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Abstract

Systems with reduced dimensionality are known to display many fascinating phenomena,
with properties often showing pathological behaviors. In this context, one of the most studied
aspects regards the insurgence of a modulation of the electronic charge density, i.e. a charge
density wave (CDW). The interest in CDWs physics is extensive as they are present in many
systems, ranging from 1D and 2D materials to high Tc superconductors and transition metal
dichalcogenides. CDWs usually manifest as a broken-symmetry state, that in 1D chains of
atoms results in a bond-length alternation, commonly explained as a consequence of the
interplay between an instability of electronic origin and the coupling between electronic and
lattice degrees of freedom. It is widely understood that the interplay of these elements in
1D systems regulates the competition between a dimerized, less symmetric, configuration
and an undimerized, more symmetric, one. In particular, a diatomic chain of atoms presents
a second-order phase transition between these two phases. However, apart from these two
ingredients, many other different elements are actually at play in the creation of a CDW.
Indeed, there is evidence that the presence of a CDW in the infinitely long straight chains of
carbon atoms, called carbyne, is strongly affected by quantum and anharmonic fluctuations,
as well as from the effect of an external environment, as we confirm and discuss in our study.
The aim of the present work is thus, on one hand, to unveil the contribution of each element
to the manifestation of a CDW, and, on the other hand, to study the properties of 1D systems
that host CDWs. Indeed, the instability at the boundaries of the structural phase transition
suggests the presence of interesting and peculiar polar responses. Following this idea, in our
work, we show how 1D systems such as conjugated polymers present a huge enhancement of
the effective charges, with values up to 30 times that of the nominal electronic charge at the
critical point of the transition, and of the piezoelectric coefficients, which in principle present
a diverging behavior in proximity of the phase boundary. In determining the properties
of these materials, it is then fundamental to resort to particular experimental techniques,
such as resonance Raman spectroscopy. However, to date, a theory that permits accurately
describing experimental results on 1D systems is lacking. We address this problem in our
work, introducing a framework that allows for the calculation of resonance Raman spectra
beyond the commonly adopted Placzek approximation, even in systems beyond the simple
1D case.
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Introduction and overview

In this work, we present and discuss our results regarding several properties of
1D conjugated systems. Each Chapter is devoted to a particular topic, which is
introduced in detail before being addressed. Results and contents of Chapter 1
and Chapter 3 are partly adapted from our published work of Ref.[1]. Results and
contents of Chapter 2, Chapter 4 and Chapter 5 are instead partly adapted from
three different works, currently under preparation. In what follows, we introduce
the main elements and concepts underlying the properties we focused on, and at the
same time, we give an overview of the organization of this work, highlighting the
relevant results.

The reason we decided to study 1D systems is that despite their apparent
simplicity, they present a multitude of interesting phenomena, with properties often
showing pathological behaviours due to the reduced dimensionality. Moreover, the
advantage of dealing with 1D systems resides in the fact that it is particularly simple,
yet effective, to catch the key elements at play in determining a certain property.
Nevertheless, the conclusions one obtains, are often valid beyond the specific 1D
case considered. This idea will be followed throughout the whole work, where the
common thread among all chapters will be a simple tight-binding 1D toy-model.
As we will see in what follows, with just a few parameters, this model correctly
accounts for the main ingredients necessary to describe several 1D systems as well
as to explain and predict their properties with accuracy comparable with DFT and
experimental results.

One of the key aspects we address in the present work regards the physics of
charge density waves (CDWs). CDWs are modulations of the electronic charge density
distribution which manifest as broken symmetry states in materials, and, as such,
are strictly related to their structural configuration. Understanding the properties of
CDWs, and unveiling the mechanisms that concur to their manifestation, is one of the
open problems of modern condensed matter physics, as CDWs are ubiquitous, even
beyond simple 1D systems. To cite some of the most relevant cases, CDWs occur in
systems ranging from 2D materials[2, 3] to high-Tc superconductors[4] and transition
metal dichalcogenides[5]. For this reason, in Chapter 1 we start with a review of
some of the most relevant aspects of CDWs physics. In particular, with the aid of
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the 1D model, we examine how different elements come into play. We will describe
how Peierls electronic instability, together with the presence of a strong enough
electron-lattice coupling compete with the presence of an atoms-equivalence breaking
mechanism in these systems, resulting in a second-order structural phase transition
between a less symmetric, dimerized structure, and a more symmetric, undimerized
one, with a concomitant manifestation of CDWs with different characters. Even
if the results we will discuss are peculiar to these 1D systems, the conclusions we
present on the interplay between the key ingredients involved in the description of
CDWs physics are valid beyond the 1D case.

As they are both related to the electronic density distribution and the structure
of a system, the study of CDWs in 1D systems cannot be separated from the study of
their polar properties. Indeed, it is argued that manifestations of broken symmetry
states due to CDWs formations may result in ferroelectric behaviours, especially in
low-dimensional materials or in materials with a strong coupling between electronic
and lattice degrees of freedom, as in some layered superconductors[6] or transition
metal dichalcogenides[7, 8, 9]. This is particularly true in the 1D systems we address,
where the insurgence of a bond-centered CDW, concomitant with the second order
structural phase transition, results in the manifestation of a ferroelectric behaviour,
as we will discuss in Chapter 1. Polar properties of 1D systems, however, also
present an interest per se. Indeed, as detailed in Chapter 1, in the framework of the
model it is possible to show that these 1D systems offer the possibility for a concrete
realization of the adiabatic charge transport mechanism of the Thouless pump[10],
observed e.g. in ultracold fermions[11] and ultracold bosons[12].

Understanding the properties of 1D systems is relevant also for applications in
the field of organic electronics. Indeed, conjugated polymers, which can be imagined
as (quasi-)1D organic materials, are characterized by the presence of delocalized
electrons along the backbone chain, resulting in many interesting and useful optical
and electronic applications[13, 14, 15, 16]. The model adopted in this work perfectly
describes the physics of delocalized electrons, offering a suitable playground to predict
and interpret the properties of conjugated polymers, and in this sense we will talk
about 1D conjugated systems. We follow this idea along all the present work, where
we resort to specific conjugated polymers to test the predictions obtained in the
framework of the model, or, vice-versa, we exploit the simplified and effective picture
of the model to explain experimental or DFT results obtained on these materials.
In particular, the main system we will address is carbyne, an infinitely-long straight
chain of carbon atoms. Carbyne is, at the same time, a physical manifestation of a
1D CDW, with two competing phases characterized by different structures, and a
conjugated polymer, thus incarnating the perfect system for our study.

Several recent works[17, 18, 19, 20] have established that in order to correctly
describe the structural properties of many materials, it is paramount to correctly
account for the quantum nature of the ions as well as for effects of anharmonicity
in their interaction. In particular, this is true in the presence of light atoms, as
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in carbyne and in conjugated polymers in general, or when a system is close to a
displacive phase transition, such as a ferroelectric- or a CDW-instability, as in the
1D systems described by the model. For these reasons, in Chapter 2 we study the
effects of quantum-anharmonicity on the structural properties of 1D conjugated
systems in the framework of the model. In particular, with model’s parameters
fitted in order to describe the properties of carbyne, we study the role of quantum
anharmonic effects in determining the character of the CDW in this polymer as well
as the effects on the related second order structural phase transition.

Another interesting aspect of these 1D systems regards their polar response prop-
erties, i.e. those quantities that can be defined in terms of variation of polarization
with respect to an external perturbation, as we discuss in Chapter 3. Indeed, the
reduced dimensionality, the connection to the the topological phenomenon of the
Thouless pump, and the presence of both a CDW- and a ferroelectric-instability,
point to the presence of peculiar behaviours of polar responses. We will focus on two
prototypical polar responses: the effective charges and piezoelectricity, which may
be manifested in 1D systems if specific conditions are met, as in a dimerized chain
with inequivalent atoms. As we describe in Chapter 3, in proximity to the critical
point of the structural phase transition, both responses present a huge enhancement
in the framework of the model. In order to test these hypotheses, we resort to
DFT calculations on prototypical conjugated polymers, finding a striking agreement
with the behaviour predicted by the model. The ultimate reason for this peculiar
behaviour is to be found in the topological nature of effective charges enhancement,
which guarantees its stability even against quantum-anharmonic effects.

After having assessed the importance of structural properties on the polar
responses enhancement mechanism manifested in these 1D conjugated systems,
it comes natural to ask how to determine these properties with experiments. In
particular, obtaining information on systems configuration is essential for their
characterization. For instance, the presence of dimerization in a 1D system with
inequivalent atoms may result in the insurgence of properties, e.g. ferroelectricity or
piezoelectricity, otherwise absent. In this task, one of the most used experimental
techniques is vibrational Raman spectroscopy, based on the inelastic scattering of
light with a vibrational quantum. Chapter 4 will be devoted to the study of the
Raman response in 1D systems. In particular, we will describe different levels of
approximations usually adopted in the theoretical description of Raman scattering.
However, in order to correctly reproduce experimental results on 1D systems, we will
see that, on one hand, it becomes essential to account explicitly for resonance effects
due to the matching condition between the energy of the impinging laser and the
energy of the transition between states of the system and, on the other hand, to even
go beyond the commonly adopted Placzek approximation of neglecting the energetic
contribution of the vibrational excitations involved in the scattering process.

In order to compute the resonant Raman response of a system beyond the Placzek
approximation, it is however necessary to develop a novel theoretical framework.
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This is the topic of the last Chapter 5, dedicated to the derivation of the time-
dependent density matrix perturbation theory (TDDMPT), a technique that allows
the computation of responses of a system with respect to an external perturbation
at any given perturbative order. The central idea of this approach is to quantify
the responses in terms of perturbation of the electronic density matrix, instead
of the standard wave-function perturbation theories. In this way, we avoid gauge-
dependence problems and have a well-defined framework to treat perturbations
with respect to an external uniform electric field, a notoriously difficult task in
periodic crystals due to the ill-definition of the position operator in terms of periodic
Bloch-type wave-functions. Another advantage of this approach is that it gives a
compact and elegant formulation for an ab-initio implementation in the framework of
density-functional theory codes. For this reason, after having applied this approach
to the calculation of the resonant Raman response beyond the Placzek approximation
in the framework of the model (that does not require ab-initio codes), we focus on
the implementation of the Raman response within the TDDMPT formalism in the
Quantum ESPRESSO code and conclude presenting the related results.
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Chapter 1

Structural and polar properties

Chapter overview

Chapter 1 is organized as follows: first, in section 1.1 we give a brief overview of some
of the most relevant aspects of 1D systems, such as Peierls transition and charge
density waves, and how they are related to structural and polar properties. Then, in
section 1.2 we introduce a model for 1D systems that we will refer to throughout all
the present work. We discuss the structural properties of the model in section 1.2.1,
focusing on the competition between a higher symmetric phase with equidistant
atoms and a lower symmetric one where atoms are not equidistant. In section 1.2.2,
we introduce electronic polarization in the model and discuss a peculiar polar-related
property typical of these 1D systems: Thouless adiabatic charge pumping. Then, we
discuss the relation between structural and polar properties of 1D systems in section
1.2.3. Finally, section 1.3 is dedicated to conjugated polymers, a class of organic
materials that can be imagined as a physical realization of 1D chains. In particular,
focusing on one of the simplest conjugated polymers – a linear chain of carbon atoms
called carbyne – we fit model’s parameters on ab-initio density functional theory
(DFT) calculations in order to have a working model with a real counterpart for the
following Chapters. Conclusions are drawn in section 1.4.

1.1 Introduction: one dimension, many properties

The theoretical description of physical systems with many interacting elements is a
complex problem, often requiring approximations of some kind. The effectiveness of
a given approximation depends on the balance between the accurate description of
reality, namely of experimental results, and the reduction of complexity to a few key
elements that account for and explain the underlying mechanisms at play. The main
ingredients used in condensed matter physics to describe matters are electrons, nuclei
and all their interactions – electrons with other electrons, nuclei with other nuclei
and electrons with nuclei. The way we treat and mix these ingredients to create a
model, determines the level and the goodness of the approximation. Over the years,
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many models for 1D and quasi-1D materials have been introduced, allowing the
description of different properties. What the vast majority of these models have in
common, is that they are based on a simple description in terms of 1D linear chains
of infinite length, where atoms may form bonds with their nearest neighbors only.
In order to describe specific phenomena, one can then add different ingredients to
this simple picture. Let’s start considering the simplest case of a chain where all
atoms are equivalent, e.g. because they are of the same atomic species and form the
same bonds with other atoms. Since, apparently, there is no reason to distinguish
one neighbor from the other, one could intuitively think that the optimal, stable,
structure of such a system would be the one where all the atoms are equidistant.
However, if we dig a little deeper, fascinating but less intuitive properties arise, as
we discuss in what follows.

For the moment, let’s neglect interactions between electronic and ionic degrees
of freedom. In his seminal works[21, 22], Rudolf Peierls showed that when subject
to an external periodic potential of wave number q, the electronic bands structure
of a 1D chain of equivalent atoms presents a gap opening at the Fermi level ±kF, if
q = 2kF. The resulting modulation of the electronic charge density gives rise to what
is usually called a charge density wave (CDW). This phenomenon is a consequence
of an instability of electronic nature – also known as Peierls instability – typical of a
1D free-electron gas and highlighted by a divergence of the density-density Lindhard
static response function at the Fermi-surface nesting condition q = 2kF[23], as shown
in Figure ???. Now, if we consider each atom of the chain contributing with one
valence electron, and neglect electron-electron interactions, a system with equidistant
atoms would have a half-filled band and therefore be a metal. The Fermi-surface
nesting condition q = 2kF and the consequent opening of the gap, however, would
make the system insulating. For this reason, this phenomenon is also a prototypical
example of metal-insulator transition[24].

A part for electronic properties, the presence of a charge density modulation is
also related to the structural properties of the system, i.e. on atoms’ arrangement
along the chain. Following the argument of Peierls, this becomes evident if we allow
in the 1D chain with equivalent atoms for even an infinitesimally small coupling
between electronic and lattice degrees of freedom, namely an electron-phonon (e-ph)
coupling. Indeed, in this case, the opening of the gap in the electronic bands can
be induced by a 2kF periodic lattice distortion, which acts as an external periodic
potential. In this sense, the argument of Peierls predicts a structural transition with
a spontaneous symmetry breaking signalled by a bond length alternation (BLA)
in the chain, allowing the distinction between a shorter and a longer bond. As a
consequence of the BLA, a 2kF modulation of the electronic density also arises, i.e.,
a CDW. The metal-insulator transition that occurs as a consequence of the periodic
lattice distortion and the concomitant CDW is what characterizes the so-called
Peierls transition. From its first theorization[22, 25], this phenomenon drew much
interest and was later observed in many 1D systems, as in 1D conductors[26] or in
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charge-transfer organic salts[27, 28]. However, the interest goes beyond 1D systems,
as CDWs occur in many other different systems, from 2D materials[2, 3] to high-Tc
superconductors[4] and transition metal dichalcogenides[5]. For this reason, the
understanding of this phenomenon is paramount in many different fields.

All the properties discussed above for a chain of equivalent atoms can be described
in the framework of the well-known SSH model[29], a tight-binding model of non-
interacting electrons, initially introduced by Su, Schrieffer, and Heeger to study
solitons in polyenes chains, e.g. polyacetylene, as further discussed in section 1.3.
For the sake of generalizing the descriptive power of the model, one can then take
a step further and allow for the breaking of atoms equivalence. It is possible to
do so, e.g., introducing an onsite energy term in the tight-binding description,
allowing the distinction between an atom and its neighbors, or stated in other words,
considering a chain with two inequivalent atoms alternating in space. Breaking atoms
equivalence also determines the opening of a gap in the electronic bands structure,
counteracting Peierls electronic instability and the formation of a CDW. The periodic
lattice modulation, therefore, would now require the presence of a finite and strong
enough e-ph coupling in order to manifest. It is possible to study the competition
between these two gap-opening mechanisms in the framework of the Rice-Mele
model, a generalisation of the SSH model introduced to study soliton excitations of
linearly conjugated diatomic polymers[30]. In practice, this translates to studying
the competition between a dimerized, lower symmetric structure, characterized by a
BLA and a bond-centered charge density modulation consequence of the electronic
instability, and an undimerized, higher symmetric structure, where all atoms are
equidistant but inequivalent and a site-centered charge density modulation is present.

In addition to describing the physics of CDWs and Peierls transition, 1D chains
have drawn also attention for their polar properties, becoming prototypical models
for 1D ferroelectricity[31, 32]. This property is indeed strictly related to the structure
of the chain in terms of symmetries. For ferroelectricity to manifest, a necessary
condition is to break centrosymmetry in the chain, a requirement met, for example,
in a chain with inequivalent atoms and in presence of BLA. From this point of
view, it appears evident that the correct characterisation of ferroelectricity in a 1D
system cannot be separated from the study of its structural properties. Moreover,
polarization in 1D chains has been put forward as an example of manifestation of
topological effects in condensed matter, as discussed e.g. for the quantization of the
dipole moment in end charges of push-pull polymers[33], or for Thouless adiabatic
charge transport[34, 35].

In conclusion, despite the apparent simplicity, 1D conjugated systems present an
abundance of interesting phenomena. In what follows, we introduce the model for
1D conjugated systems that we will adopt for most of the present work and, in this
framework, illustrate all the above mentioned effects, in order to provide a common
ground as well as the notations for the next Chapters.
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1.2 A model for 1D conjugated systems

In this section, we provide a detailed description of a diatomic-chain model, following
the lines of Rice and Mele[30]. We consider an infinitely long, one-dimensional, linear
chain made by the repetition of a unit cell, of length a, containing two atoms, one of
type A and the other of type B. Electronic properties of the system are described in
a nearest-neighbors tight-binding approximation. We assume one electronic orbital
per atom and adopt the notation |α,R⟩ to indicate that the orbital of atom α = A,B

is located at rα +R, R = na (n ∈ Z) being the position of the atom’s cell along the
chain. Without loss of generality, we take rA = −a/4 + δrA and rB = +a/4 + δrB . If
δrα = 0, all atoms would be equidistant, so δrα indicates the displacement of atom
α from the position it would have in a chain with equidistant atoms. For simplicity,
we consider longitudinal displacements only, parallel to the linear-chain direction.
The basis set of the orbitals {|α,R⟩} is orthonormal and it holds:

〈
α,R

∣∣α′, R′〉 = δα,α′δR,R′ . (1.1)

We define the onsite energy terms of the tight-binding electronic Hamiltonian He as
〈
A,R

∣∣He
∣∣A,R′〉 = −

〈
B,R

∣∣He
∣∣B,R′〉 = −∆δR,R′ , with ∆ ≥ 0. (1.2)

We want to take into account also the energetic contribution due to the overlap
between an atom’s orbital and the orbitals of its left and right nearest neighbors. In
general, the overlap energy term between two electronic orbitals is a function of the
distance r between the atoms and is referred to as the hopping energy −t(r), t > 0.
For convenience, we indicate with r1 the distance between atoms in the same cell
and with r2 the distance between neighboring atoms in adjacent cells, namely:

r1 ≡ (rB +R) − (rA +R) = a

2 + δrB − δrA, (1.3)

r2 ≡ (rA +R) − (rB +R− a) = a

2 + δrA − δrB (1.4)

and it holds r1 + r2 = a. We can now define the hopping energy between orbitals
of atoms in the same cell −t1 ≡ −t(r1) and the hopping energy between atoms in
adjacent cells −t2 ≡ −t(r2). With the same notation of Equation (1.2) we write:

〈
A,R

∣∣He
∣∣B,R′〉 =

〈
B,R′ ∣∣He

∣∣A,R〉∗ = −t1δR,R′ − t2δR−a,R′ . (1.5)

We define, using Equation (1.3) and (1.4), an adimensional fractional coordinate u:

u = r1 − r2
a

= δrB − δrA
a/2 . (1.6)

This term quantifies deviations of the relative displacement of atoms A and B from
the equally spaced chain (u = 0), allowing us to express bond lengths with the
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following compact expression:

ri = a

2
[
1 + (−1)i+1u

]
, i = 1, 2. (1.7)

With the above definitions, at linear order in atoms’ displacement we have

ti = t(ri) ≃ t

(
a

2

)
+ dt

dr

∣∣∣∣
a
2

·
(
ri − a

2

)
, (1.8)

which allows us to define the two terms

t = t1 + t2
2 = t

(
a

2

)
, (1.9)

δt = t1 − t2
2 = − dt

dr

∣∣∣∣
a
2

· a2u. (1.10)

The former term t quantifies the hopping energy that equidistant atoms would have
while the latter term δt describes the variation with respect to t caused by atoms’
relative displacement. At linear order in atoms’ displacement it holds:

δt = −tβu, (1.11)

where we defined the adimensional parameter β > 0 as

β = − a

2t
dt
dr

∣∣∣∣
a
2

. (1.12)

This term quantifies the variation of the hopping energy due to a variation of the
distance between the atoms and as such it acts as an electron-phonon coupling term.
A schematic representation of the model is shown in Figure 1.1. We notice that if
∆ = 0, namely if the atoms are equivalent, we recover the SSH model[29, 36].

Figure 1.1. Two representative diatomic chains described by the tight-binding model are
shown. The unit cell, which contains two atoms and has length a, is highlighted for
both. In the chain on the top, atoms are both equivalent and equidistant. In the model
this is described by an onsite energy difference ∆ = 0 and equal hopping energies −t.
Moreover, since the bond lengths are equal, it holds u = (r1 − r2)/a = 0, where r1
and r2 are the distances between atoms in the same unit cell or in adjacent unit cells,
respectively. In the chain on the bottom, atoms are inequivalent (onsite energy difference
∆ ̸= 0) and there is a bond length alternation with r1 ̸= r2, implying u ̸= 0. In this
sense, u is an adimensional parameters that quantifies atoms displacement with respect
to the positions they would have if they were equidistant. The presence of bond length
alternation is also reflected by different hopping energies −t1 and −t2, which can be
related to u via an electron-phonon coupling parameter β, as described in the text.
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1.2.1 Structural properties: second order phase transition

As we are interested in the structural properties at T = 0 K, we study the total
energy per unit cell Etot(u) = EL(u) +Ee(u), where EL(u) and Ee(u) are the lattice
and electronic contribution, respectively. In particular, we aim to characterize the
behaviour of the optimal displacement u, defined as the one which minimizes Etot(u)
given a set of material-dependent parameters. Lattice dynamics being neglected,
we write the lattice contribution, which accounts for the displacement of the atoms
with respect to their position in a uniformly spaced chain:

EL(u) = 1
2K (δrA − δrB)2 + 1

2K (δrB − δrA)2 = 1
4Ka2u2, (1.13)

where we used Equation (1.6) and K is an elastic constant term.
To compute the electronic energy per unit cell Ee(u), we imagine the linear chain

as made of N copies of the unit cell and adopt periodic boundary conditions. This
allows us to define a basis {|α, k⟩} in the reciprocal k-space:

|α, k⟩ ≡
∑
R

ei(rα+R)k
√
N

|αR⟩ , (1.14)

where k is defined over the first Brillouin zone, namely

k = n

N

2π
a
, n = 0,±1

2 ,±1, . . . ,±N

2 , (1.15)

and it holds 〈
α′, k′ ∣∣αk〉 = δα,α′δk,k′ . (1.16)

From Equation (1.2), (1.5) and (1.14) we obtain the matrix elements of the electronic
Hamiltonian in the reciprocal space:

〈
A, k

∣∣He
∣∣A, k′〉 = −∆δk,k′ , (1.17)〈

B, k
∣∣He

∣∣B, k′〉 = ∆δk,k′ , (1.18)〈
A, k

∣∣He
∣∣B, k′〉 = −

[
t1ei a

2 keik(δrB−δrA) + t2e−i a
2 keik(δrB−δrA)

]
δk,k′ (1.19)

≡ −Tkδk,k′ , (1.20)〈
B, k

∣∣He
∣∣A, k′〉 =

〈
A, k′ ∣∣He

∣∣B, k〉∗ = −T ∗
k δk,k′ . (1.21)

The above results allow to write in the reciprocal space basis a 2 × 2 electronic
Hamiltonian matrix He,k for each k-point:

He,k =
(

−∆ −Tk
−T ∗

k ∆

)
. (1.22)
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Diagonalising the matrix of Equation (1.22) we find the eigenvalues

ε±
k = ±

√
∆2 + |Tk|2 (1.23)

with the respective eigenvectors, namely the Bloch wave-functions

|ψ±
k ⟩ =


±(ε±

k
−∆)√

(ε±
k

−∆)2+|Tk|2

−T ∗
k√

(ε±
k

−∆)2+|Tk|2

 , (1.24)

where using Equation (1.9), (1.10) and 1.19 we have that

|Tk|2 = 4t2 cos2 k
a

2 + 4δt2 sin2 k
a

2 . (1.25)

For each k-point, Equation (1.23) allows to distinguish between a lower and a higher
energy level, indeed, as shown in Figure 1.2, the chain present two energy bands.
We assume that only the lower energy band is filled with electrons and will hereafter
refer to it as the occupied – or valence – band, in contrast with the unoccupied – or
conduction – higher energy band. From Equation (1.23) we obtain the value of the
energy gap Egap between the occupied and unoccupied band:

Egap =
√

(4δt)2 + (2∆)2. (1.26)

Aiming for the total energy, we consider the contribution of all the occupied
states to the electronic energy per unit cell. In particular it holds

Ee = 2
N

∑
k

ε−
k = − 2

N

∑
k

√
∆2 + 4t2 cos2 ka

2 + 4δt2 sin2 ka

2 (1.27)

where the factor of 2 accounts for the spin degeneracy. In the limit of an infinite
linear chain, namely for N → +∞, the eigenvalues and the eigenvectors’ coefficients
become continuous functions of k and the sum becomes an integral over the first
Brillouin zone:

Ee = −2a
∫ π/a

−π/a

dk
2π

√
∆2 + 4t2 cos2 ka

2 + 4δt2 sin2 ka

2 . (1.28)

Finally, using Equation (1.11), (1.13) and (1.28), we write the total energy per unit
cell as a function of the fractional coordinate u:

Etot(u) = 1
4Ku2a2 − 2a

∫ π/a

−π/a

dk
2π

√
∆2 + 4t2 cos2 ka

2 + 4β2t2u2 sin2 ka

2 . (1.29)

As we are interested in the optimal structure at T = 0 K, we can now study the
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Figure 1.2. Electronic bands structure of the model. If Egap = 0, the bands have linear
dispersion at the edges of the Brillouin zone, reminding the behaviour of graphene. We
assume that the lower energy bands only are occupied with electrons. As summed-up
in Equation (1.26), there are two mechanisms that contribute to the opening of the
gap: the dimerization of the chain, consequence of the electronic instability and of
the electron-phonon coupling, manifested as a bond energy difference δt; breaking the
equivalence between atoms, e.g. with different on-site energies, accounted for by the
parameter ∆.

structural properties of the system, encompassed in the optimal displacement u,
defined as the one which minimizes Etot(u) = EL(u) +Ee(u) given a set of material-
dependent parameters t, K, ∆ and β. With the substitution z = ka/2 and exploiting
the parity of the integrand in Equation (1.29), the first derivative of the total energy
with respect to u reads:

dEtot
du = 1

2Ka2u− u

π

∫ 0

−π/2
dz 16β2t2 sin2 z√

∆2 + 4t2 cos2 z + 4β2t2u2 sin2 z
. (1.30)

One of the stationary point of Equation (1.30) is in u = 0, whereas the others are
the solutions of the following equation in u:

Ka2π =
∫ 0

−π/2
dz 32β2t2 sin2 z√

∆2 + 4t2 cos2 z + 4β2t2u2 sin2 z
. (1.31)

To solve this integral, we expand the functions sin z and cos z at the lower edge of the
Brillouin zone, namely in k = −π/a, in a similar fashion to the conic approximation
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in graphene. By doing so, we arrive at

∆2 + 4β2t2u2 = t2π2

sinh2 Ka2π
8β2t

. (1.32)

Supposing that ∆ is the parameter which guides the transition, we define

∆c = tπ

sinh
(

Ka2π
16β2t

) . (1.33)

As we are interested in the real solutions only, the above equations tells that if
∆ ≤ ∆c, the solution of Equation (1.32) provides two symmetric stationary points for
Etot(u). Indicating with u the value which minimizes Etot(u), it is straightforward
to verify, e.g. computing the second order derivative of Etot(u), thatu ∝ |∆ − ∆c|1/2, if ∆ ≤ ∆c

u = 0, if ∆ > ∆c.
(1.34)

Moreover, it is also immediate to verify that the second order derivative of Etot(u)
computed at u(∆c) = 0 is a saddle point. These results show that the chain
undergoes a second order phase transition in ∆ with u as order parameter: when
∆ > ∆c, the atoms are equidistant (u = 0), while for ∆ ≤ ∆c the chain displays a
bond length alternation that breaks the inversion symmetry of the cell. Finally, in
the SSH limit, i.e. when ∆ = 0, we recover inversion symmetry, in particular with
respect to bonds centers. Stated in other words, the presence of a staggered on-site
potential induces a site-centered CDW, counterposed to the bond-centered CDW
due to Peierls electronic instability. Figure 1.3 displays two representative energy
profiles, one for each phase, obtained from Equation (1.29): the two minima of a
double-well energy landscape in the distorted phase collapse into a single minimum
when ∆ ≥ ∆c, i.e., when the local maximum at u = 0 turns into a global minimum,
signature of the second order transition.

It is interesting to notice that the left-hand side of Equation (1.32) is equal to
E2

gap/4, implying that in the distorted phase, as ∆ varies, u(∆) varies in a way
that keeps the energy gap constant. This implies that the knowledge of the energy
gap gives also information on the phase diagram of the system and vice versa. We
also notice that in the SSH limit of equivalent atoms, namely for ∆ = 0, the first
derivative in Equation (1.30) becomes discontinuous in u = 0, hence the only possible
stationary solutions are for u ̸= 0. This results is coherent with the original argument
for the Peierls transition, where a finite u ̸= 0 is allowed by an infinitely small e-ph
interaction, conjuring with a Fermi-surface nesting and Peierls electronic instability
to produce a dimerized phase with bond-length alternation and the opening of a
gap in the energy spectrum Egap = 4|δt| = 4βtu.

Discussion above sums up the main ideas present in the literature of the Rice-Mele
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model about the Peierls transition and related structural properties. In particular,
we saw how the competition between two mechanisms to counteract the electronic
instability results in a second order structural phase transition. However, the
parameter ∆ is not the only handle available to drive the transition, that may be
tuned by other model parameters at fixed ∆ (a trivial one being the elastic stiffness
K). For instance, it is reasonable that a sufficiently large e-ph coupling may induce
a bond dimerization in the gapped chain at a finite ∆. The optimal ū ≠ 0 as
a function of β is given in closed form in Equation (1.32). As the e-ph coupling
constant enters in the hyperbolic function, an explicit expression for ū can be derived
by assuming Ka2π ≪ 8β2t, which allows to retain only the lowest order term of the
Taylor expansion of sinh(x). With this hypothesis, and defining the term

β2
c = Ka2

8t2 ∆, (1.35)

in analogy with the previous case, we obtainu ∝ |β − βc|1/2, if β > βc

u = 0, if β ≤ βc.
(1.36)

This result shows that another way to control the structural transition of the chain
in the model, given a finite ∆ ̸= 0, is through the electron-phonon coupling term
β. Both the behaviours of optimal u(∆) and u(β) are shown in the right panel of
Figure 1.4.

Figure 1.3. Behaviour of the total energy per unit cell Etot with respect to the fractional
coordinate u. If ∆ < ∆c, there are two symmetric minima u ≠ 0 and the equilibrium
structure present a bond length alternation. If ∆ > ∆c, there is only one minimum in
u = 0 and the atoms are equidistant.
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1.2.2 Polar properties: electronic polarization and Thouless pump

In this section, we derive the expression of the dipole moment per unit cell P as
obtained within the modern theory of polarization[37]. In this framework, the wave
function of the occupied states is required to be continuous at the edges of the
Brillouin zone. To satisfy this requirement, we multiply the wave function of the
occupied states of Equation (1.24) by a phase factor and define

|ψocc
k ⟩ ≡ e−irAk |ψ−

k ⟩ (1.37)

with rA = −a/4 + δrA. The dipole moment per unit cell P is defined in terms of
the Berry phase[38] φ as

P = −2|e|
2π φ (1.38)

where e is the electron’s charge, the factor 2 at the numerator accounts for the spin
degeneracy and the Berry phase φ is defined as

φ = i
∫ π/a

−π/a
dk
〈
ψ̃occ
k

∣∣∣∣∣ dψ̃occ
k

dk

〉
. (1.39)

We indicated with |ψ̃occ
k ⟩ the periodic part of the wave function |ψocc

k ⟩ and from
Equation (1.14), (1.24) and (1.37) it holds

|ψ̃occ
k ⟩ = e−irAk

∑
R

∑
α

cα,k |αR⟩ , (1.40)

where 
cA,k = ∆−ε−

k√
(∆−ε−

k )2+|T |2
,

cB,k = −T ∗√
(∆−ε−

k )2+|T |2
.

(1.41)

As the scalar product in Equation (1.39) is taken over a single unit cell, without loss
of generality we consider only the contribution for R = 0 in Equation (1.40) and
obtain

φ = 2π
a
rA +

∫ π/a

π/a
dk (δrB − δrA) |T |2 + 2tδta

(∆ − ε−
k )2 + |T |2

. (1.42)

From the gap Equation (1.26), we notice that the insulating/metallic character of
the system can be visualised in a 2D parametric (∆, δt)−space, where the origin of
the axes correspond to a metallic system with Egap = 0, while every other point
corresponds to an insulating system with Egap ̸= 0. In this space, we define a
parameter θ that allows to identify each point with the polar coordinates (Egap, θ),
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with the change of coordinates defined by

2∆ = Egap sin θ (1.43)
4δt = Egap cos θ. (1.44)

Applying this change of coordinates in Equation (1.42), in the limit Egap ≪ t it can
be demonstrated that it holds

P = −|e|
π
θ. (1.45)

This property can be appreciated in Figure 1.4, where we compare, for different
values of Egap/t, the behaviour with respect to θ of the dipole moment P , obtained
computing Equation (1.38) numerically without further approximations. Values of
model’s parameters used for numerical calculations were obtained fitting the DFT
energy of carbyne, as further explained in section 1.3. As θ varies, so do the terms
∆ and δt. In particular, a full rotation of 2π implies that the system has returned in
its initial state, while the dipole moment P has acquired a quantum of −2|e|. This
property is more general: if the system undergoes an adiabatic evolution along any
loop enclosing the origin of the 2D space, a quantised charge is always pumped out.
This phenomenon is known as adiabatic charge transport or Thouless’ pump[10] and
the key ingredient is the presence of the metallic point in the domain enclosed by
the loop: in this sense, it is an example of topological phenomenon. In Chapter 3 we
will demonstrate how this peculiar topology-related property affects polar responses
of the system.

1.2.3 Relation between structural and polar properties

Finally, we discuss the relation between polar and structural properties in the
model, with the aid of the 2D space, in particular focusing on the possibility to
have ferroelectricity in the chain. A necessary condition for the system to manifest
ferroelectricity is to be non-centrosymmetric. In order to meet this requirement in
the chain, conditions ∆ ̸= 0 and δt ≠ 0 must be satisfied simultaneously. Indeed,
if both ∆ = 0 and δt = 0 – the origin of the axis – the system is metallic and it is
not possible to define a polarization. If only one between ∆ and δt is non-zero – the
horizontal and vertical axes, respectively – the system is still centrosymmetric. In
the case ∆ ̸= 0 and δt = 0, we have inequivalent but equidistant atoms, and the
chain is symmetric for the inversion with respect to atoms sites. In the other case
∆ = 0 and δt ̸= 0, instead, we have a BLA between equivalent atoms, hence the
chain is symmetric for the inversion with respect to bonds centers. In both cases
it is possible to define a dipole moment per unit cell, but symmetry forbids the
presence of a spontaneous polarization for the bulk system, namely a polarization
present even in absence of an external electric field. Finally, if both ∆ ̸= 0 and
δt ̸= 0 – a generic point in the space, a part from the axis and the origin –, the
system is not centrosymmetric, with a spontaneous polarization due to the presence
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of a mixed bond- and site-centered charge density modulation. From Figure 1.4, we
notice that the structural phase transition takes place between a centrosymmetric
and a non-centrosymmetric structure: in this sense, this 1D diatomic linear chain
model describes a prototypical ferroelectric transition.

Figure 1.4. On the left panel, behaviour of the dipole moment per unit cell P with respect
to θ for different values of Egap/t. As expected, in the small-gap limit (Egap ≲ t) we
observe the linear behaviour P ∝ −θ predicted in Equation (1.45). On the central
panel, values of P are displayed in the 2D parametric (∆, δt)−space, where each point
correspond to a physical realization of the model. We highlight that θ is defined clockwise
with respect to the positive vertical semi-axis. From the color-map, we deduce that an
adiabatic evolution along a loop containing the origin of the axes – which correspond to
a metallic system – pumps out a quantised charge of −2|e|, as expected from Thouless
argument[10]. Finally, it is interesting to visualize the phase transitions of u(∆) and
u(β), displayed separately in the two right panels, also as paths in the 2D parametric
space. Being ∆ and β the independent parameters, and being δt ∝ βu, one finds that
the transition in ∆ from the dimerized (u ̸= 0, hence δt ≠ 0) to the undimerized (u = 0,
hence δt = 0) phase, happens on a circumference with fixed Egap, whereas the evolution
with respect to β in the dimerized phase corresponds to a vertical line, the undimerized
phase corresponding to a single point at fixed ∆ ̸= 0 and δt = 0. Arrows on the two
paths in the 2D space correspond, respectively, to the arrows in the right panels whereas
all the dots of the lower right panel correspond to a single point in the 2D space in
(∆ = 1.05∆c, δt = 0).

1.3 Conjugated polymers as prototypical 1D systems

In this section, we introduce a class of materials where the concepts discussed above
find a physical realization: conjugated polymers (CPs). CPs are organic materials
characterized by a backbone chain of atoms, usually carbon atoms, to which other
elements and/or functional groups may bond. The property that makes them
stand out among other organic compounds is the presence of delocalized electrons
along the chain, consequence of the overlap between p-orbitals of atoms in the
backbone. This peculiar characteristic results in interesting and useful optical and
electronic properties, with many applications in the field of organic electronics[13, 39],
some of the most notable being for organic solar panels[40, 14], organic light-
emitting diodes (OLED)[41, 15], organic field-effects transistors (OFETs)[42] and
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bioelectronics[43, 16].
To have an intuitive understanding of the phenomenon of delocalization, let’s

consider a prototypical CP: polyacetylene (PA). Since its first synthesis in 1958
by Giulio Natta[44, 45], PA has been object of many studies. In particular, the
discovery of its high electrical conductivity upon doping[46] has paved the road
to the field of organic conductive polymers and has been awarded with the Nobel
Prize in 2000[47]. It is composed by a chain of carbon atoms, each of which is
bound to one hydrogen atom, hence it can be schematized as an infinite repetition
of the unit C2H2. From a chemical point of view, a carbon atom has four valence
electrons involved in bonds formation. In PA, three of them form the so-called
sp2 hybrid orbitals: one of the orbital creates a σ-bond with the valence electron
of the hydrogen atom, whereas each of the other two creates a σ-bond with one
sp2 orbitals of one of the two neighboring carbons. These bonds determine the
geometry of the chain, in particular, PA has two isomeric structures, named cis
and trans. Our analysis will focus on the trans one, shown in Figure 1.5, since it’s
the most stable structure. However, the peculiarity of PA, and of CPs in general,
stems from the behaviour of the last valence electrons. Intuitively, since each carbon
atom uses three of the four valence electrons to form bonds with an hydrogen atom
and with two carbon atoms along the chain, the last electron may form bonds only
with one of the two neighboring carbons. Electrons involved in this bonds are in
p-orbitals perpendicular to the plane determined by the sp2 orbitals, resulting in
π-bonds. Taking the C2H2 unit as a reference, this bond can be between carbons in
the same unit or between carbons in adjacent units, however resulting in both cases
in an alternation of double and single bonds. These two possible realizations of the
structure are completely equivalent and in chemistry are usually called resonance
structures[48]. The resulting electronic structure is a hybrid of these two realizations,
meaning that the electrons are not confined to a bond, but rather they are delocalized
over several atoms along the chain, as depicted in Figure 1.5.

Figure 1.5. On the left panel, structure of polyacetylene (PA) in its trans configuration.
On the right panel, schematic representation of how a delocalized electronic distribution
arises from the overlap between p-orbitals of atoms along the backbone of a conjugated
polymer like PA.

This intuitive idea we illustrated for PA is behind all CPs in general. Indeed, all
CPs are characterized by resonating structures, which result in electronic delocal-
ization. As a consequence of delocalization, electrons involved posses high mobility
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along the chain, giving CPs their peculiar electronic and optical properties. As the
electronic delocalization in CPs is a property of the atoms in the backbone chain,
1D models as the one we discussed above are suitable to describe the main features
of CPs. For instance, the SSH model of a chain with equivalent atoms[29, 36],
has been widely used to describe the properties of PA, as the two carbon atoms
in the C2H2 unit are electronically equivalent (the ∆ = 0 case in the model of
section 1.2). The Rice-Mele model of a diatomic chain with inequivalent atoms (the
∆ ̸= 0 case in the model of section 1.2), instead, is suitable to describe substituted
polyacetylenes (SPA)[49, 50, 51, 52], a class of conjugated polymers formed by
inequivalent monomers which can be obtained substituting (one of) the atoms in
the C2H2 unit of PA with some element(s) or compound(s).

1.3.1 Carbyne

A very peculiar example of 1D system and CP is carbyne, an infinitely long linear
chain of carbon atoms. As such, carbyne is a 1D allotrope of carbon[53], just like
graphene in 2D, and diamond and graphite in 3D. Following the intuitive picture
used for PA, we recall that, from a chemical point of view, a carbon atom has four
valence electrons involved in bonds. In carbyne, in particular, two electrons per
atom form sp−hybridized orbitals which are involved in σ-bonds with the other
sp−orbitals of neighboring carbons, giving to carbyne its perfectly linear structure.
The remaining two electrons per atom give rise to two possible realisations of
carbyne[54]: on one hand, each electron may form a second bond with one neighbor,
resulting in a structure where all carbons form double bonds and are equidistant.
Due to the cumulative presence of double bonds, such system is also called cumulene.
On the other hand, both the two electrons may bond with only one of the two
neighbors, resulting in an alternation of single and triple bonds, reflected in a
structure with BLA. Following chemistry nomenclature, this realisation of carbyne
is called polyyne. In Figure 1.6 both cumulene and polyyne structures are shown.
At date, the cumulenic phase has never been synthesized and even if its presence
has been hypothesized, e.g., in interstellar clouds[55, 56], its actual existence is
still debated[57, 58]. Indeed, as discussed in previous sections, a linear chain of
equivalent and equidistant atoms would undergo a phase transition in favor of a
distorted and insulating phase, in this case the polyynic one. As such, carbyne is
also a prototypical example of a physical realization of the Peierls metal-insulator
transition, and consequently of a (bond-centered) CDW system. In next Chapter 2,
we will further discuss the competition between these two realizations of carbyne,
including also quantum-anharmonic effects.

From a practical point of view, the synthesis of carbyne is highly challenging[60]
and requires particular care. The most recent advances, with chains composed
of up to ∼ 6000 atoms, were obtained through the encapsulation of the linear
chain inside carbon nanotubes, which act as stabilizing and protective materials[61].
Nevertheless, there is a strong interest in the realization of this material because
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Figure 1.6. Carbyne, an infinite length chain of carbon atoms, has two different structural
realizations, classified according to the bonds formed by the atoms. The cumulative
presence of double bonds is what defines cumulene, characterized by equidistant atoms
as shown in the top structure. If instead the chain is characterized by an alternation
of single and triple bonds, we are in presence of polyyne. The inequivalence between
bonds is reflected by a bond length alternation, as shown in the bottom structure. Both
figures are adapted from Ref.[59].

of the incredible properties theoretically predicted. In particular, it is thought to
be the strongest material known, with a Young’s modulus per density assumed to
be twice as large as that of graphene and a predicted specific tensile strength of
6.0 − 7.5 × 107 Nm/kg[62], where, e.g., for diamond it is 2.5 − 6.5 × 107 Nm/kg, for
graphene is 4.7−5.5×107 Nm/kg and for carbon nanotubes is 4.3−5.0×107 Nm/kg.
Moreover, uses of carbyne were also proposed for convertible energy storage and
batteries[63, 64].

1.3.2 Fit of the model on carbyne

Being a straight, linear, 1D system, carbyne is the perfect physical realization
of the 1D chain model we discussed. Thus, with the aim of having a working-
model with a real counterpart, we fitted model’s parameters in order to reproduce
properties of carbyne obtained with DFT calculations. The choice of an hybrid
exchange-correlation functional with an adequate mixing parameter has become
the standard for DFT calculations of CPs as they allow to correctly account for
the long-range effects due to the delocalized nature of electrons and also for the
presence of a surrounding dielectric environment, as can be nanotubes’ walls for
carbyne[65, 66, 67]. Recent works[68, 17] established the PBE0 functional as a
reliable standard for PA and carbyne, with results in agreement with those of more
advanced techniques as G0W0 for the electronic structure and with the experimentally
measured BLA of carbyne in carbon nanotubes of Ref.[61]. For these reasons, we
adopted the PBE0 functional to compute, with the CRYSTAL code[69, 70], the
total energy of carbyne as a function of atoms relative displacement. Computational
details on the parameters used in the calculations are given in Appendix C. The
physical properties we are interested to reproduce are the BLA, the energy gain
Egain of the stable, distorted polyyne phase with respect to the unstable, undistorted,
cumulenic one, and the energy of the longitudinal optical phonon at zero wave-length
ωLO(Γ), which is proportional to the curvature of the total energy profile at its
minimum, in order to correctly account for the longitudinal phonon which guides
the Peierls transition. Aiming to reproduce these three quantities, we chose three
free parameters of the model: the hopping energy parameter between equidistant
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atoms t, the electron-phonon coupling parameter β and the elastic constant term K.
Reminding that carbon atoms in carbyne are equivalent in both the cumulene and
polyyne realizations, we have ∆ = 0. Finally, the cell length parameter a = 2.534 Å
is taken from a PBE0 unit-cell relaxation calculation.

The optimal values for t, β and K were obtained minimising a cost function L
defined as

L (t, β,K) =
∑
i

wi [Qi (t, β,K) −Q∗
i ]

2 (1.46)

where the sum runs over the quantities Qi used for the fit (i.e. the BLA, the Egain
and ωLO(Γ)), Qi (β,K, t) is the value of the quantity Qi calculated in the framework
of the toy-model with parameters t, β and K, Q∗

i is the value of the quantity taken
as reference from the DFT calculation and wi is a weight used to rescale to the same
order of magnitude all the contributions to L, in particular we put wi = 1/Q∗2

i . The
results of the fitting procedure are reported in Table 1.1 whereas in Figure 1.7 we
show the comparison between total energy profiles obtained with DFT and with the
fitted model.

E∗
gain (meV) BLA∗ (Å) ω∗

LO(Γ) (cm−1)
33.86570 0.10011 1986.57

Egain (meV) BLA (Å) ωLO(Γ) (cm−1)
33.86572 0.10010 1986.50

tbest (eV) βbest (eV/Å) Kbest (eV/Å2)
2.384554 7.203604 127.976590

Table 1.1. First line: DFT@PBE0 values for the energy gain E∗
gain between the most

stable polyyne phase and the less stable cumulene one, for the bond length alternation
BLA∗ and for the longitudinal optical phonon energy ω∗

LO(Γ), taken as references for
the fitting procedure. Second line: values for the same quantities obtained within the
best-fitted model. Last line: values of model’s parameters obtained from the fitting
procedure described in the text. The value of the cost function defined in Equation
(1.46) is L (tbest, βbest,Kbest) < 10−8.

1.3.3 Validation of the fit

The results of the fitting procedure gives remarkably accurate agreement with DFT
target values, putting forward the model as a reliable framework to study properties
of 1D systems, in this particular case of carbyne, with results as good as DFT-level
ones. In Figure 1.8 we compare the electronic energy bands dispersions obtained
ab-initio and with the fitted-model, finding a quite good agreement in describing
the occupied band. We also find an energy gap Egap ≃ 1.45 eV in the model, to
compare with the ab-initio one EPBE0

gap ≃ 2.03 eV.
The major strength of the model lies however in the fact that the parameters have
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Figure 1.7. Comparison between the energy profile of carbyne obtained ab-initio with
DFT@PBE0 level calculation and the energy profile obtained with the fitted-model.
Aiming to reproduce the depth of the potential well, the position of the minimum and
the curvature in the minimum, a remarkable agreement is noticed.

a clear physical meaning, implying that we can describe different physical realizations
of carbyne with only slight adjustments. For instance, synthesis of carbyne is only
possible inside carbon nanotubes, which may have different properties such as
different diameter lengths, different chiralities and so on. These differences are
known to strongly affects properties of the carbyne chains they host, e.g. their BLA
or their electronic energy gap. As we will thoroughly discuss in Chapter 3, it has
been argued that the underlying reason is a renormalization of the e-ph interaction
in the chain as a consequence of the dielectric environment of the nanotubes[61, 71].
The framework of the model offers the possibility to test these ideas. Indeed, we can
vary the e-ph coupling parameter β and verify if specific behaviours experimentally
observed are captured by the model. In particular, in Ref.[71] Shi et al. observed a
linear relation between the electronic energy gap Egap with respect to the raman shift
in carbyne chains hosted in double-walled carbon nanotubes with different diameters.
To verify if the model correctly captures this behaviour and at the same time to test
the hypothesis that the main mechanism at play is a renormalization of the electron-
phonon interaction, we proceed as follows. Varying the value of the parameter β in
the model around the fitted value, we compute the values of the energy gaps and of
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Figure 1.8. Electronic energy bands dispersion for carbyne obtained ab-initio and within
the fitted-model. Despite the striking conceptual differences between a tight-binding
approach and a DFT model with an hybrid functional like the PBE0, there is quite a
good agreement in the description of the occupied band and in particular of the energy
gap opening at the borders of the Brillouin zone.

the ωLO(Γ) that a Raman experiment would measure. In Figure 1.9 we compare
our results with the experimental data of Ref.[71], obtained with resonance Raman
spectroscopy. We remark how, despite the systematic underestimation of the energy
gap, the model perfectly captures the linear relation between Egap and ωLO(Γ). On
one hand, this result validates the fitted-model as a reliable tool for the study of
carbyne, on the other, it is also a confirmation that nanotubes’ walls strongly affects
e-ph interaction of the carbyne chains they contain.

Finally, it would be useful to exploit the fitted-model beyond carbyne, in order
to study the structural and polar properties discussed in previous sections. To do so,
we need to break the equivalence between carbon atoms. To attain this goal while
at the same time keeping a real physical counterpart, we decided to put six helium
atoms around one carbon atom every two, in the following way: the six helium atoms
are positioned at the vertices of an hexagon which lies in a plane perpendicular
to the linear chain direction. At the center of this hexagon is the carbon atom,
equidistant from all helium atoms. At the end, there will be an hexagon of heliums
around one carbon atom every two, so that this system still falls in the framework of
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Figure 1.9. On the top left, it is possible to observe how the variation of the e-ph coupling
parameter β modifies the electronic energy gap Egap. As expected from Equation (1.26),
we find a linear behaviour. Having chosen the handle to control the energy gap, on the top
right panel we show the comparison between values of Egap and of the longitudinal optic
phonon at Γ, ωLO(Γ), obtained with the fitted-model on carbyne and from resonance
Raman experiments on carbyne inside different carbon nanotubes[71]. The star indicates
the results obtained for the β of Table 1.1. Despite the systematical underestimation of
the energy gap, the model correctly captures the linear relation observed experimentally,
indirectly confirming the idea that the dielectric environment around carbyne chains
strongly affects their e-ph interaction. This is confirmed by the comparison of the same
quantities with rescaled axis in the lower panel. In particular, we subtracted to each
value of Egap and of ωLO(Γ), their respective lowest values – indicated with the label
min – so that both the experimental and model curves start form the point (0,0).

the diatomic chain model. Indeed, as we vary the distance d between the vertices of
the hexagon and its center, the closed-shells of the helium atoms locally modify the
electronic charge density distribution of carbyne due to static Coulomb interaction,
acting as an effective onsite energy term ∆. A part from the theoretical utility of this
system, the philosophy of decorating carbon chains with elements and compounds
in order to attain particular properties has been explored also for practical purposes.
For instance, studies have shown how networks of carbyne’s chains decorated with
calcium or lithium atoms hold very promising properties in terms of hydrogen storage
capabilities[63, 72]. Even if we are not going to investigate carbyne as an hydrogen
storage candidate, we want to stress on the interest in studying these carbyne-based
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materials beyond a purely theoretical appeal.
In practice, we perform ab-initio PBE0 calculations on carbyne decorated with

helium atoms for various He-C distances d. In particular, for a fixed value of d we
study how the energy gain and the BLA are affected by the presence of the heliums.
Then, keeping fixed the values of the fitted-model parameters of Table 1.1, for each
different d we perform a fit using the DFT reference values for Egain(d) and BLA(d)
in order to retrieve the best values of ∆ for each d. Results are shown in the left
panel of Figure 1.10. To test the accuracy of this extended fitted-model, we compare
the ab-initio effective charges Z∗ of helium-decorated carbyne with the ones obtained
from the model, finding a good agreement as shown in the right panel of Figure
1.10. As a final remark, testing the validity of model’s prediction in the case of the
effective charges is instrumental for the results we discuss in Chapter 3 on polar
responses of 1D systems.

Figure 1.10. On the left panel we show the best values of onsite energy ∆, obtained from
the fitting procedure described in the text, as a function of the distance between helium
and carbon atoms. On the right panel, the comparison between effective charges Z∗

obtained from DFT@PBE0 calculations and within the fitted-model, as a function of
He-C distance confirm the model as a fast and reliable tool to obtain DFT-level results.

1.4 Conclusions

To sum up, in this Chapter we gave an overview on some relevant aspects about
structural and polar properties of 1D conjugated systems, in relation with phenomena
such as charge density waves and ferroelectricity. In particular, in the framework
of a simple tight-binding model of a diatomic linear chain, we first explored the
competition between two different structural realizations of the chain: a more
symmetric configuration where all atoms are equidistant is counterposed to a less
symmetric one characterized by a bond-length alternation. The optimal configuration
is determined by physical properties encompassed in specific model’s parameters,
which guide a second order structural phase transition between the two phases. In
particular, a possible knob to control the transition is the strength of the electron-
phonon coupling, that, as we will see, may also account in the model for the effects
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of dielectric environment surrounding these 1D systems.
Then, strictly related to their configuration, we focused on polar properties of

1D systems. In particular, studying the behaviour of electronic polarization in the
model, we shown how the structural transition is also a prototypical ferroelectric
phase transition. Moreover, systems described by the model were shown to be
realizations of the adiabatic charge transport mechanism of the Thouless pump, with
consequences that will be discussed in Chapter 3.

Successively, we introduced the class of conjugated polymers, organic 1D ma-
terials with very peculiar optoelectronic properties. The defining characteristic of
these materials is the presence of delocalized electrons along a backbone chain, a
characteristic that can be perfectly captured in the framework of the model. Fol-
lowing this idea and in order to have a working-model with a physical counterpart,
we fitted model parameters with DFT calculations of carbyne, an infinite linear
chain of carbon atoms which has drawn a lot of interest for its predicted properties.
Fitted-model results show great agreement both with ab-initio calculations and
experimental observations, putting forward this simple model as a fast and reliable
tool to study properties of 1D systems such as conjugated polymers. In particular,
the agreement with experimental results on the linear relation between the electronic
energy gap Egap and the zone-center longitudinal optical phonon energy ωLO(Γ),
suggests that the e-ph parameter β of the model correctly captures the effects of a
dielectric environment around carbyne, e.g. carbon nanotubes, as argued before.
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Chapter 2

Quantum-anharmonic effects

Chapter overview

Chapter 2 is organized as follows. In section 2.1, we describe what quantum-
anharmonic effects are and their fundamental role for the correct treatment of many
systems. Next, in section 2.2, we present the self-consistent harmonic approximation,
a variational theory that allows for a non-perturbative treatment of quantum-
anharmonicity in materials. In particular, we discuss its stochastic implementation
and how we use it in the 1D model. As a first application, we study the effects
of quantum-anharmonicity and temperature on the CDW of carbyne in section
2.3. Next, in section 2.4, we do a similar study on quantum-anharmonic effects on
carbyne-derived systems. Finally, conclusions are drawn in section 2.5.

2.1 Introduction: the importance of ionic quantum-
anharmonic effects

In the previous Chapter, we introduced a model to describe structural and polar
properties of 1D conjugated systems, as well as their interplay. In particular, we
characterized a second order structural phase transition with respect to model’s
parameters and discussed the connection with the insurgence of phenomena such as
charge density waves and ferroelectricity, neglecting lattice dynamics and at zero
temperature. In the present Chapter, we go beyond this hypothesis and include
both temperature effects and ionic dynamics in the model.

Even if, in general, the energy of ionic fluctuations is smaller with respect to that
of electronic degrees of freedom, in order to understand and correctly reproduce many
physical and chemical properties of materials and molecules, it is often necessary
to consider vibrations of ions[73], which oscillate even at T = 0K because of the
zero-point motion energy. Since electron dynamics is much faster than the ionic
one, usually one assumes the Born–Oppenheimer (BO) approximation to describe
the motion of ions. Namely, one considers the ions subject to the BO potential
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V (R), given by the electronic ground state energy at any ionic configuration R.
From this starting point, the standard approach to treat lattice dynamics consists
then in Taylor-expanding the BO potential up to second-order around the R0 ionic
positions that minimize V (R). In this way, the resulting Hamiltonian is harmonic
and exactly diagonalizable in terms of phonons, vibrational quanta that within the
harmonic approximation are well-defined quasiparticles with an infinite lifetime.
In reality, however, phonons do acquire a finite life-time due to their anharmonic
interaction with other phonons or because of other types of interactions such as the
electron-phonon coupling. When higher-order anharmonic terms are small compared
to harmonic ones, one can treat anharmonicity within perturbation theory[74, 75, 76]
and correctly account for finite-lifetime effects and/or temperature dependence of
phonons energy. However, if anharmonic terms of the BO potential are of the same
order of magnitude or even larger than the harmonic ones in the range sampled by
ionic fluctuations, perturbative approaches fail and are not valid anymore[77]. This
is often the case when light ions are present and/or when the system is close to a
displacive phase transition, such as a ferroelectric- or a CDW-instability.

These considerations are particularly relevant for 1D systems described by our
model, as they may present at the same time light atoms, anharmonicity and CDW
instability. Indeed, the BO potential of the model, namely the total energy Etot
defined in Chapter 1, is strongly anharmonic in proximity of the critical points
of the phase transition. Moreover, in the case e.g. of conjugated polymers, the
presence of carbon atoms – with light masses ∼ 12 times that of hydrogen – in the
polymers backbone may yield to remarkable zero-point energy renormalization, as
already highlighted e.g. in carbyne[17]. Furthermore, as recently shown in several
compounds[78, 79, 19, 17], ionic positions can be strongly altered by quantum-
anharmonic effects (QAE), even at zero Kelvin. These structural changes are
important for both internal degrees of freedom, related to system’s symmetries, and
for the lattice parameters. Hence, as a final remark, we notice that QAE may also
affect polar properties, as they are intertwined with the structural ones (we leave
the study of this problem for next Chapter 3).

Driven by these motivations, in what follows we study the effects of quantum-
anharmonicity on model’s properties. In particular, we use the values of the pa-
rameters obtained in section 1.3 to reproduce DFT properties of carbyne. Indeed,
being an infinite-length straight chain of carbon atoms, carbyne can be regarded
as a physical realization of a one-dimensional CDW. Generally, electron-phonon
interaction favors the formation of CDW, while quantum-anharmonicity tends to
dampen them. The accurate estimation of quantum-anharmonic effects, however,
remains scarce in literature due to its non-perturbative nature and because the
quantum behavior of ions, in particular for light atoms, poses challenges for conven-
tional density functional theory (DFT) or standard molecular dynamics approaches.
Thus, comprehending the finite temperature quantum-anharmonic phase diagram of
carbyne holds pivotal significance in understanding the physics of CDWs.
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Moreover, as already discussed, it is possible to vary some of the parameters of
the carbyne-like model while still keeping a real physical counterpart, e.g. carbyne
decorated with helium atoms or in different dielectric environments. In this way, we
can study the effects of quantum-anharmonicity also on the competition between
the formation of a bond-centered CDW, driven by the Peierls electronic instability,
and a site-centered one, favored e.g. when breaking atoms equivalence. Finally, we
argue that since the model may describe many 1D systems beyond carbyne, e.g.
other conjugated polymers, the conclusions we present below, hold significance as
general results regarding the effects of QAE on properties of 1D systems.

2.2 The self-consistent harmonic approximation

In recent years, several methods have been developed to calculate vibrational prop-
erties of solids beyond perturbation theory or with the inclusion of quantum effects.
A common approach consists in using ab-initio molecular dynamics (AIMD) to
extract phonon frequencies or force constants[80, 81, 82]. However, these methods
often fail to consistently account for quantum effects, hence the AIMD trajecto-
ries needs to be substituted by more expensive path-integral molecular dynamics
(PIMD) ones[83]. Other methods, based on variational principles and vibrational
self-consistent fields[84, 85], have often successfully incorporated the effect of anhar-
monicity beyond perturbation theory in different materials. However, they usually
lack a consistent procedure to properly capture both quantum effects and anhar-
monicity in the compound, as many of them simply correct the free energy and/or
the phonon frequencies assuming that the ions remain fixed at the R0 classical
positions.

Among theories based on variational principles, the Self-Consistent Harmonic
Approximation[86, 87] and in particular its stochastic implementation (SSCHA)[20,
18, 73], has recently emerged as a powerful and unique technique that allows to derive
thermodynamic properties of materials, incorporating at the same time quantum
and anharmonic effects. Indeed, thanks to the SSCHA it is possible to optimize
crystal structures, compute thermal expansion, and accurately determine conditions
for second-order phase transitions at an affordable computational cost, overcoming
limitations of AIMD and PIMD simulations. In this section, we briefly discuss the
main ideas behind this theory and its stochastic implementation.

We consider nuclei and electrons in the Born-Oppenheimer (BO) approximation
and focus on the quantum problem for the nuclei, expressed in terms of the BO
Hamiltonian

H = K + V (R), (2.1)

where K is the kinetic operator for the nuclei, V (R) is the BO potential, derived
from the electronic energy in a given atomic configuration and R is a vector with all
the 3Nat coordinates for the Nat atoms. A system of finite volume, temperature and
number of particles, is at equilibrium when it is at the minimum of the free energy
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F = E − TS, where E is the internal energy of the system, T the temperature and
S the entropy, defined in terms of numbers of microstates corresponding to the same
macrostate of the system. In a classical picture, microscopic states of the system
are determined by the classical probability distribution of atoms ρcla(R). In the
case of a quantum system, in theory this can be done using the exact many-body
density matrix. However, the task of computing the exact free energy of a generic
quantum system is far from being easy and one usually need to rely on some kind of
approximations. When doing so, it is useful to exploit Gibbs-Bogoliubov variational
principle on the free energy, which states that given a generic trial density matrix ρ̃,
the free energy functional F [ρ̃] is bounded by the true free energy F of the system:

F [ρ̃] = E[ρ̃] − TS[ρ̃] ≥ F (2.2)

where S[ρ̃] is the entropy and

E[ρ̃] = ⟨K + V (R)⟩ρ̃ (2.3)

is the total energy of the system calculated with the trial density matrix ρ̃, where
we defined the quantum average for a generic operator · as ⟨·⟩ρ̃ = Tr[ρ̃ ·]. It is thus
possible, in theory, to obtain the true free energy F of the system minimising the
functional F [ρ̃]. However, performing the optimization on any possible trial density
matrix is an unfeasible task due to its many-body character. In order to ensure
a reliable estimate of F , the choice for ρ̃ should be guided by physical intuition
while at the same time yielding an optimal parametrization for the minimization
procedure.

The intuition behind the SCHA is that atoms vibrate around fixed equilibrium
positions even in the most strongly anharmonic crystals, hence the best candidate
for the variational principle is the Gaussian distribution, as it is the least biased
quantum distribution, with fixed average positions and fluctuations[73]. Following
this idea, the SCHA approach consists in considering only Gaussian distributions
ρ̃R,Φ among all the possible trial density matrices. The indexes R and Φ are
the variational parameters: the former, called centroids, correspond to the average
atomic positions whereas the latter correspond to the quantum-thermal fluctuations
around them. Just like any Gaussian is defined by the average and mean square
displacement, these parameters allow to uniquely identify the Gaussian density
matrix ρ̃R,Φ(R) = ⟨R|ρ̃R,Φ|R⟩ which determines the probability to find the atoms
in the configuration R and can be imagined as the quantum analogue of ρcla(R). An
advantage of this approach stems from the the fact that it gives an intuitive physical
interpretation. Indeed, any Gaussian density matrix ρ̃R,Φ that describes a physical
system is the equilibrium solution of an harmonic Hamiltonian ĤR,Φ defined as

ĤR,Φ = K + 1
2

3Nat∑
a,b

(
R̂a − Ra

)
Φa,b

(
R̂b − Rb

)
, (2.4)
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where R̂ is the position operator, the centroids R correspond to the average atomic
positions and Φ to a positive-definite force constant tensor. In particular, at a given
temperature β, the relation between ρ̃R,Φ and ĤR,Φ is:

ρ̃R,Φ = exp {−βĤR,Φ}
ZR,Φ

, (2.5)

with
ZR,Φ = Tr

[
exp {−βĤR,Φ}

]
. (2.6)

A part for the intuitive physical picture it gives, the introduction of an auxiliary
harmonic Hamiltonian allows us to have an analytical expression for both the
kinetic part ⟨K⟩ρ̃R,Φ and the entropy S[ρ̃R,Φ], entering in the variational principle
in Equation (2.2), in terms of Φ only. The power of the SCHA, hence, relies on the
fact that the only resource-demanding quantity to calculate is the average value of
the potential

⟨V (R)⟩ρ̃R,Φ =
∫

dRV (R)ρ̃R,Φ(R). (2.7)

We highlight that this approach allows us to include quantum effects because of the
quantum nature of ρ̃R,Φ and to include effects of anharmonicity at all orders since
the BO potential entering Equation (2.7) is exact.

2.2.1 Stochastic implementation

To sum up, thanks to the SCHA, the most time-consuming part of the problem of
finding the free energy of a system, accounting also for quantum and anharmonic
fluctuations of the ions, is reduced to the calculation of the quantum average of the
Born-Oppenheimer energy landscape V (R) with respect to a gaussian density matrix.
In order to obtain the equilibrium configuration of the system in the SCHA, it is
necessary to minimize the free energy functional with respect to the free parameters.
To do so, the minimization algorithm requires both the values of the functional and
of its derivatives with respect to R and Φ. The procedure and the code adopted to
obtain the results presented in this work is described in Ref.[73], that we now briefly
illustrate. Starting with an initial guess on R and Φ, the algorithm proceeds as
follows:

• extracts an ensemble of NC random nuclear configurations in a supercell, using
the trial Gaussian probability distribution function ρ̃R,Φ(R);

• computes the total energies and the forces for each nuclear configuration in
the ensemble. This can be done with an external code, e.g. an ab-initio engine
or a force field;

• knowing the total energy and the forces, it computes the free energy functional
and its derivatives with respect to the free parameters R,Φ;



2.2 The self-consistent harmonic approximation 32

• updates R and Φ to minimize the free energy.

These steps are repeated until the minimum of the free energy is found, in particular
it can be demonstrated that the optimal free energy is reached when the following
self-consistent equations are satisfied:〈

∂2V

∂Ra∂Rb

〉
(0)

= Φ(0)
a,b (2.8)

⟨fa⟩(0) = 0 (2.9)

where (0) indicates equilibrium quantities and

f (R) = −∂V (R)
∂R (2.10)

are the forces. The integrals of space-dependent quantities O(R), e.g. the quantum
averages of energies and forces, are computed with a Montecarlo approach:

∫
dRO(R)ρ̃R,Φ(R) ≃ 1

NC

NC∑
I=1

O(R(I)), (2.11)

where R(I) is one of the randomly extracted configurations. To further cut down
the computational cost of the algorithm, one can reduce the number of calls to the
force-energy engine calculator – the most expensive part – using techniques such as
histogram reweighting to exploit the same values of forces and energies for multiple
steps: for more details see Ref.[73]. Alternatively, another way to speed-up the
computation is to use reliable force-fields instead of ab-initio codes when this is
possible, as in the case of the 1D chain model.

2.2.2 Self-consistent harmonic approximation on the model

In order to account for quantum fluctuations, anharmonicity and finite-temperature
effects on the properties of 1D systems, we use the stochastic implementation of
the SCHA on the 1D model. In this framework, the BO energy surface is the
total energy computed in the tight binding approximation described in Chapter
1. As discussed in the previous section, the minimization procedure requires to
generate several supercells with atoms arranged according to a Gaussian probability
distribution. As a starting guess, we uses the dynamical matrices of the system,
computed with the standard approach of expanding the BO energy surface in the
harmonic approximation around minima of the potential. In this way, we are ensured
that the starting distribution are Gaussian. After the generation of the first ensemble
of configurations, all subsequent calculation of energy and forces are done keeping
all perturbative orders of the BO potential, in the spirit of the SCHA. Details on
how to compute dynamical matrices in the harmonic approximation in the model
are described in Appendix A. As previously discussed, values of model parameters
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used for SSCHA calculations are obtained fitting quantities of the model on DFT
calculations of carbyne, as described in section 1.3. The advantage of using the
fitted-model as a force-field for SSCHA calculations relies in a significant reduction
in terms of time needed for the calculations, while keeping the same accuracy as
with ab-initio engines on real systems. Numerical details regarding the minimization
procedure are also described in Appendix A.

2.3 Effects on carbyne

Being a physical realization of a 1D CDW, carbyne is a perfect system for studying the
physics of this phenomenon. Indeed, the interest in understanding the behaviour of
CDWs is transverse as they manifest in many other 1D systems such as conductors[26]
or in charge-transfer organic salts[27, 28], as well as in 2D materials[2, 3], high-Tc
superconductors[4] and transition metal dichalcogenides[5]. In this section we study
the role of quantum-anharmonicity on the CDW in carbyne with the aid of the
SSCHA on the toy-model.

2.3.1 Zero-point energy renormalization

To test the predictive power of SSCHA results obtained with the fitted model, we
study QAE on the energetic competition between the cumulene and the polyyne
phases in carbyne, where we remind that cumulene is the high-symmetric structure
where carbon atoms are equidistant whereas polyyne is the low-symmetric one,
characterized by a bond-length alternation. Indeed, as recently pointed out in
Ref.[17] using ab-initio plus SSCHA calculations, even at zero temperature QAE in
carbyne reduce the energy gain of the polyyne phase with respect to the cumulene
one by ∼ 70%, due to zero-point energy renormalization. To check whether the
fitted-model correctly reproduce this behaviour, we study the T = 0K energy profile
of the chain as a function of atoms relative displacement, quantified by the BLA. In
Figure 2.1 it can be observed that the results obtained including QAE in the model
show good agreement with those taken from [17], obtained instead with ab-initio
forces and energies. This result confirms the model as a reliable tool for accurate
QAE-corrected calculations, as reliable as ab-initio ones, while ensuring a significant
reduction of the computational time. Finally, we also notice how the value of relative
displacement which minimizes the energy is also affected by QAE, implying that
in order to correctly describe structural properties, it is necessary to account for
quantum-anharmonicity, as will be further explored in next sections.

2.3.2 Temperature effects on the charge density wave

After having assessed the magnitude of QAE on the energetic competition between
cumulene and polyyne in the limiting case of zero temperature, in this section we
study the role of finite temperature in carbyne with the aim of characterising the



2.3 Effects on carbyne 34

Figure 2.1. The inclusion of quantum-anharmonic effects at T = 0K reduces the energy
gain of the polyyne phase with respect to cumulene of ∼ 70%. The treatment of QAE
is thus fundamental in the characterization of systems with light atoms and highly
anharmonic potentials such as carbyne. In doing this, the 1D toy-model is a reliable
tool as it allows for a reduction of the computational cost while yielding results as good
as those obtained ab-initio (PBE0+QAE data are taken from Ref.[17]).

temperature-behaviour of its CDW. It is generally understood, e.g. in the framework
of the Frölich model[25, 24], that for temperatures below a critical value TCDW,
carbyne manifests in the polyynic distorted phase as a consequence of the Peierls
electronic instability and of the finite e-ph coupling, whereas the cumulene phase can
be stabilized only at T > TCDW. According to the Landau-Peierls picture[88, 89, 21],
this metal-insulator transition is of second order. However, at date, it has never been
observed and cumulene remains an elusive state of carbyne. Recent calculations
performed including QAE on PBE0 results[17], seem to point in a completely
different direction: it is argued that the metal-insulator transition is actually of
first order, with the polyyne phase stable for temperatures much higher than the
predicted TCDW ≃ 75K. This result would explain the difficulty in finding the
cumulenic phase. In order to verify this hypothesis, we exploit the computational
advantage guaranteed by the fitted-model with respect to ab-initio codes to study
the temperature-dependent behaviour of the CDW in carbyne. In particular, since
the signature of the CDW in this system is the resulting periodic lattice modulation,
we study how the BLA of the systems varies with temperature.

To start, we perform the first structural minimization at T = 0K and, as
expected, we find that the polyyne phase is the most stable. Successively, in order
to correctly account for the presence of meta-stable states, as it should be done
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to characterize first-order phase transitions, for increasing values of T , we use the
final dynamical matrices of the previous temperature-dependent minimization as the
starting probability distribution for the following one. As shown in Figure 2.2, at
T ≃ 5000K the cumulene phase becomes eventually energetically favorable and the
BLA disappears. Then, from the undistorted phase, we perform minimizations for
decreasing temperatures, up to T = 0K. Interestingly, it appears that cumulene is
(meta-)stable up to T ≃ 600K, when the electronic instability eventually makes the
polyyne phase the optimal one and the site-centered CDW appears again. These
results are consistent with the fact that cumulene has never been experimentally
detected, as even in its (meta-)stable phase does not survive at room temperature
Troom = 300K. We also remark how the two temperatures where the transitions
occur differ of one order of magnitude, as highlighted by the wide hysteresis cycle in
Figure 2.2, and consistently with the picture of a first-order phase transition where
two distinct phases may coexist. Finally, we also study the temperature dependence
of the free energy differences δF = Fcooling −Fheating between minimized free energies
Fcooling obtained from the cooling cycle with respect to the Fheating obtained from the
heating one. In the range of temperatures where the phases coexist, the energy of the
cumulene phase is generally higher with respect to that of the polyyne one, as shown
in Figure 2.2. From a linear fit we identify the critical value TQAE

CDW ≃ 4300K, where
for T > TQAE

CDW cumulene is stabilized and becomes the most favorable configuration.
Our results give an assessment of the robustness of the CDW, which survives up to
high temperatures, much higher than Troom.

Figure 2.2. On the left panel, temperature dependence of the BLA in carbyne with the
inclusion of QAE. Results suggest that the polyyne/cumulene transition is of first order,
in contrast with the common Landau-Peierls picture. On the right panel, behaviour of free
energy differences between structures obtained in the cooling cycle and structures from
the heating cycle, as described in the text. From a linear fit, we deduce a TQAE

CDW ≃ 4300K
above which the CDW melts and cumulene becomes stable.
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2.4 Effects on carbyne-derived systems

From the results presented above, it appears evident that the inclusion of QAE is
essential to study the properties of 1D systems and 1D CDWs. With this in mind,
in this section we take a step further and study QAE on the structural properties
predicted by the model for 1D chains. As discussed in section 1.2, breaking the
equivalence between atoms (∆ ̸= 0) also contribute to the stabilization of the
electronic instability, which in this case may induce a periodic lattice distortion only
for finite and high-enough e-ph coupling. In absence of QAE, this competition results
in a CDW with mixed site/bond-centered character, with consequences also on the
polar properties of the system[32]. It the framework of the model, this competition
manifests in a second order structural phase transition that can be controlled by
model’s parameter such as ∆ and β. Since, as we have seen, structural properties
and CDWs robustness are affected by QAE and temperature, in this section we focus
on the role of quantum-anharmonicity on these phenomena.

As discussed in section 1.3, it is possible to break atoms equivalence in carbyne
(at least theoretically). For this reason and for consistency with the above presented
results, we still adopt the parameters of the fitted-model for what follows. Indeed, we
argue that the fact that the model may accurately describe many other 1D systems
similar to carbyne (e.g. other conjugated polymers as PA and SPA) guarantees
that the results here presented can be regarded as a reliable indication – at least
qualitatively – of the impact of QAE on such 1D systems.

2.4.1 Zero-point energy effects on the structural phase transition

We remind that, in the framework of the model, the optimal configuration – namely
the optimal relative displacement between neighbouring atoms – is quantified by
the u which minimizes the total energy of the system Etot(u) for a given set of
parameters. This is still the case if we add QAE with the SSCHA, the only difference
being that now the optimal u is obtained minimizing the free energy F (u) for a
given set of parameters. However, for consistency with the previous section, we will
quantify atoms relative displacement using the BLA, a quantity with dimensions
of a length proportional to u via the relation BLA = 2au, where a is the unit cell
length.

As a first step, we perform SSCHA minimizations at zero temperature, varying
∆ or β separately, in order to quantify the zero-point energy effects on the transition,
or stated in other words to account for the quantum behaviour of the atoms. First,
keeping β fixed at the value obtained from the fitting procedure, we study the
behaviour of u(∆) and show the results in Figure 2.3. In particular, the first
minimization is done for pure carbyne (∆ = 0), using as a starting probability
distribution the dynamical matrices obtained in the harmonic approximation on
the model. Similarly to the case where QAE are neglected, we found a finite
u ̸= 0, however its value has changed, as a result of accounting for the quantum
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nature of nuclei. Successively, we perform minimizations for increasing values of
∆ > 0, adopting as a starting guess for each minimization the final dynamical
matrices obtained at the end of the previous one. For a high enough value of
∆, we observe that the optimal configuration of the system becomes the high-
symmetric undimerized one (u = 0), hinting the presence of a phase transition. To
have a complete characterization of the QAE-behaviour of u(∆), starting from the
undimerized phase, we then perform minimizations for decreasing values of ∆, up to
∆ = 0. We observe that eventually the system breaks the spatial symmetry to end
up in the distorted phase (u ̸= 0). However, as can be observed in Figure 2.3, this
∆-decreasing transition takes place at a different value of onsite energy with respect
to the ∆-increasing one, as highlighted by the presence of an hysteresis cycle.

To have an estimate of the new ∆QAE
c , we compare the minimized free energies

of the system obtained at each step of the hysteresis cycle. In Figure 2.3, it can
be observed that in the range of values where the system present a coexistence of
phases, the free energy Fdecr. of the ∆-decreasing path is higher with respect to the
Fincr. of the ∆-increasing one up to the value of ∆ ≃ 0.47ev, after which it becomes
smaller. The two free energies eventually coincide again starting from ∆ ≃ 0.5 eV.
From a linear fit, we estimate a ∆QAE

c ≃ 0.47 eV which separates the distorted
phase from the undistorted one. Comparing this result with the value ∆c ≃ 0.71 eV,
obtained without the inclusion of QAE, we conclude that quantum-anharmonicity
renormalizes the critical value of the second order structural phase transition of
more than 30%.

As described in section 1.2.1, keeping a fixed ∆ ̸= 0 it is possible to control
the transition acting also on the e-ph coupling parameter β. So, with a similarly
procedure as the one described above, we performed SSCHA minimizations for
different values of β in order to characterize the quantum-anharmonic behaviour of
u(β). The results are shown in Figure 2.3 (for ∆ = 0.72 eV > ∆c), and we observe
that as in the previous case, the inclusion of QAE shifts the critical point of the
transition to βQAE

c ≃ 7.75 eV/Å.

2.4.2 Quantum-anharmonic phase diagram

Finally, we relax the T = 0K hypothesis and compute the quantum-anharmonic
finite-temperature phase diagram of this carbyne-derived systems. With the term
phase diagram, we mean that for different realizations of the system, namely changing
the parameters ∆ and β separately, we study the favorable configuration between
the distorted and the undistorted phases for different temperatures. In practice, we
perform the same procedure described in section 2.3.2, each time for a different value
of ∆, at fixed value of β, or of β, at fixed value of ∆. In this way we obtain different
values of the critical temperatures TQAE

CDW, because of the role played by ∆ and β

in the CDW, as already discussed. In Figure 2.4, for some representative cases, it
can be observed how varying ∆ or β affects the temperature behaviour of the BLA.
In particular, the closer we get to ∆QAE

c or βQAE
c from the distorted phases, the



2.4 Effects on carbyne-derived systems 38

Figure 2.3. At T = 0K, effects of quantum-anharmonicity on the optimal structure
of the model fitted for carbyne-derived systems. Pushed from the results obtained
for the temperature-dependent behaviour of the CDW in pure carbyne, we performed
∆-increasing and ∆-decreasing cycles (same for β), as described in the text, in order to
test the presence of meta-stable states. On top-left panel, behaviour of atoms relative
displacement (quantified by the optimal BLA) for different values of onsite energies
∆, with and without the inclusion of QAE. On top-right panel, the same behaviour is
studied varying the e-ph coupling parameter β keeping a fixed ∆ = 0.72 eV. In both
cases, inclusion of QAE shifts the critical value of the structural phase transition. For
the transition in ∆, a new critical value ∆QAE

c ≃ 0.47 eV is obtained from a linear fit
of the free energy differences between the ∆-decreasing and the ∆-increasing cycles,
as detailed in the text and shown in the lower left panel. For the transition in β, free
energy differences shown in the lower right panels are of the order of 0.1 meV. Indeed,
the range of phases coexistence is small enough to deduce a βQAE

c ≃ 7.75 eV/Å.

lower the critical TQAE
CDW for the melting of the bond-centered CDW becomes. The

collection of all the different critical temperatures allow for the definition of two
phase diagrams, presented in Figure 2.5, one obtained varying ∆ with fixed β, the
other varying β with fixed ∆.

From a practical point of view, the results here discussed – whose validity, we
argue, holds beyond the case of carbyne-based systems – suggest a mechanism to
control structural properties of 1D systems acting on parameters such as the chemical
composition of a conjugated polymer, the dielectric environment and temperature.
As will be shown in next Chapter, polar properties, in particular polar responses
such as effective charges and piezoelectricity, can be greatly enhanced in proximity
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of the critical points of the structural phase transition, putting these 1D systems
forward as promising functional materials.

Figure 2.4. Effects of temperature on the optimal structure of carbyne-derived systems.
On the top left and right panels, for different values of onsite energy ∆ and e-ph coupling
parameter β respectively, are shown the behaviours of the BLA with respect to the
temperature for both heating and cooling cycles. We observe how the closer we get to
the respective critical values ∆QAE

c ≃ 0.47 eV and βQAE
c ≃ 7.75 eV/Å, the weaker the

CDW becomes and the cumulene phase may be stabilized at lower temperatures. From
the study of the free energy differences between the structures obtained from the cooling
cycle and those obtained from the heating cycles, lower left and right panels, we deduce
the behaviour of TQAE

CDW(∆) and TQAE
CDW(β).

2.5 Conclusions

In this Chapter we presented our results on the effects of quantum-anharmonicity
on the properties of 1D systems, obtained applying the stochastic self-consistent
harmonic approximation on the fitted-model. For the prototypical case of carbyne,
we found that QAE are responsible for a renormalization of ∼ 70% of the energy
gain between the distorted polyyne phase with respect to the undistorted cumulene
one. Moreover, polyyne is found to be the most favorable configuration for a wide
range of temperatures up to TQAE

CDW ≃ 4300K, where cumulene finally becomes
stable. In particular, the transition between these two phases, theorized but never
observed, is found to be of first order, in contrast with the common Landau-Peierls
picture of a second order phase transition. It is however still possible to stabilize
a high-symmetric phase in carbyne-derived systems exploiting other mechanisms,
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Figure 2.5. In the upper panel, phase diagram obtained varying ∆ while keeping β fixed at
the value obtained form the fit of section 1.3. In the lower panel, phase diagram obtained
varying β with a fixed ∆ = 0.72 eV. Different colors correspond to different structures.
Regions with overlapping colors indicate that the predictions are different if we account
for QAE or not. The black lines correspond to the behaviour of TQAE

CDW(∆) and TQAE
CDW(β),

obtained as described in the text. The vertical red lines are in correspondence of the
critical values obtained from the T = 0 K calculations without QAE in the model.

e.g. breaking the equivalence between carbon atoms or varying the electron-phonon
coupling. Moreover, QAE are also found to contribute stabilizing Peierls electronic
instability even at T = 0K, as highlighted by the reduction of the critical value
∆QAE

c of the second order structural phase transition. The validity of these results
is guaranteed by a comparison with ab-initio plus SSCHA results on carbyne[17].
Finally, we argue that the conclusions we presented, hold even for other systems
beyond carbyne, given that they are described by the 1D model, e.g. polyacetylene
and substituted polyacetylenes.
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Chapter 3

Polar responses

Chapter overview

In Chapter 3 we present our results on the behaviour of polar response properties
in 1D conjugated systems. In section 3.1 we briefly discuss what we intend with
polar responses and their relation with the concepts introduced in previous Chapters.
Then, in section 3.2 we focus on the response of polarization with respect to an
atomic displacement, quantified by the so-called effective charges. We show how the
intrinsically topological nature of polarization in the model gives rise to a peculiar
enhancement of the effective charges in correspondence of the critical point of the
phase transition. Next, in section 3.3, we analyze the response of the system with
respect to a homogeneous deformation, namely a strain. Quantified by the so-called
piezoelectric coefficients, the electro-mechanical response of these systems benefits
both from the topological enhancement of the effective charges and from the second
order structural phase transition. As discussed in Chapter 2, quantum-anharmonic
effects have a huge impact on the properties of the model. In section 3.5 we discuss
how they affect previously introduced polar responses. Finally, in section 3.6, we test
predictions of the model with numerical calculations in the framework of density-
functional theory on prototypical conjugated polymers. Conclusions are drawn in
section 3.7.

3.1 Introduction: polar responses and charge density
waves

In previous Chapters, we explored relevant properties of 1D systems, analyzing the
underlying elements at play. A particular aspect we discussed is what determines
atoms disposition in a linear diatomic chain and how this is related to the mani-
festation of a charge density wave, namely a modulation of the electronic charge
density distribution. Strictly connected both to the way atoms are arranged and to
the character of the CDW in these 1D systems, we find their polar properties. For
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instance, we saw how if specific requirements are satisfied, some 1D linear chains may
become ferroelectric, displaying a spontaneous polarization. Given these evidences
on the strong relation between structural and polar properties in 1D systems, it
comes natural to further explore this aspect and study polar responses of 1D systems.
For a polar response, we intend a phenomenon that can be ascribed to a change
in the distribution of electric dipoles within a material, as a consequence of an
external perturbation such as atoms displacement, a mechanical stress, or also an
applied electric field. From a practical point of view, the effects of these external
perturbations can be quantified as linear variations of polarization in the material.
Following this approach, in what’s next we define polar responses as derivatives of
polarization.

Several ingredients are at play in determining polar responses of a system,
depending on material properties as well as on the specific perturbation considered.
In general, it is a known fact that CDWs have the effect of enhancing polar responses
in materials through mechanisms that involve symmetry breaking, strong electron-
phonon coupling[90, 6], as well as external tuning via strain or electric fields[91]. The
interplay between CDWs formation and polar response is particularly pronounced in
materials where these effects are intrinsically coupled, as the conjugated systems we
are analyzing, often resulting in functional properties useful for advanced electronic
and optoelectronic applications.

To give a practical example of these concepts, let’s consider the case of conjugated
polymers. If specific symmetry-lowering effects allowing, e.g., for piezoelectricity and
ferroelectricity are met in a CP, one may expect a large polar response of electronic
origin due to the redistribution of the responsive π−electronic density along the
polymer’s backbone. Because of the delocalized nature of conjugated π−state (of
Bloch-type in an infinite periodic chain), small changes of atomic positions may
lead to a global shift of electrons, revealing the strong nonlocal and ultimately
topological character of electronic polarization in these quasi-1D systems[92, 31].
Indeed, conjugated polymers have been theoretically put forward as a potential new
class of “electronic ferroelectrics”[93].

Finally, we remark that, as thoroughly discussed in Chapter 2, quantum-
anharmonic effects have a significant impact on the properties of these systems. For
this reason, a complete study of polar responses in 1D conjugated systems cannot
be done without including QAE, as we eventually do in the present Chapter.

3.2 Effective charges

When a large number of interacting atoms is considered, e.g. in molecules and
crystals, the correct description and understanding of the properties of matter is often
challenging. For example, defining the electric charges of isolated, non-interacting
ions is quite straightforward. The same can be said for the electric current generated
when these isolated ions move in space. If we now consider a molecule or a crystal,
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defining an electric charge associated to a single ion is a much more complicated
problem because of the presence of interactions. During time, several definitions
have been proposed, inspired by the description of different physical phenomena and
based on various models, which, however, lead to different results[94]. The main
concepts behind these different definitions can be classified into two categories: one
one hand we wave approaches based on the idea of static charges, whereas on the
other we have the dynamical charges. The former concept of a static ionic charge
is based on the intuitive idea of partitioning the ground-state electronic density
into different contributions, each attributed to a different atom. This approach is
particularly reliable when it is possible to delimit regions around ions in such a
way that the electron density between different regions is small compared to the
reciprocal of the volume enclosed. If this is the case, an unambiguous experimental
determination can be done, e.g., with X-rays diffraction[95]. However, if for example
we consider a crystal with covalent bonding, this static definition would depend on
the choice of the partitioning, resulting in ambiguity in the definition of the atomic
charge. The concept of dynamical charge, instead, is directly related to the change
of polarization (or dipole moment, for molecules) induced by an atomic displacement.
The advantage of this approach is that, in principle, the change of polarization can
be experimentally measured as an electric current, giving the dynamical charge a
well-defined and unambiguous character. For this reason, in our work we follow
the idea of assigning an effective charge to the atoms quantifying how rigidly the
electronic charge distribution follows the displacement of the nuclei. In particular,
for each atom in a molecule or in a crystal it is possible to associate a rank-2 tensor
of effective charges Z∗

I,αβ, where the index I refers to the ions in the molecule or
in the crystal cell, whereas Greek letters indicate directions in the Cartesian space.
This quantity can be decomposed in two contributions: a trivial one is due to the
rigid shift of the nominal ionic charges; the non-trivial contribution is instead due to
the redistribution of the electronic charge density as a consequence of the interaction
with ionic vibrations. In ordered periodic collections of atoms arranged in a lattice
structure, namely in solid crystals, this is the so-called electron-phonon interaction
that we already discussed.

Being involved in the response of the electronic charge density distribution to
atomic displacements, effective charges play a crucial role in the understanding of
many phenomena. One of the most studied is the interaction between external
electromagnetic fields and ionic vibrations. In particular, given that phononic
frequencies typically reside in the infrared spectral region, these charges are essential
for studying systems’ interaction with infrared light. Indeed, as discussed e.g. in
Ref.[23] about absorption and transmission spectra, incorporating effective charges
is vital for matching theoretical predictions with experimental results. Another
phenomenon where the effective charges are relevant is piezoelectricity, the property
of a material to generate a finite tension across its surfaces in response to a finite
strain, as we will further discuss in section 3.3.
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As described e.g. in Ref.[96], there are two principal mechanisms that account
for the redistribution of electronic charge density due to atomic displacements: one
is the rigid displacement of the electronic density, following the moving ion; the
other consists in the interatomic charge transfer of electrons involved in the bonds,
as discussed for example in Ref.[97]. Which mechanism is predominant depends on
the characteristics of the system, as shown for example in Ref.[98] for perovskite
oxides. This competition is particularly interesting in linear chains with a resonant
bonding, such as conjugated polymers: in Ref.[92], e.g., it is shown how resonating
systems may present a huge interatomic charge transfer. In what follows, we will
study the effective charges in the chain 1D toy-model, showing how the enhancement
of the polar response has an ultimately topological origin, directly related to the
mechanism of Thouless adiabatic pumping we discussed in section 1.2.2.

3.2.1 Topological effects

As already discussed, systems described in the framework of the model introduced
in Chapter 1 can be imagined as 1D crystals made by the repetition of a unit cell
with two atoms, A and B. A part from the case where these atoms are at the
same time equidistant (u = 0) and equivalent (∆ = 0), a condition that as we
have seen is prevented by the insurgence of the structural phase transition, the
chain is always insulating. Hence, in what follows, our discussion will focus on the
theory of effective charges in insulators only. Moreover, we consider the case of zero
macroscopic electric field, allowing us to define the so-called Born, or transverse,
effective-charges[99], a central quantity in many phenomena, e.g., in the LO-TO
splitting of optical phonons modes. Following the works of Ref.[100, 101, 37] and
the idea discussed in the introduction to this Chapter, we define effective charges for
the atoms in the chain as first derivatives of the electronic polarisation with respect
to atomic displacement. In particular, for atom α = A,B in the model, it holds

Z∗
α = a

∂P

∂δrα
. (3.1)

where since we are considering displacements along the chain only, the rank-2 tensor
becomes a scalar and all the other terms have the meaning defined in Chapter 1: a
is the unit cell length, δrα is the displacement of atom α with respect to the position
it would have in a chain of equidistant atoms, and P is the electric dipole per unit
cell. Exploiting net charge neutrality (Z∗

A + Z∗
B = 0) and Equation (1.6) we can

define a single effective charge Z∗ for the system, which is convenient to express in
terms of the fractional coordinate u = 2(δrB − δrA)/a, namely:

Z∗ = 2∂P
∂u

. (3.2)

We remind that the term u has the meaning of relative displacement between the
atoms, with respect to the high symmetry positions they would have if they were
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equidistant: it holds u = 0 for equidistant atoms and u ̸= 0 in presence of bond-
length alternation. There are different ways to compute the first derivatives of P :
analytically, with finite differences of polarization, with linear perturbation theory
and so on. It is however interesting to recall the discussion of Chapter 1 on how
the behaviour of P in the model is strictly related to the adiabatic charge transport
mechanism of the Thouless pump[10]. An aid to visualise this property comes from
the 2D parametric (∆, δt)−space, where the origin of the axes correspond to a
metallic system with Egap = 0, while every other point correspond to an insulating
system with Egap ̸= 0. As discussed in Chapter 1, if the system undergoes an
adiabatic evolution along any loop enclosing the origin of this 2D space, a quantized
charge is pumped out. The key ingredient is the presence of the metallic point
in the domain enclosed by the loop: in this sense, it is an example of topological
phenomenon. As we are interested in derivatives of polarization with respect to
u and considering that δt ∝ u, intuitively we can visualize the slope of P in the
2D-space as color gradients along lines parallel to the vertical axis: from Figure 3.1,
it can be noticed that the quantization of polarization implies that the slope of P
depends from the distance with respect to the origin. In particular, the closer we get
to the singularity from the undistorted structure (δt = 0), the higher the slope – i.e.
the color gradient – becomes. We can formalize this idea as follows. In Equation
(1.44) and (1.43) we introduced a change of coordinates that allows to identify each
point in the 2D-space with the polar coordinates (Egap, θ). Moreover, in the limit
Egap ≪ t, the dipole moment per unit cell P and θ are directly proportional, as
reported in Equation (1.45), which we rewrite for convenience:

P ∝ −|e|
π
θ. (3.3)

This behaviour can be appreciated in Figure 1.4. Aiming to compute the derivative of
P with respect to u – Equation (3.2) – we notice how the effect of a small displacement
on a system with a finite ∆ ̸= 0 is to span an angle dθ in the space, starting from
θ = 0, i.e. the undistorted structure. Considering that δt ∝ u (Equation (1.10))
and that, with a suitable choice of the axis, the points on a circumference in this
space correspond to systems with the same Egap, we have that dθ ∝ u/Egap. From
Equation (3.3), it holds dP ∝ dθ, hence we obtain

Z∗ ∝ 1
Egap

, (3.4)

implying that as we get closer to the origin of the axis – hence Egap goes to 0 –
even an infinitesimal atomic displacement causes a huge redistribution of the charge
density. This geometric argument can also be appreciated in Figure 3.1.
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Figure 3.1. With the aid of the 2D parametric (∆, δt)−space introduced in the text, it
is possible to appreciate the geometric argument that yields Equation (3.4). Being
the polarization proportional to the angle θ spanning the space along a circumference
with radius Egap, as δt ∝ u (Equation (1.10)), it follows that in the undimerized phase
Egapdθ ∝ du, hence Z∗ = ∂P/∂u ∝ ∂θ/∂u ∝ 1/Egap.

3.2.2 Effective charges and phase transition

The geometric argument presented above suggests using the energy gap Egap =√
(4δt)2 + (2∆)2 as a guiding principle in the design of systems with arbitrarily

high effective charges. However, as discussed in Chapter 1, the optimal structure
of the system is determined by the u which minimises the total energy Etot(u) for
a given a set of parameters ∆, β, t and K. This implies that the energy gap, and
consequently the effective charges, of a system at equilibrium at T = 0 K, would
depend on u, namely on the specific realization of the chain, whether dimerized or
undimerized. In particular, we remind that the system undergoes a second-order
structural phase transition between a dimerized (u ̸= 0) phase and a phase with
equidistant atoms (u = 0). As shown in Chapter 1, it is possible to control the
transition acting on the free parameters of the model, e.g. ∆ and β. For convenience,
we display again in Figure 3.3a and 3.3b the behaviour of u with respect to ∆/∆c
and β/βc, respectively.

With this in mind, plugging Equation (1.10) in Equation (1.45), we obtain an
explicit expression for the effective charge in both the dimerized and undimerized
phases:

Z∗(u) = |e|
π

4βt sin θ(u)
Egap(u) (3.5)

where we recall that sin θ = 2∆/Egap. The evolution of Z∗ as a function of ∆/∆c
and β/βc is shown in Figure 3.3c and 3.3d. Even though the system always displays
a finite gap preventing the metallic divergence of the effective charge, with the values
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of the parameters fitted on carbyne as discussed in section 1.3, Z∗ reaches the giant
value of ∼30 |e| at the critical points. Such anomalously large effective charges can
not be ascribed only to a mixed covalent-ionic character of the system, as in other
cases[96]. As discussed in next section, tuning the bond character can indeed lead
to a finite enhancement of the effective charges, which however is typically only few
times the value of the nominal charge[96]. The origin of the enhancement of the
effective charge in the model is thus different and lies in the topological character of
polarization in the system, namely on the Thouless pump mechanism discussed in
Chapter 1.

3.2.3 Comparison with dynamical charges of a heteropolar diatomic
molecule

In this section we compute the dynamical charge of a heteropolar diatomic molecule
along the lines discussed in Ref.[96], in order to contrast our predicted topological
enhancement of effective charges in the model with the contribution of the mixed
ionic-covalent character to “anomalous” Born effective charges. Let’s consider a
diatomic molecule with two monovalent atoms A and B positioned along the x-axis
at a distance dAB = RB−RA > 0. In a LCAO tight-binding approach, the electronic
Hamiltonian He reads

He = EA |A⟩ ⟨A| + EB |B⟩ ⟨B| − t(dAB) (|A⟩ ⟨B| + |B⟩ ⟨A|) (3.6)

where t(dAB) is the hopping energy between the atoms, that will in general depend
on some power of the inverse distance. For the sake of clarity and without loss of
generality, we assume t(dAB) ∝ 1/d2

AB. We can find the occupied electronic orbital
|ψocc

e ⟩ diagonalising He:

|ψocc
e ⟩ =

√
1 + x

2 |A⟩ +
√

1 − x

2 |B⟩ (3.7)

with x = ∆/
√

∆2 + 4t2 and ∆ = EB − EA. This allows us to define the dipole
moment D(dAB) of the molecule as

D(dAB) = RAZ
v
A +RBZ

v
B − 2 ⟨ψocc

e | r̂ |ψocc
e ⟩ (3.8)

where ZvA = ZvB = +1|e| are the valence charges of atom A and B, respectively, and
r̂ is the position operator, whose matrix elements are well defined in an isolated
molecule. The dynamical charge Z∗

α of atom α = A,B is defined as the derivative
of D(dAB) with respect to the atomic displacement Rα, and using all the above
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definitions we obtain (in units of |e|)

Z∗
α = ∂D(dAB)

∂Rα
(3.9)

= (−1)iα∆√
∆2 + 4t2

(
1 + 8t2

∆2 + 4t2

)
(3.10)

= 2X√
1 + 4X2

(
1 + 2

1 + 4X2

)
(3.11)

where iA = 1 and iB = 2. The above equations tell us that acting on the ionic-
covalent character of the bond, accounted for by the term X = ∆/t, one can tune
the values of the dynamical charges. Albeit the expression of Eq. 3.10 apparently
reminds the dependence on the gap of the effective charge in the undimerized 1D
chain provided in Eq. 3.4, as it inversely depends on the difference between molecular
energy levels, from Eq. 3.11 it is clear that the effective charge is always limited and
shows no diverging behaviour. The dynamical charges of atoms A and B, which
obeys the charge-neutrality sum rule Z∗

A + Z∗
B = 0, are displayed in Figure 3.2 as

a function of the ionic-covalent character X = ∆/t. The maximum enhancement
is indeed found for finite values of X, i.e., arising from the mixed ionic-covalent
character of the bond, reaching however a finite value that is roughly ∼ 1.5 the
nominal value, consistently with the enhancement reported in [96]. We contrast this
result with the enhancement of up to 30 times the nominal charge that we find in
the 1D chain and highlight the differences with the analytical behaviour found in
the model, namely with Equation (3.4) and (3.5).
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Figure 3.2. Dynamical charges of atoms A and B of a dimer molecule. Tuning the
ionic/covalent character of the bond through the ratio ∆/t allows for a maximum
enhancement of ∼ 1.5 times the valence charge of 1|e|, in stark contrast with the
enhancement of up to 30 times we find in the chain.
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3.3 Piezoelectricity

Piezoelectricity is a well known phenomenon characterising those materials with the
property to generate a surface charge, and hence an electric tension, when subject
to a stress, or conversely to deform elastically in response to an external electric
field. Thanks to the possibility they offer to convert mechanical energy into electrical
energy and vice-versa, piezoelectric materials are of great interest in various fields
and for many applications, from macro- to microscopic electromechanical devices,
to energy harvesting and much more[102, 103]. The most widely used piezoelectric
materials are inorganic perovskites, such as lead zirconate titanate (PZT), for
their high electromechanical response[104, 105, 106]. However, inorganic materials
have very low mechanical flexibility, high fabrication costs and often are toxic
because of the lead they contain. These facts motivated an intense research activity
aimed at developing and identifying lead-free piezoelectric ceramics[106, 107]. A
promising alternative is to exploit piezoelectric properties of organic materials, a
route that has been trodden with some success since early 1990s, mostly focusing
on the wide class of organic polymers displaying high flexibility, low fabrication
costs and bio-compatibility[108, 109, 110, 111]. In this context, the most studied
organic piezoelectric is polyvinylidene fluoride (PVDF)[109, 112], a saturated polymer
derived from polyethylene and comprising molecular units with net (electrical) dipole
moments, thus giving rise to ferroelectricity of conformational origin due to the
rotation of chains’ segments from non-polar to polar isomers.

Despite the intense research efforts and the progress made in the field of organic
piezoelectrics, to date inorganic ceramics still display much better piezoelectric
performance than organic counterparts. The piezoelectric response in PZT and
related inorganic materials is strongly enhanced at morphotropic phase boundaries
(MPB), marking a composition-driven structural transition between two competing,
nearly energetically degenerate phases with distinct symmetries[113, 114, 115]. On
general grounds, the properties enhancement close to such phase transition may
be traced back to the flattening of free-energy surfaces, easing polarization exten-
sion and/or rotation, as extensively discussed and observed mostly in perovskite
oxides[116]. Recently, the concept of MPB has been loosely extended to the family
of P(VDF-TrFE) copolymers[117, 118]. Here, the introduction of different TrFE
monomers in the semicrystalline PVDF structure has been proposed to lead to an
enhanced conformational competition reminiscent of the structural competition real-
ized at MPB, further suggesting an optimal chemical composition for maximizing the
piezoelectric coefficient. Even though at the optimal "morphotropic" composition the
piezoelectric coefficient roughly doubles the typical values of PVDF, it is still smaller
by one order of magnitude compared to characteristic piezoelectric coefficients of
inorganic oxide ceramics such as PZT.

Beside saturated polymers as PVDF and P(VDF-TrFE), whose ferroelectric and
piezoelectric properties rely on the ordering of built-in molecular dipoles and as such
require appropriate poling treatments, a natural alternative choice is represented by
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the conjugated polymers we described in section 1.3. Characterised by a delocalised
π−orbital along their backbone, these polymers are widely studied for their peculiar
electronic properties[119, 120]. If specific symmetry-lowering effects allowing for
piezoelectricity and ferroelectricity are met in a conjugated polymer, one may expect
a large polar response of electronic origin due to the redistribution of the responsive
π−electronic density along the polymer’s backbone. In next sections, we study
piezoelectricity in 1D systems such as conjugated polymers using our model.

3.3.1 Inclusion of strain in the model

In this section we provide an extension of the Rice-Mele model that enables the
description of strain effects. Let’s consider again the infinitely long one-dimensional
diatomic chain. The only possible strains in 1D are contractions or dilatations of
the unit cell. Defining the adimensional parameter ϵ, the effects of strain on the unit
cell length is

a(ϵ) = a0(1 + ϵ), (3.12)

where a0 = a(0) indicates the length of the unit cell at zero strain. The introduction
of strain in the model affects all spatial-dependent quantities. In particular, as we
are interested in the effects of strain and of atoms’ displacement, we rewrite the
definition of the adimensional fractional coordinate of Equation (1.6) including also
the effect of strain ϵ:

u(ϵ) = r1 − r2
a(ϵ) = δrB − δrA

a(ϵ)/2 . (3.13)

In analogy with Chapter 1, this term allows us to express bond lengths in a compact
expression which accounts also for effects of strain, allowing us to generalize Equation
(1.7) as follows:

ri = a(ϵ)
2
[
1 + (−1)i+1u(ϵ)

]
, i = 1, 2. (3.14)

With the above definitions, at linear order in atoms’ displacement we have

ti = t(ri) ≃ t

(
a(ϵ)

2

)
+ dt

dr

∣∣∣∣a(ϵ)
2

·
(
ri − a(ϵ)

2

)
, (3.15)

which allow us to generalize also Equations (1.9) and (1.10):

t(ϵ) = t1 + t2
2 = t

(
a(ϵ)

2

)
, (3.16)

δt(ϵ) = t1 − t2
2 = − dt

dr

∣∣∣∣a(ϵ)
2

· a(ϵ)
2 u(ϵ). (3.17)

The term t(ϵ) quantifies the effect of strain on the hopping energy between equidistant
atoms whereas the term δt(ϵ) describes the variation with respect to t(ϵ) caused by
atoms’ relative displacement. In absence of strain (ϵ = 0) we recover the quantities
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defined in Chapter 1, whereas at linear order in ϵ it holds:

t (ϵ) = t

(
a0
2 (1 + ϵ)

)
≃ t

(
a0
2

)
+ dt

dr

∣∣∣∣a0
2

· da(ϵ)
dϵ

∣∣∣∣
ϵ=0

· ϵ2 = (3.18)

= t0(1 − βϵ) (3.19)

where we defined t0 ≡ t(a0/2) and where the adimensional parameter β > 0, defined
as

β = − a0
2t0

dt
dr

∣∣∣∣a0
2

, (3.20)

quantifies the variation of the hopping energy due to a variation of the distance
between the atoms at zero strain, and in this sense it has the same meaning of
the electron-phonon coupling term defined in Equation (1.12). With an analogous
procedure, we obtain

δt(ϵ) = −t0β′(1 + ϵ)u(ϵ), (3.21)

where we defined another adimensional e-ph parameter β′ > 0 as

β′ = − a0
2t0

dt
dr

∣∣∣∣a(ϵ)
2

. (3.22)

which differs from the definition given in Equation (3.20) as the derivative is evaluated
at a(ϵ)/2. Even though the two e-ph parameters β′, β can differ at finite values
of the strain, at the lowest order one can safely assume that they coincide, hence
hereafter we will consider β′ = β.

As in Chapter 1, we are interested in the structural properties at T = 0K. The
strain ϵ enters in the total energy both explicitly as a parameter and implicitly
through strain-dependent quantities. Structural properties are hence enclosed in
the optimal u which minimises the total energy per unit cell Etot given a set of
parameters t0, β, K, ∆ and a strain ϵ. To study the behaviour of the order parameter
u we follow the same approach described in Chapter 1, the only difference being
that now we explicitly include the effects of strain on model’s quantities. We obtain
the following generalization of Equation (1.29) for the total energy per unit cell

Etot(u) = 1
4Ku2a(ϵ)2 − 2a

∫ π/a

−π/a

dk
2π

√
∆2 + 4t2(ϵ) cos2 ka

2 + 4β2t20(1 + ϵ)2u2 sin2 ka

2 .

(3.23)
Equating to 0 the first derivative of Etot with respect to u, we find again that a
stationary point is in u = 0, whereas the others are the solutions of the following
equation in u, obtained with the same procedure described in Chapter 1:

∆2 + 4β2t20(1 + ϵ)2u2 = t20(1 − βϵ)2π2

sinh2 Ka2
0π(1−βϵ)
8β2t0

. (3.24)
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Above Equation, which generalized Equation (1.32), summarises the effects of
strain in determining the optimal configuration and hence on the structural phase
transition. Supposing that ∆ is the guiding parameter of the transition, we can
define a strain-dependent critical parameter ∆c(ϵ) which generalizes Equation (1.33):

∆c(ϵ) = t0(1 − βϵ)π
sinh

(Ka2
0π(1−βϵ)
16β2t0

) , (3.25)

where it still holds u ∝ |∆ − ∆c(ϵ)|1/2, if ∆ ≤ ∆c(ϵ)
u = 0, if ∆ > ∆c(ϵ).

(3.26)

An analogous result holds if we consider β as order parameter, in particularu ∝ |β − βc(ϵ)|1/2, if β > βc(ϵ)
u = 0, if β ≤ βc(ϵ).

(3.27)

In Figure 3.3a and b are shown the behaviours of the optimal parameter u as a
function of parameters ∆/∆c and β/βc, respectively. Finally, we remark that strain
affects also polarization P both explicitly and implicitly through strain-dependent
quantities. In particular, given a system in its optimal configuration u(ϵ), in the
limit Egap(ϵ) ≪ t(ϵ), it holds

P (ϵ, u(ϵ)) = −|e|
π
θ(ϵ, u(ϵ)) (3.28)

3.3.2 Morphotropic-like enhancement of the piezoelectric response

In general, the electromechanical response of a system is quantified by the piezo-
electric coefficients, defined in terms of variations of polarization with respect to an
applied homogeneous strain. In order to have a non-trivial piezoelectric response, the
chain must not have points of inversion symmetry, a requirement that is met when
the equivalence between atoms is broken in a distorted chain, i.e. both ∆ ̸= 0 and
u ≠ 0. In this case, the chain becomes also ferroelectric with a net dipole moment
per unit cell P [32]. When defining the electromechanical response of a ferroelectric
system which presents a spontaneous polarization, in general one needs to distinguish
between a proper and an improper contribution to the response. Indeed, as the
piezoelectric response is usually measured as the electric current which flows in the
sample in response to a time-dependent strain, a correct theoretical description
needs to account for spurious contribution due to, e.g., homogeneous rotation of the
dipole moment. In Appendix B this idea is formalized in the Berry-phase picture
following the lines of Ref.[121]. Moreover, we show that in the case we are interested
in, i.e. effects of strains on a purely 1D chain, the distinction between proper and
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improper contribution to piezoelectricity does not apply. Thus, we can safely define
the piezoelectric coefficient of the chain, cpiezo, as the derivative of P due to the
strain ϵ, namely

cpiezo = dP (ϵ, u(ϵ))
dϵ

∣∣∣∣
ϵ=0

= cc.i.
piezo + ci.r.

piezo (3.29)

where the derivative of P is decomposed in two contributions. The first one is the
so-called clamped ions term

cc.i.
piezo = ∂P (ϵ, u(ϵ))

∂ϵ

∣∣∣∣
ϵ=0

(3.30)

which is obtained keeping fixed the relative position of the ions in the unit cell, i.e.,
for fixed internal fractional coordinate u0 = u(ϵ = 0). Using Equation (3.17) and
(3.28) we have

cc.i.
piezo = − |e|

2πβ sin 2θ(0, u0) (3.31)

where we notice that |cc.i.
piezo| ≤ |e|β/2π, the maximum achievable value being directly

proportional to the e-ph coupling constant β. The second term of Equation (3.29)
takes into account the effect of strain on the internal coordinate u(ϵ) and defines the
internal relaxation contribution

ci.r.
piezo = Z∗(u0) ∂u(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

(3.32)

where Z∗(u0) is the effective charge of the system in the optimal configuration u0,
while the second factor, called internal-strain, quantifies the variation of the optimal
internal parameter u(ϵ) with respect to strain. As discussed in the previous section,
the inclusion of strain in the Rice-Mele model affects explicitly the critical values of
the phase transition. Considering for the moment ∆ as the guiding parameter, from
Equation (3.26) it follows that:

∂u(ϵ)
∂ϵ

∣∣∣∣
ϵ=0

∝ 1
|∆ − ∆c(0)|1/2 . (3.33)

Equation (3.33) implies that the internal relaxation term diverges as we approach the
critical point ∆c(ϵ) from the distorted phase, in analogy with the MPB mechanism
at play in some ferroelectric oxides. Indeed, as the ∆ parameter of the Rice-Mele
model accounts for the composition of the system, it allows to continuously tune
a morphotropic-like phase transition from the distorted phase (lower symmetry,
ferroelectric) to the undistorted one (higher symmetry, paraelectric). On the other
hand, at a fixed ∆ ̸= 0 suppressing the Peierls electronic instability, the second-order
phase transition can be driven by the e-ph coupling, as discussed in Chapter 1 and
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shown e.g. in Figure 3.3b. Thus, from Equation (3.27) it holds

∂u(ϵ)
∂ϵ

∣∣∣∣
ϵ=0

∝ 1
|β − βc(0)|1/2 , (3.34)

i.e., a diverging internal strain when approaching the critical point from the dimerized
phase.

In principle, the diverging behaviour of the internal strain, Equation (3.33) or
(3.34), guarantees the existence of piezoelectric 1D systems, such as conjugated
polymers, with arbitrarily high response when close to a morphotropic-like phase
boundary, irrespective of the prefactor, namely the effective charge Z∗. However, this
specific enhancement is a consequence of the second order transition. As discussed
in Chapter 2, quantum-anharmonic effects may change the order of the structural
phase transition, therefore damping the diverging behaviour of ci.r.

piezo. A robust
enhancement of the piezoelectric coefficient against QAE would depend, therefore,
on the strength of the polar response embodied by Z∗. Unlike the MPB-related
enhancement of the internal strain, shown in Figures 3.3c and 3.3d, the topological
behaviour of Z∗ is expected to be much more stable with respect to QAE, as we
will see in what follows, guaranteeing the enhancement of the electromechanical
response. The total piezoelectric coefficient, comprising both the clamped ion and
internal relaxation contributions, is shown in Figures 3.3e and 3.3f as a function of
parameters ∆/∆c(0) and β/βc(0). Insets highlight how the piezoelectric coefficient is
mostly contributed by the internal-relaxation contribution, that is strongly enhanced
by the combined effect of diverging internal strain ∂ū/∂ϵ and anomalously large
effective charges. We remark the importance of both mechanisms, since anomalous
effective charges alone in general do not guarantee piezoelectric effects if inversion
symmetry is kept, as in centrosymmetric CaTiO3 and SrTiO3[96], or if the internal
strains are small, as in 2D hexagonal systems and gapped graphene[122].

3.4 Comparison with polar responses in 2D systems

We contrast the results on effective charges and piezoelectricity in 1D systems with
the predicted behaviour for polar responses in 2D gapped graphene, where both
piezoelectric coefficient and effective charges were found to be independent on the
band-gap amplitude[122]. Indeed, electron-strain/lattice couplings in 2D hexagonal
crystals can be described as gauge fields [123, 122] whose effect is to shift the Dirac
cone of an amount proportional to the coupling constants, causing the latter to be
the only relevant quantities determining the strength of polar responses. In the
1D chain, instead, the e-ph interaction contributes, through dimerization, to the
gap opening, thus directly affecting the Thouless-pump topological enhancement of
effective charge. We further remark that the absence of a structural transition in
gapped graphene causes the piezoelectric response to be mostly due to the clamped-
ion contribution, the internal-relaxation one contributing roughly 25% to the total
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Figure 3.3. Panels a and b: structural phase transition with order parameter u as a
function of the onsite energy difference ∆ and of the e-ph coupling β. As shown in
Figure 1.3, when ∆ < ∆c (β > βc) the total energy Etot(u) has a double-well profile
with two minima at |u| ≠ 0, resulting in a distorted chain with bond-length alternation.
When ∆ > ∆c (β < βc) the minimum of Etot(u) is at u = 0 and the atoms become
equidistant. The behaviour of the order parameter is typical of second order phase
transitions, being u ∝ |∆ − ∆c|1/2 (u ∝ |β − βc|1/2), and the system remains insulating
in both phases with gap Egap = 2

√
∆2 + 4(βt0u)2. Panels c and d: internal strain and

effective charge across the phase transition. The inclusion of strain ϵ in the model affects
the critical value ∆c(ϵ) (βc(ϵ)) and, as expected in a second order transition, the internal
strain displays a diverging behaviour close to the critical point, ∂u/∂ϵ ∝ |∆ − ∆c|−1/2

(∂u/∂ϵ ∝ |β − βc|−1/2). Near the critical point a huge polar response is also present,
quantified by the effective charge Z∗ ∝ β∆/E2

gap (Equation (3.5)). Approaching the
critical point from the undimerized phase, Z∗ is inversely proportional to the gap
Egap(u = 0) ≡ ∆, panel c, and linear in β, panel d. Since the gap is constant as a
function of ∆ and linear in β when approaching the critical point from the dimerized
phase, Z∗ displays a linear behaviour in ∆, panel c, and it is inversely proportional to
β, panel d. Panels e and f : the piezoelectric coefficient diverges when approaching the
critical point from the dimerized phase. As shown in the inset, the major contribution is
due to the internal relaxation term of Equation (3.32). The topological nature of the
enhancement guarantees its stability.

response[122].
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3.5 Quantum-anharmonic effects on polar responses

One of the main messages of previous sections is that polar responses in our 1D
systems are strictly connected to their structural properties, presenting interesting
enhancements in proximity of the critical points of the structural phase transition
between the dimerized and the undimerized phases. However, in Chapter 2, we saw
that quantum-anharmonicity plays a key role in this competition, renormalizing
both the energy gain between the most and the less stable phases, as well as the
critical values of the transition. It thus comes natural to ask how much QAE
affects polar responses. As a consequence of its topological nature, we expect the
enhancement of the effective charges to be stable against quantum fluctuations and
anharmonic effects. Our hypothesis is confirmed, as can be seen in the right panel
of Figure 3.4, where we show the behaviour of Z∗, computed on the fitted-model
both with and without QAE, as a function of the onsite energy difference ∆. In
particular, to account for QAE, effective charges were computed on the optimal
structures obtained from the SSCHA minimization as described in section 2.4. We
highlight that not only the enhancement is robust against QAE, but rather it is
further augmented by their inclusion. The reason is that as the value of the critical
point is reduced by the inclusion of QAE, so are the values of the energy gap of
these systems when approaching the renormalized critical point, as shown in the left
panel of Figure 3.4. Hence, as a direct consequence of the fact that the topological
nature of the enhancement of the effective charges is manifested through the inverse
proportionality of Z∗ with respect to Egap, Equation (3.4), we deduce that QAE
contribute to the enhancement of Z∗ by reducing the energy gap.

Figure 3.4. In the left panel, we show the behaviour of the energy gap Egap, computed in
the fitted model as a function of the onsite energy difference ∆, obtained both with and
without the inclusion of QAE. As a consequence of the renormalization of the value of
the critical point due to quantum-anharmonic effects, the system admits lower values
of Egap. This is reflected by an enhancement of the effective charges Z∗, shown in the
right panel, as a consequence of Equation (3.4). From this result, we deduce that not
only the topological nature of the enhancement of the effective charges in these 1D
systems guarantees their stability against QAE, but it is also responsible for a further
enhancement obtained when we include effects of quantum-anharmonicity.



3.6 Ab-initio numerical results 57

3.6 Ab-initio numerical results
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Figure 3.5. Panel a: mono-fluorinated polyacetylene (MFPA). Panel b: polymethineimine
(PMI). In panels c and d for MFPA and PMI, respectively, is shown the behaviour
of the internal coordinate u0 for different values of the long-range mixing parameter
cLR put in the range-separated xc-functional in the DFT calculations. Consistently
with the prediction of the model, we observe the behaviour u ≃ |cLR − cLR|1/2, with
cMFPA

LR ≃ 14% and cPMI
LR ≃ 26%. In panels e and f, for MFPA and PMI respectively, the

behaviour of ∂u0/∂ϵ is reported, along with the values of the effective charge Z∗. For
each polymer, we chose Z∗ = Z∗

C,xx (for MFPA the C bound to the F). In agreement
with the model, on the one hand we observe a further hint of the morphotropic-like
nature of the transition while on the other hand the huge values of Z∗ stands out, in
particular in the region near the critical points. In panels g and h is shown how the
piezoelectric coefficient is greatly enhanced when reaching the critical points from the
less symmetric phase. The comparison between cc.i.

piezo and ci.r.
piezo, in the insets, highlights

the internal-relaxation origin of the enhancement. Furthermore, the comparison with
the results obtained putting the values of e and f in Equation (3.32) shows that the
model very well describes the nature of the enhancement.

We performed ab initio calculations in the framework of density functional theory
to validate our model predictions, choosing two conjugate polymers representative
of the broad class of SPA. One is monofluorinated polyacetylene (MFPA), made
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by the repetition of the unit CH-CF and obtained by substituting one hydrogen
atom of the C2H2 unit of PA with fluorine. The other is polymethineimine (PMI),
obtained substituting a CH pair with a nitrogen atom to obtain the unit N-CH. For
simplicity, we considered the all-trans structures shown in Figure 3.5a and 3.5b,
whose fundamental physical properties are captured by the model. Even though
controlling the fraction of substituted atoms may in principle induce a morphotropic-
like transition, this approach poses many challenges both from the computational
and experimental side: to our specific purposes, it wouldn’t allow to study the
phase transition and the associated predicted enhancement of piezoelectric effect by
varying with continuity an external parameter (as ∆ in the model). As discussed in
sections 3.3.2 and 3.2.1, the internal-strain and the effective-charge enhancements
may be also induced by tuning the parameter β. To achieve this computational
task, we take advantage of the effect of screened Coulomb vertex corrections to
the dressing of the e-ph coupling[124], leading to an enhancement of e-ph itself
especially strong in low-dimensional materials and when phonons at zone boundary
are involved [125, 126, 127, 128]. Such screened-Coulomb-mediated e-ph enhancement
can be captured by hybrid functionals incorporating a fraction of the exact exchange
[126, 129]. Its inclusion has been proven essential for describing the bond-length
alternation of trans-polyacetylene [130, 68] and related 1D polymers [17, 131], whose
BLA is typically underestimated by standard local-density or generalized-gradient
approximations, indirectly pointing to an enhancement of the e-ph coupling due to
electron-electron interaction. Range-separated hybrid (RSH) functionals represent
an ideal choice for our purpose, as they have been designed to better account for
the screened Coulomb vertex corrections. The latter can be effectively tuned by
acting on the long-range (LR) mixing parameter cLR that accounts for the fraction
of LR exact exchange in RSH functionals, thus providing a computational knob to
continuously vary β. We further remark that the strength of e-ph enhancement due
to screened Coulomb effects can be ideally controlled by modifying the screening
itself, as proposed for doped graphene [132]. Since the optimal mixing parameter
cLR is inversely proportional to the scalar dielectric constant of the environment
in order to enforce the correct asymptotic potential [133, 67, 134, 135, 66], we
speculate that controlling the dielectric environment may represent a viable strategy,
alternative and complementary to controlling the fraction of substituted atoms, for
tuning and optimising the piezoelectric response of conjugated polymers. These
considerations are also consistent with the results on carbyne discussed in section
1.3, where we argued that effects of different carbon nanotubes, namely different
dielectric environments, used in experiments to confine and stabilize carbyne chains,
are correctly accounted for in the model via the e-ph coupling parameter β.

Motivated by these reasons, we performed structural optimization of both MFPA
and PMI for different values of the LR mixing parameter cLR. For consistency with
the model, we considered the coordinates of the C and N atoms along the principal
axis of the chain, which we take as the x-axis, to compute the internal coordinate u.
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More details on the effect of cLR on polymers’ structures are provided in Appendix C.
The evolution of u0 displayed in Figure 3.5c and 3.5d, clearly hints to the presence
of a second order phase transition triggered by cLR for both polymers: the dimerized
phase is suppressed by lowering the fraction of mixing, the order parameter showing
the expected behaviour as it approaches the second-order phase-transition critical
point, in excellent qualitative agreement with model results shown in Figure 3.3b,
3.3d and 3.3f and confirming a posteriori the direct proportionality between cLR
and β. The second-order character of the phase transition is further confirmed by
the softening of the corresponding optical phonon found in the higher-symmetry
phase when increasing cLR, shown in Figure 3.6, signalling the onset of a dynamical
instability of the undimerized structure.

In Figure 3.5e and 3.5f the behaviour of Z∗ and of ∂u/∂ϵ calculated from first
principles is shown. For MFPA we took Z∗ = Z∗

CF,xx
where CF is the carbon atom

bound to the fluorine, while for PMI Z∗ = Z∗
C,xx. The full tensors of the effective

charges of all the atoms are reported in Appendix C, Table C.1, C.2 and C.3. We
highlight the qualitative agreement with the prediction of the model, in particular
the huge enhancement of the effective charges around the critical point cLR, reaching
the strongly anomalous values of ∼30 |e| and ∼15 |e| in correspondence of cLR for
MFPA and PMI, respectively. The covalent character of bonds along the chain
prevents a precise definition of the nominal reference value for C, that can be however
assumed to be of the order of 1|e|, as the nominal ionic charges for H and F are
respectively +1|e| and −1|e|. Effective charges of carbon in both considered chains
are strongly anomalous for all considered long-range mixing parameters, displaying
values between 5|e| and 30|e| even for band gaps exceeding 6 eV. These anomalous
values exceed even those reported in oxide ferroelectrics, where effective charges are
typically two or three times larger than nominal reference values[96]. Figure 3.5g and
3.5h display the behaviour of the piezoelectric coefficients computed ab initio taking
into account also the effects of transverse displacements. In the insets, the different
contributions ci.r.

piezo and cc.i.
piezo are compared, highlighting the internal-relaxation

origin of the enhancement. We also compare the values of ci.r.
piezo computed with

DFT calculations on the polymers, with those obtained using Equation (3.32) of
the model, plugging in the the ab initio values of Z∗ and ∂u/∂ϵ of Figure 3.5e
and 3.5f. The agreement between the two approaches is both qualitatively and
quantitatively excellent, notwithstanding the simplifying description provided by
the Rice-Mele model, that neglects structural details specific of the two considered
polymers as well as transverse displacements. We highlight that despite the behaviour
∂u/∂ϵ ∝ |cLR − cLR|−1/2, the main contribution to the piezoelectric coefficient is
given by the effective charges. The large values attained in a finite range around
the second-order critical point and their ultimately topological origin suggest that
the piezoelectric effect is robust against quantum and anharmonic effects that may
change the order of the phase transition, as predicted in carbyne[17] and discussed
in the previous Chapter 2.
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Figure 3.6. Behaviour of the LO eigenvalue ω2
LO, calculated at Γ in the undistorted

configurations of MFPA and PMI, for different values of the long-range mixing parameter
cLR. The change from positive to negative values, signalling a dynamical instability of
the system toward the dimerized phase, corresponds to the change of curvature of the
total energy at u = 0.

3.6.1 Comparison with state-of-the-art piezoelectric polymers

Finally, we compare the results for the piezoelectric coefficients of MFPA and PMI
with those of the best and most widely used piezoelectric PVDF polymer, made by
the repetition of the unit CF2-CH2. The Rice-Mele model fails to capture its main
properties, this polymer being not conjugated. Its piezoelectricity indeed derives
from the presence of a net dipole moment transverse to the chain, whereas the
electromechanical response predicted in conjugated polymers is longitudinal to the
chain and ultimately due to the topological-morphotropic enhancement. To have a
consistent comparison with available experimental data for PVDF, we computed ab
initio the converse piezoelectric coefficient dpiezo, which measures the response with
respect to an external stress, rather than a strain. In particular, dpiezo is linearly
related to cpiezo through the elastic constants tensor C, namely cpiezo = dpiezoC. As
far as 1D systems are concerned, only a single scalar elastic constant is required,
and it can be evaluated as the second derivative of the energy with respect to the
strain, i.e. C = ∂2Etot/∂ϵ

2. The results for the converse piezoelectric coefficients of
PVDF are compared with those of MFPA and PMI in Figure 3.7 and are consistent
with the values computed in Ref. [136]. Even though the calculated dpiezo is smaller
than reported experimental values, a direct comparison to experiments is hardly
drawn because, e.g., of the polymorphic character or low crystallinity of experimental
samples, as noticed also in Ref. [136]. We remark that piezoelectric response in
PVDF is found to be independent on the fraction of exact exchange, confirming the
utterly different nature of the electromechanical response in such non-conjugated
polymer. We finally mention that mildly anomalous effective charges have been
also reported for PVDF[137], the carbon effective charge however not exceeding



3.7 Conclusions 61

1.5|e|, consistently with our results provided in Table C.3 of Appendix C. On the
other hand, both MFPA and PMI display a rather large range of values that are
larger than calculated dpiezo of PVDF, with up to a six-fold enhancement for PMI
close to the dimerization point. The robustness of the enhancement mechanism is
confirmed also by the comparison with the piezoelectric coefficients calculated in
packed MFPA chains, as shown in Figure 3.8. Even though the selected prototypical
SPAs may not be the most efficient ones for practical realization and engineering of
their functional properties, the comparison with first-principles estimate of one of the
best available piezoelectric polymer alongside the general validity of the proposed
model and consequent robustness of its electromechanical response put forward the
broad class of π-conjugated polymers as a promising field for organic piezoelectrics
with enhanced functionalities. Additionally, its inverse proportionality to the band
gap provides a possible material-design principle for driving the quest of organic
polymers with enhanced piezoelectric response.
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Figure 3.7. Comparison of the converse piezoelectric coefficients of MFPA and PMI
with respect to PVDF, the current best and most widely used organic piezoelectric.
In principle, the mechanism of the morphotropic-topological enhancement allows to
outperform the state-of-the-art.

3.7 Conclusions

In this Chapter we presented our results on polar responses, i.e. those phenomena
that can be defined in terms of linear variations of polarization, in 1D systems.
Pushed by the idea that the presence of charge density waves may reflect in enhanced
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Figure 3.8. On the left panel, piezoelectric coefficients of MFPA in its isolated polymeric
chain configuration are compared to those obtained for packed chains. The 3D structure
adopted, realized with XCrySDen[138] and displayed on the right panel, is similar to
the one adopted for PVDF in Ref.[136]. The agreement between the results highlight
the robustness of the enhancement mechanism.

polar responses in presence of a strong coupling between structural and polar
properties, we focused on two prototypical polar responses: the effective charges
Z∗, which quantify the effects of ions displacement on the electronic charge density
distribution; piezoelectricity, i.e. the response to a strain, which comprises also a
contribution proportional to Z∗.

In the framework of the model, we found a huge enhancement of both responses
in proximity of the critical points of the structural phase transition, with the internal-
relaxation contribution to the piezoelectric coefficient showing a diverging behaviour
at the critical point. While this latter result is strictly connected to the transition
order, which as we have seen may be strongly affected by quantum-anharmonic
effects, the enhancement of Z∗ is robustness against perturbing effects such as
fluctuations or external environments. We trace back this peculiar behaviour to the
ultimately topological nature of the effective charges in the model, highlighted by an
inverse proportionality between Z∗ and the electronic energy gap Egap, as argued
also in Ref.[31]. Thus, we expect this topological nature to guarantee stability of
the effective charges enhancement against quantum-anharmonic effects. Performing
calculations of polar responses with the inclusion of QAE, not only we confirmed
this idea, but surprisingly, we found that QAE actually strengthen the enhancement,
as a consequence of the fact that quantum-anharmonicity renormalizes the critical
values of the phase transition, thus reducing the energy gap.

Finally, theoretical predictions were tested with DFT calculations on prototypical
conjugated polymers. We chose to perform calculations varying the long-range mixing
parameter entering a range-separated hybrid functional motivated by the fact that,
on one hand, it is related to the external dielectric environment, and, on the other
hand, it is known to account for screened Coulomb vertex corrections to the dressing
of the e-ph coupling. Following this idea, we found a remarkable agreement between
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DFT’s and model’s results, consistently with our discussion on the role of the external
environment on the e-ph coupling in conjugated polymers presented in section 1.3.
Moreover, we showed that state-of-the-art organic piezoelectric are outperformed by
piezoelectric conjugated polymers, mostly thanks to strongly anomalous effective
charges of carbon, larger than 5e – ordinary values being of the order of 1e – and
reaching the giant value of 30e for band gaps of the order of 1 eV. Our results put
forward conjugated polymers, and in general 1D conjugated systems, as a class of
functional materials with tunable and enhanced polar response properties.
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Chapter 4

Resonant Raman response

Chapter overview

This Chapter is dedicated to the study of the Raman response of 1D systems. First,
in section 4.1, we motivate the interest in this topic discussing the importance of
Raman spectroscopy in characterizing these systems, with a particular focus on the
resonant version of this technique. Aiming for a theoretical description of Raman
scattering in 1D systems, in section 4.2 we present the most relevant aspects of
the theory for Raman scattering, identifying different levels of approximations and
how we treat them: non-resonant, resonant and beyond the Placzek approximation.
Finally, in section 4.3, we present our results on the Raman response obtained with
different approximations on a prototypical 1D system, the fitted-model for carbyne.
Conclusions are drawn in section 4.4.

4.1 Introduction: the role of resonance Raman spec-
troscopy in 1D systems

One of the main messages from past chapters is that the properties of 1D systems are
strictly related to their symmetries. Obtaining information on systems configuration
is thus essential for their characterization. For instance, the presence of a BLA in a
chain of inequivalent atoms – namely, reducing spatial symmetry – may result in
the insurgence of properties, e.g. ferroelectricity or piezoelectricity, otherwise absent.
There are several experimental techniques that allow determining systems’ structure
and properties: one of the most powerful and widely used is Raman spectroscopy,
based on the process of inelastic scattering of a monochromatic beam of light
impinging on a system[139, 100]. A Raman scattering process is thus characterized
by the presence of an incoming and an outgoing photon. In particular, the energy
of the scattered photon is shifted up or down with respect to the energy of the
incident photon as a consequence of the interaction with the system. This energy
shift indicates that the initial and final states of the system are not the same. Many
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different mechanisms may be responsible for this inelastic scattering, however Raman
processes are usually classified depending on which states of the system are involved.
If the transition takes place between two different electronic states, one usually talks
about electronic Raman. Instead, if it happens between vibrational energy levels of
the same electronic state (usually the ground state), we are in presence of vibrational
Raman. In what follows, we will focus on this latter case.

Energy shifts of vibrational Raman lie in a range from tens to thousands of cm−1,
thus providing information about vibrational, rotational, and other low-frequency
modes in materials. Since these modes are strictly related to the structure of a
system, Raman spectroscopy is a suitable tool to obtain this information. For
instance, the appearance of new Raman-active modes in a spectrum, may signal a
phase change in the system under observation. Moreover, specific vibrational modes
are often associated with specific features of the system, e.g. a particular bond: thus,
one can use Raman spectroscopy to characterize the composition of a substance.
Another interesting aspect is the fact that if a molecule (or the unit cell of a crystal)
possesses a center of symmetry, then, no normal vibrational mode can be at the
same time both Raman active and infrared active. This means that, in some cases,
Raman spectroscopy is the only technique that allows us to gather information on
specific systems, e.g. in polyacetylene or carbyne.

Aiming to detect Raman signals, there are however some practical problems that
need to be addressed. Intensities of Raman peaks are several orders of magnitude
lower than those of elastically scattered photons – as e.g. in Rayleigh scattering – thus
requiring special filters and particular experimental setups. It is however possible to
enhance the response of a Raman-active mode if the energy of the impinging light
beam, i.e. the energy of the laser, matches the energy of the electronic transition to
which the vibrational mode is coupled. Since the photon energy is resonant with an
electronic transition, this technique is called resonance Raman spectroscopy[140, 141]
(RRS). In this process, the intermediate state of the scattering is not a virtual one,
as in the common understanding of the Raman scattering, but rather a real physical
state of the system1. The resonance condition results in an enhancement of the
scattering amplitude for that particular process, with the effect of a much stronger
signal of that given vibrational mode, up to several orders of magnitude higher than
the signal obtained with another laser frequency not resonant with that electronic
transition.

To sum up, RRS is often the preferred choice thanks to its enhanced sensitivity,
allowing to overcome limitations due e.g. to the small volume of the sample or its
low concentration. Due to the possibility of resonating with specific frequencies,
RRS is also a unique tool to determine the electronic structure of a system. As
far as 1D systems are concerned, it is widely used to characterize organic and
biological materials[142, 143, 144], but also in carbon-derived systems such as

1This description may resemble the phenomenon of fluorescence, however the time-scales of these
two processes are very different, the Raman being several orders of magnitude faster.
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graphite, graphene and carbon nanotubes[145, 146, 147]. For instance, it is used on
conjugated polymers to determine how different functional groups affect electronic
and vibrational properties, or vice-versa to detect the presence of a particular
functional group via the insurgence of a specific resonant Raman signal otherwise
absent[148, 149]. In carbon-based 1D systems such as nanotubes, RRS can be used
to determine several properties, e.g. the chirality of the nanotube, its diameter,
or its breathing radial mode[150, 151, 152]. Moreover, RRS has proved to be
essential for the characterization of properties of linear carbon chains such as their
electron-phonon coupling, the presence of a Peierls distortion and their vibrational
properties[153, 154, 155]. Finally, RRS is paramount for studying long linear carbon
chains encapsulated in carbon nanotubes, as it allows for the selective enhancement of
vibrational modes specific to the chain, allowing to selectively reduce the background
noise due to the presence of the nanotube[61, 71].

In order to have a complete and comprehensive understanding of experimental
results, a correct theoretical picture is indispensable. A good theoretical framework
should allow, at the same time, to interpret but also predict experimental results.
Ab-initio approaches, coupled with numerical techniques implemented e.g. in the
framework of DFT codes, have proved to be reliable instruments in this quest. The
development of an ab-initio theory for the resonance Raman response of solids will
be the main focus of the next Chapter 5. In what’s next, we limit to set the ground
giving a brief overlook on the theory for (resonant) Raman scattering, discussing
the limitations of existing approaches and how to overcome them, and present our
results on the fitted-model for carbyne, which has proven to give reliable, DFT-level
results.

4.2 Remarks on the theory of Raman scattering

The aim of this section is not to give a comprehensive and exhaustive derivation of the
theory for Raman scattering, but rather to identify and discuss the key elements in
which we are interested. The theoretical description of Raman scattering is based on
the treatment of the interaction between light and matter, that exchange both energy
and momentum. The electro-magnetic radiation is usually regarded as a perturbation
acting on a system of ions and electrons, e.g. a molecule or a crystal. In this way,
the Raman response can be treated as a linear response property and, in this sense,
it gives information on the unperturbed system. There are several approaches to the
treatment of the scattering due to light-matter interaction[156, 100, 139]. In what
follows, we briefly review the most common approximations on which light-matter
interaction, in general, and Raman scattering, in particular, are based.

In theory, the electromagnetic radiation interacts both with nuclei and electrons,
so a complete description should treat the interaction of light with nuclei and light
with electrons on the same ground2. However, due to the fact that electrons’ mass is

2This path has been trodden e.g. in Ref.[157], via a minimal coupling involving both ions and
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much smaller than ions’ mass, one can safely assume that only the electrons interact
directly with the electromagnetic field, whereas the interaction of ions with light
is mediated through the electron-ion interaction. Another common assumption is
based on the fact that wave-length λ of lasers usually adopted in experiments is much
larger than typical interatomic distances a. This allows for the schematization of
light-electron interaction as a collection of electric dipoles interacting with a uniform
electric field, i.e. the renowned dipole approximation. Moreover, in the specific case
we are interested in of the vibrational Raman process where one phonon is involved
in the inelastic scattering of light from a solid, due to the relation q = 2π/λ between
the wave-length and the wave-vector modulus q of a monochromatic electromagnetic
wave, one can safely assume that q ≪ 2π/a, a being typical interatomic distances.
Stated in other words, this assumption means that, in vibrational Raman, we can
consider no momentum transfer from photons to phonons, hence only (optical)
vibrational excitations at the Brillouin zone center Γ are involved.

In general, the vast majority of approaches to the theory of Raman scattering
are based on these approximations. Differences may instead rise in how the electro-
magnetic interaction is treated. A possible choice is to adopt the vector potential A
to describe the electromagnetic field and proceed with the usual scattering theory
solved in the interaction picture with a diagrammatic approach, as done e.g. in
Refs.[139, 140, 156]. Another approach, followed for example by Brüesch[100], is
instead that of introducing the electromagnetic interaction via an external electric
field E which is coupled with the electric-dipole moment operator M, and then doing
perturbation theory on the total wave function of the matter. Which approach is
more convenient may depend on the specific situation one wants to address: we limit
here to remark that, under the same approximations, both approaches must yield
to the same results as a consequence of the gauge-invariance of electromagnetism.
In what follows, we adopt the approach of Brüesch, as it is known to be a more
convenient choice for developing an ab-initio theory of the Raman response[158, 159].

4.2.1 Vibrational Raman in the Placzek approximation

Let’s now go deeper in the description of vibrational Raman, where the energy
difference between the incoming and outgoing photons comes from the creation
(Stokes process) or annihilation (anti-Stokes process) of a quantum of vibrational
energy. The standard framework commonly used to treat these processes was defined
by Placzek[160], which, under certain hypothesis, gives a recipe to compute the
vibrational Raman spectra of a solid or a molecule, while at the same time providing
a clear and intuitive interpretation of this process. The assumptions under the
Placzek approximation are the following:

• the adiabatic approximation must be valid;

electrons momenta.
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• the ground state is both the initial and final electronic state of the process and
it must be non-degenerate;

• the frequency of the incoming light ωin must be lower than any electronic
transition frequency of the system, but much larger than any vibrational
frequency.

First requirement is what is usually done in the standard Born-Oppenheimer ap-
proximation, which allows separating the matter wave function in an electronic part,
obtained for fixed nuclear positions, and a nuclear part, obtained considering the
electronic energy as an effective potential acting on the nuclei. Second condition
is what defines a vibrational Raman process, with the additional requirement that
the electronic state is the ground state. Third condition rules out the possibility of
having resonances in the scattering process. Given these hypothesis, and following,
e.g., the approach of Brüesch of doing perturbation theory with an external electric
field, one obtains an expression for the intensity Iν of the peak correspondent to the
(Stokes) process of creation of a phonon of mode ν, which can be observed in the
non-resonant Raman spectra of an harmonic solid:

Iν ∝
∣∣∣ei ·
←→A

ν
· es

∣∣∣2 1
ων

(nν + 1) (4.1)

where ei (es) is the polarization of the incident (scattered) radiation, nν =
[
eℏων/kBT − 1

]−1

is the Bose-Einstein occupation factor at temperature T , and the Raman activity
tensor←→A

ν
of mode ν reads

Aνlm =
∑
kτ

∂χlm
∂ukτ

wν
kτ√
Mτ

(4.2)

where ukτ is the displacement of the τ -th atom in the k-th direction, Mτ is the
atomic mass and wν

kτ is the orthonormal vibrational eigenmode ν. The term χlm is
the so-called electronic susceptibility tensor, which quantifies the polar response of
the system, in the sense we discussed in the previous Chapter 3, with respect to an
external electric field, namely:

Pl = ε0χlmEm. (4.3)

A part for giving a compact expression to compute the Raman response of an
insulator, above Equation (4.2) has also an immediate pictorial interpretation:
the Raman response of a system in the Placzek approximation is the response to
an external electric field and it is quantified by the modulation of the electronic
susceptibility with respect to the vibrations of a given phonon. Usual techniques to
compute the derivative in Equation (4.2) rely on a finite differences approach, where
one calculates χlm for different configurations of the system with atoms displaced of
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±∆ukτ , namely
∂χlm
∂ukτ

≃ χlm(+∆ukτ ) − χlm(−∆ukτ )
2∆ukτ

. (4.4)

The underlying assumption of this approach, and of the Placzek approximation in
general, is that the intensity of the light scattered by a system with vibrating nuclei
is the same for each nuclear configuration as the intensity of the light scattered by
the system with the nuclei in a fixed configuration, justifying the finite differences
approach.

Placzek approximation works very well for large-gap insulators and when excita-
tion energies are e.g. in the visible range. This is reflected by the fact that in above
Equations there is no explicit reference to neither the incoming nor the outgoing
frequencies. However, there exist many case where these assumptions break down,
e.g. in small gap semi-conductors, where the energy of the light beam may resonate
with electronic transitions, or when it becomes necessary to explicitly account for
the presence of finite phonon frequencies, as in systems with non-negligible phonon
energies with respect to electronic-transitions energy scales or in the case of Raman
scattering with infrared light. To correctly describe these situations, it is necessary
to go beyond the Placzek approximation, as we discuss in next section.

4.2.2 How to go beyond the Placzek approximation

As a first step to go beyond the Placzek approximation, we allow for the energy of the
incoming photon to match electronic transition energies so as to describe resonance
Raman processes, while still considering the energy of the involved phonon much
lower and thus negligible. Practically, this translates to considering the frequencies
of the incoming and outgoing photons as equal, i.e. ωin = ωout = ω, and to explicitly
include effects of light frequency into the theoretical description. In doing this, the
"finite differences" idea that the response of a system with vibrating nuclei is the
same as the response of the system with the nuclei in a fixed configuration is still
valid[140], allowing us to write the following generalization of Equation (4.2):

Aνlm(ω) =
∑
kτ

∂χlm(ω)
∂ukτ

wν
kτ√
Mτ

, (4.5)

where the dependence on incoming laser frequency ω enters through the frequency-
dependent susceptibility tensor χlm(ω), which can still be regarded as a polar
response property, obeying the relation

Pl(ω) = ε0χlm(ω)Em(ω). (4.6)

To really go beyond the Placzek approximation, in the sense that the finite
differences approach is not valid anymore, we explicitly include the dependence on
the phonon frequency ωph in the theoretical description. To obtain a generalized
expression for the Raman activity in this case, we resort to the so-called phenomeno-
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logical approach[139], which relates the Raman response to a fluctuation of the
energy density of the system. This idea is consistent with the fact that we are
treating the Raman response as a linear response property, thus we are in a regime
where the fluctuation-dissipation theorem applies. In practice, we write (Equation
(2.85) of Ref.[139]):

Aνlm(ωin, ωout, ωph) =
∑
kτ

∂3Eel(ωin, ωout, ωph)
∂El∂Em∂ukτ

wν
kτ√
Mτ

(4.7)

where Eel is the electronic ground-state energy of the system, El (Em) is the l-th
(m-th) Cartesian component of a uniform electric field and for a Stokes process it
holds ωin = ωout+ωph. We remark how in the case ωph = 0, hence ωin = ωout = ω, we
recover the known relation between the electronic energy and electronic susceptibility:

χlm(ω) = ∂2Eel(ω)
∂El∂Em

. (4.8)

Even if it is in principle possible to go beyond the Placzek approximation following
a diagrammatic approach using the vector potential A instead of the electric field
E, there are several advantages in using Equation (4.7) instead. First of all, it is a
compact formula which allows avoiding the calculation of many diagrams. Secondly,
an expression in terms of derivatives of the electronic ground state energy is the most
suitable way for the formulation and numerical implementation of an ab-initio theory
for the Raman response beyond the Placzek approximation in the DFT framework.
To date, however, there is no ab-initio code for solid-state calculations of the Raman
response beyond the Placzek approximation: next Chapter 5 will be devoted to the
development and implementation of a theory for the Raman response beyond the
Placzek approximation within a DFT approach. Leaving all the technical details to
next Chapter, before proceeding we limit here to observe that in order to accomplish
this task it is necessary to resort to a different kind of perturbation theory, based on
the electronic density ρ, instead of the standard perturbation theory on the wave
functions. In this framework, derivatives of the electronic energy Eel are computed
exploiting the relation

Eel = 2Tr[Hρ], (4.9)

where the factor 2 accounts for the spin and H is a single-particle electronic Hamil-
tonian as e.g. the Kohn-Sham Hamiltonian or the Hamiltonian of the 1D model.

4.3 Raman response in the model

Now that we have discussed the relevant aspects of vibrational Raman scattering
theory and introduced the framework we adopt for studying resonance Raman
beyond the Placzek approximation, in this section we present a practical application
of these concepts with the aid of the fitted-model. In the case of the 1D diatomic
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chain, where we have two atoms per unit cell, we expect only one acoustic and
one optic vibrational mode. As discussed, a Raman scattering process involving a
single phonon happens at approximately zero exchanged momentum, hence only the
optic mode at zone-center Γ may contribute to the process of energy exchanging.
Since we are dealing with 1D systems, we consider electric fields with polarization
parallel to the 1D chain direction, as in a back-scattering experiment. In what
follows, we first discuss how even in its non-resonant version, Raman scattering can
provide useful information on the structural properties of these 1D system. Then,
we will take into account the fact that commonly used laser frequencies often match
electronic transitions in 1D systems, making necessary to resort to a resonance
Raman description. Finally, we will go beyond the Placzek approximation and
include also the dependence on the phonon frequency, in order to obtain the best
match between theoretical predictions and experimental results on 1D systems.

4.3.1 Raman response as signature of the structure

Given the above considerations and using Equation (4.8) for ω = 0, we write
Equations (4.1) and (4.2) for the model, respectively:

Iopt. ∝ |Aopt.|2 1
ωopt.

(nopt. + 1) , (4.10)

Aopt. =
∑

α=A,B

∂χ

∂δrα

wopt.
α√
Mα

(4.11)

=
∑

α=A,B

∂3Eel

∂E2∂δrα

wopt.
α√
Mα

, (4.12)

where the sum runs over the two atoms α = A,B in the unit cell, δrα has the meaning
of atomic displacement defined in Chapter 1, and the index of the only relevant
Cartesian component, the one parallel to the chain, is implied. As anticipated, we
compute derivatives of the electronic ground state energy Eel in terms of perturbations
on the electronic density matrix ρ, with an approach we will describe in details in
next Chapter 5. From Equation (4.9) we obtain

∂3Eel

∂E2∂δrα
= 2Tr

[
∂2ρ

∂E2
∂H

∂δrα

]
, (4.13)

however we remark that in this non-resonant case one can also adopt the finite
differences approach of Equation (4.4) applied to Equation (4.11).

Even with all the approximations made, the theory presented above for the
non-resonant Raman response allows us to interpret and predict properties regarding
the structure of the system. As we mentioned, whether a vibrational mode is Raman
active or not depends on the symmetries of the system. In particular, if the unit cell
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possesses a center of inversion symmetry, modes cannot be at the same time Raman
and infrared active. In the case of the 1D chain, symmetries of the unit cell depends
on the parameters of the model, which determines whether the system becomes
centrosymmetric or not. Considering the on-site energy ∆ as the guiding parameter,
we have that the optimal structure in the case of equivalent atoms (∆ = 0, as
in carbyne) is the distorted one. Being the atoms equivalent, the system is still
centrosymmetric, however for this same reason its optic mode cannot be infrared
active: we expect it to be Raman active instead. This idea is confirmed by the fact
that, experimentally, the optic mode in carbyne is indeed Raman active. If we break
atoms equivalence with a finite ∆ < ∆c, the optic mode can now be at the same
time infrared and Raman active since the chain has both inequivalent atoms and a
bond-length alternation. Finally, if ∆ ≥ ∆c the optimal structure becomes again
centrosymmetric, but with inequivalent atoms, so this time the optic mode can be
only infrared active. From this qualitative discussion, we conclude that the presence
of a BLA in the system must be reflected by the appearance of a signal in the
Raman spectrum. To test this idea we study the behaviour of the Raman activity
Aopt. of Equation (4.12) calculated on the optimal structures of the fitted-model
as a function of ∆. In Figure 4.1 we show that our results confirm the qualitative
predictions. For completeness we also show that the finite differences approach and
the density-matrix one yield the same results.

Figure 4.1. Behaviour of the Raman activity tensor Aopt. of Equation (4.12) computed both
with finite differences of electronic susceptibility with respect to atomic displacement
(Equations (4.11) and (4.4)) and with the density matrix (DM) approach of Equation
(4.13). Varying the parameter ∆ guiding the structural phase transition, we observe
how the Raman signal disappears for ∆ > ∆c. Reminding the role of ∆ in determining
the optimal structure of the system as discussed in section 1.2.1, we conclude that the
presence of a Raman response in the model implies that the system is in its distorted
structure and vice-versa.
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4.3.2 Inclusion of resonance effects

As we discussed, it is sometimes convenient to perform Raman experiments with laser
energies which matches electronic excitation energies, in particular in 1D systems
and carbon based systems, in order to enhance the response. In some other cases it
is inevitable for laser frequencies to be very close or even higher than the electronic
energy gap of the system. For instance, experimental estimates for the energy gap
value of confined carbyne are between 2.253 eV and 1.848 eV[71], where in the
fitted-model we found Egap ≃ 1.44 ev and with PBE0 calculation Egap ≃ 2.03 eV.
Considering that lasers in range of the visible light have energies from about 1.6 eV
to 3.3 eV, it becomes mandatory to account for resonance effects in the theoretical
description. To accomplish this task, and analogously to the previous case, we adapt
Equation (4.5) in the framework of the 1D model and write

Aopt.(ω) =
∑
α

∂3Eel(ω)
∂2E∂δrα

wopt.
α√
Mα

(4.14)

where using Equations (4.8) and (4.9) it holds:

∂3Eel(ω)
∂E2∂δrα

= ∂χ(ω)
∂δrα

= 2Tr
[
∂ρ(ω)
∂E2

∂H

∂δrα

]
. (4.15)

Again, we remark how in this case it is still possible to use both the finite differences
approach or the density matrix approach. In the left panel of Figure 4.2, we compare
the frequency-dependent Raman activity tensor Aopt.(ω) computed for the fitted-
model on carbyne (∆ = 0) both with the finite differences approach and with the
density matrix approach, and show that they yield the same results. On the right
panel, instead, we notice how the intensity of the response of the system is enhanced
in proximity of ω = Egap, as a consequence of the resonance. We remark that to
avoid divergences in the calculation of the response, we made an analytical extension
of the frequency ω → z = ω+ iγ where γ has the meaning of a dumping term. In the
present calculations we put γ = 0.1 eV, consistently with the values inferred from
RRS experiments in Ref.[71]. Also, we considered a finite T = 300 K in Equation
(4.10).

4.3.3 Going beyond the Placzek approximation

Finally we relax the hypothesis ωin = ωout and explicitly treat the dependence on
the phonon frequency ωph. As we will see, this is necessary in order to correctly
reproduce experimental features. Indeed, optical phonon frequencies at zone-center
in some 1D systems may have energies up to hundreds of meV (ωph ≃ 250 meV
in carbyne[71]), meaning that vibrational energies are not negligible with respect
to electronic transitions and photon energies (ωph ≃ 10% of Egap in carbyne),
challenging the assumption behind Placzek approximation. To account for a finite
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Figure 4.2. On the left, behaviour of the Raman activity tensor Aopt.(ω) of Equation
(4.14) computed on the fitted-model for carbyne (∆ = 0) with finite differences and with
the density matrix (DM) approach. On the right, we show the Raman intensity I(ω)
computed with Equation (4.10) at room temperature T = 300K. When then resonance
condition ω = Egap is met, there is an enhancement in the intensity of the response of
up to 500 times the value I(0) obtained neglecting the frequency dependence. For both
figures, in order to avoid divergences, we considered a complex frequency z = ω + iγ,
where γ has the meaning of a dumping term (we put γ = 0.1 eV as in Ref.[71]): this is
reflect by the fact that Aopt.(ω) acquires a complex character.

ωph in the Raman response of the model, we adapt Equation (4.7) which now reads:

Aopt.(ωin, ωout, ωph) =
∑
α

∂3Eel(ωin, ωout, ωph)
∂2E∂δrα

wopt.
α√
Mα

. (4.16)

We remark how in this case the finite differences approach is not doable, hence one
must resort to the density matrix one in order to compute energy derivatives and
from Equation (4.9) we obtain:

∂3Eel(ωin, ωout, ωph)
∂E2∂δrα

= 2Tr
[
∂ρ(ωin, ωout, ωph)

∂E2
∂H

∂δrα

]
. (4.17)

If in the previous case, where we considered ωph = 0, we observed an enhancement
of the response in correspondence of ω = Egap as a consequence of a resonance in
the system, intuitively, we expect that the presence of a finite ωph ≠ 0 adds another
possible channel for a resonant response to manifest. Indeed, the photon energy may
now match both the transition energy between two electronic states or between an
electronic state a vibrational state in another electronic state. A rigorous formulation
of this idea will be given in next Chapter, we limit here to show in the left panel of
Figure 4.3 the appearance of a new peak in the intensity of the Raman spectra of
the fitted-model for pure carbyne (∆ = 0) in correspondence of ωin = Egap + ωph.

To conclude, we compare our results with the experimental data obtained on
other carbon-based 1D systems: carbon nanotubes. In Ref.[161, 152], Duque et al.
and Haroz et al. measured the resonance Raman response of carbon nanotubes with
different chiralities, varying the frequency of the impinging laser. Results show the
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presence of two asymmetric peaks, as can be seen in the right panel of Figure 4.3 for
the case of the (7,5)-armchair nanotube. This phenomenon was interpreted as the
result of two different resonances: the most intense peak corresponds to the condition
ωin = Egap, whereas the second less intense peak corresponds to ωin = Egap + ωph,
where ωph is the energy of the Raman-active phonon associated to that transition,
whether it is longitudinal or transverse optic. Even if model’s results where obtained
with parameters fitted to reproduce carbyne chains, the qualitative agreement with
experimental observations suggests that in order to correctly describe and reproduce
the effects of RRS in such 1D systems, it is necessary to account for the presence of
a finite ωph ̸= 0. To do this, the model and the expression we derived for the Raman
activity beyond Placzek – Equation (4.16) – have proven to be reliable tools.

Figure 4.3. On the left, as a function of the incoming photon energy ωin, values of the
intensity of the Raman response of the model fitted on carbyne (∆ = 0), computed
beyond the Placzek approximation with Equation (4.10) at T = 300 K and with the
Raman activity of Equation (4.16). We notice two peaks: one for ωin = Egap and the
other at ωin = Egap + ωph, and we attribute them to the presence of two resonances.
For the fitted model we have that ωph = ωLO(Γ) ≃ 0.25 eV. On the right, values of the
Raman intensity measured with different laser energies ωin on (7,5)-armchair carbon
nanotubes taken from Ref.[161]. Even if we are comparing different 1D carbon-based
systems, as reflected by the fact that resonances are in different positions, we find
a remarkable qualitative agreement as in both cases there are two resonance peaks,
separated in energy by the ωph of the longitudinal optic phonon. It is also interesting to
notice that the ratio between the intensities of the two peak is in both cases ∼ 0.6. We
conclude that in order to correctly reproduce experimental results in 1D systems, it is
necessary to go beyond the Placzek approximation.

4.4 Conclusions

Aiming to strengthen the connection between the theoretical description and experi-
mentally measurable properties, in this Chapter we explored the vibrational Raman
response of 1D systems under different levels of approximation. The starting point
was the Placzek approximation, where one describes the process of Raman scattering
neglecting both the frequency of the photons and of the phonon involved. Despite
the rough approximation, it is still possible to interpret measured Raman spectra,
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indeed the presence or absence of signals is related to specific structural realizations
of a system. In many cases, it is however necessary to account at least for a finite
photon frequency ω in order to correctly describe results obtained from resonance
Raman spectroscopy. Indeed, in the case of the fitted-model for carbyne, we showed
that when the condition ω = Egap is met, the response of the system shows a huge
enhancement, up to 500 times the value obtained neglecting the frequency depen-
dence. Finally, for a complete theoretical understanding of the Raman response of
1D systems, we considered also the presence of a finite ωph in the process. From the
comparison with experimental data obtained on carbon nanotubes, we showed that
this inclusion is paramount in order to correctly reproduce the observed behaviour,
in particular the insurgence of a second resonance peak in the resonance spectrum.
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Chapter 5

Time-dependent density matrix
perturbation theory

Chapter overview

In this final Chapter, we present the time-dependent density matrix perturbation
theory (TDDMPT), an approach to study the effects of external perturbations on
a system, where the central quantity is the electronic density matrix. In the first
section 5.1, we motivate the development of this theory and discuss the advantages
it offers, in particular in the treatment of a uniform electric field in a crystal. Next,
in section 5.2, we derive the central quantities to treat a generic perturbation in
the TDDMPT approach. Next, in section 5.3, we focus on the case where the
perturbation comes from a uniform electric field. A straightforward application
is then given to the Raman response theory, whose formulation in the TDDMPT
framework is presented in section 5.4. In particular, we show that in order to go
beyond the Placzek approximation, it is necessary to resort to TDDMPT. Finally, in
section 5.5, we describe how to implement TDDMPT equations in an ab-initio DFT
framework and present our implementation of the Raman response of an insulating
crystal in the Quantum ESPRESSO code. Conclusions are drawn in section 5.6.

5.1 Introduction: why a perturbation theory on the
density matrix

Within the framework of density-functional theory, properties of materials are usu-
ally computed as derivatives of the ground state energy. By now, many DFT
codes routinely offers the possibility to compute properties such as phonon dis-
persion, dielectric constants, effective charges, and so on, using linear-response
methods, relying on first-order perturbation theory applied to the Kohn-Sham (KS)
orbitals[162, 163, 164, 165]. In principle, this methodology can be applied beyond
first-order to compute the derivatives of the energy at any order[166]. However, even
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if the theoretical ground of wave-function perturbation theory is in principle well
set, following this path from a practical point of view poses some challenges. Indeed,
even if the final result is invariant with respect to an arbitrary unitary rotation in
the space of the occupied KS orbitals, the formulation of the theory depends on the
chosen gauge, as becomes apparent in the application of the KS-orbitals orthonor-
mality constraints at high orders[166]. Moreover, the treatment of a perturbing
uniform electric field in the case of periodic systems is not trivial, as the position
operator is ill-defined in periodic boundary conditions and with Bloch-type orbitals.

An approach that addresses these problems was proposed in Ref.[167], following
the idea of not relying on the perturbative series of the single KS orbitals, but rather
exploiting a perturbation theory built directly on the electronic density matrix ρ.
The first advantage of this approach is that the operator ρ is gauge independent
by definition, eliminating any possible source of ambiguity or difficulty that the
choice of a particular gauge may give. Then, in the case of an insulating system,
ρ is a well-behaved, localized operator, in the sense that ⟨r1| ρ |r2⟩ goes to zero
exponentially as |r1 −r2| goes to infinity[168]. This property allows for a well-defined
treatment of a perturbing uniform electric field, solving the problem posed by the
ill-definition of the position operator r̂ in periodic systems.

As will become more evident in next sections, further qualities of this approach,
which we will refer to as Density Matrix Perturbation Theory (DMPT), regards also
the computational aspect. Indeed, DMPT equations can be formulated as linear,
algebraic (self-consistent) equations, that can be implemented and solved within any
DFT code, without any additional cost than that of solving a self-consistent linear
system of equations. Moreover, quantities at each order can be expressed in terms
of just a finite number of unperturbed orbitals, namely the occupied states. On
one hand, this guarantees a straightforward physical interpretation of the different
quantities in terms of interaction between states of the unperturbed system, as in
many interaction theories. On the other hand, the fact that the explicit knowledge
of the unoccupied states is not needed, drastically reduces the computational cost,
as in principle the empty states required to achieve converged results may even be
infinite.

A practical case where DMPT and its advantages have been exploited is for
the calculation of the non-resonant Raman response of an insulator within a DFT
scheme[158]. As seen in the previous Chapter, computing the Raman response
requires the knowledge of third-order mixed derivatives of the electronic energy with
respect to electric fields and atomic displacements. To do so, usual approaches rely on
computing the third-order derivatives as finite differences of electronic susceptibilities
– i.e. the second-order derivatives with respect to the electric fields – calculated
on configurations with displaced atoms. This approach becomes impracticable in
situations where the (super)cells of systems are particularly large, or in cases where
one needs to compute the Raman response of several (super)cells. The DMPT
approach, instead, eliminates this problem since it requires only the calculation of
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second-order derivatives of the density matrix, as hinted in Equation 4.13 for the 1D
case. From a practical point of view and for the general 3D case, this means that
DMPT allows to go from a situation where 36 × Natom first-order self-consistent
calculations are needed for the finite differences approach, to just 6 second-order
self-consistent calculations.

Finally, we highlight that the main ideas behind DMPT hold even in the case of
a time-dependent perturbation, as can be oscillating electric fields. The aim of the
present chapter is thus to extend DMPT to the time-dependent case, enabling the
calculation of time-dependent energy derivatives at any order in a DFT framework,
while keeping all the advantages outlined above. As a test case, we apply this time-
dependent version of DMPT (TDDMPT) to study the resonance Raman response of
an insulator beyond the Placzek approximation, justifying the treatment presented
in the previous chapter, and also present its implementation in the Quantum
ESPRESSO code[169].

5.2 Derivation of the time-dependent density matrix
perturbation theory

Let’s consider a single-particle Hamiltonian H(t) – e.g. the Kohn-Sham Hamiltonian
– to describe the electrons of an insulating system in presence of an external, time-
dependent perturbation. We distinguish between valence (or occupied) {|ψv(t)⟩}
and conduction (or unoccupied, or empty) {|ψc(t)⟩} eigenstates, for which it holds

iℏ∂ |ψv(t)⟩
∂t

= H(t) |ψv(t)⟩ , (5.1)

iℏ∂ |ψc(t)⟩
∂t

= H(t) |ψc(t)⟩ . (5.2)

We define the electronic density matrix of the system as a sum over the valence
states:

ρ(t) =
∑
v

|ψv(t)⟩ ⟨ψv(t)| . (5.3)

It is evident that when the system is in its ground-state (GS), where all valence states
are occupied and all conduction states are unoccupied, the electronic density matrix
ρ(t) of Equation (5.3) contains the same information as the {|ψv(t)⟩}. Indicating with
λ the (small) parameter associated with the perturbation, we write the perturbative
expansions of H(t) and ρ(t) around λ = 0.

H(t) = H(0) + λH(1)(t) + λ2H(2)(t) + . . . , (5.4)

ρ(t) = ρ(0) + λρ(1)(t) + λ2ρ(2)(t) + . . . , (5.5)

where it is made explicit that the time-dependence comes from the perturbation only
and that the unperturbed H(0) and ρ(0) are time-independent. In the philosophy of
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density-functional theory, we are interested in ground-state properties that can be
expressed in terms of derivatives of the GS energy. The main idea behind DMPT
is that the density matrix yields the same information on the ground state of the
system as the valence eigenstates. It is thus possible to compute the response of the
system to an external perturbation without resorting to the standard perturbation
theory on the wave-functions, avoiding all the problems we discussed. To do so, we
exploit the relation in Equation (4.9), which we rewrite:

E(t) =
∑
v

⟨ψv(t)|H(t) |ψv(t)⟩ = Tr [H(t)ρ(t)] (5.6)

which relates the ground state energy E(t) to ρ(t). System’s responses to external
perturbations are quantified by the derivatives of E(t) with respect to λ, hence we
write

∂nE(t)
∂λn

∣∣∣∣
λ=0

=
n∑
i=0

Tr
[
H(i)(t)ρ(n−i)(t)

]
, (5.7)

where the trace Tr[•] is intended over the complete basis set {|ψ(0)
i ⟩} = {|ψ(0)

v ⟩} ∪
{|ψ(0)

c ⟩} of the (unperturbed) eigenstates of H(0).
In order to find an expression for the generic n-th order derivative ρ(n) to plug

in Equation 5.7, we exploit two relations:

ρ2(t) = ρ(t), (5.8)
[ρ,H] = iℏρ̇(t), (5.9)

that correspond, respectively, to the idempotence property of the density matrix
defined in Equation (5.3) and to von-Neumann equation for the quantum time
evolution of the operator ρ(t). It is convenient to define projection operators on the
unperturbed valence and conduction states, respectively

PV =
∑
v

|ψ(0)
v ⟩ ⟨ψ(0)

v | = ρ(0) (5.10)

PC =
∑
c

|ψ(0)
c ⟩ ⟨ψ(0)

c | = 1 − PV , (5.11)

and it holds P 2
V = PV and P 2

C = PC . This allows us to decompose ρ(t) in the
following form

ρ(t) = PCρ(t)PC + PCρ(t)PV + PV ρ(t)PC + PV ρ(t)PV (5.12)
= ρCC(t) + ρCV (t) + ρV C(t) + ρV V (t), (5.13)

and at each order n it holds:

ρ(n)(t) = ρ
(n)
CC(t) + ρ

(n)
CV (t) + ρ

(n)
V C(t) + ρ

(n)
V V (t). (5.14)

In this way, we are able to discriminate between different contributions to the
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response of the system involving similar conduction-conduction or valence-valence
states or mixed valence-conduction, conduction-valence states. It is possible to
express the conduction-conduction and valence-valence operators of Equation (5.13)
in terms of the mixed valence-conduction and conduction-valence operators only.
For example, from Equation (5.8) projected on conduction-conduction we obtain

ρCC(t) = PCρ(t)PC = PCρ
2(t)PC = PCρ(t)(P 2

C + P 2
V )ρ(t)PC (5.15)

= ρCC(t)ρCC(t) + ρCV (t)ρV C(t). (5.16)

A similar operatorial identity holds also for ρV V (t), and in a compact form we write

ρCC(t) = 1 −
√

1 − 4ρCV (t)ρV C(t)
2 , (5.17)

ρV V (t) = ρ(0) − 1 −
√

1 − 4ρV C(t)ρCV (t)
2 (5.18)

which allow to express each n-th order component of Equation (5.14) in terms of
ρ

(i)
CV (t) and ρ

(i)
V C(t) = (ρ(i)

CV (t))†, with i ≤ n, simply gathering the n-th order terms
of Equations (5.17) and (5.18) obtained using the expansion

1 −
√

1 − 4x
2 ≃ x+ x2 + 2x3 + . . . . (5.19)

For n = 1 and n = 2, for example, we obtain:

ρ(1)(t) = ρ
(1)
CV (t) + ρ

(1)
V C(t) (5.20)

ρ(2)(t) = ρ
(2)
CV (t) + ρ

(2)
V C(t) +

[
ρ

(1)
CV (t), ρ(1)

V C(t)
]

(5.21)

whereas with some algebraic manipulation one arrives to a compact expression for
the generic ρ(n)(t) (n ≥ 2):

ρ(n)(t) = ρ
(n)
CV (t) + ρ

(n)
V C(t) +

n−1∑
i=1

[
ρ

(i)
CV (t), O(n−i)

V C (t)
]

(5.22)

= ρ
(n)
CV (t) + ρ

(n)
V C(t) +

n−1∑
i=1

[
O

(n−i)
CV (t), ρ(i)

V C(t)
]

(5.23)

where

OV C(t) = ρV C(t)1 −
√

1 − 4ρCV (t)ρV C(t)
2ρCV (t)ρV C(t) = 1 −

√
1 − 4ρV C(t)ρCV (t)

2ρV C(t)ρCV (t) ρCV (t).

(5.24)
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5.2.1 Static perturbation

In the case of a static perturbation, we can drop the time-dependence from above
expressions. In particular, von-Neumann Equation (5.9) simply becomes:

[H, ρ] = 0. (5.25)

At each perturbative order, we now define a perturbed-like wave function |η(n)
v ⟩ such

that
ρ

(n)
CV =

∑
v

Pcρ
(n) |ψ(0)

v ⟩ ⟨ψ(0)
v | ≡

∑
v

|η(n)
v ⟩ ⟨ψ(0)

v | . (5.26)

From the perturbative expansion of Equation (5.25), at each order n it holds:

n∑
i=0

[
H(i), ρ(n−i)

]
= 0. (5.27)

Applying PC on the left and |ψ(0)
v ⟩ on the right, we obtain

(
H(0) − ε(0)

v

)
|η(n)
v ⟩ = −

n∑
i=1

PC
[
H(i), ρ(n−i)

]
|ψ(0)
v ⟩ , (5.28)

where we exploited the relation

H(0) |ψ(0)
v ⟩ = ε(0)

v |ψ(0)
v ⟩ . (5.29)

Then, defining the unperturbed Green-function operator projected on conduction
states {|ψ(0)

c ⟩}, with eigenvalues {ε(0)
c }

G̃v =
∑
c

|ψ(0)
c ⟩ ⟨ψ(0)

c |
ε

(0)
v − ε

(0)
c

(5.30)

we finally write:

|η(n)
v ⟩ = G̃v

(
n∑
i=1

[
H(i), ρ(n−i)

])
|ψ(0)
v ⟩ . (5.31)

Remarks on DMPT

In principle, we now have all the ingredients to obtain ρ(n) and consequently to
compute responses of the system at any given order. We remark that all quantities are
expressed in terms of unperturbed orbitals and energies, that need to be computed
just once. Plus, exploiting the property PC = 1−PV , it is possible to avoid completely
the computation of the conduction states, but rather to obtain the perturbed-like
wave-functions |η(n)

v ⟩ solving directly the linear Equation (5.28). Finally, we remark
that in the context of DFT, self-consistency stems from the fact that H(n) depends
on ρ(n), which in turn depends on |η(n)

v ⟩, so in this case Equation (5.28) must be
solved self-consistently, as we discuss in section 5.5 and in Appendix D.
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5.2.2 Single monochromatic perturbation

In the case of a generic time-dependent perturbation, it is still possible to follow
an approach similar to the one presented above and write ρ(n)

CV (t) in terms of the
known unperturbed states {|ψ(0)

v ⟩} and {|ψ(0)
c ⟩}, as in Equation (5.28) and (5.31).

In the static case this was possible thanks to property (5.25). In the time-dependent
case, instead, we exploit von-Neumann Equation 5.9. It is possible to study the case
of a generic time dependent perturbation, as we do in Appendix D.1, however, for
simplicity, in this section we focus on the case of a monochromatic perturbation.

We consider a perturbative expansion of H(t) where H(i)(t) = 0 ∀i ≥ 2, and

H(1)(t) = H(1)(ω)
(
eiωt + e−iωt

)
(5.32)

Expanding von-Neumann Equation (5.9), we obtain at each perturbative order n:

iℏρ̇(n)(t) =
[
H(0), ρ(n)(t)

]
+
[
H(1)(t), ρ(n−1)(t)

]
. (5.33)

Following the principle that at any perturbative order the response of the system is
modulated by the perturbation, we plug in Equation (5.33) a trial solution of the
form

ρ(n)(t) =
∑
α

[
ρ(n)(αω)e−iαωt + ρ(n)(−αω)eiαωt

]
, α =

0, 2, . . . , n if n even
1, 3, . . . , n if n odd

,

(5.34)
obtaining

±ℏαωρ(n)(±αω)−
[
H(0), ρ(n)(±αω)

]
=
[
H(1)(ω), ρ(n−1)(±(α+ 1)ω) + ρ(n−1)(±(α− 1)ω)

]
(5.35)

where in the case α = n there is only the term of order (α − 1) = (n − 1). Using
Equation (5.22) and (5.24) we can again express at each perturbative order the
ρ(n)(±αω) as a combination of projected operators ρ(i)

CV (±αω) with i ≤ n. In
similarity to the static case, we define the perturbed-like valence wave-functions
|η(n)
v (±αω)⟩ such that

ρ
(n)
CV (±αω) =

∑
v

PCρ
(n)(±αω) |ψ(0)

v ⟩ ≡
∑
v

|η(n)
v (±αω)⟩ ⟨ψ(0)

v | . (5.36)

Applying PC on the left and |ψ(0)
v ⟩ on the right of Equation (5.35) we find

(
H(0) − ε(0)

v ∓ ℏαω
)

|η(n)
v (±αω)⟩ = −PC

[
H(1)(ω), ρ(n−1)(±(α+ 1)ω) + ρ(n−1)(±(α− 1)ω)

]
|ψ(0)

v ⟩ ,
(5.37)

which is the generalization of Equation (5.28) to a monochromatic perturbation.
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Defining the frequency-dependent Green function projected on conduction states

G̃v(±αω) =
∑
c

|ψ(0)
c ⟩ ⟨ψ(0)

c |
ε

(0)
v − ε

(0)
c ± αω

, (5.38)

we obtain

|η(n)
v (±αω)⟩ = G̃v(±αω)

[
H(1)(ω), ρ(n−1)(±(α+ 1)ω) + ρ(n−1)(±(α− 1)ω)

]
|ψ(0)
v ⟩ ,

(5.39)

which generalized Equation (5.31) to the case of a monochromatic perturbation. We
again remark that in many cases it is computationally more efficient to solve the
linear system of Equation (5.37) instead of diagonalising H(0) to find the {ε(0)

v } and
{ε(0)
c } necessary in Equation (5.39).

Explicit expressions for n=1 and n=2

Aiming to apply TDDMPT for the Raman response, we give here an explicit
expression for ρ(1)(t) and ρ(2)(t) in the case of a monochromatic perturbation. We
express both quantities in terms of the projected operators:

ρ(1)(t) = ρ
(1)
CV (t) + ρ

(1)
V C(t) (5.40)

ρ(2)(t) = ρ
(2)
CV (t) + ρ

(2)
V C(t) +

[
ρ

(1)
CV (t), ρ(1)

V C(t)
]
. (5.41)

In presence of a monochromatic perturbation, from Equation (5.34) we obtain the
trial functions:

ρ(1)(t) =
[
ρ(1)(ω)e−iωt + ρ(1)(−ω)eiωt

]
, (5.42)

ρ(2)(t) =
[
ρ(2)(2ω)e−i2ωt + ρ(2)(−2ω)ei2ωt + ρ(2)(0)

]
. (5.43)

Exploiting Equations (5.40) and (5.36) we obtain for n = 1:

ρ(1)(±ω) = ρ
(1)
CV (±ω) + ρ

(1)
V C(±ω) (5.44)

=
∑
v

(
|η(1)
v (±ω)⟩ ⟨ψ(0)

v | + |ψ(0)
v ⟩ ⟨η(1)

v (∓ω)|
)

(5.45)



5.2 Derivation of the time-dependent density matrix perturbation theory 85

where using Equations (5.38) and (5.39) we can write

ρ
(1)
CV (±ω) =

∑
c,v

|ψ(0)
c ⟩ ⟨ψ(0)

c |
[
H(1)(ω), ρ(0)

]
|ψ(0)
v ⟩ ⟨ψ(0)

v |

ε
(0)
v − ε

(0)
c ± ℏω

, (5.46)

ρ
(1)
V C(±ω) =

∑
c,v

|ψ(0)
v ⟩ ⟨ψ(0)

v |
[
H(1)(ω), ρ(0)

]†
|ψ(0)
c ⟩ ⟨ψ(0)

c |

ε
(0)
v − ε

(0)
c ∓ ℏω

(5.47)

=
(
ρ

(1)
CV (∓ω)

)†
(5.48)

Analogously, using Equation (5.41) and (5.36), for n = 2 we obtain:

ρ(2)(±2ω) = ρ
(2)
CV (±2ω) + ρ

(2)
V C(±2ω) +

[
ρ

(1)
CV (±ω), ρ(1)

V C(±ω)
]

(5.49)

=
∑
v

(
|η(2)
v (±2ω)⟩ ⟨ψ(0)

v | + |ψ(0)
v ⟩ ⟨η(2)

v (∓2ω)|
)

+

+
∑
v

|η(1)
v (±ω)⟩ ⟨η(1)

v (∓ω)| −
∑
v,v′

|ψ(0)
v ⟩ ⟨η(1)

v (±ω)|η(1)
v′ (±ω)⟩ ⟨ψ(0)

v′ | ,

(5.50)

ρ(2)(0) = ρ
(2)
CV (0) + ρ

(2)
V C(0) +

[
ρ

(1)
CV (ω), ρ(1)

V C(−ω)
]

+
[
ρ

(1)
CV (−ω), ρ(1)

V C(+ω)
]

(5.51)

=
∑
v

(
|η(2)
v (0)⟩ ⟨ψ(0)

v | + |ψ(0)
v ⟩ ⟨η(2)

v (0)|
)

+

+
∑
v

(
|η(1)
v (+ω)⟩ ⟨η(1)

v (+ω)| + |η(1)
v (−ω)⟩ ⟨η(1)

v (−ω)|
)

+

−
∑
v,v′

(
|ψ(0)
v ⟩ ⟨η(1)

v (±ω)|η(1)
v′ (±ω)⟩ ⟨ψ(0)

v′ | + |ψ(0)
v ⟩ ⟨η(1)

v (±ω)|η(1)
v′ (±ω)⟩ ⟨ψ(0)

v′ |
)

(5.52)

where using Equation (5.38) and (5.39) we can write

ρ
(2)
CV (±2ω) =

∑
c,v

|ψ(0)
c ⟩ ⟨ψ(0)

c |
[
H(1)(ω), ρ(1)(±ω)

]
|ψ(0)
v ⟩ ⟨ψ(0)

v |

ε
(0)
v − ε

(0)
c ± 2ℏω

, (5.53)

ρ
(2)
V C(±2ω) =

∑
c,v

|ψ(0)
v ⟩ ⟨ψ(0)

v |
[
H(1)(ω), ρ(1)(±ω)

]†
|ψ(0)
c ⟩ ⟨ψ(0)

c |

ε
(0)
v − ε

(0)
c ∓ 2ℏω

(5.54)

=
(
ρ

(2)
CV (∓2ω)

)†
, (5.55)

ρ
(2)
CV (0) =

∑
c,v

|ψ(0)
c ⟩ ⟨ψ(0)

c |
[
H(1)(ω), ρ(1)(ω) + ρ(1)(−ω)

]
|ψ(0)
v ⟩ ⟨ψ(0)

v |

ε
(0)
v − ε

(0)
c

(5.56)

=
(
ρ

(2)
V C(0)

)†
. (5.57)



5.2 Derivation of the time-dependent density matrix perturbation theory 86

5.2.3 Double monochromatic perturbation

With the aim of computing the Raman response beyond the Placzek approximation,
we need to account for a finite ωph ̸= 0. To do so, we consider two monochromatic
electric fields, accounting separately for the incoming and outgoing photons. In
the framework of TDDMPT, we consider a perturbative expansion of H(t) with
H(i)(t) = 0 ∀ i ≥ 2 and the first order perturbative term H(1)(t) is the sum of two
monochromatic terms, namely

H(1)(t) = H(1)(ω1)
(
eiω1t + e−iω1t

)
+H(1)(ω2)

(
eiω2t + e−iω2t

)
(5.58)

This perturbation describes, for example, the incident and outgoing electric fields in
a Raman experiment where |ω1 −ω2| = ωph is the energy of the excited (or absorbed)
phonon. We adopted a more general notation with ω1 and ω2 instead of ωin and
ωout, since this approach may be applied in principle also to other process besides
the Raman scattering. Analogously to the single monochromatic case, to obtain the
generic n-th order response, we proceed as follows:

• we write for the generic ρ(n)(t) a Fourier-like expansion in terms of operators
which depend on a linear combination of the frequencies, namely:

ρ(n)(αω1 + βω2)ei(αω1+βω2)t, (5.59)

where α and β are integer numbers such that |α| + |β| = n;

• each of this operators can be written in terms of the projected operators
ρ

(i)
CV (α′ω1 + β′ω2), with α′ and β′ integer numbers such that |α′| + |β′| = i and
i ≤ n;

• we express the ρ
(i)
CV (α′ω1 + β′ω2) in terms of perturbed-like valence wave

functions |η(i)
v (α′ω1 + β′ω2)⟩, generalizing Equation (5.37) and (5.39).

For the description of Raman scattering, only terms up to n = 2 are needed. In what
follows we limit to give the final expressions for n = 1 and n = 2 and address to
Appendix D.2 for their explicit derivation. For the former term, there is no mixing
of frequencies, so the results is the same of the single monochromatic perturbation
case. With the definition of the frequency-dependent Green function projected on
conduction states of Equation (5.38) with α = 1, we obtain for j = 1, 2

|η(1)
v (±ωj)⟩ = G̃v(±ωj)

[
H(1), ρ(0)

]
|ψ(0)
v ⟩ . (5.60)

which is just Equation (5.39) in the case n = 1. For n = 2, defining the frequency-
dependent Green functions

G̃v(αω1 + βω2) =
∑
c

|ψ(0)
c ⟩ ⟨ψ(0)

c |
ε

(0)
v − ε

(0)
c + ℏ(αω1 + βω2)

, (5.61)
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we can write the explicit expression for the generic |η(2)
v (αω1 + βω2)⟩

|η(2)
v (αω1 + βω2)⟩ = G̃v(αω1 + βω2) {•} |ψ(0)

v ⟩ , (5.62)

where inside the curly brackets {•} there are the proper commutators between
H(1)(ωj) and ρ(1)(±ωl) (j, l ∈ {1, 2}) derived in Appendix D.2 in Equations (D.29 -
D.33). We notice how now mixed frequency terms appear in denominators, allowing
for more resonances. We remark that, as in the static and in the single monochromatic
perturbation case, another way to obtain |η(2)

v (αω1 + βω2)⟩ is by solving linear (self-
consistent) systems, reported in Appendix D.2, which may be preferable for numerical
implementation as we avoid the explicit calculation of the empty conduction states.

5.3 Treatment of electric fields

Having derived a framework that allows for the calculations of time-dependent
responses with respect to a perturbation at any given order, in this section we focus
on how to treat a uniform electric field in TDDMPT. This is indeed paramount e.g.
for the derivation of the Raman response. We follow the idea of Ref.[167] for the
static case and then generalize it to the case of a monochromatic field. We consider,
without loss of generality, a perturbation due to a uniform monochromatic electric
field acting on an insulating crystal along the z-axis:

H(1)(t) = H(1)(ω)
(
eiωt + e−iωt

)
= −|e|r̂zEz(ω)

(
eiωt + e−iωt

)
(5.63)

where |e| is the electronic charge and r̂z is the z-component of the position operator
r̂. As a consequence of our approach based on von-Neumann Equation (5.9) or its
time-independent version Equation (5.25), effects of the perturbation appears always
inside commutators with derivatives of the electronic density matrix. For this reason,
in the case of a perturbation in the form of Equation (5.63), the quantities we need
to compute are matrix elements of the commutators between the generic H(1)(ω)
and ρ(n−1)(αω) – as e.g. in Equation (5.28), (5.31), (5.60), and (5.62) – which have
the form:

⟨ψ(0)
c |

[
H(1)(ω), ρ(n−1)(αω)

]
|ψ(0)
v ⟩ ∝ ⟨ψ(0)

c |
[
r̂z, ρ

(n−1)(αω)
]

|ψ(0)
v ⟩ , (5.64)

where the commutators between the position operator and the derivative of density
matrix are well-defined even in the static limit. By definition, we can express each
ρ(i)(αω) as a sum of operators of the type

D = 1
Ωc

∫ d3k

(2π)3Dk (5.65)



5.3 Treatment of electric fields 88

where Ωc is the volume of the unit cell of the crystal, k is defined over the first
Brillouin zone, and we can write

Dk =
∑
v

|αkv⟩ ⟨βkv| , (5.66)

where |αkv⟩ = eik·r |α̃kv⟩ and |βkv⟩ = eik·r |β̃kv⟩ are Bloch-like wave-functions with
|α̃kv⟩ and |β̃kv⟩ their lattice-periodic part. If the functions Dk are analytic and
periodic in k, it holds

Ωc

∫ d3k

(2π)3
∂

∂kz
Dk = 0 (5.67)

and exploiting this property it is straightforward to demonstrate that

[r̂z, D] = iΩc

∫ d3k

(2π)3

∑
v

eik·r∂ |α̃kv⟩ ⟨β̃kv|
∂kz

e−ik·r. (5.68)

Form this, it follows that in presence of an external (time-dependent) uniform electric
field along the z-axis, the matrix elements of Equation (5.68) between unperturbed
wave-functions {|ψ(0)

kc ⟩} and {|ψ(0)
kv ⟩} have the form:

1
N

⟨ψ(0)
kc | [r̂z, D] |ψ(0)

kv ⟩ = i
∑
v′

⟨ψ̃(0)
kc | ∂ |α̃kv′⟩ ⟨β̃kv′ |

∂kz
|ψ̃(0)

kv ⟩ (5.69)

where N is the number of unit cells and the scalar product on the right-hand side is
taken over a single unit cell.

5.3.1 Derivatives of polarisation and non-linear optical susceptibili-
ties

The theory developed for TDDMPT and the treatment of uniform electric fields,
makes it particularly convenient to compute the derivatives of polarisation P with
respect to a uniform electric field. Indeed, in the most general case, the relation
between polarization P and the electric field E reads

P = ε0
←→χ (E) · E, (5.70)

namely the induced polarization P is related to the electric field E via a susceptibility
tensor←→χ (E) which depends on the electric field itself. Expanding←→χ (E) in terms
of the electric field we obtain

P = ε0
(←→χ (1) · E + E ·←→χ (2) · E + . . .

)
, (5.71)

where the terms←→χ (n) are the so-called non-linear optical susceptibilities an it holds

←→χ (n) = 1
ε0

∂nP
∂En = P(n). (5.72)
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These quantities are particularly relevant in the field of non-linear optics but also
e.g. for the Raman response of a polar longitudinal mode in the long-wavelength
limit, as will be discussed in next section.

For simplicity of notation, but without losing generality, we consider again a
static electric field along the z-axis, but the results holds also for a monochromatic
field. Thanks to Equation (5.7) we have that:

P (n)
z = − |e|

NΩc

∂n+1Eel

∂En+1
z

= − 2|e|
NΩc

Tr
[
rzρ

(n)
]
, (5.73)

where −|e| is the electronic charge, N the number of unit cells and Ωc their volume.
Exploiting Equation (5.22) and using the property of the trace Tr [[A,B]C] =
Tr [A[B,C]], we obtain:

P (n)
z = − 2|e|

NΩc
Tr

[[
rz, ρ

(0)] ρ(n)
V C −

[
rz, ρ

(0)] ρ(n)
CV + 1

2

n−1∑
i=1

([
rz, ρ

(i)
CV

]
O

(n−i)
V C −

[
rz, ρ

(i)
V C

]
O

(n−i)
CV

)]
=

(5.74)

= 2|e|
NΩc

∑
v,v′,k

Im

[
2 ⟨η̃(n)

k,v |
∂ |ψ̃(0)

k,v′ ⟩ ⟨ψ̃(0)
k,v′ |

∂kz
|ψ̃(0)

k,v⟩ +
n−1∑
i=1

⟨χ̃(n−i)
k,v |

∂ |η̃(i)
k,v′ ⟩ ⟨ψ̃(0)

k,v′ |
∂kz

|ψ̃(0)
k,v⟩

]
(5.75)

where n ≥ 2 and the operators O(i)
V C are written as

O
(i)
V C =

∑
k

|ψ(0)
k,v⟩ ⟨χ(i)

k,v| (5.76)

with |χ(i)
k,v⟩ = O

(i)
CV |ψ(0)

k,v⟩. If n = 1, we recover the usual expression for the (linear)
static electronic susceptibility χ(1):

χ(1) = − 2|e|
ε0NΩc

Tr
{[
rz, ρ

(0)
]
ρ

(1)
V C −

[
rz, ρ

(0)
]
ρ

(1)
CV

}
= (5.77)

= − 4|e|
ε0NΩc

Re

∑
v,c

⟨ψ(0)
k,v| rz |ψ(0)

k,c⟩ ⟨ψ(0)
k,c| rz |ψ(0)

k,v⟩

ε
(0)
v − ε

(0)
c

 (5.78)

where for simplicity we neglected the Cartesian indices in the susceptibility tensor.
Following a similar approach, one obtains the expressions for ω-dependent non-

linear susceptibilities. For example, from the second derivative with respect to a
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monochromatic uniform electric field we obtain:

χ(2)(ω) = 2e
ε0NΩc

∑
v,v′,k

2Im

⟨η̃(2)
k,v(0)|

∂ |ψ̃(0)
k,v′⟩ ⟨ψ̃(0)

k,v′ |
∂kz

|ψ̃(0)
k,v⟩


+ i ⟨η̃(1)

k,v(+ω)|
∂ |η̃(1)

k,v′(+ω)⟩ ⟨ψ̃(0)
k,v′ |

∂kz
|ψ̃(0)

k,v⟩

+ i ⟨η̃(1)
k,v(−ω)|

∂ |η̃(1)
k,v′(−ω)⟩ ⟨ψ̃(0)

k,v′ |
∂kz

|ψ̃(0)
k,v⟩

 . (5.79)

The χ(2)(ω) tensors are also called electro-optic tensors and as we will see in what
follows, they play a key role in the Raman response of insulating crystals when
the Raman active mode is a longitudinal polar mode in the long-wavelength limit.
It is possible to compute ab-initio the χ(2)(0) in the QE code, where it is imple-
mented exploiting the 2n+ 1 theorem[170], however we are currently working on its
generalization to the frequency-dependent case using TDDMPT.

5.4 Raman response with TDDMPT

In this section we apply the theory introduced above to the case of the vibrational
Raman response of an insulating crystal at T = 0K. For convenience, we sum up
here the discussion of previous Chapter 4 on the different levels of approximations
one can adopt. In the most general case, to treat the (Stokes) vibrational Raman
response of a crystal, we have to account for an inelastic scattering process where an
incoming photon of energy ωin interacts with the system and exchange an amount
of energy ωph, used to excite the phonon of a Raman active mode. As a result
of the interaction, an outgoing photon with energy ωout = ωin − ωph is emitted.
In the Placzek approximation, we consider a process where ωin is smaller than
electronic transition energies and much higher than vibrational energies, so that one
can consider ωin = ωout = 0. Sometimes it is instead necessary to account for the
fact that laser frequencies are close or even matches electronic transitions, and this
can be done considering ωin = ωout = ω, but still neglecting ωph = 0. Finally, in
specific situations one has to include a finite ωph ̸= 0, as we shown in section 4.3 for
1D systems as carbyne or carbon nanotubes. TDDMPT formalism offers a compact
and elegant framework to compute fully ab initio Raman responses at different
level of approximations, allowing also for the inclusion of non-linear optic effects
of macroscopic electric fields generated by lattice polar vibrations of longitudinal
optical phonons in the long wave-length limit.

5.4.1 Static response in the Placzek approximation

Using TDDMPT in its time-independent version, we study the Raman response
of an insulating system in the Placzek approximation. The object of interest is



5.4 Raman response with TDDMPT 91

the Raman activity tensor of Equation (4.2), which we rewrite here making use of
Equation (4.8) with ω = 0 to express it in terms of derivatives of the electronic
ground state energy Eel:

Aνlm =
∑
kτ

∂3Eel

∂El∂Em∂ukτ

wν
kτ√
Mτ

. (5.80)

We remind that El (Em) is the l-th (m-th) Cartesian component of a uniform electric
field, ukτ is the displacement of the τ -th atom in the k-th direction, Mτ is its atomic
mass and wν

kτ is the orthonormal vibrational eigenmode ν. In the DMPT framework,
the third-order derivative of the electronic energy becomes:

∂3Eel

∂El∂Em∂ukτ
= 2Tr

[
∂2ρ

∂El∂Em

∂H

∂ukτ

]
. (5.81)

We remark that, in this case, one can also calculate the third-order derivatives as
finite differences of electronical susceptibility χlm = ∂2Eel/∂El∂Em (which can be
computed using standard linear response techniques), namely:

∂3Eel

∂El∂Em∂ukτ
≃ χlm(+∆ukτ ) − χlm(−∆ukτ )

2∆ukτ
. (5.82)

However, even in this case of the Placzek approximation it may be convenient
to adopt the DMPT approach instead. In the finite-differences case, indeed, one
would need 36Natoms first-order calculation, against the six second-order calculation
required to compute the ρ(2) of Equation (5.81). The DMPT approach is thus
particularly advantageous when dealing with large systems with many atoms in the
unit cell[158].

We conclude this section writing an explicit expression for the third-order deriva-
tive in the case of the 1D model (Equation (4.13)), making use of the quantities
defined in this Chapter:

∂3Eel

∂E2∂δrα
= 2
Nk

∑
k

∑
v

⟨η(2)
v,k|

∂H

∂δrα
|ψ(0)
v,k⟩ −

∑
v,v′

⟨η(1)
v,k|η

(1)
v′,k⟩⟨ψ

(0)
v′,k|

∂H

∂δrα
|ψ(0)
v,k⟩

+
∑
v

⟨ψ(0)
v,k|

∂H

∂δrα
|η(2)
v,k⟩ +

∑
v

⟨η(1)
v,k|

∂H

∂δrα
|η(1)
v,k⟩

]
, (5.83)

where in the model we have one valence (occupied) band only and the {|η(i)
s,k⟩}

(s = v, v′; i = 1, 2) can be computed with Equation (5.31) or (5.28).

5.4.2 Resonant Raman response

Analogously to the previous case, we first write the expression for the Raman activity
tensor in the resonant case (Equation (4.5)) making use of Equation (4.8) to express
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it in terms of derivatives of the energy:

Aνlm(ω) =
∑
kτ

∂3Eel(ω)
∂El∂Em∂ukτ

wν
kτ√
Mτ

, (5.84)

where in the TDDMPT approach it can be demonstrated that:

∂3Eel(ω)
∂El∂Em∂ukτ

= ∂χlm(ω)
∂ukτ

= 2Tr
[
∂2ρ(0)
∂El∂Em

∂H

∂ukτ

]
. (5.85)

The term ρ(2)(0), defined in Equation (5.53), comes from the mixing of terms
in +ω and −ω from the perturbative expansion. Hence, it can be imagined as
the quantity which accounts for processes where photons with different, opposing,
energies are involved: one is absorbed and the other is emitted, as in the case of
Raman scattering. Again, we remark that it is in principle possible to compute
the third-order derivative with the finite differences approach, however the same
considerations on the convenience of using TDDMPT, especially for large systems
with several atoms per cell, applies in this case. Finally we make use of quantities
defined in this Chapter to write an explicit expression for the third-order derivatives
in the case of the 1D model (Equation (4.15)):

∂3Eel(ω)
∂E2∂δrα

=2Tr
[
ρ(2)(0) ∂H

∂δrα

]
=

= 2
Nk

∑
k

[∑
v

⟨η(2)
v,k(0)| ∂H

∂δrα
|ψ(0)
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]
, (5.86)

where we used Equations (5.53) and (5.56), and the perturbed-like wave-functions
can be computed using Equation (5.37) or (5.39).

5.4.3 Going Beyond the Placzek approximation

Finally, we write the general expression for the Raman activity tensor beyond the
Placzek approximation in the TDDMPT framework. In particular, we start from
Equation (5.87), which we rewrite:

Aνlm(ωin, ωout, ωph) =
∑
kτ

∂3Eel(ωin, ωout, ωph)
∂El∂Em∂ukτ

wν
kτ√
Mτ

. (5.87)

We focus on the Stokes process of phonon creation, and adapting to the notation
used in the present Chapter, we put ωin = ω1, ωout = ω2 and ωph = ω1 − ω2.
Moreover, to simplify the notation for the process we are interested in, we identify
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(ωin, ωout, ωph) ≡ (ω1 − ω2). With these considerations, we now express the third-
order derivative of the energy of above Equation (5.87) in the TDDMPT formalism:

∂3Eel(ω1 − ω2)
∂El∂Em∂ukτ

= 2Tr
[
∂2ρ(ω1 − ω2)
∂El∂Em

∂H

∂ukτ

]
. (5.88)

We remark that in this case it is not possible to compute the third-order derivative
as finite differences of electronic susceptibilities, making necessary to resort to other
approaches e.g. the TDDMPT one. Analogously to the previous sections, we give
an explicit expression for (5.88) in terms of quantities defined in this Chapter (and
in Appendix D) for the case of the 1D model:
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,

(5.89)

where we used Equation (D.25), which we report here

ρ(2)(ω1−ω2) = ρ
(2)
CV (ω1−ω2)+ρ(2)

V C(ω1−ω2)+
[
ρ

(1)
CV (ω1), ρ(1)

V C(ω2)
]
+
[
ρ

(1)
CV (ω2), ρ(1)

V C(ω1)
]

(5.90)
and all perturbed-like wave-functions and projected operators are defined in Appendix
D.

5.4.4 Raman response with non-linear corrections

To conclude this part on the application of TDDMPT to the study of the Raman
response, we take into consideration the case where the optical phonon involved
in the process is longitudinal, meaning that its oscillation at |q| ∼ 0, the so-called
long-wavelength limit, may induce a macroscopic electric electric field if the crystal is
polar. If the oscillations of this polar mode are induced by an external electric field,
in order to account for system’s polar response in this situation, one must resort to
the general relation between polarization and electric field given in Equation (5.71),
where the so-called non-linear optical susceptibilities terms appears.

As far as the Raman response is concerned, we focus on the cases where the
finite differences approach is still valid so that we can write for an insulating crystal:

∂χ
(1)
lm

∂uk,τ
= ∂χ

(1)
lm

∂uk,τ

∣∣∣∣∣
E=0

− 8π
Ωc

∑
i Z

∗
ik,τqi∑

i,i′ qiεii′qi′

∑
i

χ
(2)
lmiqi, (5.91)
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where the first term on the right-hand side is computed at null electric field, Z∗
τ is

the effective charge tensor of atom τ , and χ(2)
lmi is the non-linear optical susceptibility

tensor as defined by the expansion in Equation (5.71). In order to correctly describe
a Raman process in presence of a polar mode, e.g. in III-V cubic semiconductors
as GaAs, it is thus necessary to use the above Equation (5.91) in the calculation
of Raman activities. To do so, TDDMPT offers a self-consistent and compact
framework, as it allows for the calculation of all the quantities involved.

5.5 Implementation of the Raman response in Quantum
ESPRESSO

This last section is dedicated to the implementation of the calculation of the resonance
Raman response we did in the Quantum ESPRESSO (QE) code[169], using the
TDDMPT formalism discussed above. Being QE based on a DFT approach, we
must now explicitly account for self-consistent terms given by the dependence of
the generic H(n) on ρ(n). As anticipated, for the sake of time-efficiency, but without
losing accuracy, it is convenient to avoid the explicit calculation of the (unperturbed)
conduction states. In TDDMPT this is possible since the main ingredients can be
obtained solving self-consistent linear systems depending on the valence states only.

As a starting point, we adopt the already implemented static Raman response[158],
and generalize it in order to account for a time-dependent uniform electric field
perturbation. With the TDDMPT approach it is in principle possible to implement
in QE the resonance Raman response beyond the Placzek approximation. Even if
this is our final goal before a public release, the code that allows this calculation is
still under testing, and for this reason we limit here to present our results on the
response to a single monochromatic uniform electric field. In what follows, we briefly
discuss how self-consistency enters in TDDMPT Equations and finally we test our
implementation on the calculation of the Raman tensor of silicon in its zincblende
structure. More details on the work-flow of the code and on the routines we used or
modified are in Appendix D.3. We also remark that, at the present moment, the
implementation supports only local density approximation (LDA) functionals.

5.5.1 Self-consistency in TDDMPT

Without losing generality, we address here the case where self consistency stems
from a (single particle) time-dependent Kohn-Sham Hamiltonian HKS that reads

H
[ρ(t)]
KS (t) = Vext.(t) + VHXC[ρ(t)] (5.92)

where we made explicit the fact that the time dependence enters in the Hamiltonian
both explicitly through the external potential Vext.(t), which accounts for both
the static, ionic (pseudo-)potential and for the time-dependent perturbation, and
through the functional dependence of the Hartree-Exchange-Correlation (HXC)
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functional potential on the time-dependent electronic density ρ(t). For simplicity,
hereafter we will neglect the explicit functional dependence on ρ(t) unless needed,
so e.g. we will write VHXC[ρ(t)] = VHXC(t). The perturbative expansion comes
from the perturbation in Vext.(t) and we consider V (i)

ext.(t) = 0 for i ≥ 2. In order to
obtain the Raman response, the implementation was made considering an external
perturbation constituted by a monochromatic electric field, however we want to
remark that the results presented in this section are more general and apply for any
time-dependent external perturbation. For the sake of a lighter notation, in what
follows Cartesian indexes will be neglected unless otherwise stated. Accounting also
for self-consistency, von-Neumann Equation (5.33) for the generic ρ(n)(t) becomes:

iℏρ̇(n)(t) =
[
H

(0)
KS , ρ

(n)(t)
]

+
[
H

(1)
KS(t), ρ(n−1)(t)

]
+
[
H

(2)
KS(t), ρ(n−2)(t)

]
, (5.93)

where

H
(1)
KS(t) = V

(1)
ext.(t) + V

(1)
HXC(t), (5.94)

H
(2)
KS(t) = V

(2)
HXC(t). (5.95)

In real-space representation it holds

V
(1)

HXC(r, t) =
∫

KHXC(r, r′)ρ(1)(r′, t)d3r′ =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(1)(r′, t)d3r′, (5.96)

V
(2)

HXC(r, t) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(2)(r′, t)d3r′ +

+
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, t)ρ(1)(r′′, t)d3r′d3r′′, (5.97)

where KHXC is the Hartree-Exchange-Correlation kernel, defined in terms of func-
tional derivatives of the HXC energy functional EHXC[ρ] with respect to electronic
density, as in standard DFT approaches. In the previous Equations we also used
the instantaneous approximation, namely we suppose a real and time-independent
KHXC(r, r′). This hypothesis will always be adopted in what follows, implying that
the time-dependence of the induced potentials comes from the induced charge densi-
ties only. Under the hypothesis we made of V (i)

ext.(t) = 0 for i ≥ 2, the self-consistent
terms are those with n = 1 and n = 2, which are of interest e.g. for the Raman
response. Considering a monochromatic perturbation, we substitute in Equation
(5.93) the trial solution of Equation (5.34). With some manipulation, we finally
obtain the self-consistent linear systems which defines the perturbed-like valence
wave functions {|η(1)

v (±ω)⟩} and {|η(2)
v (0)⟩}, needed e.g. for the Raman response

(further details on their derivation are in Appendix D.3). For the former it reads:(
H(0) − ε(0)

v ∓ ℏω
)

|η(1)
v (±ω)⟩ = −PC

[
V

(1)
ext.(±ω) + V

(1)
HXC(±ω), ρ(0)

]
|ψ(0)
v ⟩ , (5.98)
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where in real-space representation it holds

V
(1)

HXC(r,+ω) = V
(1)

HXC(r,−ω) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(1)(r′, ω)d3r′, (5.99)

with
ρ(1)(r, ω) = ρ

(1)
CV (r, ω) + ρ

(1)
V C(r, ω). (5.100)

To obtain above Equations, we also exploited the fact that being both ρ(1)(r, t) and
ρ(1)(r, ω) real, we have that ρ(1)(r,−ω) = [ρ(1)(r, ω)]† = ρ(1)(r, ω).
For the {|η(2)

v (0)⟩} instead it holds

(
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where in real-space it holds

V
(2)

HXC(r, 0) =
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δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(2)(r′, 0)d3r′+

+ 2
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with
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(5.103)
With these quantities, it is possible to compute the Raman response of an insulating
crystal at T = 0K, as we do in next section for the test case of a silicon crystal.

5.5.2 Test on the Raman response of silicon

As described in details in Appendix D.3, we implemented the calculation of the
Raman response in the case of a single monochromatic frequency in the QE code.
The final goal is to allow going beyond the Placzek approximation, however we
limit here to present results obtained with the code tested for the calculation of the
ω-dependent Raman activity of Equation (5.84), which we rewrite:

Aνlm(ω) =
∑
kτ

∂3Eel(ω)
∂El∂Em∂ukτ

wν
kτ√
Mτ

, (5.104)

where the novelty is the calculation of the third-order energy derivative in the
TDDMPT approach, namely

∂3Eel(ω)
∂El∂Em∂ukτ

= ∂χlm(ω)
∂ukτ

= 2Tr
[
∂2ρ(0)
∂El∂Em

∂H

∂ukτ

]
. (5.105)
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The system we choose for testing is silicon in a zincblende (cubic) crystal structure,
with a unit cell with two silicon atoms, labelled Si1 and Si2, placed in crystal
positions (0, 0, 0) and (1/4, 1/4, 1/4), respectively, defined with respect to the lattice
parameter a = 10.20 Bohr. We used an LDA functional and pseudo-potentials
without non-linear core corrections, with a kinetic energy cutoff of 20 Ry for the
wave-functions and 80 Ry for the charge density. We computed the third-order
derivative of the energy appearing in Equation (5.105) both with the finite differences
approach and with the density-matrix formalism and studied its convergence with
respect to the number of inequivalent k-points N ineq

k in the Brillouin zone. For
symmetry reasons related to the crystal structure, and due to the fact that we are
dealing with two electronically equivalent atoms Si1 and Si2, it holds

∂3Eel(ω)
∂El∂Em∂uk,Si1

= − ∂3Eel(ω)
∂El∂Em∂uk,Si2

= |ϵlmk|R, (5.106)

where ϵlmk is the Levi-Civita tensor and R is the value of the olny non-zero component
of the response tensor. In Figure 5.1, we compare the values obtained for R with
both approaches and in particular we study their convergence with respect to the
number of inequivalent k-points N ineq

k . As it can be observed, both approaches
reach the same converged values, confirming the goodness of the code and of the
TDDMPT approach. However, it is worth to mention that the TDDMPT methods
allows for a faster convergence with respect to the number of k-points.

5.6 Conclusions

In this Chapter, we presented the time-dependent density matrix perturbation
theory (TDDMPT), a perturbative theory formulated on the electronic density
matrix instead of the standard wave-function based approaches. TDDMPT allows
for the ab-initio calculation of response properties of materials in a compact and
elegant way at any perturbative order, avoiding many problems that affects other
approaches. Indeed, by definition the TDDMPT approach is free from gauge-
dependency problems and moreover it offers a well-defined framework to treat
perturbations coming from a uniform electric field, a notoriously difficult task due
to the ill-definition of the position operator in periodic systems. Plus, at any
perturbative order, all the quantities needed for a TDDMPT calculation can be
obtained solving (self-consistent) linear equations in terms of valence states only,
avoiding the calculation of empty states, which in principle may even be infinite.
Finally, TDDMPT allows for an impressive time-reduction, when dealing with
systems with many atoms, when compared with other approaches based e.g. on
finite differences.

After deriving the equations to treat a generic time-dependent perturbation, we
focused on the specific case of a uniform electric field. Indeed, TDDMPT allows
for a simple and compact derivation of non-linear optical susceptibilities, namely
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Figure 5.1. For the silicon crystal in the cubic structure described in the text, we compare
the convergence behaviours of the only non-zero component R of the Raman response
tensor of Equation (5.106) for two representative values of photon frequencies ω = 0 eV
and ω = 2.04 eV, where LDA calculation yield a direct energy band gap of Edir

gap = 2.56
eV and and indirect band gap of Eindir

gap = 0.51 eV. We highlight the agreement between
the converged values obtained with the finite differences approach and the TDDMPT
one we implemented in QE. Moreover, we remark how the TDDMPT methods presents
a faster convergence with respect to the number of inequivalent k-points N ineq

k .
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derivatives of polarization with respect to an electric field, central quantities in
many phenomena. We then applied our results to the case of the Raman response,
giving, for the first time, a compact and self-consistent approach to compute the
Raman response of an insulating crystal beyond the Placzek approximation. Indeed,
TDDMPT is a unique tool to accomplish this goal, as it is not possible to resort to
usual methods for the calculation of Raman spectra in the Placzek approximation,
based on finite differences of electronic susceptibilities. Finally, we showed how to
implement TDDMPT equations in a DFT self-consistent framework, paving the
road for its implementation in ab-initio codes. In particular, we implemented the
calculation of the frequency-dependent Raman response of an insulating crystal in
the Quantum ESPRESSO code, and presented the results of the tests on a silicon
crystal.
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Conclusions

Despite their apparent simplicity, 1D conjugated systems were found to harbor a
multitude of interesting phenomena, resulting from the interplay between few key
elements that we identified and discussed in our study. To conclude, in this section
we briefly review and sum-up the main results of our work.

The first aspect we focused on, was the study of the manifestation of charge
density waves with different characters in 1D system, a feature which is reflected
by the competition between two different structural realizations of these systems,
resulting from the interplay between a Peierls electronic instability, electron-ion
interactions and atom-equivalence breaking mechanisms. With the aid of a simple
tight-binding model of a diatomic chain, we analyzed the role played by the electron-
phonon coupling, which in the model we found acting as a guiding parameter of
a second order structural phase transition between a dimerized, less symmetric,
structure, and an undimerized, more symmetric one. Moreover, thanks to the strict
relation between polar and structural properties in these systems, we showed how
this phase transition is also a prototypical ferroelectric phase transition. Even if
these results were obtained in the framework of the model, the conclusions on the
importance of the electron-phonon coupling in determining the character of CDWs
and ferroelectric properties in 1D systems remain valid even beyond.

A part for its role in CDWs formation, the electron-phonon coupling was also
found to be related to, and hence to account for, the presence of a dielectric
environment around these systems. This statement is supported by the agreement
we found between the behaviour of the electronic energy gap with respect to the zone-
center frequency of the longitudinal-optic mode of an infinitely-long straight chain of
carbon atoms, i.e. carbyne, obtained on one hand within the framework of the model
with parameters fitted to describe carbyne, and on the other hand from resonance
Raman spectroscopy experiments on carbyne chains confined inside different carbon
nanotubes, taken from Ref.[71]. The fact that the electron-phonon coupling plays
a relevant role in these systems is also remarked by the high value of the e-ph
coupling term β ≃ 7.20 eV/Å that we found in the fitted-model. The validity of the
results obtained with the fitted-model is also supported by the comparison with DFT
calculations on carbyne and carbyne-derived systems, putting forward this simple
model as a reliable and versatile tool to describe physics of 1D conjugated systems.
Indeed, this model is particularly suitable to describe the main characteristics of
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conjugated polymers, a class of carbon-based organic (quasi-)1D materials, such as
carbyne and polyacetylene, characterized by a delocalized orbital along a backbone
chain, resulting in many interesting and useful optoelectronic applications.

Another element that we found having a fundamental relevance in determining
the properties of 1D conjugated systems were the quantum-anharmonic effects.
Indeed, results of recent works highlighted the importance of correctly accounting
for the quantum nature of ions and for their anharmonic interactions, in particular
in systems with light atoms, such as conjugated polymers, and in presence of a
displacive phase transition in proximity of a CDW- or a ferroelectric-instability, as
is the case of the systems described by the model. In order to include QAE in our
theoretical framework, we used the stochastic implementation of the self-consistent
harmonic approximation (SSCHA)[18], a variational theory, based on the free energy
functional, that allows to determine thermodynamic properties of materials with
the inclusion of QAE in a non-perturbative and fully-ab initio approach.

To evaluate the role of QAE on CDWs formation and on the related structural
properties, we focused on the prototypical case of carbyne, described in the framework
of the fitted-model. We found that QAE are responsible for a renormalization of
∼ 70% of the energy gain between the dimerized phase of carbyne, called polyyne,
with respect to the undimerized one, called cumulene. Regarding the competition
between these two phases, we also found that, contrary to the common Landau-
Peierls picture of a second order phase transition in temperature, the inclusion
of QAE reveals that the transition is actually of first order, in agreement with
some previous results[17]. In particular, the polyyne phase is found to be the most
favorable configuration for a wide range of temperatures, up to TQAE

CDW ≃ 4300K,
where cumulene finally becomes stable, consistently with the fact that the existence
of this high symmetric phase of carbyne was theorized but never observed.

As we discussed, it is however possible to stabilize the undimerized phase in 1D
systems exploiting particular mechanisms, e.g. breaking the equivalence between
atoms or varying the electron-phonon coupling, which in the framework of the model
result in a second order structural phase transition. The impact of QAE on this
process in carbyne-derived systems is to shift the critical values of the transition,
contributing to the stabilization of the Peierls electronic instability and thus going
against the formation of bond-centered CDWs. The validity of the presented
results is guaranteed thanks to a comparison with ab-initio plus SSCHA results on
carbyne, taken from Ref.[17]. In this way, the model was proven to be a reliable
tool for accurate DFT-plus-QAE-level results, while at the same time guaranteeing
an impressive computational advantage with respect to ab-initio approaches. We
finally argue that even if results were presented for carbyne and carbyne-derived
systems, the key message on the impact of QAE holds, at least qualitatively, even
for other systems described by the model, e.g. for polyacetylene and substituted
polyacetylenes.

After having assessed the role of quantum-anharmonicity in determining the
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optimal configuration of 1D conjugated systems, we then turned our attention to
the study of their polar responses, i.e. to study those quantities that can be defined
in terms of linear variations of polarization with respect to an external perturbation.
Indeed, as we discussed, on one hand, polarization in these 1D systems is strictly
connected to their structural properties, on the other hand, it is known that CDWs
have the effect of enhancing polar responses in materials through mechanisms that
involve symmetry breaking and strong electron-phonon coupling.

Following this idea, we studied, in the framework of the model, perturbations
where the e-ph coupling play a central role. In particular, we focused on the response
with respect to atomic displacements, quantified by the effective charges Z∗, and on
the response with respect to a strain, quantified by the piezoelectric coefficients. We
found that both quantities present a strong enhancement when reaching the critical
point of the structural transition from the dimerized configuration, the piezoelectric
coefficient showing a diverging behaviour due to the order of the transition and
reminiscent of the morphotropic behaviour of piezoelectric perovskites.

Instead, we traced back the enhancement of the effective charges to the mechanism
of the adiabatic charge transport of the Thouless pump, which results in an inverse
proportionality relation between Z∗ and the energy gap Egap. The intrinsically
topological character of this mechanism, ensures stability of the enhancement against
fluctuations and anharmonicity. Calculations of effective charges with the inclusion
of QAE not only confirmed this hypothesis, but even shown that QAE determine
a further enhancement of the response as a consequence of the peculiar relation
between Z∗ and Egap and of the renormalization of the critical values of the transition
due to the impact of QAE.

Our theoretical predictions on the behaviour of polar responses showed a re-
markable agreement when compared with DFT results obtained on prototypical
conjugated polymers. Having in mind the role of the e-ph coupling parameter as
a guiding parameter of the structural phase transition in the model, we decided
to perform DFT calculations varying the long-range mixing parameter entering
a range-separated hybrid functional. The reason for choosing this computational
handle was motivated by results showing how these long-range mixing parameters
correctly account for screened Coulomb vertex corrections to the dressing of the
e-ph coupling in conjugated systems. Moreover, these mixing parameters are also
directly related to the presence external dielectric environment around a system,
consistently with our discussion on the role of the external environment on the e-ph
coupling in conjugated polymers presented in section 1.3.

Finally, we showed that piezoelectric conjugated polymers outperform, in princi-
ple, state-of-the-art organic piezoelectric, mostly thanks to the strongly anomalous
effective charges of carbon, larger than 5e – ordinary values being of the order of 1e
– and reaching the giant value of 30e for band gaps of the order of 1 eV. Thus, our
results put forward conjugated polymers, and in general 1D conjugated systems, as
a class of functional materials with tunable and enhanced polar response properties.
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Last part of this work was devoted to the task of extending the theoretical
framework we developed so as to include the description of Raman response of 1D
systems. Aiming to characterize both their vibrational and structural properties, we
focused on the vibrational Raman response, one of the most widely used experimental
techniques, based on the inelastic scattering between a photon and a phonon. We
analyzed this response under different levels of approximation. The main result we
found is that in order to correctly reproduce experimental results on 1D conjugated
systems, it is necessary to go beyond the commonly adopted Placzek approximation,
where one describes the process of Raman scattering neglecting both the frequency
of the photon and of the phonon involved, and include effects of resonances in the
theoretical description. Indeed, the intensity of the resonant Raman response of
the longitudinal optic mode of carbyne obtained with the fitted-model, showed a
huge enhancement, up to 500 times the value obtained neglecting laser-frequency
dependence. More specifically, these resonances may appear both when the photon
energy matches the energy of an electronic transition, or when it matches the energy
of a transition between an electronic state a vibrational state in another electronic
state, resulting in the presence of two resonant peaks, consistently with experimental
results obtained on the resonant Raman response of carbon nanotubes[152].

In order to go beyond the Placzek approximation, it was necessary to resort to a
novel approach, since the usually adopted one of calculating the Raman response as
finite-differences of electronic susceptibility breaks down. To accomplish this task,
we generalized the idea presented in Ref.[167] and developed the time-dependent
density matrix perturbation theory (TDDMPT), which enables the calculation of
material response properties at any perturbative order in a concise and elegant
manner, overcoming many issues found in other methods. The approach we propose
of using a perturbative theory formulated on the electronic density matrix instead of
the standard wave-function based approaches, presents many advantages both from
a theoretical and practical point of view. Indeed, being based of the density matrix,
TDDMPT is inherently free from gauge-dependency problems. Moreover, it provides
a clear framework to handle perturbations from a uniform electric field, a notoriously
challenging task due to the ill-defined position operator in periodic systems. Then,
from a practical point of view, TDDMPT quantities can be computed as solutions
of self-consistent linear equations involving valence states only, eliminating the need
to calculate empty states, which in principle may be even infinite. Additionally,
TDDMPT significantly reduces computational costs to obtain responses of large
systems containing many atoms, as compared with other approaches. In the case of
the Raman tensor, e.g., the TDDMPT approach allows going from 36 ×Natoms first-
order calculations, needed for the finite differences approach, to just 6 second-order
calculations.

After having derived the equations for a generic time-dependent perturbation, we
focused on the case of uniform electric fields and showed how TDDMPT facilitates a
straightforward derivation of non-linear optical susceptibilities, crucial quantities in
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many phenomena. We then applied our findings to compute the Raman response of
an insulating crystal beyond the Placzek approximation. The method we derived is
unique in doing this, as traditional methods for Raman spectra calculation based on
finite differences cannot be used in this context. Finally, TDDMPT equations are
suitable for a straightforward generalization in the framework of density-functional
theory, offering a compact and elegant way for ab-initio calculations. We thus
implemented TDDMPT equations to calculate the frequency-dependent Raman
response of an insulating crystal in the Quantum ESPRESSO code, and presented
test results for a silicon crystal.
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Appendix A

The stochastic self-consistent
harmonic approximation in the
model

In this Appendix we discuss about the details on the stochastic self-consistent
harmonic approximation (SSCHA) applied in the framework of the 1D model. As
discussed in chapter 2, to do SSCHA calculations we need several supercells of the
system under study, each with a different atomic configuration. Atomic positions in
each supercell are chosen according to the Gaussian probability distribution used to
compute the free energy of the system, as described in the main text. The optimal
configuration of the system at a target temperature T is obtained minimizing the
free energy. To do so, we need energies and forces computed on the supercells. In
the framework of the model, it is straight-forward to generalize the tight-binding
description to the case of a supercell and compute energy and forces at a fraction of
time with respect to using DFT codes. We use the dynamical matrices obtained in
the harmonic approximation on the supercell as a starting probability distribution
for the SSCHA minimization. In what follows, in section A.1 we first derive the
expressions for energies, forces and dynamical matrices in the generalized tight-
binding model, and then in section A.2 we give more details on the computational
parameters used in the free energy minimization process.

A.1 Generalized tight-binding model

To set the ground, we fix some notations and definitions:

• Ncells is the number of cells in the supercell;

• n is the number of atoms per cell;

• ne is the number of electrons per atom contributing to the electronic band
structure. All atoms contribute equally;
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• Nat is the number of atoms in the supercell (it holds Nat = Ncells × n);

• a is the length of the unit cell;

• Ls.c. = aNcells is the length of the supercell;

• ∆ (> 0) is the absolute value of the onsite energy. The atoms of the supercell
have values of onsite energy with alternating signs;

• −t (t > 0) is the value of the hopping energy between nearest neighbours in
the case of equidistant atoms;

• r
(0)
α = α ·a/2 is the position of atom α in the supercell in the case of equidistant

atoms, with α = 1, . . . , N ;

• δrα is the displacement of atom α from the position r
(0)
α . It quantifies the

displacement of atom α from the position it would have in a chain with
equidistant atoms;

• rα = r
(0)
α + δrα is the position of atom α in the supercell;

• δuα = δrα/a is the displacement of atom α from r
(0)
α in adimensional units;

• β is the electron-phonon coupling parameter, measured in units of energy
divided by length. It is the same for every atom;

• δtα = −β(rα+1 − rα − a/2) = −β (δrα+1 − δrα) is the variation of hopping
energy between atoms α and α+ 1 due to atomic displacements with respect
to the equidistant atoms configuration;

• −tα = −(t+ δtα) is the hopping energy between atoms α and α+ 1;

• Kela is the elastic constant parameter used to account for σ-bonds stiffness
between neighbouring atoms. It is the same for every pair of neighbours;

• Nk is the number of k-points used in the electronic calculations.

All results were obtained with n = 2 and with periodic boundary conditions (PBC)
adopted on the supercell, hence it holds •α+N ≡ •α for every quantity that depends
on the index α.
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A.1.1 Electronic Hamiltonian

For the electronic problem, we generalize the first-neighbours tight-binding model of
section 1.2. In reciprocal k-space, the Hamiltonian of the supercell reads

Hk =



∆ T1 0 . . . 0 T ∗
N

T ∗
1 −∆ T2

. . . . . . 0

0 T ∗
2 ∆ .. . . . . ...

... . . . . . . . . . . . . 0

0 . . . . . . . . . ∆ TN−1
TN 0 . . . 0 T ∗

N−1 −∆


, (A.1)

where

Tα = −tαeik(rα+1−rα) = [−t+ β(δrα+1 − δrα)]eik(δrα+1−δrα+a/2) (A.2)

and
k = m

Nk

2π
Ls.c.

m = 0, 1, . . . , Nk (A.3)

We indicate with εj,k its eigenvalues and with ψj,k its eigenvectors, with j = 1, . . . , N .
Each of the N atoms contribute with ne electrons and since we are taking into
account also the possibility to have degenerate orbitals, as the p-orbitals of carbyne,
each band is ne-fold degenerate, hence there are Nocc = ne · (N/2) occupied bands
and Nemp = ne · (N/2) empty bands. In the particular case where the supercell is
just a single unit cell, hence Ncells = 1 and N = n = 2, it reduces to Equation 1.22:

H
(N=2)
k =

[
∆ T ∗

1 + TN
T1 + T ∗

N −∆

]
. (A.4)

A.1.2 Born-Oppenheimer potential

For a given atomic configuration {r} = {r1, r2, . . . , rN}, in the Born-Oppenheimer
approximation, we consider two contributions to the Born-Oppenheimer (BO) po-
tential VBO({r}): one comes from the electronic energy of the occupied bands of
the supercell whereas the other accounts for the σ-bonds stiffness of neighbouring
atoms and depends directly on atoms displacement. Namely, we write:

VBO({r}) = EI({r}) + Ee({r}) (A.5)

with

EI({r}) = 1
2Kela

N∑
α=1

(δrα+1 − δrα)2 , (A.6)
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and

Ee({r}) = 2ne
Nk

Nk∑
k=1

Nocc∑
j=1

εj,k({r}) (A.7)

where the factor 2 accounts for the spin. We recall that PBC are adopted, hence
δrN+1 ≡ δr1.

A.1.3 Dynamical matrices in the harmonic approximation

We now compute the dynamical matrices of the supercell in the harmonic approxima-
tion. To do so, we need the second order derivative of the BO potential, calculated
with respect to the atomic displacements δrα, for a given atomic configuration {r}.
From Equation (A.5), we get two contributions:

∂2VBO({r})
∂δrα∂δrβ

= ∂2EI({r})
∂δrα∂δrβ

+ ∂2Ee({r})
∂δrα∂δrβ

. (A.8)

As far as the first contribution is concerned, it is easy to verify that

∂2EI({r})
∂δrα∂δrβ

= Kela (2δα,β − δα,β+1 − δα,β−1) (A.9)

where the δα,β(±1) on the right-hand side are Kronecker’s delta. Regarding the
electronic contribution, instead, we use Hellmann-Feynman theorem and static
perturbation theory to compute the second order derivative of the electronic energy
Ee({r}). In particular, it holds:

∂2Ee({r})
∂δrα∂δrβ

= 2ne
Nk

∑
k

occ∑
i

⟨ψi,k|Hk,αβ|ψi,k⟩ + 2Re

emp∑
j

⟨ψi,k|Hk,α|ψj,k⟩ ⟨ψj,k|Hk,β|ψi,k⟩
εi,k − εj,k


(A.10)

where Hk,α (Hk,β) is the derivative with respect to δrα (δrβ) of the electronic
Hamiltonian Hk of Equation (A.1), while Hk,αβ is its second order derivative with
respect to the displacement of atoms α and β. It can be verified that it holds:

Hk,α ≡ ∂Hk

∂δrα
=



0 . . . 0 0 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 ∂αTα−1 0 . . . 0
0 . . . ∂αT

∗
α−1 0 ∂αTα . . . 0

0 . . . 0 ∂αT
∗
α 0 . . . 0

... . . . ...
...

... . . . ...
0 . . . 0 0 0 . . . 0


(A.11)
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where

∂αTα−1 ≡ ∂Tα−1
∂δrα

= − (iktα−1 − βt) eik(δrα−δrα−1+a/2), (A.12)

∂αTα ≡ ∂Tα
∂δrα

= (iktα − βt) eik(δrα+1−δrα+a/2) (A.13)

while

Hk,αβ ≡ ∂2Hk

∂δrα∂δrβ
= δβ,α−1

∂2Hk

∂δrα∂δrα−1
+ δβ,α+1

∂2Hk

∂δrα∂δrα+1
+ δβ,α

∂2Hk

∂δr2
α

(A.14)

with

∂2Hk

∂δrα∂δrα−1
=



0 . . . 0 0 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 ∂2
α,α−1Tα−1 0 . . . 0

0 . . . ∂2
α,α−1T

∗
α−1 0 0 . . . 0

0 . . . 0 0 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 0 0 . . . 0


, (A.15)

∂2Hk

∂δrα∂δrα+1
=



0 . . . 0 0 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 0 0 . . . 0
0 . . . 0 0 ∂2

α,α+1Tα . . . 0
0 . . . 0 ∂2

α,α+1T
∗
α 0 . . . 0

... . . . ...
...

... . . . ...
0 . . . 0 0 0 . . . 0


, (A.16)

∂2Hk

∂δr2
α

=



0 . . . 0 0 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 ∂2
α,αTα−1 0 . . . 0

0 . . . ∂2
α,αT

∗
α−1 0 ∂2

α,αTα . . . 0
0 . . . 0 ∂2

α,αT
∗
α 0 . . . 0

... . . . ...
...

... . . . ...
0 . . . 0 0 0 . . . 0


(A.17)
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where

∂2
α,α−1Tα−1 ≡ ∂2Tα−1

∂δrα∂δrα−1
= −k2tα−1eik(δrα−δrα−1+a/2), (A.18)

∂2
α,α+1Tα ≡ ∂2Tα

∂δrα∂δrα+1
= −k2tα+1eik(δrα+1−δrα+a/2), (A.19)

∂2
α,αTα−1 ≡ ∂2Tα−1

∂2δrα
= k2tα−1eik(δrα−δrα−1+a/2), (A.20)

∂2
α,αTα ≡ ∂2Tα

∂2δrα
= k2tαeik(δrα+1−δrα+a/2). (A.21)

Substituting everything in Equation (A.8) we can compute the derivative of the BO
potential for a given configuration {r} = {r1, r2, . . . , rN} and this allows to define a
force-constants matrix Cαβ({r}):

Cαβ({r}) = ∂2VBO({r})
∂δrα∂δrβ

. (A.22)

On a general ground, it can be demonstrated that such a matrix satisfies different
properties, such as the translational invariance. To make this properties explicit,
we introduce an index l = 1, . . . , Ncells to indicate a unit cell in space, and with
τ = 1, . . . , n we refer to the atoms in a given unit cell. For a generic atom α of the
supercell, it holds α = nl + τ . Given this definitions, we can make the translational
invariance explicit:

Cαβ({r}) = Cnl+τ,nl′+τ ′({r}) = Cτ,τ ′+n(l′−l)({r}). (A.23)

Moreover, the force constant matrix must also be symmetric, namely

Cαβ({r}) = Cβα({r}) (A.24)

which is a consequence of the invariance of the second order derivatives with respect
to the order of derivation.

Finally, we define the dynamical matrices Dττ ′(q) as the discrete Fourier transform
of the force-constants matrix over the unit cells of the supercell:

Dττ ′(q) =
Ncells∑
l′=1

e−iqa(l−l′)
√
MτMτ ′

Cτ+nl,τ ′+nl′({r}) (A.25)

=
Ncells∑
l′=1

eiqal′
√
MτMτ ′

Cτ,τ ′+nl′({r}) (A.26)

where thanks to the translational invariance we put l = 0 and the variable q is
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defined over a grid of points commensurate with the supercells, namely:

q = m

Ncells

2π
a

m = 0, 1, . . . , Ncells. (A.27)

The dynamical matrices are n×n matrices – n being the number of atoms per unit cell
– and satisfies different properties, in particular from the definition it is immediate
to see that Dττ ′(q) is Hermitian for each q. Consequently, their eigenvalues ω2

ν(q)
(ν = 1 . . . n) are real and can be obtained diagonalising Dττ ′(q) for each q.

A.1.4 Forces and energies

Now that we have defined a way to compute the dynamical matrices of the system,
we can do the SSCHA. In particular, the starting configurations are generated using
a Gaussian probability distribution derived from the dynamical matrices. Each
configuration is a supercell with Ncells and Nat = Ncells × n atoms, where in the case
of carbyne the number of atoms per cell is n = 2. Forces and energies must be also
computed and in the case of the model we have that for a given atomic configuration
{r} = {r1, r2, . . . , rN} the total energy reads:

Etot({r}) = VBO({r}) = EI({r}) + Ee({r}), (A.28)

where the two contributions EI({r}) and Ee({r}) are those defined in Equations
(A.6) and (A.7), respectively. For the forces, instead, it holds

Fα({r}) = −∂VBO({r})
∂δrα

= −∂EI({r})
∂δrα

− ∂Ee({r})
∂δrα

. (A.29)

Regarding the contribution to the forces coming from the ionic configuration, it can
be demonstrated that

∂EI({r})
∂δrα

= Kela (2δrα − δrα+1 − δrα−1) (A.30)

while for the electronic contribution we can use perturbation theory to obtain

∂Ee({r})
∂δrα

= 2ne
Nk

∑
k

occ∑
i

⟨ψi,k|Hk,α|ψi,k⟩, (A.31)

with the Hk,α defined in Equation (A.11). At the end of the SSCHA minimization
we will have that the supercell is just a repetition of the same unit cell and hence
we expect the system to be either in a high symmetry phase, in which the atoms are
equidistant with ri+1 − ri = a/2, or in a low symmetry phase, in which there is a
bond-length alternation equal to 2 |δri+1 − δri|.
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A.2 Computational details

As explained in section 2.2, in the stochastic implementation of the SCHA, integrals
of space-dependent quantities O(R), e.g. the quantum averages of energies and
forces, are computed with a Montecarlo approach:

∫
dRO(R)ρ̃R,Φ(R) ≃ 1

NC

NC∑
I=1

O(R(I)), (A.32)

where R(I) is one of the randomly extracted configurations and NC is the total
number of configuration generated. Each configuration correspond to a supercell and
is generated from a Gaussian probability distribution. The results presented in this
work were obtained with NC = 4000. To decide the optimal number of cells Ncells
and the optimal number of k-points Nk for the calculations of energy and forces,
we studied the convergence of the order parameter, namely of the BLA, in carbyne
(∆ = 0) as a function of these parameters. We chose Ncells = 40 and Nk = 160: as
shown in Figure A.1 these parameters ensure converged values of the BLA for a
wide range of temperatures.

Figure A.1. Study of the convergence of the order parameter of the system, namely the
bond length alternation, with respect to the number Ncells of cells per supercell, and to
the number Nk of k-points.
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Appendix B

Berry-phase theory of
piezoelectricity

In this Appendix, we present the Berry-phase theory of piezoelectricity, following the
lines of Ref.[121]. The distinction between a proper and an improper piezoelectric
coefficients was given both by Martin[171] and by Nelson and Lax[172, 173] to
account, in the response of a dielectric to an external strain, for the effects of
spurious contributions due e.g. to homogeneous rotations of spontaneous electric
dipoles present in the material. The general relation between the proper and improper
piezoelectric coefficients they obtain is:

cproper
ijk = cimproper

ijk + δjkP
s
i − δijP

s
k (B.1)

where P s is the spontaneous polarisation of the material and

cimproper
ijk = dPi

dϵjk
(B.2)

with ϵjk defined through the relation

drj =
∑
k

ϵjkrk. (B.3)

From the presence of the Kronecker delta δjk and δij in Equation (B.1), we imme-
diately notice that in the case of a 1D system, this distinction does not apply. In
the last Equation (B.3), drj is the deformation of the medium from its undeformed
position rj , and ϵjk refers to a generic homogeneous deformation. In Ref.[121],
Vanderbilt obtains a way to compute the proper piezoelectric coefficients from first
principles adopting the Berry-phase formalism. It is possible to do so thanks to the
fact that in modern theory of polarisation we can write[121]

P = e

Ω
∑
τ

Zτrτ − e

Ω

occ∑
n

rn (B.4)
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where e is the unit electric charge, Ω is the volume of the unit cell, rτ is the position
of the τ -th ion in the unit cell, Zτ its nuclear charge and rn is the Wannier centre of
the n-th electronic band[174].

B.1 Proper piezoelectric tensor independent on branch
choice

In general, the electronic contribution to polarisation is a quantity defined modulo
(e/Ω)R with R a real-space lattice vector, so there is an ambiguity in the definition
of polarisation: there are more branches, related by

P(b′) = P(b) + e

ΩR. (B.5)

Vanderbilt demonstrated that the proper piezoelectric tensor is independent on this
choice of branch. Indeed, we can write:

dP (b′)
i = dP (b)

i + e

ΩdRi − e

Ω2RidΩ (B.6)

where from Equation (B.3) we have that:

dRi =
∑
l

ϵilRl. (B.7)

Considering now that Ω = a1 · (a2 × a3) we get

dΩ = da1 · (a2 × a3) + a1 · (da2 × a3) + a1 · (a2 × da3) (B.8)

and since from Equation (B.3)

dai =
∑
l

ϵilal (B.9)

we finally obtain:

dΩ = ϵ11a1 · (a2 × a3) + a1 · (ϵ22a2 × a3) + a1 · (a2 × ϵ33a3) =
∑
l

ϵllΩ. (B.10)

Substituting Equations (B.7) and (B.10) in Equation (B.6) we obtain

dP (b′)
i = dP (b)

i + e

Ω
∑
l

(ϵilRl − ϵllRi) . (B.11)

As in Equation (B.2), we now take the derivative with respect to ϵjk and obtain:

c
improper,(b′)
ijk = c

improper,(b)
ijk + e

ΩδijRk − e

ΩδjkRi (B.12)
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Since from Equation (B.5) we have that:

e

ΩR = P(b′) − P(b) (B.13)

we can substitute in Equation (B.12) and obtain

c
improper,(b′)
ijk = c

improper,(b)
ijk + δij

(
P

(b′)
k − P

(b)
k

)
− δjk

(
P

(b′)
i − P

(b)
i

)
(B.14)

which can be rewritten as

c
improper,(b′)
ijk + δjkP

(b′)
i − δijP

(b′)
k = c

improper,(b)
ijk + δjkP

(b)
i − δijP

(b)
k (B.15)

We recognise on each size the proper piezoelectric tensor, as defined in Equation
(B.1). This means that the proper piezoelectric tensor does not depend on the choice
of the branch.

B.2 Clamped ions vs internal strain contribution

The piezoelectric tensor can be decomposed into two contributions: one is obtained
considering the nuclear coordinates to follow Equation (B.3) exactly and is called
clamped-ion (CI) contribution. Another contribution comes instead when we consider
also the internal relaxation of the nuclear coordinates at fixed strain and can be
called internal-strain contribution: in this way, we are sure that the system is in the
lower energy state after the deformation1. As shown for example in Ref.[175] and
in Ref.[176], the internal-strain contribution is proportional to the effective charges.
From Equations (B.1) and (B.2), indeed, we can write:

cproper
ijk = dPi

dϵjk
+ δjkPi − δijPk = (B.16)

= ∂Pi
∂ϵjk

∣∣∣∣∣
u

+
∑
s,l

∂Pi
∂usl

∣∣∣∣∣
ϵ

∂usl
∂ϵjk

+ δjkPi − δijPk = (B.17)

= cproper,C.I.
ijk +

∑
s,l

e

ΩZ
∗
s,il

∂usl
∂ϵjk

(B.18)

where usl is the l-th component of the internal coordinate of the s-th ion and Z∗
s,il is

the il component of the effective charge tensor Z∗
s of atom s.

Before proceeding, it is worth to point out that that being the internal-strain
contribution considered at fixed ϵ, the proper-vs-improper distinction does not
applies in this case. Indeed the internal-strain contribution comes just from the
relaxation of internal coordinates. In what follows, we will focus only on the clamped
ions terms, neglecting the contribution of the internal strain.

1An exhaustive treatment of this distinction and how this applies when it comes to DFPT
calculations is done e.g. by Wu, Vanderbilt and Hamann in Ref.[175]
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B.3 Ionic contribution to proper piezoelectric tensor

Let’s find an expression for the proper piezoelectric coefficient which depends only
on the Berry phases. We start from Equation (B.4), which contains a ionic and an
electronic contribution. In the clamped ion approximation, ionic coordinates follow
Equation (B.3) exactly, and considering also Equation (B.10) we get

dP ionic
i = e

Ω
∑
τ

Zτdrτ,i − e

Ω2

∑
τ

Zτrτ,idΩ (B.19)

= e

Ω
∑
τ

Zτ,l (ϵilrτ,l − ϵllrτ,i) (B.20)

which implies

cimproper
ionic,ijk = dP ionic

i

dϵjk
= e

Ω
∑
τ

Zτ (δijrk − δjkri) = δijP
ionic
k − δjkP

ionic
i (B.21)

hence in the clamped ion approximation the ionic contribution to the proper piezo-
electric tensor is zero:

cproper
ionic,ijk = cimproper

ionic,ijk − δijP
ionic
k + δjkP

ionic
i = 0 (B.22)

B.4 Electronic contribution to proper piezoelectric ten-
sor

In the clamped ion approximation, if also the Wannier centres rn followed Equation
(B.3) exactly, the proper tensor would be identically zero for the same argument
exposed for the ions. However, there is no reason to think that the Wannier centres
would follow exactly Equation (B.3) when the system is deformed. From this point
of view, it is evident that proper piezoelectric response can be regarded as a measure
of the degree to which the Wannier centres fail to follow a homogeneous deformation:
let’s see why. We start by writing the electronic contribution to the polarisation as:

P elec
i = − e

Ω
∑
n

ri,n = − 1
2π

e

Ω
∑
n,α

ϕn,αRi,α (B.23)

where ϕn,α is the Berry phase of the n-th occupied band in direction α and Ri,α is
the i-th component of the α-th real space primitive lattice vector.
The electronic contribution to the improper coefficient is:

cimproper
elec,ijk = dP elec

i

dϵjk
= − e

2π
∑
n,α

d
dϵjk

[
ϕn,α
Ω Ri,α

]
= (B.24)

= − e

2π
∑
n,α

[
Ri,α
Ω

dϕn,α
dϵjk

+ ϕn,α
Ω

dRi,α
dϵjk

− Ri,αϕn,α
Ω2

dΩ
dϵjk

]
(B.25)
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Using Equations (B.3), (B.10) and (B.23) we obtain:

cimproper
elec,ijk = dP elec

i

dϵjk
= − e

2π
∑
n,α

Ri,α
Ω

dϕn,α
dϵjk

+ δijP
elec
k − δjkP

elec
i (B.26)

which means that:

cproper
elec,ijk = cimproper

elec,ijk − δijP
elec
k + δjkP

elec
i = − e

2π
∑
n,α

Ri,α
Ω

dϕn,α
dϵjk

. (B.27)

Since the ionic contribution in the clamped ions approximation is zero, we finally
obtain (Equation (22) of [121]):

cproper,C.I.
ijk = − 1

2π
e

Ω
∑
n,α

dϕn,α
dϵjk

Rα,i (B.28)

where Ω is the undeformed unit cell volume and Rα are the undeformed real space
primitive lattice vectors. We obtained a formula which relates the proper piezoelectric
coefficient to a property of the Berry phase, namely how it varies with a strain ϵ.
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Appendix C

Computational details on DFT
calculations

All DFT calculations of Chapter 1 and 3 were performed using the CRYSTAL
code[69, 70], which employs a basis of local Gaussian-type functions. This approach
allows for the simulation of truly isolated systems, as the 1D polymers addressed in
Chapters 1 and 3, using the hybrid functionals, proven to be essential for accurately
reproducing the physics of 1D chains[17, 68]. The Gaussian-type basis set significantly
reduces the computational cost of evaluating real-space integrals and, hence, it allows
for a drastically reduction of the computational cost when compared, e.g., with state-
of-the-art plane-waves based DFT codes. We used triple-ζ-polarised Gaussian-type
bases[177] with real space integration tolerances of 10-10-10-15-30 and an energy
tolerance of 10−10 Ha for the total energy convergence. For the results presented
in Chapter 1, we adopted the built-in PBE0 functional, whereas for the results of
Chapter 3 we customised a range-separated LC-ωPBE hybrid exchange-correlation
functional[178] varying the value of the long-range (LR) mixing parameter cLR which
enters in the definition of the LR part of the functional, namely

ELC−ωPBE
xc = EPBE

xc + cLR
(
ELR,HF

x − ELR,PBE
x

)
. (C.1)

When cLR = 0 the PBE functional is recovered while if cLR = 1 we have pure
Hartree-Fock (HF) exchange. The long-range terms in round brackets depend on
the range-separation parameter ω that enters in the decomposition of the Coulomb
operator 1/r as

1
r

= 1 − erf(ωr)
r

+ erf(ωr)
r

(C.2)

where erf(·) is the error function; the first and second term in the right-hand side
of Eq. C.2 account for the short- and long-range part of the Coulomb operator,
respectively. All the presented values were obtained with ω = 0.4 a−1

0 . For each
cLR, a geometric optimisation was performed and all quantities were computed
on the equilibrium configurations. The derivatives ∂u/∂ϵ of the order parameter
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with respect to the strain were computed with finite differences, performing a fixed-
cell optimisation for each strained configuration with cell length a(ϵ) = a0(1 ± ϵ)
and ϵ = 0.01, while the effective charges were computed as finite differences of
polarization. Values of polarization along the chain (parallel to the x-axis) were
computed using the Berry phase approach, whereas components transverse to the
isolated chain were computed in real space[179, 180]. The piezoelectric coefficients
cpiezo and dpiezo of Figure 3.5g, 3.5h and 3.7, as well as the values of cc.i.

piezo and of
ci.r.

piezo, were computed using the Berry phase approach[121] as implemented in the
code[181, 182] and described in Appendix B, which accounts also for transverse
displacements. The converse piezoelectric coefficient dpiezo is linearly related to
cpiezo through the elastic constants tensor C, namely cpiezo = dpiezoC. As far as 1D
systems are concerned, only a single scalar elastic constant is required, and it can
be evaluated as the second derivative of the energy with respect to the strain, i.e.
C = ∂2E/∂ϵ2.

For each value of the long-range mixing parameter cLR, a geometric optimisation
was performed in order to obtain the equilibrium structures. The unit cell length a0
has a very weak dependence on cLR for all the polymers studied, as shown in Figure
C.1. Signatures of the second order phase transition in MFPA and PMI are provided
by the behaviour of the eigenvalues of the dynamical matrix corresponding to the
longitudinal optical (LO) mode driving the structural transition, calculated at Γ in
the undistorted configuration and shown in Figure 3.6, and by the behaviour of the
bond lengths and bond angles, reported in Figure C.2. Conversely, the structure of
PVDF is not affected by changes in the cLR parameter, as highlighted in Figure C.3.
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Figure C.1. Values of the cell length a0 obtained through cell relaxation calculations show
a weak dependence on the value of the long-range mixing parameter cLR.
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Figure C.2. View of the undimerized structure of a mono-fluorinated polyacetylene (MFPA)
and b polymethineimine (PMI), realized with XCrySDen[138]. In c and d for MFPA
and PMI, respectively, we report the values of the bond length between the atoms of the
unit cell, calculated with different long-range mixing parameter cLR, whereas in e and f
we report the values of the bond angles for MFPA and PMI, respectively. For MFPA,
we use CH and CF to label carbon atoms bonded to hydrogen and fluorine, respectively.
Bond angles are labeled as follows: α̂ and β̂ denote the ̂CFCHCF (ĈNC) and ̂CHCFCH

(N̂CN) bond angles, while γ̂ and δ̂ label the ĈHCFF (N̂CH) and F̂CFCH (ĤCN) bond
angles. For MFPA only, we also denote by θ̂ and ϕ̂ the ĈFCHH and ĤCHCF bond angles.
As expected, the phase transition is signalled by the bond-length alternation as well as
in the bifurcation of γ̂ and δ̂ bond angles.
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Figure C.3. On the left, view of the structure of polyvinylidene fluoride (PVDF), realized
with XCrySDen[138]. On the right, behaviour of the bond lengths for different values of
cLR. As expected, the structure of PVDF depends very weakly on the long-range mixing
parameter, this polymer being not conjugated.
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C.1 Tables with effective charge tensors

In this section we report the full effective-charge tensors of polymers described in Chapter 3.

Table C.1. Effective charge tensors of MFPA. For three representative values of the long-range mixing
parameter cLR (including the critical value where the chain dimerization occurs), the components of the
effective charge tensors for each atom of the unit cell of MFPA are reported. The Z∗

xx component of the
carbon atoms reaches strikingly high values, hint of the anomalous polar response of the π-orbitals along the
backbone chain. The sum rule Z∗

CF
+ Z∗

CH
+ Z∗

F + Z∗
H = 0 is also respected.

cLR = 1%
Z∗

CF

x y z
x 27.830 -0.007 0.000
y -0.013 0.976 0.000
z 0.000 0.000 0.168

Z∗
CH

x y z
x -25.533 -0.001 0.000
y 0.013 -0.104 0.000
z 0.000 0.000 -0.197

Z∗
F

x y z
x -2.143 0.010 0.000
y 0.001 -0.865 0.000
z 0.000 0.000 -0.104

Z∗
H

x y z
x -0.154 -0.002 0.000
y 0.000 -0.007 0.000
z 0.000 0.000 0.132

cLR = 13% (≃ cLR)
Z∗

CF

x y z
x 30.497 -0.015 0.000
y -0.029 0.991 0.000
z 0.000 0.000 0.185

Z∗
CH

x y z
x -28.090 -0.006 0.000
y 0.028 -0.113 0.000
z 0.000 0.000 -0.214

Z∗
F

x y z
x -2.240 0.028 0.000
y 0.001 -0.876 0.000
z 0.000 0.000 -0.106

Z∗
H

x y z
x -0.167 -0.008 0.000
y 0.000 -0.002 0.000
z 0.000 0.000 0.135

cLR = 100%
Z∗

CF

x y z
x 3.969 -0.901 0.000
y -0.334 1.100 0.000
z 0.000 0.000 0.217

Z∗
CH

x y z
x -3.426 0.145 0.000
y 0.316 -0.154 0.000
z 0.000 0.000 -0.241

Z∗
F

x y z
x -0.576 0.088 0.000
y 0.021 -0.961 0.000
z 0.000 0.000 -0.118

Z∗
H

x y z
x 0.031 -0.124 0.000
y -0.003 0.015 0.000
z 0.000 0.000 0.143
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Table C.2. Effective charge tensors of PMI. For three representative values of the long-range mixing
parameter cLR (including the critical value where the chain dimerization occurs), the components of the
effective charge tensors for each atom of the unit cell of PMI are reported. The Z∗

xx component of the
backbone atoms reaches strikingly high values, hint of the anomalous polar response of the π-orbitals along
the backbone chain. The sum rule Z∗

C + Z∗
N + Z∗

H = 0 is also respected.

cLR = 1%
Z∗

C
x y z

x 14.063 0.000 0.000
y -0.005 0.643 0.000
z 0.000 0.000 0.168

Z∗
N

x y z
x -14.059 0.000 0.000
y 0.005 -0.427 0.000
z 0.000 0.000 -0.273

Z∗
H

x y z
x -0.004 0.000 0.000
y 0.000 -0.216 0.000
z 0.000 0.000 0.105

cLR = 25% (≃ cLR)
Z∗

C
x y z

x 15.204 0.004 0.000
y -0.012 0.655 0.000
z 0.000 0.000 0.186

Z∗
N

x y z
x -15.217 -0.001 0.000
y 0.012 -0.448 0.000
z 0.000 0.000 -0.292

Z∗
H

x y z
x 0.013 -0.003 0.000
y 0.000 -0.206 0.000
z 0.000 0.000 0.106

cLR = 100%
Z∗

C
x y z

x 5.762 0.166 0.000
y -0.268 0.638 0.000
z 0.000 0.000 0.203

Z∗
N

x y z
x -5.699 0.022 0.000
y 0.267 -0.476 0.000
z 0.000 0.000 -0.318

Z∗
H

x y z
x -0.063 -0.188 0.000
y 0.001 -0.162 0.000
z 0.000 0.000 0.115
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Table C.3. Effective charge tensors of PVDF. Components of the effective charge tensors of the atoms of
the unit cell of PVDF. For each component, values reported are obtained as average of those computed with
different values of cLR, the highest standard deviation being of the order of 10−2. The very weak dependence
of the effective charges of PVDF on cLR is a direct consequence of the fact that the structure of PVDF does
not depend on cLR, as observed in Figure C.3. Our results for the Born effective charges of PVDF are overall
consistent with previously reported values calculated within the generalized-gradient approximation[137].
The sum rule Z∗

CF
+ Z∗

CH
+ Z∗

F1
+ Z∗

F2
+ Z∗

H1
+ Z∗

H2
= 0 is also respected.

Z∗
CH

x y z
x -0.603 0.000 0.000
y 0.000 0.012 0.000
z -0.001 0.001 -0.092

Z∗
CF

x y z
x 1.333 0.000 0.000
y 0.000 1.165 0.000
z 0.001 0.000 0.955

Z∗
H1

x y z
x 0.069 0.000 0.000
y 0.000 0.002 -0.048
z 0.000 -0.060 0.034

Z∗
F1

x y z
x -0.434 0.000 0.000
y -0.002 -0.590 -0.292
z 0.000 -0.248 -0.467

Z∗
H2

x y z
x 0.069 0.000 0.000
y 0.000 0.003 0.048
z 0.000 0.060 0.035

Z∗
F2

x y z
x -0.434 0.000 0.000
y 0.002 -0.592 0.292
z 0.000 0.246 -0.465
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Appendix D

Details on the time-dependent
density-matrix perturbation
theory and its implementation

In this Appendix, we discuss about the details of the TDDMPT and its implementa-
tion in the QE code. First, we treat the case of a generic time-dependent perturbation
in section D.1, then we focus on the case of a double monochromatic perturbation
in section D.2. Finally, we describe the DFT implementation of TDDMPT in the
QE code in section D.3.

D.1 Generic time-dependent perturbation

We rewrite Eq. (5.4) highlighting the contribution due to the time-dependent
perturbation

H(t) = H(0) + V (t) (D.1)

where it holds V (i)(t) = H(i)(t) ∀i ≥ 1. It is convenient to adopt the interaction
picture, defined with respect to the Schrödinger picture by the transformations

|ψ(t)⟩I = eiH0t/ℏ |ψ(t)⟩ , (D.2)

AI(t) = eiH0t/ℏA(t)e−iH0t/ℏ (D.3)

where Equations (D.2) and (D.3) refers to a generic wave function and a generic
observable, respectively. With this definitions, it is possible to recast von-Neumann
equation (5.9) as follows

iℏρ̇I(t) = [VI(t), ρI(t)] (D.4)

where now the time evolution of ρI(t) depends explicitly only on the perturbation
VI(t) = eiH0t/ℏV (t)e−iH0t/ℏ. We can now project both sides of Equation (D.4) using
PC and PV – noticing that they remain unchanged when passing in the interaction
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picture – in order to obtain a differential equation for ρCV,I(t):

iℏρ̇I,CV (t) = PC [VI(t), ρI(t)]PV . (D.5)

We can integrate this differential equation with the initial condition

ρCV,I(0) = ρCV (0) = PC
∑
v

|ψ(0)
v ⟩ ⟨ψ(0)

v |PV = 0 (D.6)

and obtain
ρCV,I(t) = − i

ℏ

∫ t

0
PC

[
VI(t′), ρI(t′)

]
PV dt′. (D.7)

This integral equation can be expanded perturbatively allowing to solve it iteratively
and find:

ρ
(n)
CV,I(t) = − i

ℏ

∫ t

0

n∑
i=1

PC
[
V

(i)
I (t′), ρ(n−i)

I (t′)
]
PV dt′ for n ≥ 1. (D.8)

This expression for ρ(n)
CV (t) depends on terms of the perturbative expansion of lower

orders (up to the (n−1)-th) and holds for every generic time-dependent perturbation.
Moreover, it is defined in terms of quantities that depends only on the unperturbed
wave functions as will more explicit in what follows.

D.1.1 Analogy with time-independent case

It is possible to write ρ
(n)
CV (t) defining a perturbed-like time-dependent valence

wave-function |η(n)
v (t)⟩:

ρ
(n)
CV (t) =

∑
v

|η(n)
v (t)⟩ ⟨ψ(0)

v | . (D.9)

First, we transform Equation (D.8) back to the Schrödinger picture:

ρ
(n)
CV (t) = e−iH0t/ℏ

(
− i
ℏ

∫ t

0

n∑
i=1

PC
[
V

(i)
I (t′), ρ(n−i)

I (t′)
]
PV dt′

)
eiH0t/ℏ; (D.10)

then, with some manipulation, we can write

|η(n)
v (t)⟩ =

∑
c

C(n)
cv (t) |ψ(0)

c ⟩ (D.11)

where

C(n)
cv (t) = − i

ℏ

∫ t

0
e

i
(
ε

(0)
v −ε(0)

c

)
t/ℏ n∑

i=1
⟨ψ(0)

c |
[
V

(i)
I (t′), ρ(n−i)

I (t′)
]

|ψ(0)
v ⟩ dt′. (D.12)

It is straightforward to verify that if we do the limit to the time-independent case we
recover the equations for the static case of section 5.2.1, whereas if we plug a single or
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double monochromatic perturbation we recover the respective frequency-dependent
equations discussed above.

D.2 Details on the double monochromatic perturbation
case

In this section we derive Equations (5.60) and (5.62). The starting point is the
double monochromatic perturbation H(1)(t) defined in Equation (5.58), which we
rewrite for convenience:

H(1)(t) = H(1)(ω1)
(
eiω1t + e−iω1t

)
+H(1)(ω2)

(
eiω2t + e−iω2t

)
(D.13)

Plugging H(1)(t) into the perturbative expansion of von-Neumann Equation (5.33),
for n = 1 we have

iℏρ̇(1)(t) =
[
H(0), ρ(1)(t)

]
+
(
eiω1t + e−iω1t

) [
H(1)(ω1), ρ(0)]+

(
eiω2t + e−iω2t

) [
H(1)(ω2), ρ(0)]

(D.14)

which suggests that we can decompose ρ(1)(t) as follows:

ρ(1)(t) = ρ(1)(ω1)e−iω1t + ρ(1)(−ω1)eiω1t + ρ(1)(ω2)e−iω2t + ρ(1)(−ω2)eiω2t. (D.15)

Each term ρ(1)(±ωj), j ∈ {1, 2}, can be found as in the single monochromatic
perturbation case and from Equation (5.40) we have:

ρ(1)(±ωj) = ρ
(1)
CV (±ωj) + ρ

(1)
V C(±ωj) with ρ

(1)
V C(±ωj) =

[
ρ

(1)
CV (∓ωj)

]†
. (D.16)

Proceeding as in the other cases, we define a perturbed-like, frequency-dependent,
valence wave-function |η(1)

v (±ωj)⟩:

ρ
(1)
CV (±ωj) = PCρ

(1)(±ωj) |ψ(0)
v ⟩ ≡

∑
v

|η(1)
v (±ωj)⟩ ⟨ψ(0)

v | (D.17)

From Equation (D.14) solved with the trial function (D.15) we obtain for each
frequency-dependent term

±ℏωjρ(1)(±ωj) −
[
H(0), ρ(1)(±ωj)

]
=
[
H(1)(ωj), ρ(0)

]
(D.18)

and applying PC on the left and |ψ(0)
v ⟩ on the right we arrive at:(

H(0) − ε(0)
v ∓ ℏωj

)
|η(1)
v (±ωj)⟩ = −PC

[
H(1)(ωj), ρ(0)

]
|ψ(0)
v ⟩ , (D.19)

which is the same results of Equation (5.37). With the definition of the frequency-
dependent Green function projected on conduction states of Equation (5.38) with
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α = 1, we arrive at Equation (5.60)

|η(1)
v (±ωj)⟩ = G̃v(±ωj)

[
H(1), ρ(0)

]
|ψ(0)
v ⟩ , (D.20)

which is just Equation (5.39) in the case n = α = 1.
For n = 2 we follow the same steps:

• from von-Neumann equation (5.33) we have:

iℏρ̇(2)(t) =
[
H(0), ρ(2)(t)

]
+
[
H(1)(t), ρ(1)(t)

]
(D.21)

• from Equation (D.13) and (D.15) we obtain:

ρ(2)(t) =
[
ρ(2)(2ω1)e−2iω1t + ρ(2)(−2ω1)e2iω1t

]
+

+
[
ρ(2)(2ω2)e−2iω2t + ρ(2)(−2ω2)e2iω2t

]
+

+
[
ρ(2)(ω1 + ω2)e−i(ω1+ω2)t + ρ(2)(ω1 − ω2)e−i(ω1−ω2)t

]
+

+
[
ρ(2)(−ω1 − ω2)ei(ω1+ω2)t + ρ(2)(−ω1 + ω2)ei(ω1−ω2)t

]
+

+ ρ(2)(0)ei0t (D.22)

where terms with mixed frequencies are now present;

• from Equation (5.41), (D.15) and (D.16) we obtain an expression for each
component of the previous Equation (D.22) in terms of the ρ(i)

CV (αω1 + βω2)
with i ∈ {1, 2} and α and β integers obeying |α| + |β| = i:

ρ(2)(±2ω1) = ρ
(2)
CV (±2ω1) + ρ

(2)
V C(±2ω1) +

[
ρ

(1)
CV (±ω1), ρ(1)

V C(±ω1)
]

(D.23)

ρ(2)(±2ω2) = ρ
(2)
CV (±2ω2) + ρ

(2)
V C(±2ω2) +

[
ρ

(1)
CV (±ω2), ρ(1)

V C(±ω2)
]

(D.24)

ρ(2)(ω1 ± ω2) = ρ
(2)
CV (ω1 ± ω2) + ρ

(2)
V C(ω1 ± ω2) +

[
ρ

(1)
CV (ω1), ρ(1)

V C(±ω2)
]

+
[
ρ

(1)
CV (±ω2), ρ(1)

V C(ω1)
]

(D.25)

ρ(2)(−ω1±ω2) = ρ
(2)
CV (−ω1±ω2)+ρ(2)

V C(−ω1±ω2)+
[
ρ

(1)
CV (−ω1), ρ(1)

V C(±ω2)
]

+
[
ρ

(1)
CV (±ω2), ρ(1)

V C(−ω1)
]

(D.26)
ρ(2)(0) = ρ

(2)
CV (0) + ρ

(2)
V C(0)+

[
ρ

(1)
CV (ω1), ρ(1)

V C(−ω1)
]

+
[
ρ

(1)
CV (−ω1), ρ(1)

V C(ω1)
]

+[
ρ

(1)
CV (ω2), ρ(1)

V C(−ω2)
]

+
[
ρ

(1)
CV (−ω2), ρ(1)

V C(ω2)
]

(D.27)

and it holds ρ(i)
V C(αω1 + βω2) =

[
ρ

(i)
CV (−αω1 − βω2)

]†
.

• aiming to find the |η(2)
v (αω1 + βω2)⟩ such that

ρ
(2)
CV (αω1 + βω2) =

∑
v

|η(2)
v (αω1 + βω2)⟩ ⟨ψ(0)

v | , (D.28)

we solve Equation (D.21) with the trial function of Equation (D.22) and
applying again PC on the left and |ψ(0)

v ⟩ on the right we obtain the following
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(self-consistent) linear systems:(
H(0) − ε(0)

v − ℏ2ω1
)

|η(2)
v (2ω1)⟩ = −PC

[
H(1)(ω1), ρ(1)(ω1)

]
|ψ(0)
v ⟩ (D.29)

(
H(0) − ε(0)

v − ℏ2ω2
)

|η(2)
v (2ω2)⟩ = −PC

[
H(1)(ω2), ρ(1)(ω2)

]
|ψ(0)
v ⟩ (D.30)

(
H(0) − ε

(0)
v − ℏ (ω1 ± ω2)

)
|η(2)

v (ω1 ± ω2)⟩ = −PC

{[
H(1)(ω1), ρ(1)(±ω2)

]
+
[
H(1)(ω2), ρ(1)(ω1)

]}
|ψ(0)

v ⟩

(D.31)(
H(0) − ε

(0)
v − ℏ (−ω1 ± ω2)

)
|η(2)

v (−ω1 ± ω2)⟩ = −PC

{[
H(1)(ω1), ρ(1)(±ω2)

]
+
[
H(1)(ω2), ρ(1)(−ω1)

]}
|ψ(0)

v ⟩

(D.32)(
H(0) − ε

(0)
v

)
|η(2)

v (0)⟩ = −PC

{[
H(1)(ω1), ρ(1)(ω1) + ρ(1)(−ω1)

]
+
[
H(1)(ω2), ρ(1)(ω2) + ρ(1)(−ω2)

]}
|ψ(0)

v ⟩ .

(D.33)

Defining the frequency-dependent Green functions

G̃v(αω1 + βω2) =
∑
c

|ψ(0)
c ⟩ ⟨ψ(0)

c |
ε

(0)
v − ε

(0)
c + ℏ(αω1 + βω2)

(D.34)

we can write the explicit expression for the |η(2)
v (αω1 + βω2)⟩ of Equation

(5.62)
|η(2)
v (αω1 + βω2)⟩ = G̃v(αω1 + βω2) {•} |ψ(0)

v ⟩ (D.35)

where inside the curly brackets {•} there are the proper commutators between
H(1)(ωj) and ρ(1)(±ωl) (j, l ∈ {1, 2}) according to Equation (D.29 - D.33).

D.3 Details on the implementation in Quantum ESPRESSO

In this section we see in details the derivation of the self-consistent linear systems of
Equation (5.98) and (5.101), as well as the work-flow of our implementation in the
QE code. We start reviewing the existing work-flow for the static Raman response,
which will be the base for the time-dependent case.

D.3.1 Static case

The phonon routine is the main driver of the phonon code in QE (the well-known
ph.x). It reads all the quantities calculated by the pwscf routine (pw.x), it checks
if some recover file is present and determines which calculations need to be done,
depending on the flags in the input file. It calls the subroutine do_phonon which
can compute the response to an atomic displacement, the dynamical matrix at each
q-point as well as the electron-phonon interaction. At q = 0 it can calculate the
linear response to an electric field perturbation and hence the dielectric constant,
the Born effective charges and the polarizability at imaginary frequencies. At q = 0,
it can also calculate the electro-optic and the Raman tensors from second order
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response to an electric field1. The computation of the different responses to an
electric field perturbation is managed by the subroutine phescf, called by do_phonon.
First, linear-response quantities are computed calling the subroutine solve_e2. In
particular, the perturbed valence wave functions and the induced charge density
are obtained solving the self-consistent linear system which defines the variation of
the valence wave function due to the perturbation, namely from Equation (5.28) for
n = 1:

(H(0)
KS − ε(0)

v ) |η(1)
v ⟩ = −PC

[
H

(1)
KS , ρ

(0)
]

|ψ(0)
v ⟩ , (D.36)

where
H

(1)
KS = V

(1)
ext. + V

(1)
HXC, (D.37)

and in real-space representation it holds

V
(1)

HXC(r) =
∫

KHXC(r, r′)ρ(1)(r′)d3r′ =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(1)(r′)d3r′. (D.38)

Since ρ(1) depends on the {|η(1)
v ⟩}, the linear system must be solved self-consistently.

At the end of the solve_e subroutine, both the {|η(1)
v ⟩} and ρ(1) have been com-

puted and are stored, including self-consistently the Hartree-Exchange-Correlation
part (more details on this are in Section D.3.3). The ground is now set for the
calculation of linear-response quantities such as effective charges and dielectric con-
stant but also for second order quantities. The subroutine to perform second order
calculation, in particular to compute Raman and electro-optical tensors, is raman
and it is called inside phescf, after solve_e (if lraman==.true.). We focus only
on the parts involved in the calculation of the Raman tensors. First, we need to
compute the second-order perturbed-like wave functions {|η(2)

v ⟩}. They are defined
as the solution of the following self-consistent linear system:

(H(0)
KS − ε(0)

v ) |η(2)
v ⟩ = −PC

[
H

(1)
KS , ρ

(1)
]

|ψ(0)
v ⟩ − PC

[
H

(2)
KS , ρ

(0)
]

|ψ(0)
v ⟩ , (D.39)

where H(1)
KS is defined in Equation (D.37), while in real-space representation it holds:

H
(2)
KS(r) = V

(2)
HXC(r) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(2)(r′)d3r′+

+
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′)ρ(1)(r′′)d3r′d3r′′. (D.40)

From the expression for the second derivative of the density ρ(2), namely

ρ(2) = ρ
(2)
CV + ρ

(2)
V C +

[
ρ

(1)
CV , ρ

(1)
V C

]
, (D.41)

we can separate the right-hand side of Equation (D.40) in a self-consistent (SCF)
1The keyword to put in the input file in order to calculate Raman tensors is lraman.
2They are are needed also for second order calculations.
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and a non-self-consistent (NSCF) part:

V
(2)
HXC,SCF(r) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

[
ρ

(2)
CV (r′) + ρ

(2)
V C(r′)

]
d3r′, (D.42)

V
(2)
HXC,NSCF(r) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

[
ρ

(1)
CV (r′), ρ(1)

V C(r′)
]

d3r′+

+
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′)ρ(1)(r′′)d3r′d3r′′. (D.43)

The work-flow of the raman subroutine to compute the {|η(2)
v ⟩} and ρ(2) is divided

in three main steps:

1. first, it calls the subroutine dhdrhopsi to compute

PC [H(1)
KS , ρ

(1)] |ψ(0)
v ⟩ = PC [V (1)

ext., ρ
(1)] |ψ(0)

v ⟩ + PC
[
V

(1)
HXC, ρ

(1)
]

|ψ(0)
v ⟩ . (D.44)

The two terms on the right-hand side are computed separately:

1.1 the first term involves the position operator r̂, which is not well defined
in an infinite periodic system. Instead, the commutator with the density
operator and its derivatives is well defined and it holds:

PC [V (1)
ext., ρ

(1)] |ψ(0)
v ⟩ = iPC

∑
v′

∂ |η̃(1)
v′ ⟩ ⟨ψ̃(0)

v′ |
∂k

|ψ̃(0)
v ⟩ , (D.45)

where the ◦̃ indicates the periodic part of the wave function. The derivative
is computed with finite differences, hence it is necessary to calculate both
the {|ψ(0)

v ⟩} and the {|η(1)
v ⟩} at k ± ∆k. This first-order calculations are

done by the subroutine solve_e_nscf, which solves the linear system of
Equation (D.36) without the SCF cycle, ρ(1) being already known;

1.2 using the relation ρ(1) =
∑
v(|η

(1)
v ⟩ ⟨ψ(0)

v | + |ψ(0)
v ⟩ ⟨η(1)

v |), the second term
becomes:

PC
[
V

(1)
HXC, ρ

(1)
]

|ψ(0)
v ⟩ = PCV

(1)
HXC |η(1)

v ⟩ − PC
∑
v′

|η(1)
v′ ⟩ ⟨ψ(0)

v′ |V (1)
HXC |ψ(0)

v ⟩ ,

(D.46)
where all the terms are already known.

2. then, in the subroutine dvpsi_e2, it computes the non-self-consistent part of
the right-hand side of Equation (D.39) using the NSCF potential V (2)

HXC,NSCF
of Equation (D.43);

3. finally, in the subroutine solve_e2, the {|η(2)
v ⟩} are computed self-consistently

solving the linear system of Equation (D.39).
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Now we have all the ingredients to compute the Raman tensor, defined by:

∂3Eel

∂El∂Em∂uτα
= 2Tr

[
∂2ρ

∂El∂Em
∂Vext.
∂uτα

]
, (D.47)

where the factor 2 is for the spin degeneracy, Eel is the electronic total energy, El
and Em are, respectively, the l-th and m-th component of an external electric field
and uτα is the displacement of the τ -th atom of the unit-cell in the α-th Cartesian
direction. Without loss of generality, hereafter we will consider l = m and will
consequently drop the subscripts. Using the definitions of the trace operator and of
the second-order derivative of the density matrix ρ(2), we write Equation (D.47) as:

∂3Eel.

∂E2∂uτα
= 2

∑
v

⟨η(2)
v |∂Vext.

∂uτα
|ψ(0)
v ⟩ − 2

∑
v,v′

⟨η(1)
v |η(1)

v′ ⟩⟨ψ(0)
v′ |∂Vext.

∂uτα
|ψ(0)
v ⟩ +

+ 2
∑
v

⟨ψ(0)
v |∂Vext.

∂uτα
|η(2)
v ⟩ + 2

∑
v

⟨η(1)
v |∂Vext.

∂uτα
|η(1)
v ⟩. (D.48)

The subroutine raman_mat computes the different terms in Equation (D.48) using
the {|η(1)

v ⟩} and the {|η(2)
v ⟩} computed before. The effect of atomic displacement is

included calling the subroutine dvqpsi_us, which applies the derivative of the bare
potential ∂Vext./∂u

τ
α to the wave-functions3.

D.3.2 Time-dependent case

We consider a perturbation constituted by a monochromatic electric field:

E(t) = E
(
e−iωt + eiωt

)
. (D.49)

We rewrite for convenience the von-Neumann Equation (5.93) for the n-th derivative
ρ(n)(t) of the density matrix:

iℏρ̇(n)(t) =
[
H

(0)
KS , ρ

(n)(t)
]

+
[
H

(1)
KS(t), ρ(n−1)(t)

]
+
[
H

(2)
KS(t), ρ(n−2)(t)

]
, (D.50)

where

H
(1)
KS(t) = V

(1)
ext.(t) + V

(1)
HXC(t), (D.51)

H
(2)
KS(t) = V

(2)
HXC(t), (D.52)

3The self-consistent contribution of the variation induced on the charge density by this perturba-
tion is neglected.
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and in real-space representation it holds

V
(1)

HXC(r, t) =
∫

KHXC(r, r′)ρ(1)(r′, t)d3r′ =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(1)(r′, t)d3r′, (D.53)

V
(2)

HXC(r, t) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(2)(r′, t)d3r′ +

+
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, t)ρ(1)(r′′, t)d3r′d3r′′. (D.54)

In the previous equations we used the instantaneous approximation, namely we
suppose a real and ω-independent KHXC(r, r′). This hypothesis will always be
adopted in what follows.
We substitute in Equation (D.50) the trial solution of Equation (5.34), which we
rewrite for convenience

ρ(n)(t) =
∑
α

[
ρ(n)(αω)e−iαωt + ρ(n)(−αω)eiαωt

]
, α =

0, 2, . . . , n if n even
1, 3, . . . , n if n odd

(D.55)
and consider the cases n = 1 and n = 2. In the former case, Equation (D.55)
becomes

ρ(1)(t) = ρ(1)(+ω)e−iωt + ρ(1)(−ω)e+iωt (D.56)

and since both ρ(1)(r, t) and ρ(1)(r, ω) are real, we have that ρ(1)(r,−ω) = [ρ(1)(r, ω)]† =
ρ(1)(r, ω). With some manipulation, we arrive at the self-consistent linear system
which defines the perturbed valence wave functions {|η(1)

v (±ω)⟩} of Equation (5.98):(
H(0) − ε(0)

v ∓ ℏω
)

|η(1)
v (±ω)⟩ = −PC

[
V

(1)
ext.(±ω) + V

(1)
HXC(±ω), ρ(0)

]
|ψ(0)
v ⟩ , (D.57)

where in real-space representation it holds

V
(1)

HXC(r,+ω) = V
(1)

HXC(r,−ω) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(1)(r′, ω)d3r′, (D.58)

with
ρ(1)(r, ω) = ρ

(1)
CV (r, ω) + ρ

(1)
V C(r, ω). (D.59)

Analogously, for n = 2 we have:

ρ(2)(t) = ρ(2)(+2ω)e−i2ωt + ρ(2)(−2ω)e+2iωt + ρ(2)(0), (D.60)

where ρ(2)(2ω) = ρ(2)(−2ω). The self-consistent linear systems which define the
perturbed-like valence wave functions {|η(2)

v (±2ω)⟩} and {|η(2)
v (0)⟩} are, respectively:

(
H(0) − ε(0)

v ∓ ℏ2ω
)

|η(2)
v (±2ω)⟩ = −PC

{[
V

(1)
ext.(ω) + V

(1)
HXC(ω), ρ(1)(ω)

]
+
[
V

(2)
HXC(2ω), ρ(0)

]}
|ψ(0)

v ⟩ ,
(D.61)

and
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(
H(0) − ε(0)

v

)
|η(2)

v (0)⟩ = −PC

{
2
[
V

(1)
ext.(ω) + V

(1)
HXC(ω), ρ(1)(ω)

]
+
[
V

(2)
HXC(0), ρ(0)

]}
|ψ(0)

v ⟩ , (D.62)

where we recognize the above Equation for the {|η(2)
v (0)⟩} as Equation (5.101), and

in real-space it holds

V
(2)

HXC(r, 2ω) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(2)(r′, 2ω)d3r′+

+
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, ω)ρ(1)(r′′, ω)d3r′d3r′′, (D.63)

with

ρ(2)(r, 2ω) = ρ
(2)
CV (r, 2ω) + ρ

(2)
V C(r, 2ω) +

[
ρ

(1)
CV (r, ω), ρ(1)

V C(r, ω)
]
, (D.64)

and

V
(2)

HXC(r, 0) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(2)(r′, 0)d3r′+

+ 2
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, ω)ρ(1)(r′′, ω)d3r′d3r′′, (D.65)

with

ρ(2)(r, 0) = ρ
(2)
CV (r, 0)+ρ(2)

V C(r, 0)+
[
ρ

(1)
CV (r, ω), ρ(1)

V C(r,−ω)
]
+
[
ρ

(1)
CV (r,−ω), ρ(1)

V C(r, ω)
]
.

(D.66)
It is worth to point out that, just like in Equation (D.40), also in Equation (D.63)
and (D.65) there is a non self-consistent part and a self-consistent one. In particular,
we have:

V
(2)
HXC,SCF(r, 2ω) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

[
ρ

(2)
CV (r′, 2ω) + ρ

(2)
V C(r′, 2ω)

]
d3r′, (D.67)

V
(2)
HXC,NSCF(r, 2ω) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

[
ρ

(1)
CV (r′, ω), ρ(1)

V C(r′, ω)
]

d3r′+

+
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, ω)ρ(1)(r′′, ω)d3r′d3r′′; (D.68)

V
(2)
HXC,SCF(r, 0) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

[
ρ

(2)
CV (r′, 0) + ρ

(2)
V C(r′, 0)

]
d3r′, (D.69)

V
(2)
HXC,NSCF(r, 0) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

{[
ρ

(1)
CV (r′, ω), ρ(1)

V C(r′,−ω)
]

+

+
[
ρ

(1)
CV (r′,−ω), ρ(1)

V C(r′, ω)
]}

d3r′+

+ 2
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, ω)ρ(1)(r′′, ω)d3r′d3r′′.

(D.70)
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Finally, we write the ω-dependent version of Equation (D.47) for ρ(2)(0):

∂3Eel.(ω)
∂E2∂uτα

= 2Tr
[
ρ(2)(0) ∂H

∂uτα

]
, (D.71)

and substituting the expression for ρ(2)(0) we obtain

∂3Eel.(ω)
∂E2∂uτα

= 2
∑
v

[
⟨η(2)
v (0)| ∂H

∂uτα
|ψ(0)
v ⟩ + ⟨ψ(0)

v | ∂H
∂uτα

|η(2)
v (0)⟩

]
+

+ 2
∑
v

[
⟨η(1)
v (+ω)| ∂H

∂uτα
|η(1)
v (+ω)⟩ + ⟨η(1)

v (−ω)| ∂H
∂uτα

|η(1)
v (−ω)⟩

]
+

− 2
∑
v,v′

[
⟨η(1)
v (+ω)|η(1)

v′ (+ω)⟩ + ⟨η(1)
v (−ω)|η(1)

v′ (−ω)⟩
]

⟨ψ(0)
v′ | ∂H

∂uτα
|ψ(0)
v ⟩.

(D.72)

D.3.3 First order terms
We have all the ingredients for the calculation of the frequency-dependent Raman
response defined in terms of perturbed-like wave-functions. In this section we focus
on the workflow to compute self-consistently these terms. In the subroutine solve_e
it is implemented the linear-response for both a static and a monochromatic external
uniform electric field. We will focus on the frequency-dependent response, but if
we put ω = 0 in the following equations we recover the static case. The aim is to
compute the perturbed wave functions {|η(1)

v (±ω)⟩} solving the self-consistent linear
system of Equation (D.57), which we rewrite:(

H(0) − ε(0)
v ∓ ℏω

)
|η(1)

v (±ω)⟩ = −PC

[
V

(1)
ext.(ω), ρ(0)

]
|ψ(0)

v ⟩ − PC

[
V

(1)
HXC(ω), ρ(0)

]
|ψ(0)

v ⟩ .
(D.73)

Before the self-consistent cycle, the subroutine dvpsi_e is called to compute the
non-self-consistent (NSCF) contribution |η(1)

v ⟩NSCF, namely:

|η(1)
v ⟩NSCF = −PC

[
V

(1)
ext.(ω), ρ(0)

]
|ψ(0)
v ⟩ , (D.74)

which remains unchanged during all the self-consistent cycle4. At each step of the
cycle, the subroutine sternheimer_kernel takes in input |η(1)

v ⟩NSCF (called dvpsi
in the code) and the estimate of the self-consistent potential V (1)

HXC calculated at the
previous step5 (called dvscfins in the code) and computes the new estimates for
the potential and for the solution vector of the linear system as follows:

1. applies V (1)
HXC to the unperturbed valence wave function |ψ(0)

v ⟩ and adds the
result to the NSCF vector |η(1)

v ⟩NSCF. The result is stored in the variable
dvpsi;

4This is done for each k-point and for each polarisation of the perturbing electric field.
5At the first step it is zero. Alternatively, it can be read from a recover file in the case of a

restart from a previous calculation.
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2. orthogonalizes dvpsi to the valence states with the orthogonalize subroutine
(this step correspond to the application of the operator −PC);

3. calls the subroutine cgsolve_all to solve the linear system of Equation (D.73).
In particular, it takes in input the right-hand side vector dvpsi together with
the frequency ±ω – hence it is called two times – to compute an estimate of
the solution vectors;

4. since ρ(1)(+ω) = ρ(1)(−ω), it is possible to compute the total variation of the
charge density directly using the vector

|η(1)
v (ω)⟩ = 1

2
(
|η(1)
v (+ω)⟩ + |η(1)

v (−ω)⟩
)
, (D.75)

which is stored in the variable dpsi. We highlight that if ω = 0 we obtain the
static |η(1)

v ⟩ of Equation (D.36). At each step of the cycle, this estimate is used
as a starting guess for the left-hand side vector for both frequencies ±ω;

5. the subroutine incdrhoscf then computes the variation of the charge density
ρ(1)(ω)

ρ(1)(ω) = 2
W
∑
v

|ψ(0)
v ⟩ ⟨η(1)

v (ω)| , (D.76)

where the factor 2 comes from the sum over the conjugate complex of a real
quantity and W is a proper weighting factor which contains the contribution
of the spin degeneracy and the normalization over the unit-cell volume.

Now we are back again in solve_e, where finally the self-consistent potential is
updated through the subroutine dv_of_drho, which computes

V
(1)

HXC(r, ω) =
∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′) ρ(1)(r′, ω)d3r′, (D.77)

and stores the result in dvscfout. The self-consistent potential that will be given
in input to the new call of sternheimer_kernel through the variable dvscfins, is
computed mixing the old one and the new one. At the end of the cycle, the final
estimates of the solution vector |η(1)

v (ω)⟩ of Equation (D.75) (contained in dpsi)
and of the self-consistent potential V (1)

HXC(ω) (contained in dvscfout) are stored.

D.3.4 Second order terms

We focus on the calculation of the second order terms {|η(2)
v (0)⟩} and ρ(2)(0). We

have to solve the linear system of Equation (D.62), which we rewrite using the
ρ(1)(ω) of Equation (D.76) computed in solve_e:(
H(0) − ε(0)

v

)
|η(2)
v (0)⟩ = −2PC

[
H

(1)
KS(ω), ρ(1)(ω)

]
|ψ(0)
v ⟩ + PC

[
V

(2)
HXC(0), ρ(0)

]
|ψ(0)
v ⟩ .

(D.78)
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1. first, it calls the subroutine dhdrhopsi to compute

PC [H(1)
KS(ω), ρ(1)(ω)] |ψ(0)

v ⟩ = PC [V (1)
ext.(ω), ρ(1)(ω)] |ψ(0)

v ⟩+PC

[
V

(1)
HXC(ω), ρ(1)(ω)

]
|ψ(0)

v ⟩ .
(D.79)

The two terms on the right-hand side are computed separately:

1.1 in analogy with the static case we have that:

PC [V (1)
ext.(ω), ρ(1)(ω)] |ψ(0)

v ⟩ = iPC
∑
v′

∂ |η̃ (1)
v′ (ω)⟩ ⟨ψ̃ (0)

v′ |
∂k

|ψ̃(0)
v ⟩ , (D.80)

where the ◦̃ indicates the periodic part of the wave function. The derivative
is computed with finite differences, hence it is necessary to calculate both
the {|ψ(0)

v ⟩} and the {|η̃ (1)
v (ω)⟩} at k ± ∆k. The first-order calculations

are done by the subroutine solve_e_nscf, which solves the linear system
of Equation (D.36) without the SCF cycle, ρ(1)(ω) being already known;

1.2 analogously to the static case, the second term is:

PC
[
V

(1)
HXC(ω), ρ(1)(ω)

]
|ψ(0)
v ⟩ = PCV

(1)
HXC(ω) |η (1)

v (ω)⟩ + (D.81)

− PC
∑
v′

|η (1)
v′ (ω)⟩ ⟨ψ(0)

v′ |V (1)
HXC(ω) |ψ(0)

v ⟩ ;

2. then, in the subroutine dvpsi_e2, it computes the non-self-consistent part of
the right-hand side of Equation (D.78) using the V (2)

HXC,NSCF(0) of Equation
(D.70):

V
(2)
HXC,NSCF(r, 0) =

∫
δ2EHXC[ρ](r, r′)
δρ(r)δρ(r′)

{[
ρ

(1)
CV (r′, ω), ρ(1)

V C(r′,−ω)
]

+

+
[
ρ

(1)
CV (r′,−ω), ρ(1)

V C(r′, ω)
]}

d3r′+

+ 2
∫
δ3EHXC[ρ](r, r′, r′′)
δρ(r)δρ(r′)δρ(r′′) ρ(1)(r′, ω)ρ(1)(r′′, ω)d3r′d3r′′.

(D.82)

From the first order calculations we have the {|η(1)
v (ω)⟩} and the ρ(1)(ω). With

the latter we can compute:

ρ(1)(r′, ω)ρ(1)(r′′, ω) = ρ(1)(r′, ω)ρ(1)(r′′, ω). (D.83)

However, we need the {|η(1)
v (ω)⟩} and the {|η(1)

v (−ω)⟩} separately in order to
compute:[
ρ

(1)
CV (±ω), ρ(1)

V C(∓ω)
]

=
∑

v

|η(1)
v (±ω)⟩ ⟨η(1)

v (±ω)|−
∑
v,v′

|ψ(0)
v ⟩ ⟨η(1)

v (±ω)|η(1)
v′ (±ω)⟩ ⟨ψ(0)

v′ | .

(D.84)
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We compute them solving the linear system of Equation (D.73) with the
subroutine solve_e_nscf, ρ(1)(ω) being known;

3. finally, in the subroutine solve_e2, the {|η(2)
v (0)⟩} are computed self-consistently

solving the linear system of Equation (D.78).

We now have all ingredients to compute the Raman response using Equation (D.72)
and the raman_mat subroutine.
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