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A B S T R A C T 

A galaxy cluster as the most massive gravitationally bound object in the Universe, is dominated by dark matter, which 

unfortunately can only be investigated through its interaction with the luminous baryons with some simplified assumptions 
that introduce an un-preferred bias. In this work, we, for the first time , propose a deep learning method based on the U-Net 
architecture, to directly infer the projected total mass density map from idealized observations of simulated galaxy clusters at 
multiwavelengths. The model is trained with a large data set of simulated images from clusters of THE THREE HUNDRED PROJECT . 
Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our 
whole method relies on the choice of the physics implemented in the hydrodynamic simulations, which is a limitation of the 
method. Through different metrics to assess the fidelity of the inferred density map, we show that the predicted total mass 
distribution is in very good agreement with the true simulated cluster. Therefore, it is not surprising to see the integrated halo 

mass is almost unbiased, around 1 per cent for the best result from multi vie w, and the scatter is also very small, basically within 

3 per cent. This result suggests that this ML method provides an alternative and more accessible approach to reconstructing the 
o v erall matter distribution in galaxy clusters, which can complement the lensing method. 

Key words: methods: numerical – galaxies: clusters: general – cosmology: theory – galaxies: haloes – dark matter – large-scale 
structure of Universe. 
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 I N T RO D U C T I O N  

stimating the matter content in galaxy clusters (see Kravtsov 
 Borgani 2012 , for a re vie w) is crucial for cosmological

tudies due to the fact that they are the biggest gravitation- 
lly bound objects originating from small density fluctuations 
n the early universe. Thus cosmological parameters can be 
onstrained by studying the abundance of galaxy clusters as a 
unction of the mass and redshift (e.g. Allen, Evrard & Mantz 
011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ;
alvati et al. 2022 ). Galaxy clusters are mainly composed of
ark matter (DM), which is about 80 per cent of their to-
al mass, diffused hot gas (about 12 per cent), i.e. intracluster 

edium (ICM), and stars, mainly in galaxies (the remaining 8 
er cent). 
 E-mail: daniel.deandres@uam.es 
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ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
Galaxies within clusters are normally observed at different optical 
ands. Both ground-based and space-based instruments have been 
sed to measure these galaxy properties through their spectrum 

nergy distributions. F or e xample, the Sloan Digital Sk y telescope
SDSS 

1 ) and the Hubble Space Telescope (HST 

2 ) have been crucial
or the studies of galaxy clusters as well as cosmology. The recent
hotometric surv e ys, e.g. the Dark Energy Surv e y (DES 

3 ) using the
ark Energy Camera and the Javalambre Physics of the Acceler- 

ting Universe Astrophysical Survey J-PAS 

4 from the Javalambre 
urv e y Telescope, pro vide an unprecedented amount of data for
nderstanding our Universe. Not to mention the recently launched 
pace telescopes James Webb Space Telescope ( JWST 

5 ) and Euclid. 6 
 https:// science.nasa.gov/ mission/ hubble 
 https://www.darkenergysurv e y.org 
 https:// www.j-pas.org/ surv e y 
 https://www.jwst.nasa.gov 
 https:// www.esa.int/ Science Exploration/ Space Science/ Euclid 

is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 

http://orcid.org/0000-0003-4102-0991
http://orcid.org/0000-0002-2113-4863
http://orcid.org/0000-0001-5031-7936
http://orcid.org/0000-0001-5573-726X
http://orcid.org/0000-0002-1619-8555
mailto:daniel.deandres@uam.es
https://www.sdss.org
https://science.nasa.gov/mission/hubble
https://www.darkenergysurvey.org
https://www.j-pas.org/survey
https://www.jwst.nasa.gov
https://www.esa.int/Science_Exploration/Space_Science/Euclid
https://creativecommons.org/licenses/by/4.0/


1518 D. de Andres et.al. 

M

W  

t  

c
Z  

c  

h  

a  

t  

t  

P  

c  

(  

t
 

i  

b  

a  

o  

w  

h  

2  

i  

o  

&  

e  

a  

w  

t  

&  

l  

c  

g  

m  

t  

f  

t  

o  

o  

t
 

a  

w  

(  

G  

s  

a  

m  

l  

D  

f  

(  

e  

t  

e  

c  

o  

G  

G  

F  

c  

a  

a  

a  

S  

m  

o  

(  

e
 

m  

F  

b  

i  

o  

a  

t  

a  

a  

s  

b
 

p  

T  

e  

s  

a  

f  

f  

n  

t  

t  

t
 

o  

s  

o  

m  

(  

S  

t  

r  

d  

d  

s  

m

2

2

I  

T  

f  

o  

K  

b  

s  

M  

b  
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hile optical surv e ys e xplore galaxy members, the ICM is targeted
hrough X-ray emission and the inverse-Compton scattering of the
osmic microwave background (CMB) photons, i.e. the Sunyaev–
el’dovich (SZ) effect (Sunyaev & Zeldovich 1972 ). The SZ effect
an be observed at millimetre wavelengths and different instruments
ave managed to detect more than a thousand clusters through it, such
s the Planck satellite (PSZ2; Planck Collaboration XXVII 2016c ),
he Atacama Cosmology Telescope (ACT; Hilton et al. 2018 ), and
he South Pole Telescope (SPT; Bleem et al. 2020 ). Nevertheless,
lanck is the only all-sky survey for SZ clusters. On the contrary,
lusters X-ray observations are more recently explored by eROSITA
Liu et al. 2022 ) and targeted XMM –Newton observations, such as
he CHEX-MATE project (CHEX-MATE Collaboration 2021 ). 

Although the total mass of a cluster of galaxies is not observable,
t can be inferred by observing its baryonic components. It can
e estimated from the dynamics (e.g. Biviano et al. 2006 ) or the
bundance/richness (e.g. Rozo et al. 2009 ) of the member galaxies,
r from the ICM radial profiles in X-ray and SZ observations
ith the assumption of the diffused gas is distributed following the
 ydrostatic equilibrium (HE) h ypothesis (e.g. Gianfagna et al. 2021 ,
023 ). Alternatively, their physical quantities, which are integrated
nside a fixed aperture in the sky, strictly related to the mass of the
bject can be selected under the self-similarity assumption (Bryan
 Norman 1998 ) as suitable observational proxies. However, these

stimated masses rely upon theoretical assumptions, such as HE,
nd are therefore possibly affected by bias. Nevertheless, only
eak gravitational lensing (WL) is sensitive to all matter along

he line of sight and measures the total projected matter (Becker
 Kravtsov 2011 ; Herbonnet et al. 2022 ). Ho we ver, gravitational

ensing observations are not numerous, with tens of images, in
omparison to the hundreds or few thousands of observations of
alaxy clusters available for SZ, X-ray, and stars. In addition,
ass inference from WL also suffers from systematics due to the

heoretical assumptions when reconstructing mass (kappa) maps
rom shear (Kaiser & Squires 1993 ), similar to the inference of
he mass from SZ or X-ray. Recent data-driven approaches based
n simulations and convolutional neural networks hav e pro v en to
utperform conventional methods (Hong et al. 2021b ) also for the
ask of WL mass reconstruction. 

Machine learning (ML) has been applied in astronomy since quite
 long ago (e.g Odewahn et al. 1992 ), but only in past years we have
itnessed an unprecedented increase of deep learning (DL) methods

for a re vie w, see e.g. Huertas-Company & Lanusse 2023 ; Smith &
each 2023 ), which implies a change in the paradigm from applying

pecific algorithms to fully data-driven science. We stress here that
pplying DL in real observations of galaxy clusters is inherently
ore challenging than in simulations and accordingly most of the

iterature is limited to only utilizing simulated data. For example,
L has also been used for identifying galaxy cluster members

rom HST images (Angora et al. 2020 ), increasing the resolution
super-resolution) and de-noizing XMM –Newton images (Sweere
t al. 2022 ), and deprojecting and deconvolving galaxy cluster X-ray
emperature profiles within the CHEX-MATE collaboration (Iqbal
t al. 2023 ). In our interests, recent studies have shown that galaxy
luster masses can be estimated using DL methods from catalogues
f simulated galaxy clusters (Ho et al. 2019 ; Ntampaka et al. 2019 ;
upta & Reichardt 2020 ; Kodi Ramanah et al. 2020 ; Yan et al. 2020 ;
upta & Reichardt 2021 ; Ho et al. 2021 ; de Andres et al. 2022 ;
erragamo et al. 2023 ; Ho et al. 2023 ), which outperform these
lassical methods. Fortunately, only recently these methods have
lso been applied to infer the mass of galaxy clusters of real surv e ys
t different wavelengths, Kodi Ramanah, Wojtak & Arendse ( 2021 )
NRAS 528, 1517–1530 (2024) 
pplied DL to infer galaxy clusters masses from the SDSS Le gac y
urv e y (Strauss et al. 2002 ), Ho et al. ( 2022 ) estimated the dynamical
ass of the Coma cluster, de Andres et al. ( 2022 ) inferred the masses

f the full-sky Planck satellite PSZ2 catalogue, Krippendorf et al.
 2023 ) followed a ML approach to infer galaxy cluster masses from
ROSITA X-ray images. 

Notwithstanding, previous works on mass inference focus on the
ass inside a sphere of a certain radius (i.e. R 200 

7 or R 500 ). Recently,
erragamo et al. ( 2023 ) pushed these ML applications even further
y showing that ML can predict the mass radial profile using SZ
dealized simulated images and thus, being able to theoretically
btain valuable information on internal properties of galaxy clusters
s the concentration. As a general remark, all these studies suggest
hat the estimated masses are not affected by observational biases
nd assumptions due to the fact that they do not rely on hypotheses
bout the dynamics nor the hydrostatic equilibrium with spherical
ymmetry of the ICM, but rather on the quality of data set provided
y cosmological simulations. 
In this work, for the first time, we explore DL models to infer the

rojected matter density fields from simulated baryonic observations.
o this end, we utilize the THE THREE HUNDRED ( THE300 ; Cui
t al. 2018 ): a set of ‘zoom-in’ hydrodynamical and cosmological
imulations to generate the input idealized observations: SZ, X-ray,
nd star maps, and the output maps, mass maps. The data set created
or this purpose corresponds to a set of idealized observations free
rom the observational impacts typical of real instruments, such as
oise and point sources. Therefore, this work represents the needed
heoretical proof-of-concept study where the limitations of DL are
ested. For further details regarding our data set, we refer the reader
o Section 2 . 

The manuscript is organized as follows: in Section 2 , the creation
f the data set is discussed, THE THREE HUNDRED set of hydrodynamic
imulations and the particular selection of halo-sized objects that are
ptimal for training ML models and the characteristics of our input
aps, Compton- y parameters maps (SZ), X-ray surface brightness

X-ray), and star density maps, and output mass density maps. In
ection 3 , we discuss the DL model and architectures considered for

his project as well as how the models are trained. In Section 4 , the
esults of the model applied to the test set are shown. To this end, we
esign a set of test metrics to assess the fidelity of the predicted mass
ensity maps: pixel-wise statistics, cylindrical radial profiles, power
pectra, and maximum mean discrepancy . Finally , in Section 5 the
ain conclusions of the work are drawn. 

 DATA  SET  

.1 The three hundred simulations 

n order to create the data set used for training our DL model, we use
HE300 8 simulations (Cui et al. 2018 ). THE300 simulation project

ocuses on a set of 324 ‘zoom-in’ hydrodynamic simulations centred
n the most massive haloes of the MULTIDARK simulation ( MDPL2 ;
lypin et al. 2016 ) utilizing the cosmological parameters inferred
y Planck (Planck Collaboration XIII 2016a ). The full MDPL2
imulation contains 3840 3 particles whose mass is 1 . 5 × 10 9 h 

−1 M �.
oreo v er, each cluster re gion co v ers 15 h −1 Mpc and they have

een simulated with different baryonic models: GADGET-MUSIC

https://the300-project.org
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Figure 1. Mass distribution of the selected galaxy clusters sample. Note that 
the selected objects follow an approximately flat distribution in the logarithm 

of the mass. Dashed black vertical lines correspond to mass thresholds that 
divide the sample in 3 mass bins containing an equal number of clusters and 
they are at log ( M 200 /( h −1 M �)) = 14.05 and log ( M 200 /( h −1 M �)) = 14.65. 
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Sembolini et al. 2013 ), GADGET-X (Murante et al. 2010 ; Rasia et al.
015 ), GIZMO-SIMBA (Dav ́e et al. 2019 ; Cui et al. 2022 ). Ho we ver,
n this work, we only make use of GADGET-X (Cui et al. 2018 ) and
IZMO-SIMBA (Cui et al. 2022 ) runs. 
In THE300 simulations haloes are identified by the AMIGA’S 

ALO FINDER package (AHF; Knollmann & Knebe 2009 ) and only 
aloes with M 200 > 10 13.5 h −1 M �, at redshift z � 0 and free from
ontamination are selected. Note that M 200 stands for the mass inside 
 sphere of density 200 times the critical density of the Universe at the
orresponding redshift. Bear in mind that for THE300 simulations, 
he scaling relations do not depend on redshift at least up to z �
 (de Andres Andres et al. 2023 ). Free from contamination means
hat heavy (or low resolution) DM particles entering from outside 
he re-simulated volume are not present inside our selected haloes. 
he selection is first done for GADGET-X , the counterpart haloes from
IZMO-SIMBA are selected to have the same number of objects and 
ass distribution as in GADGET-X . 
Furthermore, to increase the statistics of underrepresented clusters 

e added objects from other snapshots ( z = 0.022, 0.045, 0.069,
.093, and 0.117) to account for a flat mass distribution as in
erragamo et al. ( 2023 ), which is presented in Fig. 1 . In that figure,

he number of galaxy clusters as a function of mass is shown, and
he whole sample is equally split into 3 bins with two vertical lines.

oreo v er, the THE300 simulations contain a rich variety of massive
alaxy clusters with different dynamical states (De Luca et al. 2021 ).
ote that at the end of the selection procedure, 2518 haloes are

elected from GADGET-X and 2523 from GIZMO-SIMBA , with the 
ame flat distribution in mass. We refer the reader to the Appendix A
or more information. 

.2 Simulated multiview images 

rom the selected haloes, we further compute the Compton- y 
arameter – a dimensionless measure of the SZ effect, X-ray surface 
rightness, star mass density, and total mass density maps, see Table 
 . Per each halo in our data set, 29 different line-of-sight projections
re considered to create 146 189 maps in total, a large enough data set
or training our ML model. To test the ef fecti veness of ML models
nd a v oid observational biases, the generated images correspond to 
 set of idealized maps in which the angular resolution is sufficiently
igh for all of them regardless of their masses. As such, we have
reated a data set in which the size of each map is 2 × R 200 , all
ampled with the same number of pixels N pix = 640 and therefore
ll maps are equally resolved. 

Although all maps are initially created with a resolution of 
40 × 640 pix els, the y are smoothed with a Gaussian kernel of
WHM � 0.015 R 200 and they are re-gridded to a lower resolution
f 80 × 80 pixels, which is needed for computational efficiency. 
e vertheless, these ‘lo w-resolution’ final maps are still very well

esolved, and the angular resolution for all maps is below 1 arcmin.
he idea that we desire to conv e y is that this data set corresponds

o an ideal theoretical data set from hydro-simulations which can 
e easily applied to the ML models for testing their performance. In
etail, the SZ maps, X-ray surface brightness maps, star mass density
aps, and total mass density maps are computed as follows: 
Compton-y parameter maps ( y ) correspond to the integrated 

ressure along the observer’s line of sight (l.o.s.) d l . 

 = 

σT k B 

m e c 2 

∫ 

n e T e dl , (1) 

here σ T is the Thomson cross-section, k B is the Boltzmann constant, 
 the speed of light, m e the electron rest-mass, n e the electron number
ensity, and T e the electron temperature. These maps are computed 
sing the publicly available package PYMSZ 

9 (Cui et al. 2018 ). 
X-ray surface brightness maps (X-ray) are estimated by com- 

uting the X-ray emission by thermal bremsstrahlung in the hot 
ntracluster medium using a wrapper of PyAtomDB 

10 package to 
ompute X-ray luminosity. 11 First, using the atomic data base, we 
stimated the bolometric X-ray luminosity of gas particles in the 
imulation. Then we projected the sum of the luminosity values along
he observer’s l.o.s. The projected luminosity L ij , is then divided by
he surface area � of the pixel i , j : 

-ray ij = L ij /� , (2) 

hich is 

 = ( R 200 / 40) 2 . (3) 

Stellar density maps are generated by projecting the sum of the
asses of the star particles 

∑ 

p M ∗p along the observer’s line of sight,
hat represent the pixel ( i , j ). This value is then divided by the surface
rea of the pixel �: 

tar i,j = 

∑ 

p 

M ∗, p /� . (4) 

e note that opting for stellar density as the stars simulated maps
equires some clarifications: (1) First, stellar observations in surv e ys
re all presented as multiband observations, e.g. SDSS. 12 As a first
roof-of-concept approximation, the density field of the stars reflects 
heir spatial distribution and thus, for this purpose, as shown in Yan
t al. ( 2020 ) M 500 could be inferred from star density maps. (2) We
an, for sure, compute luminosity maps from stars in the simulation
y using Stellar Population Synthesis models, such as SPSM (De- 
riendt, Guiderdoni & Sadat 1999 ; Bruzual & Charlot 2003 ). This
pproach is closer to the real observation images. However, we argue
hat (a) the mass density map from observations can be derived by
MNRAS 528, 1517–1530 (2024) 

https://github.com/weiguangcui/pymsz
https://atomdb.readthedocs.io/en/master/
https://github.com/rennehan/xraylum
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M

Figure 2. From top to bottom, we show some examples of maps used for training the U-Net model: SZ, X-ray, star, and mass. The examples’ mass M 200 is 
shown at the top of each column. The size of all maps is 2 × R 200 regardless of the mass. 
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tting the different colour bands to a Stellar Energy Distribution,
sing the same SPSM, albeit a little bit higher uncertainties and
omplexities due to several hypotheses on the metallicity, stellar
ass function, etc... (b) there should be not much difference in

ractice with either luminosity or stellar mass maps. This is because
he galaxies’ luminosity-to-mass ratio is approximately constant for
he300 simulation, see fig. 8 of Cui et al. ( 2018 ). (c) to apply our ML
odels to real observation images, there are still multiple steps to

ake care of, such as instruments, and background noise. Therefore,
e adopt the stellar mass maps for simplicity in this concept-proofing
aper and leave the proper reproduction of mock observation images
n the following work. 

Mass density maps are generated by projecting the sum of the
asses of all particles, i.e. gas, star, dark matter, and black hole

articles in the observer’s line of sight. Similarly, this value is divided
y the surface area of a pixel. 
In Fig. 2 , examples of our simulated maps are displayed for

ifferent cluster masses. With Compton-y maps, X-ray surface
rightness maps and star density maps, we aim to infer total mass
ensity maps shown at the bottom by using a DL model that is able to
apture the non-linear relations between input (SZ, X-ray, and star)
nd output (total mass) maps. This model can end-to-end translate
ne input map into mass density. The choice of the particular model
sed and the training of that model are described in the next section.
NRAS 528, 1517–1530 (2024) 
 M E T H O D S  

.1 The deep learning model 

he chosen model and its architecture used for the generator of
ass density maps is based on convolutional neural networks

ollowing a U-Net architecture. This model was originally de-
eloped for image segmentation in the field of biological imag-
ng (Ronneberger, Fischer & Brox 2015 ). In astronomy, some
pplications followed the original purpose of segmentation such
s removing radio frequency interference (Akeret et al. 2017 ),
ut also the U-Net has been successfully considered for various
nd different tasks (Milletari, Navab & Ahmadi 2016 ; Aragon-
alvo 2019 ; Berger & Stein 2019 ; Hausen & Robertson 2020 ;
ong et al. 2021a ; Lauritsen et al. 2021 ). The U-Net is char-

cterized by a set of two paths: the down-sampling path (or
ncoder) and the up-sampling path (or decoder). For our applica-
ion, the considered U-Net is described below and represented in
ig. 3 . 

(i) The down-sampling path consists of a succession of con-
olutional blocks, each of these applies two K × K convolutions
ith F filters ( C 

F 
K ×K 

), being K the size of the receptive field or the
ernel size. After the convolutions, a rectified linear unit operation is
pplied (ReLU; Nair & Hinton 2010 ) to ensure non-linearity, and a
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Upsampling 

Downsampling

 Convolution + ReLU + 
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Skip connections
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C. Block, F=128 C. Block, F=64

C. Block, F 
(Convolutional 

Block with F filters)

shape = (20,64,64 )

shape = (5,256,256 ) 256

32

Figure 3. U-Net architecture for input dimensions = (80 pix els, 80 pix els, 1 channel) and F = 32. The input image (star, SZ, or X-ray) is down-sampled 
4 times, once per layer through a set of convolution of kernel size K × K. At the very bottom, the down-sampled representation is up-sampled using a similar 
convolutional block to generate the output mass map. Skip connections are used to ensure that the information is not totally lost during the down-sampling 
operations. We remind that dropout is applied to all convolutional layers only in the decoder. 
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atch normalization operation (BatchNorm; Ioffe & Szegedy 2015 ) 
s applied after each of the convolutions to impro v e the stability and
erformance of the network. Later, a 2 × 2 max-pooling (e.g. Scherer, 
 ̈uller & Behnke 2010 ) operation down-samples the tensor shape so

hat this is reduced by a factor of 1/2. The subsequent convolutional
locks are built with the same architecture, maintaining the kernel 
ize of the conv olutions b ut increasing the number of filters by a factor
f 2, i.e. for the n layer, the filters are F × 2 n − 1 , where n = 1,...,
 is the layer and N is the maximum number of layers. After down-

ampling N times, a final convolution C 

F×2 N−1 

K ×K 

is applied. Therefore, 
he down-sampling path can be written as a series of convolutions as
ollows: 

ncoder = C 

F 
K ×K 

C 

F 
K ×K 

down −−−−→ 

sampling 
C 

F×2 
K ×K 

C 

F×2 
K ×K 

down −−−−→ 

sampling 
... 

... 
down −−−−→ 

sampling 
C 

F×2 N−1 

K ×K 

C 

F×2 N−1 

K ×K 

down −−−−→ 

sampling 
C 

F×2 N−1 

K ×K 

(5) 

(ii) The up-sampling path consists of a succession of similar 
onvolutional blocks to infer the output mass density map from the 
atent (central layer) representation given by the down-sampling path. 
rom this encoded reduced representation, which is a tensor whose 
hape has been decreased by a factor of 1/2 N times and has F × 2 N − 1 

hannels, up-sampling operations are applied until the shape of the 
utput mass density map is reco v ered. This up-sampling operation 
onsists of repeating the nearest points to increase the shape of the
ata by a factor of 2. Then, skip connections are used for the same
ow layers, and thus, information is not bottlenecked in the latent 
epresentation. At the final decoder step, 1 × 1 convolutions are 
pplied to reco v er the filter dimensions of the output mass density
 = 1. For preventing overfitting, random ‘dropout’ (Hinton et al. 
012 ) is considered only in the convolutional blocks of the decoder. 

ecoder = 

up −−−−→ 

sampling 
C 

F×2 N−2 

K ×K 

C 

F×2 N−2 

K ×K 

up −−−−→ 

sampling 
C 

F×2 N−3 

K ×K 

C 

F×2 N−3 

K ×K 

up −−−−→ 

sampling 
... 

up −−−−→ 

sampling 
C 

F 
K ×K 

C 

F 
K ×K 

C 

F/ 2 
1 ×1 C 

1 
1 ×1 (6) 
.1.1 Multivie w approac hes 

his model has the advantage that it can be easily generalized to
xtract information simultaneously from multiple input views. To do 
hat two approaches are studied: 

(i) The three different views are combined in a single input tensor
hose shape is increased as if it were an RGB image. This approach

s labelled as ‘multi-1’; and 
(ii) Three different encoders are used, one encoder for each input 

iew . Subsequently , the three latent vectors are concatenated in
he internal latent space. One decoder , the generator , is devoted to
reating mass density maps from the information of this concatenated 
atent space. This approach is labelled as ‘multi-3’ (see Fig. 4 ). 

A summary of all the models used in this work can be found in
able 2 . 
MNRAS 528, 1517–1530 (2024) 
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Table 1. Data set of simulated maps from THE THREE HUNDRED simulations. 

Map Short name Units 

Compton-y parameter SZ 

Bolometric X-ray surface brightness X-ray ergs −1 kpc −2 

Star density maps Star h −1 M � kpc −2 

Mass density maps Mass h −1 M � kpc −2 

Table 2. Models considered in this work. Each is a variation of the U-Net 
architecture presented in Fig. 3 to account for different inputs. 

Model name Input maps Number of encoders 
Star Star 1 
SZ SZ 1 
X-ray X-ray 1 
Multi-1 Star, SZ, and 

X-ray 
1 

Multi-3 Star, SZ, and 
X-ray 

3 

Table 3. The considered possible values of hyperparameters of our U-Net 
model. 

Hyperparameter Values 

Filters ( F ) 8, 9,..., 32 
Kernel (K) 1, 2,..., 6 
Number of layers ( N ) 1,..., 4 
Dropout [0, 0.5] 
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.2 Training and validation 

ccording to the description given in the previous section, we
onsider the following hyperparameters for our model: the number of
hannels or filters ( F ), the size of the kernel in the convolutions (K),
he number of layers in both the encoder and decoder architectures
 N ), and the fraction of neurons that are randomly omitted, i.e. the
dropout’. The considered possible values of these hyperparameters
re shown in Table 3 and the optimal set of hyperparameters is
ound by TREE OF PARZEN ESTIMATORS algorithm (TPE; Bergstra
t al. 2011 ). This algorithm is implemented and freely available
t HYPEROPT 13 : DISTRIBUTED ASYNCHRONOUS HYPER-PARAMETER

PTIMISATION (Bergstra, Yamins & Cox 2013 ). The targeted loss
unction is the mean absolute error L 1 between the predicted pixel
alues and the ground-truth pixels. 

Furthermore, the data is randomly split into 3 subsets: the training
ata set composed of 80 per cent of the sample, the validation data
et with 10 per cent of data and the remaining 10 per cent belongs
o the test data set. The training data set is used for tuning the U-Net
arameters, the TREE OF PARZEN ESTIMATORS algorithm is fed with
alidation data, and the test set is only used for displaying the final
esults. 

We have taken 100 e v aluations when performing the HYPEROPT

ptimization, which means that the U-Net needs to be fitted 100 times
or each of the 5 different U-Nets. The models are trained using the
DAM optimizer (Kingma & Ba 2014 ) with a learning rate of 10 −4 ,
hich is reduced to 10 −5 after 50 epochs. The training stops if the
alidation loss does not impro v e after 5 epochs, a process commonly
nown as ‘early stopping’, or if a model has trained 100 epochs.
he hardware used for training is an NVIDIA A100 GPU, which
NRAS 528, 1517–1530 (2024) 

3 http:// hyperopt.github.io/ hyperopt/ 

c  

a  

d  
ranslates to 1 epoch and takes about 2 min to complete. Before
tting the models, the maps are normalized following the common
tandard normalization, see e.g. de Andres et al. ( 2022 ) for further
etails. 

 RESULTS  

n this section, our aim is to assess the quality of predicted density
aps by our model. To do that, we compare the ground-truth density
aps with their corresponding predicted maps in the test set with

imple visualization as the first metric for assessing the quality of
he predictions. First, we show one example of our predicted maps in
ig. 5 for our different U-Nets accounting for different input views.
he first column on the left shows the three input views corresponding

o the same galaxy cluster and the ground-truth density map is
ocated at the top left. The second column shows the predictions
or several input bands: SZ, X-ray, star, and multi vie w. The last
olumn corresponds to the residuals, i.e. the difference between the
rediction and the ground truth. 
As a general result, we observe that the predicted mass density
aps from SZ and X-ray inputs are smoother and do not contain
ost of the substructures that can be appreciated in the ground-truth
ap. This is clear in the last column where the residuals mostly

ontain all the missing substructures and they are underestimated as
hown in the figure in blue colour. Conversely, predictions from stars
nd from the multi vie w models contain most of the substructures.
heir residuals are generally closer to zero than the others. We only
how here the multi-3 approach, given the similarity among multi-1
nd multi-3 predictions in a human eye test. 

This visualization of density-map residuals in Fig. 5 apparently is
ot sufficient to numerical quantify the similarity between predict
nd true maps. Therefore, we are compelled to utilize a set of
dditional metrics to measure the discrepancies between the two.
he considered metrics are the pixel-wise statistics, cylindrical radial
ass profiles, power spectrum, and maximum mean discrepancy
hich are studied in the following sections. 

.1 Pixel-wise statistics 

ne interesting metric is considering the pixel-value differences
etween ground truth and predicted maps. We calculate the relative
ifference D ij between predicted maps ˆ I ij and true maps I ij as 

 ij ,k = 

ˆ I ij ,k − I ij ,k 

I ij ,k 

. (7) 

Therefore, the tensor D ij , k computes the pixel-wise similarity
etween true images and predicted images. The index k here runs
 v er maps, i.e. all the maps in the test set. Subsequently, the tensor
 ij , k is flattening to a vector of dimensions i × j × k and its histogram

s a probability density is represented in Fig. 6 . We drop the values
f the tensor D ij , k where the ground-truth signal I ij , k equals 0 unless

ˆ 
 ij ,k − I ij ,k = 0. 

The particular values of the median, 16th and 84th percentiles of
he distributions are also displayed in the legend of Fig. 6 as 

alue + error 
−error = median +| 84 th −median | 

−| median −16 th | . (8) 

In this part, we also study the performance of each input map
o infer the predicted mass map at different apertures around the
luster. In the left-hand panel, pixel values inside the whole map
re considered, in the middle only the values D ij , k inside R 500 are
isplayed and in the right-hand panel only values inside R 500 /2.

http://hyperopt.github.io/hyperopt/
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SZ

X-ray

star

ground-truth

Figure 5. The first column on the left corresponds to the input maps (SZ, X-ray, and stars) and the ground-truth mass density map. In the second column from 

top to bottom, we show the mass map predictions of our U-Net when training with SZ, X-ray, star or multi vie w (multi-3). The residuals are defined as the 
difference between the prediction and the ground-truth maps. The size of all maps is 2 × R 200 . 
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irst, for the three panels in Fig. 6 , the same trend is observed:
he multi vie w-3 is the most accurate, follo wed very closely by
he multi vie w-1, using star density maps as input corresponds to
he third most accurate model while considering X-ray and SZ as
nputs results in a higher relative error, which is consistent to the
xpectation from Fig. 5 . Furthermore, this can be appreciated in 
he legend of Fig. 6 that all the models are slightly biased mostly
o wards negati ve v alues, besides the multi vie w-3 with median � 0.00
n all three panels. While the model trained with only X-ray images
ields the worst with median = −0.03 for all three panels. Moreo v er,
he scatter is smaller for the two multi vie w approaches, i.e. + 0.23,

0.18 with only slightly larger in multi vie w-1 than in multi vie w-
MNRAS 528, 1517–1530 (2024) 



1524 D. de Andres et.al. 

M

Figure 6. Pixel-wise relati ve dif ference D ij , k (see equation 7 ) between the predicted mass density maps ˆ I ij ,k and the ground-truth mass density maps I ij , k . 
Different lines represent the use of different input views to predict the mass density map: star, SZ, X-ray, multi-1, and multi-3. The legend also shows the 

median value of the distributions with the 16th and 84th percentiles as median +| 84 th −median | 
−| median −16 th | . From left to right, D ij , k is computed for pixels inside various circular 

apertures: the whole map, inside R 500 and inside R 500 /2. 
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. In contrast, that scatter from the model trained with only SZ
mages is the largest, + 0.44, −0.29, followed by the X-ray model,
 0.36, −0.28, which is also closer to the values from the star model,
 0.38, −0.21. As it is depicted in Fig. 5 , models whose input is

ither SZ or X-ray fail at predicting small-scale substructures and
he signal vanishes in the outskirts of the clusters. Therefore, all
hose not predicted substructures contribute to ne gativ e values in the
 ij , k distribution. Subsequently, these substructures in the density
ass maps are, allegedly, wrongly estimated. This will be quantified

n the subsequent sections. 
By comparing with the middle and right-hand panels of Fig. 6 ,

e aim to test whether the asymmetry in the distributions of the
elati ve dif ference tensor D ij , k is mainly af fected by pixels outside
he central region of the maps and whether the model behaves
orse in the cluster centre or not. As depicted in that figure, the
istributions progressively become less spread and more symmetrical
hen considering only pixels inside a smaller aperture, R 500 and
 500 /2. This means that the central regions, which we care the
ost, actually have the best result. Nevertheless, the multi vie w
odels provide the most accurate result in all cases, albeit a slight

mpro v ement with multi vie w-3 than multi vie w-1. 

.2 Cylindrical radial profiles 

ne can assess the quality of the predictions by comparing the mass
adial profiles of the predicted and the ground-truth mass density
aps. The mass profiles M ρ are defined by integrating the mass

ensity, or pixel values, of the maps in different circular regions �ρ

ith radius ρ: 

 ρ = 

∑ 

i,j∈ �ρ

I ij � . (9) 

ote that all circular regions include pixels from the very centre of
he maps, i.e. radius ∈ [0, ρ]. Here, I ij are the pixel values and � is
he pixel size – � = ( R 200 /40) 2 –. Note that equation ( 9 ) provides the
otal 3D mass of a galaxy cluster integrated over a cylindrical volume
f 2 × R 200 × �ρ . We then have computed M ρ for ten equally spaced
ircular regions of radii ρ = R 200 /10, R 200 /9,..., R 200 . Nevertheless,
he difference between the ground-truth profile M ρ and the predicted
rofile ˆ M ρ can be estimated as the mass bias b ρ as it is computed
NRAS 528, 1517–1530 (2024) 
lso in de Andres et al. ( 2022 ) and Ferragamo et al. ( 2023 ): 

 ρ = 

ˆ M ρ − M ρ

M ρ

. (10) 

In Fig. 7 , we show the bias b ρ as a function of the normal-
zed radius R / R 200 . From left to right, we show the bias that
orresponds to three different mass interv als, which di vide the
ata set in a manner that each interval contains roughly the
ame number of galaxy clusters, see Fig. 1 . Therefore, interval
 corresponds to 13 . 5 ≤ log M 200 / h 

−1 M � < 14 . 02, the interval 2
ange is 14 . 02 ≤ log M 200 / h 

−1 M � < 14 . 63, and the interval 3 is
4 . 63 ≤ log M 200 / h 

−1 M � ≤ 15 . 38. Moreo v er, in the top panels, we
how the 3 single-view approaches (star, SZ, and X-ray) and the 2
ulti vie w models are shown in the bottom panels. From Fig. 7 , we

ee that all models have negative biases, apart from the low mass
nterval in which the biases for SZ and X-ray models generally are
e gativ e, but positiv e for star and multi-1 models. For the single view
esult in the top panels of Fig. 7 , ne gativ e biases for the results from
Z and X-ray inputs are possibly caused by the fact that they cannot
ro vide an y information of substructures, especially relati vely lo w
ass ones. The biases for the stellar inputs decrease from positive at

he low halo mass bin to ne gativ e at the high mass bin. We suspect
hat is because the contribution of substructures is more significant
n haloes with higher mass. Since we train the model regardless of
he sample’s halo mass, there is also a possibility that ML has to
alance the predictions due to different contributions of the sample’s
alo mass. Nevertheless, it is surprising to see the impro v ements
rom multi vie w inputs sho wn at the bottom panels of Fig. 7 : the
edian bias is reduced by roughly a factor of ∼1/3, while the scatter

ignificantly shirked by almost ∼1/2 in all three mass bins. For the
eader’s interest, the particular values for the bias at R 200 for different
odels and mass intervals are shown in Table 4 . 
The data in Fig. 7 and Table 4 show a general trend that the scatter

f the bias decreases with mass regardless of the input images. As can
e seen in the table, for interval 1 considering the multi vie w-3 model,
he results are b 200 = 0 . 001 + 0 . 078 

0 . 066 and for interval 3 is 0 . 024 + 0 . 019 
−0 . 017 ,

hat is, the width is reduced by a factor of 4. This translates into the
ffect that the predictions for massive clusters are more precise than
hose predictions for less massive clusters with smaller scatter. This
roblem could be caused by different factors: 
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Figure 7. Radial profiles of the mass bias, see equation ( 10 ). From left to right, we show the bias corresponding to different mass intervals as indicated 
in Fig. 1 : Interval 1 corresponds to 13 . 5 ≤ log M 200 / h 

−1 M � < 14 . 02, the interval 2 range is 14 . 02 ≤ log M 200 / h 
−1 M � < 14 . 63, and the interval 3 is 

14 . 63 ≤ log M 200 / h 
−1 M � ≤ 15 . 38. The top panels show the single-input view models (star, SZ, and X-ray) and the bottom panels the multi vie w-1 and -3 

models. The lines represent the median values per bin and the shaded regions cover the 16th and 84th percentiles. Furthermore, the particular enclosure mass 
bias at R 200 is presented in Table 4 . 

Table 4. Values for the bias b 200 defined in of equation 
( 10 ) at R 200 for our different models. These values are also 
displayed in Fig. 7 and the intervals 1, 2, and 3 are defined 
to separate the data set in roughly equal number of clusters, 
as shown in Fig. 1 . Consequently, interval 1 corresponds 
to 13 . 5 ≤ log M 200 / h 

−1 M � < 14 . 02, the interval 2 range 
is 14 . 02 ≤ log M 200 / h 

−1 M � < 14 . 63, and the interval 3 is 
14 . 63 ≤ log M 200 / h 

−1 M � ≤ 15 . 38. 

Model Interval 1 Interval 2 Interval 3 

Star −0 . 061 + 0 . 222 
−0 . 158 −0 . 033 + 0 . 069 

−0 . 066 −0 . 041 + 0 . 033 
−0 . 030 

SZ −0 . 036 + 0 . 166 
−0 . 132 −0 . 063 + 0 . 060 

−0 . 069 −0 . 059 + 0 . 042 
−0 . 040 

X-ray 0 . 085 + 0 . 125 
−0 . 098 −0 . 089 + 0 . 050 

−0 . 060 −0 . 071 + 0 . 039 
−0 . 038 

Multi-1 0 . 051 + 0 . 098 
−0 . 073 −0 . 009 + 0 . 034 

0 . 028 −0 . 025 + 0 . 019 
−0 . 018 

Multi-3 0 . 001 + 0 . 078 
−0 . 066 −0 . 015 + 0 . 028 

−0 . 026 −0 . 024 + 0 . 019 
−0 . 017 
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(i) The loss function utilized during training, which is the mean 
bsolute error L 1 , could be inducing the weights of the neural network
o be updated to fit only massive clusters. This can be understood
y noticing that the gradients of the loss function could be higher
or massive clusters. According to this hypothesis, the presence of 
igh-mass clusters in our data set hinders the predictions at low 

asses. We claim here that this is false as demonstrated in the
ppendix Section A , in which the DL model is trained with a different

onfiguration where there is only data corresponding to low masses 
n the training set. 

(ii) ICM and stars follow gravity at higher masses, but at lower 
asses astrophysical effects are relevant and ICM and star com- 

onents differ between GADGET-X and GIZMO-SIMBA simulations, 
ncreasing the irreducible scatter in the observable–mass relation. 
ince the training uses both simulation haloes together, this larger 
ifference at lower halo mass introduced such a large scatter. 
urthermore, even with a single simulation, the scatter in halo baryon
ractions increases as halo mass decreases which is caused by their
ntrinsic evolution history (see Cui et al. 2021 , for example). This is
he most rele v ant source that induces a mass-dependent scatter, as it
s discussed in further detail in the Appendix A . 

.3 Power spectrum 

uantifying the information contained in our maps at different 
patial frequencies is of great interest because the empirical evidence 
uggests that substructures tend to be underestimated as observed in 
ig. 5 , especially for the X-ray and SZ input images. This can be
learly viewed by investigating the power spectrum of the density 
ass map at small scales. For 2D images ( I nm ) of pixel size N × M ,

he Fourier Transform F k n k m can be defined as 

 k x k y = 

N ∑ 

n 

M ∑ 

m 

I ab exp 

[
−i2 π

(
k x n 

N 

+ 

k y m 

M 

)]
, (11) 

here i stands here for the imaginary unit. Note that for our images
f 80 × 80 pixels N = M = 80. Moreo v er, the power spectrum is
omputed as 

 k = | F k | 2 
(

2 R 200 

80 2 

)2 

(12) 

here k = 

√ 

k 2 x + k 2 y . Note that the possible values of k in pixels

o from 1 to the one corresponding to the Nyquist frequency, i.e.
 

2 × N/ 2 � 56 pixels, or in physical units with a factor of π / R 200 .
rom here we defined the spatial length λ as 

= 2 π/k . (13) 

Therefore, we further calculate the power spectra of the ground- 
ruth maps and of the predicted maps for comparison, using the
MNRAS 528, 1517–1530 (2024) 
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Figure 8. Top: Power spectrum corresponding to our ground-truth (red) and the predicted (blue) mass density maps as a function of the spatial length λ = 2 π / k 
for our different inputs: star, SZ, X-ray, multi-1, and multi-3, are displayed in different columns. Bottom: We sho w the relati ve dif ference ( P pred − P true )/ P true 

of the predicted power spectrum P pred and the ground-truth power spectrum P true of our mass density maps. The dashed black line depicts the perfect prediction 
where the difference is zero. The solid lines correspond to the median values while the shaded regions represent the 16th and 84 th percentiles. 
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YLIANS library ( Py thon li braries for the a nalysis of n umerical
 imulations; Villaescusa-Navarro 2018 ), and highlight the difference
n Fig. 8 . In this figure, the power spectra of the predicted maps and
he ground-truth maps are shown in the top panels as a function
f the spatial length which is normalized to R 200 . In the lower
anels, we show the relative difference of the spectrum defined
s ( P pred − P true )/ P true . In this figure, several things can be noted.
irst, the power spectrum of the predicted mass density maps from
tar maps is consistent within the errors to the ground truth, where
he median power spectrum starts deviating significantly at scales
.1 × R 200 . For ICM tracers, the mass density maps predicted
rom SZ and X-ray observables indicate that their power spectrum
iffers on average from the ground-truth one (lower by about
5 per cent at λ ∼ 0.5 R 200 ), being only similar at high spatial
avelengths. In addition, in Fig. 8 the advantage of considering
ulti vie w models is appreciated, as shown in the fourth and fifth

olumns in the figure, where the multi vie w models ef fecti vely
ombine the information available from the different inputs. This
eans that the median power spectrum is similar to the power

pectrum of the predicted mass density maps from stars, but with
he clear advantage that the scatter is much smaller. To this end,
Z and X-ray views do not, as e xpected, impro v e the predictions
f small structures but rather allow the model, when combined with
ata from stars, to better calibrate the o v erall signal, reducing the
catter. 

.4 Maximum mean discrepancy 

iven two distributions, maximum mean discrepancy (MMD) is a
est that assesses whether the two images are the same (Gretton
t al. 2008 ). Although MMD can be used for training generative
dversarial neural networks (Karolina Dziugaite, Roy & Ghahramani
NRAS 528, 1517–1530 (2024) 
015 ), it is used here for simply assessing the quality of the predicted
ass maps. 
The MMD can be defined by choosing a kernel function k and a

air of random variables of inputs X and outputs Y , so that one can
ompute the MMD as 

MD 

2 ( X, Y ) = 

1 

m ( m − 1) 

∑ 

i 

∑ 

j 
= i 

K( x i , x j ) 

−2 
1 

m 

2 

∑ 

i 

∑ 

j 

K( x i , y j ) 

+ 

1 

m ( m − 1) 

∑ 

i 

∑ 

j 
= i 

K( y i , y j ) . (14) 

ere, x i ’s are the ground-truth data points and y i ’s are the predictions
f our U-Net model. For our case, the kernel is Gaussian, and
herefore the estimation of K( x , y ) can be written as 

( x , y ) = exp 

(−|| x − y|| 
2 σ 2 

)
, (15) 

here σ corresponds to the band-with range. Typically, one chooses
 range of values of σ to e v aluate the MMD. In our case, we have
omputed the MMD as the maximum value estimated by equation
 14 ) taking into consideration the following values of σ = [0.01, 0.1,
.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0], defined in equation ( 15 ). 
Though the MMD might be very useful, it has little physical
eaning and needs to be calibrated. To o v ercome this issue, we have

omputed the MMD between the ground-truth mass density map I ij 
nd a perturbed map P ij that is created by adding a random Gaussian
oise such that 

 ij = I ij + N (0 , max ( I ij ) · α) . (16) 
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Figure 9. MMD, see equation ( 14 ), between predicted mass density maps 
and the ground-truth mass density maps as a function of the cluster mass M 200 . 
Different colours represent the predictions when the model is trained with 
only SZ data (blue), X-ray data (orange), stellar data (green), multi-1 (red), 
and multi-2 (purple). Horizontal grey dashed lines represent the calibration of 
the MMD values, equation ( 16 ), and numbers written in black colour on the 
left of these lines correspond to the noise intensity α used for the calibration 
of the MMD values. The inset highlights the results at higher halo mass where 
the multi vie w results are compatible with α ∼ 0.05. 
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ere α corresponds to the parameter that quantifies the standard 
eviation of the noise map. In Fig. 9 , we have used α = 0.05, 0.1,
.2, 0.3 as shown in horizontal grey dashed lines, which represent 
he calibration of the MMD. This means that the standard deviation 
f the noise map is at most 30 per cent of the peak value. 
Subsequently, we have calculated the MMD between the ground- 

ruth maps I and the predicted maps ˆ I . In Fig. 9 , we show the median
alues of the MMDs as a function of the mass of the cluster that
orresponds to our different models. As a general result, the MMD
etric is in agreement with the other previous investigations in the 

ense that the multi-3 model is the closest to the ground truth. We
lso find a mass dependence of the MMDs values with respect to
he total mass of the galaxy clusters, which is coherent with the
esults in Section 4.2 and it is explained in detail in the Appendix A .

oreo v er, the noise calibrations, which are represented in dashed 
rey lines, show that for small groups of clusters, the discrepancy 
s equi v alent to having less than 30 per cent of noise in the maps.
o we ver, in the massi ve end of our data set around 10 15 h 

−1 M �,
MDs are below 10 per cent for all the models (SZ, X-ray, star,
ulti-1, and multi-3) and very close to 5 per cent in case of the
ulti vie w models. This result suggests the use of multi vie w data

o boost the statistical agreement of the pixel’s distribution in the 
enerated total mass density maps. 

 C O N C L U S I O N S  

L models have been used for generating images (see Rothschild 
t al. 2022 , for example for the application in astronomy). Building
n the success in the development of ML in this field, we propose,
or the first time, to expand its application to predicting the total
atter density distributions using multi vie w simulated observ ational 

ata: star, SZ, and bolometric X-ray. The DL architecture used on the
roject is based upon the U-Net, which was introduced in the context
f biomedical imaging and it has been modified for accounting for
ulti vie w input as described in Section 3.1 . As the first step along this

esearch line, we validated the applicability of this ML model using a
ata set of simplified maps, described in Section 2 , from THE THREE

UNDRED set of hydrodynamic simulations. This data set is free from
nstrumental and observational effects so that noise, point sources, 
nd telescopes’ impact are not considered. In this work, we tested
ifferent convolutional U-Net architectures for both single-input and 
ulti-input models and applied different matrices to quantify the 
delity of the predicted matter density maps from this DL model.
rom the results, we can conclude that, although the ML output is
uch more complex – 2D versus 1D or a single data point ( M 200 ) –

ompared to previous ML models, its outcomes, for example the 1D
ass bias profile, are much better and very promising, especially for

he multi vie w inputs. In detail, we can summarize our results in the
ollowing: 

(i) The scatter in the estimation of the mass maps from multi vie w is
educed by a factor of � 1/2. As depicted in Fig. 6 , the pixel statistics
how that the scatter can be reduced from, e.g. ± ∼ 16 per cent
hen inferring the mass from SZ and ± ∼ 10 per cent when using 

he combination of inputs maps using the multi vie w-3 model. Note
hat the scatter is defined as the deviation from the median value
sing the 16th and 84th percentiles as it is written in equation ( 8 ).
his fact is also acknowledged when examining the mass profiles in
ig. 7 in which the scatter can be reduced from ± ∼ 4 per cent to
∼ 2 per cent , see Table 4 for further details. 
(ii) Each input view (see Fig. 5 ) distinctly correlates with the

utput mass map and therefore, the capability of predicting different 
patial frequencies is supreme for the multi-input models, as it is
anifested in Fig. 8 . 
(iii) By computing the MMD values defined in equation ( 14 ),

e have examined the statistical similarity of the pixel distributions 
etween the predicted maps and the true maps. The results suggest
gain the multi vie w models are foremost and they can be below
 per cent noise level as shown in Fig. 9 . 
(iv) Overall, the multi vie w models provide the best predictions in

ll the matrices: very low bias with a small scatter, especially in the
assiv e re gime. Multi-3 shows a little impro v ement compared with
ulti-1 because using 3 different encoders tends to better capture the

mportant features of each input image. 

It is interesting to also asses what is the impro v ement in the mass
econstruction when combining only gas inputs, i.e. SZ and X-ray. 
or that purpose, we have trained a model with two encoders and

he results are in accordance with single-input models, but with 
o observed improvement in the quality of the predicted mass. 
uantitatively, this can be analysed by computing the mass bias in the
ass profiles which has roughly the same values as considering SZ

lone. The performance of the double-input gas model seems to be
ot comparable with the benefits of including information from both 
racers, e.g. star and gas together. The star model trained with star
ensity maps is more precise than the corresponding double-input 
ne with SZ and X-ray. 
The results of this work hint that observations of galaxy clusters

t different spectral bands will translate into a better estimation of
he underlying mass distrib ution. We ha ve limited ourselves, as a
rst work on the topic, to 3 input tracers, but our DL approach
an be generalized to account for many available inputs at different
av elengths, e.g. the sev eral luminosity bands of the SDSS surv e y.
he accessible computational resources are the only limitation, such 
s GPU memory. 

Different DL models could also be considered as an additional job.
hough not shown in this paper, we have considered modifying the

oss function in the framework of generativ e adv ersarial networks
Goodfellow et al. 2014 ), and training the Wasserstein GAN (Ar-
o vsk y, Chintala & Bottou 2017 ) with no impro v ement o v er using
MNRAS 528, 1517–1530 (2024) 
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nly the MAE loss function. Therefore, at the moment, the U-Net
odel presented in this work is, the most suitable for addressing

he problem of the inference of the mass map from multi vie w sim-
lated observations. Conversely, vision transformers (Dosovitskiy
t al. 2020 ) might yield competitive results in comparison with
onvolutional networks. 

These techniques that are based on image-to-image translation
lgorithms (Isola et al. 2016 ) can also be applied to painting baryons
n to N -body simulations (Chadayammuri et al. 2023 ), which we
ill also consider them for generating baryon maps from DM-only

imulations, increasing the number of maps already available in
imulations. 

The results of this project represent the required proof-of-concept
tep towards the estimation of mass density maps from real ob-
ervational data. This constitutes a challenge in the sense that our
ata considered here for training the models could not completely
atch the characteristics of real data due to several regards. First, our
odels can be used in real data training on mock observational data
here the instrumental impacts are considered in the framework
f simulation-based inference. As achieved in our previous work,
bservational mock data was created by introducing directly the
nstrumental effects on our simulated clean maps (de Andres et al.
022 ). Secondly, the physics implemented in our simulations could
ead to biased results. To address this problem, DL models could
e trained with data provided from simulations with various and
lausible physical models (Villaescusa-Navarro et al. 2021 ). 
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Figure A1. Number of selected clusters as a function of mass for our two 
simulations GIZMO-SIMBA and GADGET-X . The sample is increased when 
not only snapshots at z = 0.0 are considered and objects up to z = 0.117 are 
selected. 

Figure A2. Median gas fraction as a function of the mass for the GIZMO- 
SIMBA and GADGET-X simulations. The shaded regions correspond to the 
16 th and 84 th percentiles. 

Figure A3. Median star fraction as a function of the mass for the GIZMO- 
SIMBA and GADGET-X simulations. The shaded regions correspond to the 
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PPEN D IX  A :  T H E  DIFFERENCES  BETWEEN  

IZMO-SIMBA A N D  G A D G E T- X  

hroughout this work, we have shown that the difference between 
he ground-truth maps from the predicted maps is dependent on the 
luster mass M 200 (see Fig. 7 and Fig. 9 ). We have claimed that
his trend is primarily due to the fact that gravity is more rele v ant
or massive galaxy clusters and astrophysical effects implemented 
n THE THREE HUNDRED simulations, which are different codes for 
tar formation, supernovae and black hole feedbacks, become more 
ele v ant in small groups and thus, the scatter of the predicted mass
ensity maps of these small objects increases. 
Furthermore, as mentioned in Section 2 , we have trained with 

ata from GADGET-X and GIZMO-SIMBA simulations and the CNN 

odel has managed to learn from both simulations simultaneously. 
he particular distribution of selected objects is shown in Fig. A1 .
o we ver, both codes generate very different types of galaxy clusters

s far as the ICM and star properties are concerned. In Fig. A2 , the
as fraction of our data sample is shown for GIZMO-SIMBA (blue) 
nd GADGET-X (dashed orange). The figure implies that the gas 
raction for GADGET-X is more constant, while for GIZMO-SIMBA 

ecays faster in small groups. Nevertheless, the star fractions follow 

he opposite trend, as shown in Fig. A3 . In summary, these two
gures show that different astrophysical implementations converge 

n the massive end and therefore, one might expect that the ICM

16 th and 84 th percentiles. 
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Figure A4. Mass bias see equation( 10 ) for the mass profiles as a function of the radius R / R 200 for the experiments previously mentioned in this appendix. 
From left to right, we show the bias corresponding to the different experiments: Train with low-mass objects with data from both simulations, train only with 
high-mass objects with data from both simulations, train low-mass objects with data only from GIZMO-SIMBA and train with low-mass objects with data only 
from GADGET-X . The lines represent the medium values per bin and the shaded regions cover the 16 th and 84 th percentiles. 
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nd star distributions follow gravity, and are more related to the total
ass density of the galaxy clusters for massive galaxy clusters. 
To show that the scatter does not depend on the ML model, but

ather on the diversity of the data, we have run different experiments:

(i) Low mass: We have retrained the multi-3 model with galaxy
lusters belonging only to the first mass interval, i.e. 13 . 5 ≤
og M 200 / h 

−1 M � < 14 . 02. 
(ii) High mass: We have also retrained the model with

ata belonging only to the most massive interval (14 . 63 ≤
og M 200 / h 

−1 M � ≤ 15 . 38). 
(iii) Low mass GIZMO-SIMBA : We have retrained the model
ulti-3 with data belonging only to GIZMO-SIMBA only in the first
ass interval. 
(iv) Low mass Gadget-X: We have also retrained the multi-3
odel with data belonging to GADGET-X only in the first mass

nterval. 
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The results of the experiments are shown in the Fig. A4 . From the
rst and second experiments, we conclude that the scatter does not
epend on the ML model and training procedure. We acknowledge
hat although these could bias the prediction to be more accurate
t higher masses, that is not the case as the experiments suggest.
rom the third and fourth experiments, the results on GIZMO-SIMBA
nd GADGET-X simulations are similar and therefore, we conclude
hat the performance should not vary significantly for different
ydrodynamic simulations. 
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