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ABSTRACT
The main goal of the EU GDPR is to protect personal data of in-
dividuals within the EU. This is expressed in several rights and,
among them, in this work we focus on the Right to Erasure, more
commonly known as the Right to Be Forgotten (RtBF).

There is an intriguing debate about the affordable costs and the
actual technical feasibility of satisfying the RtBF in digital platforms.
We note that some digital platforms process personal data in order
to derive and store correlated data raising two main issues: 1) re-
moving personal data could create inconsistencies in the remaining
correlated data; 2) correlated data could also be personal data. As
such, in some cases, erasing personal data can trigger an avalanche
on the remaining information stored in the platform.

Addressing the above issues can be very challenging in particular
when a digital platform has been originally built without embedding
in its design specific methodologies to deal with the RtBF.

This work aims at illustrating concrete scenarios where the RtBF
is technically hard to guarantee with traditional techniques. On the
positive side, we show how zero-knowledge (ZK) proofs can be lever-
aged to design affordable solutions in various use cases, especially
when considered at design time. ZK proofs can be instrumental
for compliance to the RtBF revolutionizing the current approaches
to design compliant systems. Concretely, we show an assessment
scheme allowing to check compliance with the RtBF leveraging
the power of ZK proofs. We analyze the above assessment scheme
considering specific hard-to-address use cases.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion; Privacy-preserving protocols; • Theory of computation
→ Interactive proof systems; • Applied computing→ Law.
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1 INTRODUCTION
Typically, users provide personal data to digital platforms with the
goal of obtaining some desired services. Modern digital platforms
involve advanced computations to build and maintain sophisticated
data structures, machine learning models and resilience mecha-
nisms (e.g., decentralized ledgers) that embed personal data. Obvi-
ously, users would like to receive services from digital platforms
with high degrees of usability, efficiency and security. In contrast,
for business reasons, digital platforms are usually designed target-
ing a revenue as major goal, and thus the resulting quality of service
does not always match users’ expectations.

Compliance to the GDPR. Digital platforms dealing with personal
data of individuals within the EU are required to comply to the
EU General Data Protection Regulation’s (GDPR) [16]. Traditional
cryptographic tools seem insufficient to enforce GDPR compliance,
and recently (e.g., see in [23]), the use of advanced cryptographic
tools like securemulti-party computation [20] has been investigated
to mitigate the tension generated by contrasting requirements.

In some scenarios, one of the most challenging requirements
imposed by the GDPR is the so-called “Right to Be Forgotten” (RtBF,
for short). Indeed, depending on the specific design adopted to build
a digital platform, erasing some data from the platform could have
an avalanche effect on the validity of several other correlated data
stored in the same platform.

In general digital platforms collect personal data for various
purposes. In some cases personal data are just stored and retrieved
upon request. In other cases they are used as inputs to computations
producing other correlated data that in turn can be stored and used
in subsequent computations. For various reasons (e.g., efficiency,
integrity, accountability) the utility of such computed data still
could depend on the existence (implicit or explicit) of the initial
data that was used as input for their computation. Moreover, data
obtained as outputs of computations that were performed using as
input personal data could in turn be, to some extent, also considered
personal data. Therefore, in some unfortunate cases, the need to
remove a single information could correspond to pushing forward
a domino piece generating a very significant chain reaction with
a large amount of information that needs to be deleted to restore
consistency.

The tension between users and digital platforms. While users
would like personal data to be quickly and effectively removed
upon request, digital platforms might actually try to avoid or at
least delay such procedures for various reasons. First of all, the
success of the business of a digital platform might crucially rely on
personal data stored in it, and thus there is an evident interest of
the platform manager in minimizing the amount of data removal
requests that are accepted and implemented, in contrast with the
interests of users desiring to be forgotten. A classical well-known
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example involves Google LLC refusing to de-index pages associated
to users, and the interested reader can refer to [12].

Additionally, removing personal data of a user might impact on
other correlated data that are vital for the business of the digital
platform. Such data might have been computed investing enormous
resources and an update on the original data, as in the case of
the RtBF, might require very expensive re-computations to obtain
new correct correlated data. In this last case, not only data erasure
affects the quality of the remaining data in the digital platform,
but removing some data might be very hard or nearly impossible
without compromising the integrity of an important sector of the
platform.

Last but not least, some ambiguous interpretations on the defi-
nition of personal data can impact also on computed data. Indeed,
depending on subtle considerations related also to the chosen encod-
ing and the links among data items, in some cases, correlated data
could also fall in the domain of personal data and thus, indirectly,
are also the target of data removal requests.

Example of correlated data that is personal data. A cryptographic
hash ℎ of some personal data 𝑑 is a value that has been obtained
as output of a computation through a special function 𝐻 on input
𝑑 . According to various interpretations, it turns out that whenever
𝑑 is not unpredictable, ℎ belongs to the category of personal data
too. Indeed, consider the case in which 𝑑 is an email address, ℎ is
its cryptographic hash (i.e., ℎ = 𝐻 (𝑑)), and ℎ can be retrieved along
with a description of old events associated to that email address.
Next, everyone can pick any email address 𝑑′ (since usually email
addresses are not unpredictable) computing 𝐻 on it and checking
the equality of such output withℎ, therefore detecting (when𝑑′ = 𝑑)
that those events involved the original email address 𝑑 . This can be
verified even in case 𝑑 is removed and only ℎ and the description of
the associated events remain in the platform. As such, one might
desire to remove ℎ, but this could be not so straight-forward: indeed
ℎ could be part of a data structure (e.g., a block of a blockchain) that
would have an inconsistent state once ℎ is removed, and making it
consistent again could be highly non-trivial.

This tension among privacy features desired by users and effec-
tiveness/efficiency of digital platforms can have a serious impact on
the actual application of the RtBF. Users’ requests could end up be-
ing denied even when legit since digital platforms might find more
convenient to speed up their systems moving resources towards
their legal office rather than embarking in compliance by design to
the RtBF. Expensive escalations to courts would then be required
(e.g., see [12]) and in the end citizens might actually prefer to give
up on their rights.

The gap between legislators and developers of digital platforms.
The design of a digital platform could be unfriendly to the RtBF
even when designers had in mind from the very beginning the re-
quirement of allowing deletion of personal data upon request. This
is due to the fact that interpretations of what is or is not personal
data can change over time. Moreover, the content of the GDPR is
way far from technical specifications required by a developer of
a digital platform. The long bridge between the content of a law
and the corresponding precise behavior of a compliant system is
dense of guesses, misunderstandings, and thus it is strongly error-
prone. Data Protection Authorities sometimes provide clarifications

only when digital platforms are almost ready to be deployed1. In-
terestingly there are attempts to formalize the meaning of data
deletion and various definitions have been proposed in recent pa-
pers [11, 18, 19].

Contribution of this work. In addition to discussing issues related
to actual difficulties that can be faced when deleting personal data
from a digital platform, in this work we will also discuss the power
of zero-knowledge (ZK) proofs [21] and their applications to the
RtBF. A ZK proof system is a building block in the foundations of
cryptography that has remained for long time confined in theoreti-
cal research papers, but that has found in the last decade several
impressive real-world applications. We will indeed discuss how
zero-knowledge proofs can be an effective solution to guarantee
compliance to the RtBF in digital platforms even in those cases that
seem to be very hard to address.

We will show an assessment scheme aiming at determining
whether ZK proofs can be helpful to make a system compliant to the
RtBF by design. Next we will analyze three notable uses cases (i.e.,
machine unlearning, redactable blockchains, image authentication)
that can be seen as concrete instantiations of our general-purposes
assessment scheme.

2 THE RTBF IN DIGITAL PLATFORMS:
TOUGH CASES

In Section 1we have discussed a simple toy example about removing
an email address 𝑑 while its cryptographic hash ℎ is still stored on
the platform. The goal of that example was only to illustrate why
removing personal data from a digital platform does not always
consist of a simple erasure of some records in a database.

In the section we focus on three popular use cases of digital
platforms that seem to be extremely unfriendly to data removal,
and thus unfriendly to compliance with the GDPR.

2.1 Machine Learning Models
A machine learning model is an algorithm that, during a training
phase, processes large datasets in order to be then able to perform
a task exploiting what it learnt (rather than being explicitly pro-
grammed for accomplishing it). The training phase can consist of
very expensive computations that can take days, weeks or months
depending on the amount of data to process and the way data are
elaborated by the machine learning model. There can be pretty
large storage requirements during training and during the infer-
ence phase (i.e., when the model is used for a task), that can span
from megabytes to hundreds of gigabytes.

Datasets processed by a machine learning model can potentially
involve personal data. This means that even in case in the end the
actual dataset that has been processed will be deleted, the infor-
mation stored on the digital platform can implicitly include such
personal data. Therefore, it is fairly possible that personal data used
to train the model, including data for which the RtBF should be
enforced, remain silently/implicitly stored on the digital platform
and can later on be revealed during the inference phase.

1This happened for instance when EU countries adopted the contact tracing systems
based on Exposure Notifications [22].
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It is already known [32] that during the inference phase, by
appropriately querying the model, it is possible in some cases to
obtain portions of datasets that were used during the training. In
this direction, there has been great visibility for the result of [28]
that reported their successful attempt to extract megabytes of Chat-
GPT’s training data. Notice that ChatGPT [31] is a large language
model that is a specific machine learning model having the goal
to learn and use human language. The training of ChatGPT was
performed with public data available on the internet.

How is this related to the RtBF and what can possibly go wrong?
First of all, the above data extraction from a large language model is
a typical example in which results of extremely expensive compu-
tations can embed personal data that are seemingly hard to remove.
Even considering the specific case of ChatGPT where datasets were
publicly available, nothing prevents that personal data are origi-
nally available on a public source, and later on might be removed
precisely upon a legitimate request to be forgotten. Still, those per-
sonal data would remain silently in ChatGPT and could at some
point be revealed to whoever asks a specific query.

Machine unlearning for the RtBF. Enforcing the RtBF in machine
learning models can be very problematic when the possibility of
“unlearning” was not considered at design time. The extreme so-
lution is extraordinary expensive and consists of repeating the
training using datasets that do not include anymore those data that
must be forgotten. Better solutions can instead consist of a different
training allowing the model to be updated in order to forget some
information [9, 34]. However, even in case such unlearning possibil-
ities exist, there is no guarantee that a digital platform has actually
run the unlearning procedure to update the model2. Indeed, recall
that data can still be silently/implicitly stored in the model and the
actual way to extract them could be known only in the future (e.g.,
when it will be discovered how to exploit inference to reconstruct
parts of the dataset). As such, a digital platform could be lazy and
lie, claiming that everything possible has been done in compliance
to the RtBF while instead this is not true3.

An alternative approach to guarantee that the process of for-
getting personal data has been successfully completed on a digital
platform, consists of proving that there has been a transition from
the previous state of the platform to the next state and the tran-
sition consisted of running the unlearning procedure. The proof
proving such transition should be privacy preserving in order not
to leak personal data that have been used to produce the state of the
system. We will see that this theoretical approach can be concretely
viable and can be seen as a specific case of our generic assessment
scheme.

2.2 Blockchain Technology
Blockchain technology allows one to construct, through consistent
replicas, a decentralized digital platform that is fault-tolerant and
2Digital platforms do not like to invest too many resources on tasks that do not bring
a corresponding revenue.
3We are not considering the case of a digital platform that keeps a copy of the dataset
claiming to have satisfies all data deletion requests. The reason is that we are focusing
on the technological possibility of correctly and efficiently implementing the RtBF
through a proper design and in showing that tasks specified in the design are cor-
rectly executed. The fact that one can also keep copies of data illegally, besides being
unavoidable, is out of the scope of our work.

resilient to high degrees of corruption. Such a platform usually
achieves its desired security through the concept of immutability.
This property guarantees that the entire history of ordered transac-
tions that moved the system from its original state (i.e., the genesis)
to the current state is publicly verifiable.

The immutability property of blockchains makes the resulting
platform extremely transparent about its state, since everyone can
check it on her own, trusting nobody. Transparency is a feature
that makes blockchains an appealing technology to realize robust
systems in a decentralized setting, therefore without relying on
trusted parties that could be single points of failure.

The chain of blocks. The name blockchain is due to the basic
mechanism used by such platforms to guarantee immutability: or-
dered transactions are stored in blocks that are chained to each
other through hard-to-find but easy-to-check strings. Finding such
special strings can be seen as finding the solution to a puzzle or
winning a scratch card lottery. Examples of techniques used to
implement the puzzle and the lottery are the “proof of work” used
in Bitcoin [27] and the “proof of stake” used now in Ethereum [8].

There exist so-called “permissioned” blockchains where the gov-
ernance is limited to well-known organizations that through honest
majority guarantee the correctness of the included data. Because of
their limited decentralization, permissioned blockchains are much
easier to construct and even immutability is not that hard to relax as
shown in [1]. We will stick for now with Bitcoin but the discussion
can be extended also to Ethereum and several other mainstream
permissionless blockchains.

Adding a new block in Bitcoin requires to find a special input to
a cryptographic hash function, named proof of work, such that the
output is a string belonging to a very small subset of the output
space. Computers that try to find such strings are called miners,
and currently the effort required to add a new block consists of
more than 270 evaluations of a cryptographic hash function every
10 minutes. Immutability is guaranteed by the fact that an update
of a single bit in a block would invalidate the solution to the puzzle
that appears in the next block, and thus it would invalidate the link
with all next blocks.

In Bitcoin there can be personal data. Each block in Bitcoin con-
tains transactions and there are two specific ways to encode text in
transactions. The first mechanism can be used only by the miner
and consists of using a field of the special transaction that only the
miner of a block can add (i.e., the coinbase transaction). The second
mechanism can be used by any user and consists of submitting a
transaction with a special keyword OP_RETURN, that allows to
embed free text in a transaction.

In [26] it has been shown that there are transactions in Bitcoin
that include illegal data, for instance links to web resources storing
material related to child pornography. The above injection of such
data in Bitcoin transactions has been performed precisely through
the use of the above OP_RETURN keyword. Fortunately a link can
be made meaningless by deleting the linked resources (rather than
the link), but still there can be explicit and fully specified contents
in a transaction that one might want to see deleted.

Summing up, there is a major problem due to the possibility that
personal data be stored in a public blockchain like Bitcoin. Indeed,
there are several blockchain projects that use the blockchain of
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Bitcoin for applications unrelated to the transfer of cryptocurrencies
(e.g., applications interested in leaving a permanent message like
EternityWall). If one of such blockchain projects ends up uploading
personal data in a Bitcoin transaction, then by the immutability of
the blockchain there will be no way to forget that information. In
the second part of the paper wewill see that, somewhat surprisingly,
this intuition is false.

2.3 Image Authentication
There is a growing debate about issues deriving by deepfakes, and
in general by the fact that disinformation can exploit the impact of
sophisticated fake pictures. In order to try to limit the spread of fake
news and give solid guarantees about the originality of pictures,
the Coalition for Content Provenance and Authenticity (C2PA) [10]
has defined a standard that some cameras are already implementing
aiming at linking original pictures to digital signatures. The vision
of the C2PA standard is that cameras should include in a tamper-
proof area a secret key and a circuit computing signatures of the
images captured by the camera. Then such pictures can be published
and verified through the verification procedure of the signature
scheme, therefore recognizing as genuine the signatures verified
with public keys of camera producers. The above approach aims
at ruling out fake pictures since they would not be equipped with
a signature that is verified according to a public key with good
reputation.

The RtBF from digital images. Once a digital signature is com-
puted to assess the authenticity of a picture, even an update of a
single bit of the picture would make the signature invalid hurting
authenticity. It is therefore straight-forward to see the clear issue
about a signed picture including the recognizable face of an in-
dividual that at some point might ask to have the blur operation
applied to the area of the picture including her face. While this
transformation is easy to implement through a common photo edit-
ing software, such an edit makes the original signature meaningless
therefore loosing authenticity of the overall picture.

Summing up, a digital platform might have a picture including
personal data and some correlated information (i.e., the signature)
such that removing personal data hurts the consistency of correlated
data that can not be re-computed.

3 ZERO-KNOWLEDGE PROOFS
In [21], Goldwasser, Micali and Rackoff proposed a revolutionary
concept: the existence of a Zero-Knowledge (ZK) proof. This is a
game played by a prover and verifier both sharing a claim. The
prover also holds as input an evidence of the veracity of the claim
and, moreover, can use it to convince the verifier, without disclosing
any additional information about her private input (i.e., the evidence
of the prover used to convince the verifier). At first sight, one
might think that ZK proofs are a mechanism to perform secure
identification or to show possession of credentials. Those are just
two very immediate applications but stopping with them would
mean to look at the finger while instead ZK proofs indicate the
moon.

The strong power of ZK proofs that makes them appealing in
several applications lies in their paradoxical ability to relax the ten-
sion between accountability and privacy. ZK proofs enable anyone

to prove that a computation has been carried out correctly, while
at the same time the confidential information that has been used to
computed the proof is hidden in the proof, in a way that nobody
can extract it (in a computational sense).

We now discuss the meaning of the definition of ZK proof.
This will be useful to concisely describe our ZK-based assessment
scheme.

3.1 Definition of a Zero-Knowledge Proof
System

There exist several different definitions that corresponds to different
flavors of ZK proofs. We report here, standard definitions widely
used in the literature. In particular we follow the description given
in [33].

Notation. We will use 𝜖 (·) to denote a negligible function (i.e.,
for every constant 𝑐 and all sufficiently large 𝑛 it holds that 𝜖 (𝑛) <
1/𝑛𝑐 ). Negligible functions are useful to bound the probability of
events that one would like to happen extremely rarely. Given an
NP language 𝐿, we consider the polynomial-time relation 𝑅𝐿 con-
sisting of pairs (𝑥,𝑤) such that 𝑥 ∈ 𝐿 and 𝑤 is a witness for an
efficient (i.e., polynomial in the size of the input) membership ver-
ification procedure for 𝐿. Roughly, 𝑥 will be the output of some
computations and𝑤 is the input that has been used for those com-
putations, and that might include confidential data, therefore it
must remain a secret of the prover.

Proof system. A proof system is a two party game with a first
player that is a prover and is usually denoted by 𝑃 and a second
player that is a verifier and is usually denoted by 𝑉 . Both are prob-
abilistic polynomial-time (PPT) interactive algorithms in the sense
that they run efficiently in the size of their inputs, and they are
randomized, therefore they have access to their own private sources
of randomness. While both 𝑃 and𝑉 know 𝑥 , 𝑃 also knows a witness
𝑤 such that (𝑥,𝑤) ∈ 𝑅𝐿 . In other words,𝑤 is possibly a confiden-
tial secret that can be used to explain that 𝑥 is well formed, and
this is denoted through membership into an NP language. The
output of𝑉 at the end of the above execution is usually denoted by
⟨𝑃 (𝑤),𝑉 ⟩(𝑥), and corresponds to 1 when 𝑉 accepts the proof and
to 0 when instead 𝑉 rejects it.

Definition 3.1. A proof system Π = (𝑃,𝑉 ) for an NP-language
𝐿 is a pair of PPT interactive algorithms satisfying the following
two properties.

• Completeness: for all (𝑥,𝑤) ∈ 𝑅𝐿 , Pr[⟨𝑃 (𝑤),𝑉 ⟩(𝑥) = 1] = 1.
• Soundness: there exists a negligible function 𝜖 such that for
every 𝑥 ∉ 𝐿 and for every adversary 𝑃★, Pr[⟨𝑃★,𝑉 ⟩(𝑥) =

1] < 𝜖 ( |𝑥 |).

Essentially, completeness means that if both players behave cor-
rectly then 𝑃 will manage to convince 𝑉 that the claim is true (i.e.,
that 𝑥 is the correct output of some computation on a secret input
𝑤 ). Soundness instead models the case in which 𝑃 is malicious and
therefore can deviate from the prescribed protocol with the goal
of convincing 𝑉 about the veracity of a claim that instead is false.
Still, we want that the probability that 𝑉 will be cheated is negli-
gible. Completeness and soundness in the above two-party game
characterize a proof system.
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Zero knowledge. Proof systems are easy to construct, indeed the
prover could simply send the witness. However when privacy of the
witness is a concern, more sophisticated constructions are required.
In order to evaluate their ability to preserve the privacy of the
witness, zero knowledge has been defined.

Definition 3.2. A proof system Π = (𝑃,𝑉 ) for an 𝑁𝑃-language 𝐿
is computational zero knowledge if for any PPT algorithm𝑉★ there
exists an expected PPT algorithm 𝑆 such that for any (𝑥,𝑤) ∈ 𝑅𝐿
and any 𝑧 ∈ {0, 1}★ the following two distributions are computa-
tionally indistinguishable:

{⟨𝑃 (𝑤),𝑉★(𝑧)⟩(𝑥)}, {𝑆𝑉
★

(𝑥, 𝑧)}.

The above third property of an interactive proof system is the
guarantee for the honest prover that her secret will remain pro-
tected even in case the adversarial verifier misbehaves arbitrarily.
Indeed, whatever could have been learned by an even adversarial
𝑉★ during the execution of the protocol with a honest 𝑃 , essen-
tially the same could have been computed locally (i.e., without
any interaction with 𝑃 ) by 𝑉★ running the algorithm 𝑆 , that, un-
like 𝑃 , does not receive the secret as input and still can output an
indistinguishable view in the eyes of 𝑉★.

The use of a simulator to model the security of a protocol has
been extremely influential in many scenarios, and several security
definitions (e.g., secure multi-party computation) follow the same
approach that is usually referred to as the simulation paradigm.

It is worthy to note that the above definition is oriented to an
interactive system where 𝑃 and 𝑉 exchange multiple messages.
Such proofs are convincing only for the very specific verifier that
engaged in the execution of the protocol.

Non-interactive ZK. There is also a non-interactive form of ZK
proof where 𝑃 outputs a single message that can be then tested by
any verifier without sending a message to the prover. This non-
interactive setting achieves public verifiability that is a desired prop-
erty in several applications. A non-interactive ZK (NIZK) proof can
be instantiated in two different settings. In the first setting, there are
some parameters that are generated either by a trusted third party
or by a distributed computation [30]4. Such parameters, sometimes
referred to as a “common reference string”, are received as input
both by the prover and by any verifier interested in checking the
correctness of the proof. The second setting instead relies on a
heuristic assumption about a cryptographic hash function, assum-
ing that it behaves as a random oracle [3] (i.e., the output of a query
is a random string and identical queries are answered consistently).

Arguments, knowledge soundness and SNARKs/STARKs. The ad-
versarial prover in the definition of soundness is often relaxed to
a PPT algorithm and in this case the word proof is replaced by
argument. The notion of soundness is cumbersome when a claim
is certainly true and in this case the entire goal of the prover is
showing possession of a valid witness. In this case a variant of the
notion of soundness, referred as knowledge soundness is used to
guarantee some meaningful security to the honest verifier.

4In this case, honesty of at least a specified number of participants guarantees that
the generated parameters are correctly formed and no player owns specific trapdoors
correlated to the parameters.

There exist succinct non-interactive arguments of knowledge
(SNARKs) [6] that are essentially someNIZK arguments with knowl-
edge soundness, producing a compact proof that is very fast to
verify. When there is no trapdoor associated to the generation of
the parameters of the SNARK, then the commonly used acronym is
STARK [4] that stays for succinct transparent argument of knowl-
edge. While STARKs are obviously preferable for security, they
usually are less succinct and slower to verify.

While both SNARKs and STARKs can be computed to prove any
claim in NP, the computation of such proofs can be extremely
demanding depending on the type of claim that they are supposed
to prove and validate. In the literature the terms ZK-SNARK/ZK-
STARK are used when the ZK property is also enjoyed. In our
scenarios, since the ZK property is obvious we will leave it implicit
therefore using the terms SNARK/STARK only.

4 AN ASSESSMENT SCHEME FOR GDPR
COMPLIANCE THROUGH
ZERO-KNOWLEDGE PROOFS

In Section 2 we have discussed specific complex cases where en-
forcing the RtBF is extremely problematic. Here we would like to
propose an assessment scheme allowing to test, to some extent, if
the design of a digital platform can be compliant to the RtBF, there-
fore allowing efficiently to remove personal data upon request,
without hurting the consistency of the platform.

We depict in Figure 1 our assessment scheme that in particular
takes into account the power of ZK proofs to maintain consistency
in the presence of expensive to re-compute correlated data. Ours
is an initial attempt to push forward the notion of RtBF by design
leveraging ZK proofs.

The depicted assessment scheme is beneficial to evaluate the
compliance of a design of a digital platform to the Art. 17 of the
EU GDPR. The spirit of this scheme is to have a simple and direct
method to detect issues about possible requests of removing per-
sonal data. It goes without saying that this is an initial effort and
modelling what can actually happen in the wild is certainly more
complex and richer of challenges.

Details on the assessment scheme. We now discuss in details the
assessment scheme shown in Figure 1 following the alphabetic
order of the letters assigned to the shapes.

(a) All possible personal data that could be removed should be
evaluated upfront in order to make sure that all cases of data
removal requests can be efficiently managed. The scheme
proceeds therefore in (b) considering some personal data 𝛼
to be removed.

(b) Considering a single request of removing personal data 𝛼 of
an individual, the first question to address is whether 𝛼 has
been used to compute correlated data 𝛽 that is also stored
and thus is part of the digital platform. A negative answer
will bring us to (c) while a positive answer will bring us to
(d).

(c) The conclusion is that 𝛼 can be safely and efficiently re-
moved. This will make the platform unaware of such data,
and moreover there is no negative impact on the consistency
of remaining data.
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Figure 1: Assessment scheme. It can be used to determine
possible issues when receiving a request to delete personal
data as required by the Art. 17 of the EU GDPR.

(d) Here we wonder how expensive is to fix 𝛽 so that it is
consistent with data available in the platform after deleting
𝛼 . If the re-computation of 𝛽 is efficient, we continue with
(e), otherwise we continue with (f).

(e) In this case, re-computation of 𝛽 can be performed effi-
ciently, and we ask whether the re-computed 𝛽 would be
consistent with other data available in the digital platform.
Indeed, it is possible that some other stored data 𝛾 was com-
puted taking the old version of 𝛽 into account. If not (i.e.,
other data would not be consistent with the new value of 𝛽),
we continue with (f), otherwise we continue with (g).

(f) This point is reached by tough cases in which removing
personal data might be considered too expensive or even
unfeasible. Indeed, here we have that 𝛼 must be removed
but unfortunately there exist correlated data 𝛽 that are too
expensive to re-compute, either because of the complexity of
its re-computation or because re-computing it would in turn

require other re-computations. Nevertheless, after deleting
𝛼 , the platform would not be in a consistent state if 𝛽 re-
mains untouched. This is the key point where the power of
ZK proofs can be leveraged. Indeed, our assessment scheme
suggests to check if it is possible to delete 𝛼 , to keep corre-
lated data 𝛽 as it is, but repairing the lost consistency (due
to 𝛽 being related to a non-existing value 𝛼) through a ZK
proof. In the positive case we continue with (i), otherwise
we continue with (h).

(g) In this case we conclude that removing𝛼 and updating 𝛽 can
be efficiently performed leaving the platform in a consistent
state.

(i) The ZK proof must be computed by a prover for the follow-
ing informal claim: “there existed 𝛼 such that the current 𝛽
was correctly computed”. The witness used by the prover
consists of 𝛼 since it induced the correct calculation of 𝛽 .
This proof must be non-interactive and fast to verify, there-
fore SNARKs/STARKs are good options depending on the
possibility of having trusted parameters or of relying on a
transparent setup only. The ZK property is required in order
to make sure that the string of the computed proof does not
convey information about 𝛼 besides the mere fact that an 𝛼

compatible with 𝛽 existed.
(h) If the computation of such a proof is not viable5, then

there is a serious risk that the design of the platform is not
compliant with Art. 17 of the GDPR.

In the next three subsections we analyze the above assessment
scheme considering the three tough use cases introduced in Sec-
tion 1.

4.1 The RtBF in Robust Machine Learning via
ZK Proofs

Recall that the problem of reliable machine unlearning is to make
sure that the digital platform has performed themachine unlearning
procedure without leaking data used for the training. Even though
this task might seem excessively hard to accomplish, we can here
comment how this can actually be realized leveraging the power
of ZK proofs and how the proposed approach can be seen as an
instantiation of our assessment scheme.

In [15], the authors presented a design enforcing the digital
platform to prove the correct execution of a learning or unlearning
procedure. More precisely, the digital platformwhen using a dataset
to train the model will also compute a proof. The goal of the proof
is to make sure that the state of the system has been updated as
consequence of the execution of the expected procedure. The same
will happen in the presence of a request to unlearn data therefore
producing an updated state. The proofs are zero knowledge so that
no information about the unlearned data can be acquired from the
proof. Another reason explaining why the proof should not leak
information is that a request for data deletion, that in this case is
a request for machine unlearning, should receive as answer only
a guarantee that the unlearning has been performed, and other

5We remark here that while in theory one can construct ZK proofs for any claim
that is used in such scenarios, the concrete efficiency of such proofs can be extremely
unsatisfying in some cases.
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information related for instance to the non-erased datasets should
still remain confidential.

Since datasets are often large, proofs are in turn prone to be large
and verifying them can be expensive. Therefore SNARKs are used
since succinctness and fast verification is of major importance.

The construction of [15] keeps two efficiently updatable data
structures named Merkle trees, one for the data used for training
and one for data that instead has been unlearned. At each round
of training and/or unlearning the states of the two Merkle trees
change and a SNARK is computed to ensure that the change of
state has been correctly performed according to the previous state
and to the requests of training/unlearning performed.

The above system has been also validated in [15] by an imple-
mentation and an analysis. While, as the authors admit, there are
still various aspects to address in future research, the proposed so-
lution is an impressive milestone about how ZK proofs can allow to
obtain levels of data protection, including the case of data removal,
that at first sight might look impossible to reach.

Robust machine unlearning through the lens of our assessment
scheme. Whenever a dataset includes personal data 𝛼 , the corre-
sponding machine learning model (depending on how the training
is performed) can include some information 𝛽 that is correlated to
𝛼 . Considering our assessment scheme, it is obvious that step (d)
is reached and that 𝛽 represents data in the model that can allow
to recover 𝛼 . As such, the approach of [15] is such that one can
modify 𝛽 into 𝛽′ so that 𝛽′ will not be correlated to 𝛼 but will not
be consistent with remaining data, therefore reaching (f) through
(e). Then, their system allows for an efficient ZK proof that 𝛽′ is
correct, therefore reaching (i).

4.2 The RtBF in Blockchains: ZK Proofs for Cut
and Patch

As discussed in Section 1, the presence of personal data in a Bitcoin
transaction 𝑡 is a major problem since any change to a single bit of
that transaction 𝑡 would invalidate the proof of work that allowed
to connect the block 𝐵′ following the block 𝐵 including 𝑡 . In turn,
removing data from a transaction, even though the removed data
has no impact on the actual transfer of units of the cryptocurrency
(which is supposed to be themain goal of a transaction), wouldmake
inconsistent the connection with the remaining chain of blocks (i.e.,
with all blocks that followed the one in which the change takes
place).

The use of ZK proofs in the context of blockchains has been
considered in the past mainly for the goal of providing privacy-
preserving smart contracts [14], a privacy-preserving cryptocur-
rency [5] and in general for using blockchains also in applications
that include confidential data [17]. Here we now illustrate a solution
presented in [7] that, again surprisingly, relies on ZK proofs to allow
data removal from Bitcoin transactions. The same approach was
later on considered again for Bitcoin in [25]. The approach of [7]
has inspired a technique for redaction of smart-contract enabled
permissioned blockchains [2].

The proposed data removal mechanism of [7] implements the
idea of cutting the piece of data (i.e., the part of a transaction that
included text that must be erased) and then applying a patch. The
phase of cutting is digitally performed by zeroing out the involved

bits. However, recall that once bits in a block change, the connection
with the next block is broken. To tackle this issue it is therefore
necessary to apply a patch, that in this case would be a ZK proof
that will certify that the link between the blocks must be considered
valid, since it was a valid link with a previous version of the block
and only some “neutral” data were replaced in the block. Since
computing a ZK proof requires the special information that can
explain the consistency among the blocks, the sequence of events
in the system of [7] goes as follows.

(1) The instance 𝑥 corresponds to the new block 𝐵′ (i.e., the one
with a transaction 𝑡 ′ that has some zeroed bits), the next
block𝐴 that includes the solution of the puzzle connecting𝐴
to a block 𝐵 (i.e., 𝐵 is the block before the update takes place
changing a transaction 𝑡 into 𝑡 ′). The witness𝑤 for 𝑃 will be
the block 𝐵, therefore including 𝑡 . Essentially the common
instance 𝑥 is the result of the computation that zeroed some
bits of 𝑡 , and𝑤 is the secret information that can be used to
show that 𝐵′ and 𝐴 are still virtually well connected since
𝐵′ is just the new version, through some neutral6 updates,
of a block that was well connected to 𝐴.

(2) 𝑃 computes the ZK proof𝜋 , that in this case is non-interactive
since it must be publicly verifiable.

(3) Next 𝑃 deletes 𝐵.

The consequence of the above steps is that even though a Bitcoin
node (𝑃 in the above example) has deleted data from its own copy
of the Bitcoin blockchain, it is still possible for whoever connects
to this node to download the blockchain and to verify its consis-
tency/correctness since when checking the connection between
𝐵′ and 𝐴, instead of verifying as usual the solution of the puzzle
included in 𝐴, the patch, which is the ZK proof, will be verified
instead. Since Bitcoin relies on decentralization, trusted parameters
would be not acceptable and thus the ZK proof is implemented
through STARKs.

Redactable blockchains through the lens of our assessment scheme.
Whenever a transaction includes personal data 𝛼 , the blockchain
includes 𝛼 in a block and the next block includes 𝛽 that is the link to
a previous block. Therefore, 𝛽 is clearly correlated to 𝛼 . Considering
our assessment scheme, it is obvious that step (d) is reached and
that recomputing 𝛽 is in general hard in the context of blockchains
(e.g., it could correspond to producing a new proof of work that in
turn would require to update also next blocks). The approach of [7]
consists of keeping 𝛽 as it is reaching directly (f) in the assessment
scheme. Then, their system allows for an efficient ZK proof (i.e., a
STARK) that 𝛽 is correct (despite the available transactions do not
show so), therefore reaching (i).

4.3 The RtBF on Authentic CP2A Images: ZK
Proofs of Correct Transformations

As discussed in Section 2.3, a digital platform including a authentic
picture, might be asked to update the picture as part of a request of
an individual appealing to the RtBF. When the picture is compliant
to the C2PA standard there is also a signature that is crucial to

6Recall that the zeroed bits only affect some free text of the transaction that has no
impact on the possession of bitcoins.
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guarantee the authenticity of the picture and altering the picture
would hurt authenticity.

The approach of PhotoProof. The work of [29] showed that one
can maintain consistency of a signature over and edited picture
through the use of ZK proofs. In their proposal, whoever edits a
digitally signed picture can then compute a SNARK proving that
the modified picture corresponds to an original picture (where orig-
inality comes from the existence of signature under some respectful
public key) that however has been modified according to a well-
specified transformation. In this way there are strong guarantees
about what the current (modified) picture shows and what was
originally signed.

Transformed authentic images through the lens of our assessment
scheme. Whenever a C2PA-compliant picture includes personal
data 𝛼 , there is also a correlated information 𝛽 that includes a
signature of 𝛼 . Considering our assessment scheme, it is obvious
that step (d) is reached and that recomputing 𝛽 is unfeasible since
the digital platform does not have the secret key corresponding
to the respectful public key guaranteeing the authenticity of the
picture. As such, the approach of [29] is such that one keeps 𝛽 as it
is, therefore reaching directly (f). Then, their system allows for an
efficient ZK proof that 𝛽 is correct, therefore reaching (i). While
such ZK proof computed in [29] can only be computed for pictures
with very low resolution, there are more recent constructions [13,
24] allowing to efficiently certify the correctness of the involved
transformations maintaining the desired degree of authenticity also
of high-resolution pictures.

5 CONCLUSIONS
The RtBF is a fundamental milestone of the GDPR. Unfortunately,
individuals that expect their data to be protected by the GDPR can
be in trouble when desiring to be forgotten.

We have discussed the problem of enforcing data removal in
digital platforms in those cases where it could correspond to a
tremendous waste of resources.

Our work contributes to a better understanding of the power
of ZK proofs in mitigating the tension between security/privacy-
oriented desires of users and businesses-oriented desires of man-
agers of digital platforms. We have shown that in general, digital
platforms can be designed to be compliant to the Art. 17 of the
GDPR and at the same time can perform intensive computations
and store large amounts of data that are correlated to personal data.
Moreover we have shown three specific use cases where data re-
moval in seemingly tough, but that, as abstracted by our assessment
scheme, through ZK proofs and a re-design process can actually
allow data removal with an affordable effort.

Interesting future directions consist of improving the assessment
scheme by expanding the part that checks whether an efficient ZK
proof exists, providing guidelines to assess if, depending on the
specific data deletion scenario, an efficient ZK proof fitting the
proposed scenarios can be concretely deployed.
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