parallel in a high‐dimensional
form with very few qubits [18], with the goal of adopting
the quantum QC generators proposed herein for encryption/
decryption in high‐speed secure communication channels.

The primary contribution of this paper is the introduction
of a novel approach to replicate the modular operations in
Equation (1) with suited quantum gates, in order to obtain a
QC behaviour given an initial condition. The correct func-
tioning of the proposed quantum QC circuit is experimentally
validated with the help of QiskitTM, which is a framework for
quantum circuits' simulation developed in Python. Taking a
single section of the filter, all of the possible input‐output pairs
obtained with the quantum circuit are compared to the desired
result. Successively, the zero‐input response of the whole
quantum time series is validated against the classical counter-
part and the effects of bit‐flip measurement errors are studied
for different noise levels. Finally, the autocorrelation function
of the zero‐input response is calculated to verify its similarity
to an uncorrelated noise sequence.

2 | QUANTUM IMPLEMENTATION OF
QC OSCILLATORS

From a structural perspective, there are no substantial modi-
fications to be made to the VLSI architecture based on
Complementary Metal‐Oxide Semiconductor (CMOS) tech-
nology, as the one of a quantum QC oscillator should be
equivalent to the classical counterpart. It can be designed via a
series of modular quantum arithmetic functions such as
quantum addition and quantum multiplication. Recalling the
architecture in Figure 1, the design of a single section of a
quantum QC filter is illustrated in Figure 2.

Given a sequence of P samples, each ith section of the
quantum filter, i = 1…N, is composed as follows: xi−1[k] is the
input to the ith section, wi is the ith corresponding coefficient,
xi[k − 1] is a first‐order delay and xi[k] is the output of the
filter. Since quantum computation must be reversible, for each
iteration i relative to sample k of the filter, the inputs wi,
xi−1[k] and xi[k − 1] are also present in the output. Moreover,
some ancillas initialised to 0j i act as temporary registers to
store intermediate steps of the algorithm. A part of the ancillas
is used to encode the output xi[k], while the rest is restored to

F I GURE 1 Schematic diagram of a modular quasi‐chaotic (QC)
generator. Despite only one modulo operation is reported, the latter can be
distributed over all sums and multiplications in the filter.
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zero via uncomputing [19], in order to use it for further cal-
culations. In fact, modern quantum systems are able to provide
just a small number of logical qubits, therefore it is of para-
mount importance to save and reuse as many qubits as possible
during the computation.

Considering that we are dealing with binary representations
of integer numbers, working with n‐qubit binary strings
directly leads to a modular arithmetic representation with an
M = 2n modulo; thus, the range of possible values is [0,
2n − 1]. In addition, given two numbers a and b, the following
property of modulo n arithmetic is exploited:

ða op bÞmod n¼ ððamod nÞ op ðbmod nÞÞmod n; ð4Þ

for any operation op ∈ {þ,−,*} and where (⋅) mod n denotes
modulo n residue extraction. Binary arithmetic intrinsically
leverages this property to handle the overflow with a 2n

modulus reduction.
The elementary operations computed inside a quantum QC

generator are analogous to the ones in the classical circuit. A
quantum version of modular addition, bit shift and modular
multiplication is hereafter presented.

2.1 | Quantum modular addition

Quantum addition between two numbers a and b can be
thought as a bit‐wise increment of b controlled by the corre-
sponding qubits of a, as depicted in Figure 3. This operation
does not need ancillary registers to store the result, because the
value of the first addend is added to the second one in an
addition assignment fashion. The sum is computed modulo n
due to the possible overflow. In order to deal with quantum
principles, the þ = operator is implemented instead; it directly
adds one number onto another. This is mandatory to make the
computation reversible [12].

2.2 | Quantum bit shift

Bit shift is used to multiply or divide a binary number by
powers of 2. In particular, a single left shift corresponds to a

multiplication by 2: all the bits are shifted off to the left, so that
the most significant bit is discarded and a 0 bit is inserted at the
end of the binary string. In a quantum framework, left shift can
be carried out with a series of ‘swap’ gates in cascade and an
ancilla qubit initialised to 0j i, as shown in Figure 4. The swap
gates are responsible for moving the qubits left. The ancilla
ends up storing the most significant qubit, while the 0j i pre-
viously contained in the ancilla is inserted at the end of the
sequence. The unused output qubit at the end of the compu-
tation is a ‘garbage’, that is, it is an unintended byproduct of the
quantum computation process, representing residual quantum
information that does not contribute to the desired result but is
still necessary to make the computation reversible [12].

2.3 | Quantum modular multiplication

A quantum modular multiplier can be constructed using a
combination of controlled modular adders and left shifters, as
proposed in ref. [20]. The sequence of controlled additions
accumulates into a product register, so that the final product
ends up being the already reduced modulo n. Given two binary
numbers a and b of length n, each partial product is of the
form ai(2ib) mod n, i = 0…(n − 1). Each addition in the
multiplier uses a value that is twice the previous value, there-
fore we just need to shift the value by one position for each
addition. An example of quantum modular multiplication cir-
cuit is represented in Figure 5. In order to free some ancilla

F I GURE 2 A snapshot of the ith section of the quantum quasi‐chaotic
(QC) filter associated with the ith delay of the IIR structure.

F I GURE 3 Quantum modular addition between two numbers a and b
in modulo 24 = 16. The least significant qubit is on top.

F I GURE 4 Quantum multiplication by 2 using left shifting.
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qubits at the end of the computation and to retrieve all the
factors of the multiplication to their original state, uncom-
puting is employed. It reverses the operations that entangled
such qubits by applying the same quantum gates in a reversed
order. This way, by reversing the left shifts transformations, the
registers at the output which do not contain the multiplication
result are restored to their initial value.

2.4 | Unrolled quantum QC oscillator

The architecture of a quantum QC oscillator is depicted in
Figure 6. It is an unrolled concatenation of quantum circuits

from Figure 2, with a cascade of N first‐order quantum
modular sections as described before. The output xi[k] of the
ith section becomes the input of the next (i þ 1)th section.
The signals are not stored in external registers due to the no‐
cloning theorem, but they are processed in a forward
manner. Input qubits could be put into superposition to
initialise the filter with every possible combination of inputs;
successive processing of the resulting output may be per-
formed to gain quantum advantage. Such a quantum QC
oscillator architecture may be employed as part of a larger
algorithm, where a quantum oracle function selects desired
results among the possible outputs in superposition based on
arbitrary criteria.

F I GURE 5 An example of 4‐qubit quantum multiplier based on a sequence of controlled additions and left shifts. The QADD and QLEFT
transformations correspond to quantum modular addition and left shift, respectively.

F I GURE 6 Unrolled scheme of a quantum
quasi‐chaotic (QC) oscillator. Each single section is
denoted as QMOD.

CESCHINI ET AL. - 211



2.5 | Complexity analysis of the quantum
QC circuit

An in‐depth analysis of the proposed quantum QC generator is
hereafter illustrated. First, a qubit count is discussed to analyse
the spatial complexity of the circuit. Every ith QMOD section
of the filter receives at the input n qubit strings for the coef-
ficient wi, n qubit strings for the input xi−1[k], n qubit strings
for the first‐order delay xi[k − 1] and 2n − 1 ancillary qubits.
In total, 5n − 1 qubits are needed to perform a QMOD
operation. However, at the output, n − 1 ancillary qubits can
be reused in the computation since they are restored via
uncomputing. Moreover, the filter response xi[k] is also reused
in the next i þ 1 section of the filter. Based on these con-
siderations, the subsequent QMOD sections in a pipeline ar-
chitecture will only need 3n qubits each. Therefore, the final
qubit count C(k) for k samples in a quantum QC generator is
given by the following function:

CðkÞ ¼ 5n − 1; k¼ 1
5n − 1þ 3nk; k ≥ 2

�

ð5Þ

and hence, the complexity is linear with respect to n.
As for the spatial complexity, the quantum cost in terms of

primitive gates is strictly related to the size n of the input strings.
Every QMOD section has the same number of gates and is
composed of a quantum modular addition QADD and a quan-
tum modular multiplication QMUL. For the sake of simplicity,
let us consider all the qubits connected to each other and a depth
of 1 for a generic n‐Toffoli gate. The QADD operation has a
depth proportional to O n2ð Þ. The QMUL operation is a
sequence of nQADD and 2n − 1 QLEFToperations, therefore
its depth is in the order ofO n3ð Þ. As a result, the overall depth of
a single QMOD section of the filter is in the order of O n3ð Þ.

3 | EXPERIMENTAL ANALYSIS

We performed three different experiments to validate our
proposed quantum approach. All the experiments were
conducted using Python 3.8 on a computer equipped with
an AMD® Ryzen 7TM 5800X 8‐Core CPU at 3.80 GHz
and with 64 GB of RAM. The tests were conducted using
Qiskit's 32‐qubit simulator called qasm_simulator, that
is, a general‐purpose quantum simulator backend for testing
quantum circuits both ideally and subject to noise model-
ling. Each input string was represented in the range [0, 15]
using 4 qubits in modulo M = 16 arithmetic. The choice
of using only 4 qubits to encode binary numbers was due
to actual technological constraints. This was also the
rationale behind the choice of adopting a 2n modulo for
each section of the filter, which is easy to compute through
simple overflow. Further experiments with an arbitrary
modulo may be performed in future works, where the
number of available qubits will no more be a constraint
and fault‐tolerance quantum computers will be more widely
available.

3.1 | Experiment A

A single section of the quantum QC oscillator was evaluated.
The behaviour of such quantum circuit exactly reflected the
response obtained by its classical counterpart for every
possible combination of input string. Without loss of gener-
ality, only a test with a fixed coefficient wi ¼ 0011j i ¼ 3 and a
constant input xi−1½k� ¼ 1101j i ¼ 13 is hereafter reported. The
only parameter that varied was the delay xi[k − 1], which
ranged between 0 and 15. The correct functioning of such
single QMOD section is presented in Figure 7.

F I GURE 7 The output xi[k] of a single section
of the quantum circuit with respect to different
delays xi[k − 1].
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3.2 | Experiment B

A quantum QC generator with filter order N = 1 was realised
to calculate the zero‐input response for k = 1…50 samples.
Given the initial conditions of w1 ¼ 0011j i ¼ 3, x1½0� ¼
1101j i ¼ 13, x0½1� ¼ 0000j i ¼ 0, M = 16, the output x1[k] of
the circuit was calculated and validated against the classical
counterpart, calculated in Python instead. To overcome the
constraints on the number of qubits in the simulator, a single
QMOD section was implemented at each step rather than the
entire architecture, which was too demanding in terms of re-
sources. For every new sample k, the input parameters were
adjusted accordingly with appropriate quantum gates. At the
end of the QMOD computation, the qubits were reset to reuse
them in the next step of the algorithm. As demonstrated by

Figure 8, the behaviour of the quantum QC generator in an
ideal setting, that is, without considering noise effects,
perfectly overlaps to the curve originated by the classical
circuit.

In order to evaluate the robustness of the proposed
quantum circuit in presence of several noise levels, we also
performed the experiment after injecting bit‐flip measure-
ment errors to all the qubits, which is a common case study
in quantum information theory research. Bit‐flip measure-
ment errors consist in flipping the state of a qubit with
probability p during a measurement. For p = 0.02, the
behaviour of the quantum circuit still follows the expected
output, as shown in Figure 9. For increasing values of
probability p, the noise level progressively impairs the circuit's
output; in the case p = 0.16, the final outcome becomes

F I GURE 8 Comparison between zero‐input
responses: (a) Ideal quantum quasi‐chaotic (QC)
oscillator; (b) classical QC oscillator based on VLSI
technology. Only 21 out of 50 samples are reported
for the sake of illustration.
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completely dissimilar from the desired result as illustrated in
Figure 10. An overview of the Root Mean Squared Error
(RMSE) with respect the ideal behaviour, averaged over 10
different runs, is represented in Figure 11 against the noise
level p. As the probability of occurring in bit‐flip measure-
ment errors increases, the RMSE increases accordingly and
almost linearly.

The level of quantum noise that can be tolerated in a
practical quantum circuit is highly dependent on the specific
algorithm being run, the error correction techniques being
used and the quantum device used for the experiment. As a
general rule, researchers often target a physical qubit error rate
on the order of 10−3 or less for practical quantum computation
[21]; this includes both bit‐flip and phase‐flip errors. The 10−3

level is seen as a threshold because error correction codes like
the surface code, which is a leading quantum error correction

scheme, is believed to effectively correct errors at this level in
the near future [22, 23]. Currently, the measurement error
probability is between 10−1 and 10−2 for superconducting
qubits [22–24], which are the most common and widespread
types of quantum devices.

Recently, researchers at GoogleTM claimed to be able to
measure an error rate of 3.028% and 2.914% for a distance‐3
qubit array and a distance‐5 qubit array respectively using a
fault tolerant surface code, with a readout error of 1.9% [25].
These error rates fall within the same order of magnitude as
our bit‐flip noise level parameter p = 0.02 in Sect. 3.2, under
which our quantum circuit continues to operate with a well‐
defined behaviour. This suggests that our approach is robust
against a degree of quantum noise that is comparable to what is
currently achievable in state‐of‐the‐art quantum computing
hardware. Moreover, since quantum error correction seems to

F I GURE 9 Zero‐input response with a bit‐flip
measurement error having probability p = 0.02.

F I GURE 1 0 Zero‐input response with a bit‐
flip measurement error having probability p = 0.16.
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improve performance with increasing qubit number according
to ref. [25], it provides a strong indication that our quantum
circuit may perform increasingly well as the number of qubits
scales in future quantum systems. This expected scalability
aligns with the predicted growth in quantum computing power,
and gives confidence in the practical applicability of our
quantum algorithm.

3.3 | Experiment C

Strong properties of QC generators are proved when data
belong to a Galois field GF(M) defined by a prime modulus M
[9]. In case of even moduli of type M = 2n, weakened prop-
erties pertaining to a shorter periodicity of time series and to
their dependence on initial conditions are balanced by the

increased efficiency on hardware implementations. However,
the autocorrelation of the zero‐input response for the
considered quantum QC oscillators results similar to that of an
uncorrelated noise sequence, as shown in Figure 12 in the case
M = 24 and N = 4.

Remark. The choice of the modulus M is constrained by the
characteristics of the input‐output signals when the inherent
system is applied to a digital signal processing application.
For instance, it is related to the resolution (i.e., the number
of levels) by which digital signals are represented. Usually,
input‐output signals are considered in a signed form onto a
dynamic range of the modular representation: [−(M − 1)/2,
(M − 1)/2] if M is odd; [−M/2, M/2 − 1] if M is even.
Each integer in the dynamic range is mapped onto the
legitimate range [0, M − 1], which represents the actual

F I GURE 1 1 Average RMSE of zero‐input
response versus different noise levels.

F I GURE 1 2 Normalised autocorrelation of
the zero‐input response with period 120 samples,
obtained with M = 16 and filter coefficients
w1 = 13, w2 = w3 = 0, w4 = 1.
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computational range of the modular arithmetic. For instance,
[−(M − 1)/2, −1] maps onto [(M þ 1)/2, M − 1] if M is
odd, whereas [−M/2, −1] maps onto [M/2, M − 1] if M is
even.

4 | CONCLUSION

In this work, we presented a study on quasi‐chaotic generation
based on quantum modular arithmetic. We were able to
experimentally validate the proposed approach with different
simulations, assessing the performance with respect to the
original VLSI solution. As for practical applications, we argue
that quantum superposition would allow to parallelise the
execution of a QC generator for different encryption keys,
providing an exponential number of filter responses simulta-
neously. Accordingly, quantum QC oscillators should be
employed as part of a larger algorithm, selecting just one result
among the possible outputs based on arbitrary criteria or an
oracle function could be applied to the outputs in super-
position while adopting some amplitude amplification
procedures.

Rather than a specific solution for all the inputs in super-
position, some derived properties of the overlapped output
may be considered, such as its sum, the minimum value or the
presence of a certain element. Future works might also
investigate on extended implementations dealing with modulo
M arithmetic, where M is a prime number ensuring a stronger
noise‐like behaviour. In this regard, further experiments would
benefit from running on actual quantum hardware to underpin
the practical advantages of a quantum QC oscillator.
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