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A B S T R A C T

In a world where the construction industry is increasingly under the spotlight for its environmental impact,
the demand for innovative design approaches has reached unprecedented levels. In response, this paper
introduces an innovative design methodology that combines shape and topology optimization, with a focus on
mitigating climate change and enhancing buildability, in the context of shell structures. Shape optimization
typically involves refining existing designs, while topology optimization focuses on identifying optimal material
layouts. Our methodology synergizes these two approaches, enabling the optimization of shape and material
distribution, while considering Global Warming Potential and Buildability. This research contributes to
advancing the ongoing transformation in spatial structures by topology informed shell structures, emphasizing
the environmental challenges.
1. Introduction

The construction industry’s contribution to global carbon emissions
and resource depletion is undeniable, causing a fundamental shift
towards sustainable practices. Traditional construction methods often
lead to overuse of materials, and high environmental footprints. To
address these issues, an integrated design approach using shape and
topology optimization has gained prominence [1,2]. As the demand
for sustainable construction practices intensifies, integrated approaches
emerge not only as a means to enhance material efficiency but also as
a response to the growing need for environmentally conscious design
strategies. In the context of spatial structures, the intricate relationship
between form and structure is particularly pronounced when dealing
with thin shell structures and the shape of the shell is intrinsically tied
to the distribution of forces and vice versa. Consequently, designing
thin shell structures often involves a two-step process. In the initial
phase, form-finding methods are employed to establish the equilibrium
shape of the shell. Subsequently, material properties and material
distribution are introduced into the numerical model for a detailed
structural analysis [3,4]. This research advances our understanding
of form-finding and material distribution in shell design. It explores
various numerical methods used to determine the equilibrium shape
of these structures.
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Shape optimization and topology optimization are crucial research
domains within shell structure design, encompassing various method-
ologies. In previous studies, researchers have delved into both in-plane
and out-of-plane optimization approaches, with a key distinction being
whether shell surface curvatures are allowed to change during the opti-
mization process. Ansola et al. [5] introduced a method for optimizing
shell structures that combined shape and topology optimization. In
their approach, these optimization steps were performed alternately,
with the shell geometry and topology variables optimized sequentially
until convergence was achieved. Hassani et al. [6] achieved concurrent
shape and topology optimization of shell structures by optimizing both
types of design parameters simultaneously in each iteration. Jiang
et al. [7] devised an explicit optimization approach based on the
moving morphable component method for shell structures, enabling
simultaneous optimization. However, most of these methods were not
developed for architectural design, where shape is typically predefined.
When finding the topology of a shell, the decision between utilizing
stiffeners like ribbed structures or opting for high-strength materials in
particular areas hold significant importance. Our investigation builds
upon this notion by developing an integrated approach where shape
and topology optimization steps are conducted subsequently using Dy-
namic Relaxation (DR) and Solid Isotropic Material with Penalization
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Fig. 1. Sequential steps in the integrated optimization methodology.
(SIMP) methods. To address this challenge, we employed the Method of
Moving Asymptotes (MMA) algorithm [8], which utilizes information
from design sensitivity analysis, distinguishing our work from previous
methods proposed.

An integral aspect of this research is the pivotal role of optimization
in shell design. Thin shell structures are often subject to multiple design
criteria beyond self-weight support. Therefore, optimization methods
emerge as critical tools for achieving design objectives, whether it is
about minimizing material usage, reducing weight, managing costs,
or maximizing stiffness [9,10]. These objectives are pursued while
adhering to specific design constraints, giving rise to multi-objective
optimization challenges. It is worth noting that while this research
acknowledges the importance of these constraints, the primary focus
remains on form-finding and topology optimization techniques, as the
application of other constraints lies beyond the immediate scope of
this study. Considering the historical construction challenges posed by
continuous shell structures, our research ventures into the realms of
Environment and Buildability constraints [11]. This method focuses on
reshaping the built environment by minimizing environmental impact
and improving buildability concurrently. Additionally, the legacy of
influential figures such as Antoni Gaudi, Sergio Musmeci, Heinz Isler,
Pier Luigi Nervi, and Frei Otto illustrates the fascinating evolution of
shape-resistant structures. Their work, alongside research into physi-
cal models and the structural optimization of intricate structures like
membranes, shells, and grid shells, provides a rich historical backdrop
to our research.

The construction challenges encountered in notable projects such as
‘Los Manantiales’ Restaurant in Xochimilco, Mexico (1958) and in the
(Meiso no Mori) Crematorium of Kakamigahara, Japan (2006) shine
a spotlight on the complexities of thin, continuous shell structures.
Initially, these projects embraced a cost-effective approach involving
timber custom-built formwork, followed by concrete construction. This
method, once perceived as cost-effective due to low labor costs and
its alignment with simultaneously balancing forces during construction,
began to wane in popularity. Surprisingly, the construction process has
seen little evolution over the past 50 years which led to escalation of
costs associated with the construction of shell structures. The decline
of monolithic reinforced concrete and masonry shells from the 1970s
onward was attributed to factors such as escalating labor costs, inef-
ficiencies in on-site fabrication, and the complications associated with
customized reinforcement for concrete shells [12]. These practical chal-
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lenges gradually eroded architects’ enthusiasm for reinforced concrete
shells. Consequently, grid shells, featuring cost-efficient lattice systems
covered by planar glass or metal panes, ascended as the preferred
structural choice for large-span, form-passive surface structures. The
dominance of grid shells, however, ushered in concerns regarding the
limitations of continuous shell structures.

Fortunately, the 1990s witnessed a technological renaissance
marked by the advent of digital design, simulation, and fabrication.
This transformative era introduced Computer-Aided-Design (CAD),
Computer-Aided-Engineering (CAE), Computer-Aided-Manufacturing
(CAM), and industrial robotics, laying the groundwork for an inno-
vative concept known as segmentation [13,14]. However, the current
gap between sophisticated software models and the ability to realize
designs within reasonable budgets remains a significant obstacle in
structural architecture design. Bridging this gap requires consideration
of Global Warming Potential (GWP) and Buildability in the design
process. The integrated optimization system unveiled in this study
signifies a revolutionary approach to determining the optimal form
and topology of shell structures. In our methodology, DR is utilized for
shape optimization, where a network of vertices undergoes relaxation
to form a free-form shape. This process involves constructing a mesh
from vertices and edges, which is then converted into shell elements.
Subsequently, topology optimization is applied to this shell structure,
systematically refining the material distribution to optimize structural
performance while minimizing material usage. These structures present
unique optimization challenges due to the profound influence of their
curvature on stiffness, rendering it inherently complex to predict the
ideal design. Additionally, the methodology incorporates assessments
of GWP, evaluating the environmental impact through lifecycle analysis
of the materials used, aiming to quantify and mitigate the carbon
footprint associated with construction. Buildability is also a core focus,
employing clustering algorithms and advanced fabrication techniques
to enhance the practicality and efficiency of construction processes. To
provide a clear overview of the methodology’s structured approach,
Fig. 1 summarizes the key steps involved.

2. Methodology

We introduce an innovative methodology merging shape and topol-
ogy optimization within the architectural framework of shell structure
engineering. Traditionally, these optimization techniques were treated
separately, first seeking an optimal material layout and subsequently
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refining the shape. Our approach integrates both, allowing the sequen-
tial optimization of shape and material distribution. This integrated
approach entails the dynamic modification of the shell structure’s shape
during the optimization process, establishing a variable ground struc-
ture for topology optimization [5,7,15]. Shape optimization methods
are crucial for addressing complex design challenges in shell structures,
determining the optimal form by manipulating the shell’s mid-plane
geometry [16]. In parallel, topology optimization focuses on enhancing
material distribution within the structure, ultimately reducing overall
material usage. It identifies areas where material can be eliminated,
culminating in resource-efficient spatial structures [6,17]. In our ap-
proach, we concentrate on minimizing compliance while adhering to
a fixed material volume. It is essential to note that, although there
are other alternatives such as ribbed floor systems [18,19], which
utilize isostatic stress lines as ribs, and stiffener layout optimization
on shells [20], our integrated method stands out as a comprehensive
solution that concurrently addresses shape and material distribution
challenges for structural performance. Furthermore, the methodology
extends beyond structural optimization to incorporate assessments of
GWP and buildability considerations, ensuring that the designs achieve
environmental sustainability and practical constructability.

2.1. Shape optimization

The structural performance is deeply embedded in the fundamen-
tal principle of harnessing geometric intricacies. Shape optimization
techniques provides an effective pathway to embody the principle of
leveraging geometric complexities. Through the intrinsic properties
of geometric arrangements, shape optimization acts as a catalyst for
crafting spatial structures that not only showcase structural efficiency
but also demonstrate resilience [21]. The overarching goal of shape
optimization revolves around determining the optimal form or geom-
etry of a structure aligned with predefined performance criteria. The
application of shape optimization algorithms entails utilizing mathe-
matical optimization techniques, ranging from gradient-based methods
to evolutionary algorithms. These algorithms work iteratively to update
design variables, enhancing the objective function value while adhering
to specified constraints. The ultimate objective is to discover the opti-
mal shape that minimizes the objective function. In conjunction with
shape optimization, diverse methods find mention in the literature.
These include gravity-based or stiffness-based approaches like the force
density method, dynamic relaxation, and particle spring systems [22].

Dynamic Relaxation (DR) and Particle-Systems (PS) are dynamic
methods essential for constructing physics-based models, focusing on
achieving steady-state solutions. They discretize continuous systems
into interconnected nodes or particles to explore dynamic behavior. DR,
dating back to 1965, uses explicit time integration for solving differ-
ential equations, evolving from frame analysis to handling nonlinear
equilibrium in structures. It traces node motion through explicit time
increments, reaching static equilibrium. In contrast, PS, since 1983,
models discrete bodies in computer graphics. It employs particles con-
nected by springs, forming a versatile mass–spring system, adaptable to
various time-integration schemes and dynamics for simulations across
diverse fields.

2.1.1. Dynamic relaxation
To implement the DR algorithm, we utilized a Python code devel-

oped in Visual Studio, facilitated through the use of an open-source
code available online [23]. Developed and maintained by the Block
Research Group, this code served as a foundational tool within our
computational framework, enabling the effective application of DR
to model and analyze structural behavior. The code reads an OBJ
file exported from CAD, a plain text file format that represents 3D
geometry as shown in Fig. 2. It extracts vertex coordinates and con-
nectivity information, creating a mesh representation of the structure.
Subsequently, the DR algorithm is applied to this mesh. During the
3

Fig. 2. The initial mesh configuration.

simulation, vertices experience applied loads and gravitational forces,
and internal stiffness forces are calculated based on Hooke’s law.
Through iterative updates using velocity and acceleration calculations,
the system progresses towards equilibrium (Fig. 3).

The mathematical foundation of the DR formulation relies on New-
ton’s second law, governing the motion of any node 𝑖 in the 𝑥-direction
at time 𝑡. This law is applied to calculate the forces acting on each node,
including applied forces, gravitational forces, and internal stiffness
forces. The equations of motion are iteratively solved using explicit
time integration, updating the velocities and positions of the nodes until
the system reaches a static equilibrium. The following equations detail
the iterative process for accurately modeling the dynamic behavior of
the structure and ensuring that the final mesh configuration represents
an equilibrium state:

𝑀�̈� + 𝐶�̇� +𝐾𝑢 = 𝐹 (1)

where, 𝑀 represent the mass matrix, 𝐶 the damping matrix and
𝐾 the stiffness matrix. The variables 𝑢 and its derivatives represent
displacement, velocity, and acceleration.

For each coordinate 𝑥, 𝑦, or 𝑧 we do the followings:

𝑃𝑖𝑥 −𝐾𝑖𝑥𝛿
𝑡
𝑖𝑥 − 𝐶𝑖𝑣

𝑡
𝑖𝑥 = 𝑀𝑖�̇�

𝑡
𝑖𝑥 (2)

𝑅𝑡
𝑖𝑥 = 𝑃𝑖𝑥 −𝐾𝑖𝑥𝛿

𝑡
𝑖𝑥 = 𝑀𝑖�̇�

𝑡
𝑖𝑥 + 𝐶𝑖𝑣

𝑡
𝑖𝑥 (3)

At node 𝑖 in direction 𝑥 at time 𝑡, 𝑃𝑖𝑥 represents the applied force,
𝑅𝑡
𝑖𝑥 the residual of the applied forces, 𝛿𝑡𝑖𝑥 the total displacement,

𝐶𝑖 the viscous damping constant, 𝑣𝑡𝑖𝑥 the velocity, 𝑀𝑖 indicates the
lumped fictitious mass to optimize convergence, and �̇�𝑡𝑖𝑥 denotes the
acceleration.

Acceleration as an approximate derivative of velocity, it signifies the
velocity of a specific moment in time by averaging two half-instances
just before and after.

�̇�𝑡𝑖𝑥 =
𝑣𝑡+𝛥𝑡∕2𝑖𝑥 − 𝑣𝑡−𝛥𝑡∕2𝑖𝑥

𝛥𝑡
(4)

𝑣𝑡𝑖𝑥 =
𝑣𝑡+𝛥𝑡∕2𝑖𝑥 + 𝑣𝑡−𝛥𝑡∕2𝑖𝑥

𝛥𝑡
(5)

By substituting Eqs. (4) and (5) in Eq. (3) and considering that the
damping is proportionate to masses 𝐶𝑖 = 𝑀𝑖𝐷, we have:

𝑣𝑡+𝛥𝑡∕2𝑖𝑥 = 𝐴 𝛥𝑡
𝑀𝑖

𝑅𝑡
𝑖𝑥
𝑖
+ 𝐵𝑣𝑡−𝛥𝑡∕2𝑖𝑥 (6)

where, 𝐴 = (1∕1 + 𝐷𝛥𝑡) and 𝐵 = (1 − 𝐷𝛥𝑡∕1 + 𝐷𝛥𝑡) and 𝐷 is constant.
Now, we can use the velocities of the nodes to predict the next position
in the system.

𝑣𝑡+𝛥𝑡∕2 =
𝑥𝑡+𝛥𝑡𝑖 − 𝑥𝑡𝑖 (7)
𝑖𝑥 𝛥𝑡
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Fig. 3. The final result after applying DR.

𝑥𝑡+𝛥𝑡𝑖 = 𝑥𝑡𝑖 + 𝑣𝑡+𝛥𝑡∕2𝑖𝑥 𝛥𝑡 (8)

After obtaining the updated geometry, the new forces can be calculated
and integrated with the applied gravity load components 𝑃𝑖𝑥 to yield
the updated residuals.

𝑅𝑡
𝑖𝑥 = 𝑃𝑖𝑥 +

∑

𝑖 𝑗

(𝑓𝑖,𝑗
𝑙𝑖,𝑗

)𝑡

(𝑥𝑖 − 𝑥𝑗 )
𝑡 (9)

where, 𝑡 denotes a time step indicator, 𝑓𝑖𝑗 represents the elasticity force
along the edge (𝑖, 𝑗), and 𝑙𝑖𝑗 is the length of that edge. The division
by this length in every direction provides the corresponding shadow.
The forces along the edges of the mesh are computed with respect to
their rest lengths, given by 𝑓𝑖𝑗 = 𝐾𝛥𝑙. After computing residual force,
updating the velocities and coordinates using Eqs. (7) and (8) we get
the final shape as shown in Fig. 3.

The simulation involves various parameters, including the elasticity
constant, acceleration damping, time step, and mass. These parameters
collectively influence the stiffness, stability, and speed of the simula-
tion. Forces acting on the structure encompass applied loads, gravity,
and stiffness forces, contributing to the establishment of an overall
equilibrium configuration. The resulting mesh serves as a valuable basis
for further analysis, either for optimization purposes or as a starting
point for subsequent design iterations.

Fixed-mesh discretization

Following the DR process, the equilibrium shape is discretized into
a mesh suitable for further analysis. This involves generating faces and
connecting them to form a coherent mesh. The coordinates obtained
from DR are structured into a grid, and the faces are defined to facilitate
the application of shell elements. Faces are generated by grouping
every four adjacent nodes into a quadrilateral element, ensuring that
the mesh accurately represents the geometric domain of the struc-
ture. The mesh is constructed using face arrays and vertex arrays
obtained from the DR process. This fixed-mesh discretization ensures
that the structural geometry is accurately represented, allowing for
precise application of loads and boundary conditions in the subsequent
optimization steps.

2.1.2. The MITC shell element
The MITC4 (Mixed Interpolation of Tensorial Components) shell el-

ement is utilized for structural analysis due to its accuracy in capturing
both bending and membrane behaviors [24]. The element is quadrilat-
eral, constructed from four nodes, and acts primarily as a membrane
with midsurface properties. The MITC4 elements provide a reliable
means of modeling thin shell structures, combining mixed interpolation
and geometric flexibility. This technique mitigates issues like shear
4

Fig. 4. The MITC4 elements obtained from OpenSees [25].

locking by ensuring accurate interpolation of shear strain components,
enhancing the element’s performance in bending and membrane ac-
tions. Additionally, the element can represent both flat and curved
geometries, utilizing the mid-surface geometry, thickness variation, and
director vectors to model complex shell structures effectively.

In our study, we implemented the MITC4 element using OpenSees
[25], an open-source software framework for structural analysis. The
elements were defined with a thickness of ℎ = 0.05 m, Young’s modulus
𝐸 = 200 GPa, and Poisson’s ratio 𝜈 = 0.3. The material is specified as
an elastic isotropic material, and section properties are defined using
the ‘‘ElasticMembranePlateSection’’ command in OpenSees. Finally, the
MITC4 shell elements are created using the generated mesh faces,
ensuring accurate modeling and foundation for topology optimization
Fig. 4.

2.2. Topology optimization

Topology optimization entails the generation of an optimal struc-
tural layout within the design space. It involves the manipulation of
the connectivity between material domains within the structure [26].
We employ material formulation to elucidate the structural layout,
enabling the separation or integration of material domains. The op-
timization problem is typically expressed through material density
variables, with ‘1’ denoting material presence and ‘0’ representing void
regions [27]. The Solid Isotropic Material with Penalization (SIMP)
method formulates topology optimization as a material distribution
problem, where the design domain is divided into finite elements.
At the material level involves Plane Strain (Stress) elasticity with a
constant Poisson ratio and Young modulus interpolated between full
material and void, facilitated by a scalar variable [28]. Each element is
assigned a design variable denoting the material density, which repre-
sents the volume fraction of material in that element. SIMP method is
based on penalization techniques. It assigns continuous material densi-
ties to each element in the design domain and penalizes intermediate
densities to encourage either fully dense (solid) or void (empty) regions.
By iteratively adjusting the penalization parameter, SIMP optimizes the
material distribution by either including or excluding elements based
on their densities [29–31].

In SIMP topology optimization, various methods, including the
MMA, Optimal Criteria (OC) Methods, and Level Set Methods, can be
employed to iteratively enhance the design. These methods are not
mutually exclusive, and their combinations or variations can be applied
based on specific optimization requirements. MMA [8], for example,
utilizes approximations to true constraint functions and solves sub-
problems to find feasible and optimal solutions, particularly effective
for large-scale optimization problems.

To implement topology optimization techniques, Python code in
Visual Studio was employed. This code is based on Ole Sigmund’s work
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Fig. 5. Design space of MMB beam.

and its extensions from existing literature [32]. Leveraging the SIMP
method, MMA algorithm, and gaussian filters, these codes simplify the
implementation of the algorithm by incorporating the NLopt [33] and
autograd [34] Python libraries.

The considered structure is a standard MMB beam [32]. In Fig. 5,
the large gray rectangle represents the design space. To maintain
symmetry, our optimization focuses on half of the beam, intending to
mirror the results around the left wall. This implies that the beam’s
center is located on the left side of the illustration. The downward-
pointing arrow indicates the application of a load force at this center,
while horizontally fixed points represent forces transmitted from the
other half of the beam. Additionally, the vertically fixed point in the
bottom right corner signifies a normal force from an external support,
possibly the top of a wall.

Assuming a rectangular design domain, we discretize it with square
elements, each having four nodes per element and two degrees of
freedom (DOFs) per node. Node and element numbering proceeds from
left to right, with DOFs 2n-1 and 2n corresponding to horizontal and
vertical displacements of node 𝑛. This regular mesh structure offers op-
portunities for computational efficiency during the optimization loop.
The finite element pre-processing stage begins with defining material
properties. We adopted the modified SIMP method from [32]. In this
method, each element 𝑒 is given a density 𝜌𝑒 that dictates its Young’s
modulus 𝐸𝑒.

The material stiffness 𝐸𝑒(𝜌𝑒) is defined as follows:

𝐸𝑒(𝜌𝑒) = (𝐸min) + 𝜌𝑝𝑒(𝐸0 − 𝐸min), 𝜌𝑒 ∈ [0, 1] (10)

Here, 𝐸0 represents the Young’s modulus of the material, 𝐸𝑚𝑖𝑛 is
the artificial Young’s modulus assigned to void regions to prevent the
stiffness matrix from becoming singular, and 𝑝 is a penalization factor
(𝑝 = 3). The material stiffness, 𝐸𝑒(𝜌𝑒), is determined by a formula
involving 𝐸0, 𝐸𝑚𝑖𝑛, and a variable 𝜌𝑒 in the range [0, 1]. The objective
function aims to minimize the elastic potential energy or compliance
of the 2D grid of springs.

min
𝝆

∶ 𝑐(𝝆) = 𝐔𝑇𝐊𝐔 =
𝑁
∑

𝑒=1
𝐸𝑒(𝜌𝑒)𝐮𝑇𝑒 𝐤0𝐮𝑒 (11)

Subjected to ∶ 0 ≤ 𝝆 ≤ 1
𝐊𝐔 = 𝐅 (12)

In this context, 𝑐 is compliance and 𝝆 is a vector that represents
the material densities of the elements. The compliance is expressed
as 𝐔𝑇𝐊𝐔, where 𝐔 is a vector containing node displacements, 𝐊 is
the global stiffness matrix, and 𝐸𝑒 is Young’s modulus. External forces
are represented by the vector 𝐅, the element displacement vector is
represented by 𝐮𝑒, 𝐤0 is the element stiffness matrix for an element
and 𝑁 represents the number of elements used to discretize the design
domain. The core objective function, 𝑐(𝝆) = 𝐔𝑇𝐊𝐔, is implemented as
a high-level function calling various subroutines.
5

Fig. 6. Optimal layouts of the MMB beam.

Fig. 7. Simply supported beam loaded with two forces at 1/4 and 3/4 of the span
length.

To minimize the objective function 𝑐(𝝆), we compute the gradients
of 𝑐 with respect to 𝝆, this allows us to determine the optimal direction
for adjusting 𝝆:
𝜕𝑐
𝜕𝜌𝑒

= −𝑝𝜌𝑝−1𝑒 (𝐸0 − 𝐸𝑚𝑖𝑛)𝐮𝑇𝑒 𝐤0𝐮 (13)

At a high level, compliance 𝑐 is given by 𝐔𝑇𝐊𝐔. While 𝐔 and
𝐊 are sparse, making ∑𝑁

𝑒=1 𝐸𝑒(𝜌𝑒)𝐮𝑇𝑒 𝐤0𝐮𝑒 more efficient, its vectorized
implementation might appear complex but significantly speeds up the
computation. Element stiffness matrix 𝐤0 is a 2D analogy to the spring
constant in a simple harmonic oscillator. Its role is crucial in calculating
the potential energy of the system, where 𝑃𝐹 = 1∕2𝐮𝑇𝑒 𝐤0𝐮𝑒. Material
Constants, Young’s modulus and Poisson’s coefficient are integral to the
element stiffness matrix. These constants play key roles in defining the
stiffness and contraction properties of materials, influencing the overall
stiffness matrix.

Determining node displacements involves solving the matrix equa-
tion 𝐅 = 𝐊𝐔 for 𝐔. With 𝑁 nodes and 2 degrees of freedom each,
the resulting system of simultaneous linear equations becomes a vital
aspect of the problem. As the number of nodes grows, the challenge
lies in managing the computational load efficiently. The construction
of the global stiffness matrix 𝐊 involves dealing with sparse matrices,
saving significant memory. The MMA emerges as an effective optimiza-
tion approach, capable of handling nonlinear inequality constraints
and scaling to large parameter spaces. NLopt, coupled with Autograd,
facilitates the gradient-based optimization process, particularly suit-
able for structural optimization problems. Constraints related to mass
conservation and density are integrated into the MMA framework for
comprehensive optimization. (6) demonstrates outcomes that closely
resemble those of foundational work by Ole Sigmund [32], using the
SIMP method, MMA algorithm, and gaussian filters, effectively sim-
plifying the optimization process. These tools collectively enhance the
code’s ability to efficiently solve complex topology optimization prob-
lems, aligning closely with established methodologies while ensuring
reliable results.

To make the design approach more extensive, we examine an ex-
ample from [8]. This example involves a ground structure subjected to
various mesh sizes and densities. Specifically, the structure, as depicted
in Fig. 7, is transmitting two symmetrically located vertical forces to
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Fig. 8. Mesh density sensitivity: (top) mesh 128 × 64, (middle) 256 × 128, (bottom)
512 × 256. left: results, right: convergence.

fixed supports. The application points of these forces are positioned
at 1/4 and 3/4 of the span length. The feasible domain is defined as
the half plane over the line. The resulting layouts for different mesh
densities are visually represented in Fig. 8.

In our previous study [11], we employed the PS method for shape
optimization in Rhino/Grasshopper, utilizing the Kangaroo plugin [22].
Additionally, we conducted topology optimization using the
Bi-directional Evolutionary Structural Optimization (BESO) algorithm
within the Karamba framework a plugin for Grasshopper. However, the
obtained results exhibited inaccuracies attributed to mesh irregulari-
ties. Acknowledging this limitation, we embarked on a comprehensive
integration of the entire process in Python, combining DR and SIMP.
Although this novel implementation is a work in progress and requires
further refinement, it represents a significant step towards addressing
the inaccuracies observed in the earlier results.

To enhance the accuracy and reliability of our approach, the au-
thors intend to refine and present a fully integrated solution in future
research work. The original concept and research framework [5] are
visually depicted in Fig. 9(b), providing a conceptual foundation for
the ongoing work.

2.2.1. Post processing
After the optimization process, the designed structures are evaluated

against GWP and buildability, ensuring that they are prioritized along-
side structural performance metrics. In the realm of shell structures,
GWP serves as a crucial metric for assessing the environmental impact
of the optimized shell structures. The calculations involve quantifying
the greenhouse gas emissions associated with the production, trans-
portation, and assembly of construction materials used in the optimized
structures. On other hand, segmentation entails breaking down the
continuous surface into discrete panels or elements. This process fa-
cilitates rationalization, simplification, and standardization of design
and construction processes. The integration of optimization and seg-
mentation offers significant potential for enhancing design efficiency
and constructability. By incorporating segmentation techniques into
the optimization process, designers can optimize not only the overall
form and material distribution of the structure but also the layout and
arrangement of individual components.
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Fig. 9. Original research taken from [5].

2.3. Global warming potential

An integral aspect of our integrated design approach is the incorpo-
ration of GWP which serves as a metric that quantifies the structural
contribution to greenhouse gas emissions over the entire lifecycle of
a construction project. By seamlessly integrating GWP assessment into
the design process, we empower designers and stakeholders to make
environmentally responsible decisions. This proactive consideration of
GWP not only allows for the identification of potential environmental
impacts but also facilitates the implementation of strategies to mitigate
a project’s carbon footprint.
∑

structural elements[Quantity(kg)
×CO2𝑒 × material factor(kgCO2𝑒∕kg)]

= GWP building(kgCO2𝑒) (14)

When dealing with single-material structures, reducing the vol-
ume or weight of the structure can be seen as a means to lessen its
environmental footprint. This is because a lighter structure typically
entails lower energy consumption and fewer Greenhouse Gas (GHG)
emissions during the material production phase. In the context of multi-
material structures, simply minimizing structural volume or weight
does not necessarily correspond to reducing environmental impact.
This is because various materials used in such structures may have
different densities, energy intensities, and GHG emission coefficients.
Here, the environmental impact of a structure refers to the energy
consumption or GHG emissions incurred by the structure over its
operational lifespan. Consider, for example, a shell structure derived
from DR, constructed from concrete with a thickness of 60 mm. The
embodied carbon for this shell is calculated to be 15,714.3475 kgCO2e,
using concrete with a GWP of 0.8 kgCO2e/kg as the material [35]. The
Cardinal LCA plugin for Grasshopper was employed to illustrate this in
Fig. 10.

2.4. Buildability

Buildability, denoting the ease of construction and the adoption
of efficient construction techniques, constitutes another crucial aspect.
According to [36] buidability is defined as the extent to which the
design of a building facilitates ease of construction as well as the extent
to which the adoption of construction techniques and processes affects the
productivity level of building works. It encompasses how the utilization
of construction methods and techniques impacts the efficiency and
productivity of construction activities. An optimized design should not
only exhibit environmental sustainability but also practical feasibility
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Fig. 10. GWP analysis of the shell obtained from DR.

Fig. 11. Segmentation of the shell obtained from DR.

in construction. By integrating buildability assessments during the de-
sign phase, projects can minimize construction delays, cost overruns,
and enhance overall operational efficiency.

Rationalization, a principle not confined to architecture but widely
applied in construction engineering and product design, has become
increasingly important due to the growing complexity of architectural
geometries [37]. The advent of computational design tools has enabled
architects to conceive intricate geometries, yet realizing these complex
shapes remains a challenge. Architects often need to modify designs
to align with the constraints of the fabrication process, a process
known as architectural rationalization [38]. By rationalizing the design,
complex shell geometries can be simplified and optimized for efficient
construction. One method to achieve this involves leveraging machine
learning algorithms, such as the Gaussian mixture algorithm, to cluster
and group the panels of a shell structure.

2.4.1. Clustering
In the realm of machine learning and data analysis, clustering is

a foundational technique used to organize unlabeled data points into
meaningful collections or clusters based on inherent similarities or
shared characteristics. For instance, when analyzing large datasets,
clustering helps identify distinct subgroups or patterns, facilitating
tasks like customer segmentation, anomaly detection, or recommen-
dation systems. Various clustering algorithms, including K-Means, and
Hierarchical Clustering are employed in machine learning for grouping
data points based on specific characteristics and objectives [39]. In
structural architecture, clustering involves applying data-driven tech-
niques, such as the Gaussian Mixture algorithm, to group structural
elements or components based on shared attributes. This clustering ap-
proach is particularly useful for rationalization efforts in architectural
and structural design, offering several benefits in the construction and
fabrication of complex structures.

2.4.2. Gaussian mixture algorithm
Gaussian Panel Groupings, in architectural and structural design,

refer to applying the Gaussian Mixture algorithm to organize 3D panel
geometries into clusters based on shared dimensional characteristics.
This approach supports subsequent design and fabrication activities,
7

Fig. 12. Los Manantiales’ Restaurant in Xochimilco, Mexico (1958).

Fig. 13. Crematorium of Kakamigahara, Japan (2006).

especially in the context of shell structures and rationalization efforts.
The Gaussian Mixture algorithm, falling under unsupervised learning
algorithms, comprehensively analyzes the geometric attributes, dimen-
sions, and connections of individual panels within a shell structure. The
algorithm groups these panels into coherent clusters based on inherent
similarities, typically starting with subdividing the shell’s surface into
individual panels (segmentation), which are then organized into clus-
ters. The segmentation of the shell obtained from DR in Fig. 11 involves
clustering based on the area of the panels.

3. Case study

The construction of continuous shell structures, exemplified by the
Los Manantiales Restaurant in Xochimilco, Mexico (1958) Fig. 12 and
Crematorium of Kakamigahara (Meiso no Mori), Japan (2006) Fig. 13
presents inherent challenges, as highlighted in the introduction. Build-
ing these structures, with all their intricate shapes and curves, involves
creating precise formwork, which makes the construction process more
complicated and expensive.

In this particular instance, the shell’s construction involves a two-
step process: initially crafted in timber as bespoke formwork and
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Fig. 14. Cost of Formwork [40].

Fig. 15. GWP of Los Manantiales Restaurant, Mexico (1958).

subsequently replicated in concrete. The design, fabrication, and in-
stallation of the formwork demand careful consideration to achieve
the intended shape and uphold the structural integrity of the concrete
shell. According to [40], the cost linked to formwork constitutes a
substantial portion, typically ranging from 40% to 60%, of the total
expenses incurred in constructing a concrete structure Fig. 14.

The cost associated with constructing these structures, especially
when deploying substantial formwork, stems from various factors. Pri-
marily, significant labor and time investments are required for the
creation and assembly of the formwork. Skilled labor is essential for
accurately constructing the formwork, given the intricacies of the ge-
ometry involved. Furthermore, the materials used in the formwork,
such as timber or steel, contribute to the overall expenses. Integrating
considerations of buildability and GWP into the design process becomes
imperative to mitigate the environmental impact of constructing such
structures. Los Manantiales’s reinforced concrete shell with a thickness
of 40 mm, the total embodied carbon amounts to 4 029 069.31 kgCO2e.
This calculation is based on the material concrete, which has a GWP
of 0.8 kgCO2e/kg [35]. To analyze this, we utilized the Cardinal LCA
plugin for Grasshopper, employing it to compute the GWP of Los
Manantiales Fig. 15 while considering embodied carbon factors from
the database [35].

Rationalization in shell structures entails identifying repetitive pat-
terns and standardizing design and fabrication processes. Tools like
Lunch Box ML for Grasshopper are often used to facilitate this clus-
tering procedure [41]. The clustering of panels through the Gaussian
mixture algorithm provides several advantages in the rationalization of
shell structures. It helps reduce the proliferation of unique panel types,
establishing standard dimensions and connection details, streamlining
the production process, and simplifying fabrication complexities as you
can in Fig. 16 the rationalization of Los Manatiales. This leads to
cost savings, shorter manufacturing lead times, and more efficient and
economical construction practices. Additionally, by capitalizing on the
8

Fig. 16. Rationalization of Los Manantiales.

distinct structural properties of materials and aligning them with the
topology of the structure, we can strategically allocate materials. This
not only optimizes the performance of the structure but also facilitates
the easy assembly and transportation of prefabricated panels. Such
a strategic approach enhances efficiency throughout the construction
process.

Moreover, panel clustering aids in the management and organiza-
tion of components during transportation and installation, mitigating
logistical challenges and enhancing ease of handling during construc-
tion. This comprehensive approach addresses not only the architec-
tural intricacies of shell structures but also emphasizes environmental
sustainability and cost-effectiveness, contributing significantly to the
evolution of construction practices. Future case studies and in-depth
analyses could further enrich our understanding and application of
these integrated design methodologies.

4. Final remarks

This paper presents an integrated design approach that combines
shape and topology optimization to improve the sustainability and
buildability of shell structures by addressing GWP. The integration
of shape and topology optimization is achieved through an iterative
framework. Initially, Dynamic Relaxation(DR) is used to optimize the
shape of the shell structure. The resulting equilibrium geometry is
then discretized into a mesh for topology optimization. The shape
obtained from DR enables the construction of a mesh with faces and
updates coordinates, followed by constructing MITC4 shell elements
using OpenSees. This method ensures accurate simulation while seam-
lessly accommodating the sequence of optimization. By integrating
Solid Isotropic Material with Penalization (SIMP) and utilizing the Mov-
ing Asymptotes with the NLopt library, our approach optimizes both
form and material distribution within shell structures. The combined
approach leverages the strengths of both optimization techniques, en-
suring that the final design is optimized in terms of both geometry
and material usage. This optimization leads to a significant reduction
in material usage, which directly contributes to mitigating climate
impact by lowering the carbon footprint associated with material pro-
duction and transportation. Incorporating GWP assessments addresses
environmental concerns, making the design process more eco-friendly.
Design rationalization techniques, including machine learning algo-
rithms, streamline construction processes and improve buildability.
This approach minimizes the need for precise scaffolding, allowing
for prefabrication of components, which simplifies construction and
reduces on-site labor and waste. Future work could include detailed
case studies and expanded optimization criteria to further validate and
refine the approach. Although our approach requires further refinement
and development, it holds potential for sustainable practices in the
construction industry, particularly in spatial structures.
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