
Received: 22 March 2023 Revised: 21 July 2023 Accepted: 20 November 2023

DOI: 10.1002/net.22205

R E S E A R C H A R T I C L E

How vulnerable is an undirected planar graph with respect
to max flow

Lorenzo Balzotti Paolo G. Franciosa

Dipartimento di Scienze Statistiche,

Sapienza Università di Roma, Roma, Italy

Correspondence
Lorenzo Balzotti, Dipartimento di Scienze

Statistiche, Sapienza Università di Roma,

p.le Aldo Moro 5, 00185 Roma, Italy.

Email: lorenzo.balzotti@uniroma1.it

Abstract
We study the problem of computing the vitality of edges and vertices with respect

to the st-max flow in undirected planar graphs, where the vitality of an edge/vertex

is the st-max flow decrease when the edge/vertex is removed from the graph. This

allows us to establish the vulnerability of the graph with respect to the st-max flow.

We give efficient algorithms to compute an additive guaranteed approximation of

the vitality of edges and vertices in planar undirected graphs. We show that in the

general case high vitality values are well approximated in time close to the time

currently required to compute st-max flow O(n log log n). We also give improved,

and sometimes optimal, results in the case of integer capacities. All our algorithms

work in O(n) space.

KEYWORDS

max flow, planar graphs, undirected graphs, vitality, vulnerability

1 INTRODUCTION

Max flow problems have been intensively studied in the last 60 years, we refer to [1, 2] for a comprehensive bibliography.

Currently, the best known algorithms for general graphs [31, 42] compute the max flow between two vertices in O(mn) time,

where m is the number of edges and n is the number of vertices.

Italiano et al. [29] presented an algorithm for max flow that solves the problem in O(n log log n) time for undirected planar

graphs. For directed st-planar graphs (i.e., graphs allowing a planar embedding with s and t on the same face) finding a max

flow was reduced by Hassin [25] to the single source shortest path (SSSP) problem, that can be solved in O(n) time by the

algorithm in [26]. For the planar directed case, Borradaile and Klein [15] presented an O(n log n) time algorithm. In the special

case of directed planar unweighted graphs, an O(n) time algorithm was proposed by Eisenstat and Klein [20].

The effect of edges deletion on the max flow value has been studied since 1963, only a few years after the seminal paper by

Ford and Fulkerson [21] in 1956. Wollmer [49] presented a method for determining the most vital edge (i.e., the edge whose

deletion causes the largest decrease of the max flow value) in a railway network; in the same years, other studies about max

flow interdiction were carried out on the planar Russian railway [24, 39]. A more general problem was studied in [44], where

an enumerative approach is proposed for finding the k edges whose simultaneous removal causes the largest decrease in max

flow. Wood [50] showed that this problem is NP-hard in the strong sense, while its approximability has beenstudied in [4, 43].

In this paper we deal with the computation of vitality of edges and vertices with respect to the value of an st-max flow in an

undirected planar graph G, denoted by MFG or MF if no confusion arises, where s and t are two fixed vertices. The vitality of

A preliminary version of this paper appeared in Algorithms and Complexity: Proceedings of the 13th International Conference, CIAC 2023, June 13–16, 2023,

Springer, 653, 2023.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2024 The Authors. Networks published by Wiley Periodicals LLC.

570 wileyonlinelibrary.com/journal/net Networks. 2024;83:570–586.

http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/NET
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.22205&domain=pdf&date_stamp=2024-01-03

BALZOTTI and FRANCIOSA 571

an edge e (resp., of a vertex v) measures the st-max flow decrease observed after the removal of edge e (resp., all edges incident

on v) from the graph.

A reasonable measure of the overall vulnerability of a network can be the number of edges/vertices with high vitality. So,

if all edges and vertices have small vitality, then the graph is robust. We stress that verifying the robustness/vulnerability of the

graph by using previous algorithms requires to compute the exact vitality of each edge and/or vertex. We refer to [3, 38, 41] for

surveys on several kind of robustness and vulnerability problems discussed by an algorithmic point of view.

A survey on vitality with respect to the max flow problems can be found in [6]. In the same paper, it is shown that for

st-planar graphs (both directed or undirected) the vitality of each edge and each vertex can be found in optimal O(n) time.

Ausiello et al. [7] proposed a recursive algorithm that computes the vitality of each edge in an undirected unweighted planar

graph in O(n log n) time. The max flow algorithms in [29, 35] have also a dynamic version that can be used to compute edge

and vertex vitality (see Theorem 4 and corresponding paragraph for discussion).

Our contribution: We propose fast algorithms for computing an additive guaranteed approximation of the vitality of each

edge and vertex whose capacity is less than an arbitrary threshold c. Later, we explain that these results can be used to obtain a

useful approximation of vitality for general distribution of capacities and in the case of power-law distribution.

Formally, the st-max flow vitality of a set X ⊆ (V(G) ⧵ {s, t}) ∪ E(G), denoted by vit(X), is equal to MFG −MFG−X , where

G − X is the graph obtained from G by removing set X. Our main results are summarized in the following two theorems. For

a graph G, we denote by E(G) and V(G) its set of edges and vertices, respectively. Let c ∶ E(G) → R+
be the edge capacity

function, we define the capacity c(v) of a vertex v as the sum of the capacities of all edges incident on v. We show that we can

compute an approximated value of edge and vertex vitalities with an additive error lower than 𝛿, where 𝛿 is an arbitrarily fixed

positive vitality. All our algorithms work in O(n) space.

Theorem 1. Let G be a planar graph with positive edge capacities. Then for anyc, 𝛿 > 0, we can compute a value
vit𝛿(e) ∈ (vit(e) − 𝛿, vit(e)] for each e ∈ E(G) satisfying c(e) ≤ c, in O

(
c
𝛿
n + n log log n

)
time.

Theorem 2. Let G be a planar graph with positive edge capacities. Then for anyc, 𝛿 > 0, we can compute a value
vit𝛿(v) ∈ (vit(v) − 𝛿, vit(v)] for each v ∈ V(G) satisfying c(v) ≤ c, in O

(
c
𝛿
n + n log n

)
time.

By the following theorem we can compute the exact vitality of some vertices. It could be extended similarly to edge vitality,

but the result would not improve the results in [29, 35] (see Paragraph “Real world applications” and Theorem 4 for further

details).

Theorem 3. Let G be a planar graph with positive edge capacities. Then for any S ⊆ V(G), we can compute vit(v)
for each v ∈ S in O(|S|n + n log log n) time.

1.1 Small integer case
In the case of integer capacity values that do not exceed a small constant, or in the more general case in which capacity values

are integers with bounded sum we also prove the following corollaries by using the results in [8, 9, 34, 51].

Corollary 1. Let G be a planar graph with integer edge capacity and let L be the sum of all the edge capacities.
Then

• for any H ⊆ E(G) ∪ V(G), we can compute vit(x) for each x ∈ H, in O(|H|n + L) time,

• for any c ∈ N, we can compute vit(e) for each e ∈ E(G) satisfying c(e) ≤ c, in O(cn + L) time.

Corollary 2. Let G be a planar graph with unit edge capacity. Let n>𝑑 be the number of vertices whose degree
is greater than 𝑑. We can compute the vitality of each edge in O(n) time and the vitality of each vertex in
O(min{n3∕2, n(n>𝑑 + 𝑑 + log n)}) time.

Corollary 3. Let G be a planar graph with unit edge capacity where only a constant number of vertices have degree
greater than a fixed constant 𝑑. Then we can compute the vitality of each vertex in O(n) time.

Real world applications: Planar graphs naturally arise in various fields of science: they are studied in graph theory, in

combinatorics [16, 47], in quantum gravity [5] and VLSI layout [22]. In biology, planar graphs play a central role: their function

lies in describing veination patterns of leaves or insect wings [30, 40] and the plasmodium of the slime mould Physarum

polycephalum [13].

Our results are linked to the max flow problem, and planar graphs are extensively utilized in city science to depict, either

directly or with high approximation, various infrastructure networks [11], as water distribution networks [19, 27] and lots of

streets patterns [36, 46]. The cities structure are the subject of many studies [12, 17, 18, 37] based on their planar aspects;

see [14, 48] for a complete bibliography.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

572 BALZOTTI and FRANCIOSA

Before arguing with our results, we report in one unique theorem the state of the art about edge and vertex vitality in general

planar graphs. Even if the vitality has not been studied directly in [29, 35], their dynamic algorithm leads to the following result.

Theorem 4 ([29, 35]). Let G be a planar graph with positive edge capacities. Then it is possible to compute the
vitality of h single edges or the vitality of a set of h edges inO

(
min

{
hn

log n
+ n log log n, hn2∕3

log
8∕3n + n log n

})

time.

We stress that in the above described real world applications we are usually interested in finding edges and/or vertices with

high vitality, that is, edges or vertices whose removal involves relevant decrease on the max flow value. This fact is motivated

by understanding the robustness/vulnerability of the network and/or where maintenance activity is more critical.

Now we explain better how to apply the results in Theorems 1 and 2 to the real world. We note that in the general case

the capacities are not bounded by any function of n. Despite this in many cases we can assume c∕𝛿 constant, implying that the

time complexity of Theorem 1 is equal to the best current time bound for computing the st-max flow. The following remark is

crucial, where cmax = maxe∈E(G) c(e).

Remark 1 (bounding capacities). We can bound all edge capacities higher than MF to MF, obtaining a new bounded

edge capacity function. This change has no impact on the st-max flow value or the vitality of any edge/vertex. Thus

w.l.o.g., we can assume that cmax ≤ MF.

By using Remark 1 we can explain why c∕𝛿 can be assumed constant. We study separately the case of general distribution

of capacities and the case of power-law distribution. Note that the power-law distribution of capacities is frequent in some real

world networks, especially in distribution networks.

• General distribution (after bounding capacities as in Remark 1). If we set c = cmax and 𝛿 = c∕k, for some constant k,

then we obtain the capacities with an additive error less than MF∕k, because of Remark 1. In the previous real world

applications, in order to detect edges with high vitality, it is reasonable to consider this error acceptable even for small

values of k, for example, k = 10, 50,100. In this way we obtain small percentage error of vitality for edges with high

vitality—edges whose vitality is comparable with MF—while edges with small vitality—edges whose vitality is smaller

than MF∕k—are badly approximated. We recall that we are usually interested in high capacity edges, and that with these

choices the time complexity is O(n log log n), that is the time currently required for the computation of the st-max flow.

• Power-law distribution (after bounding capacities as in Remark 1). The previous method cannot be applied to power-law

distribution because most of the edges have capacity lower than MF∕k, even for high value of k. Thus we have to separate

edges with high capacity and edges with low capacity. Let c = c
max

𝓁
for some constant𝓁 and let Hc = {e ∈ E(G) | c(e) > c}.

By power-law distribution, |Hc| is small even for high values of 𝓁, and thus we compute the exact vitality of edges in

Hc by Theorem 4. For edges with capacity less than c, we set 𝛿 = c∕k, for some constant k. By Remark 1 we compute

the vitality of these edges with an additive error less than
MF
k𝓁

. Again, the overall time complexity is equal or close to the

time currently required for the computation of the st-max flow.

The result in Theorem 1 is useful even in the case in which c = MF and vit𝛿(e) = 0 for each e ∈ E(G). This implies that all

edges have vitality in [0, 𝛿], where 𝛿 is the acceptable error in Theorem 1. Thus we certify that all edges in the network have

low vitality, so the network is robust.

To apply the same arguments to vertex vitality, and so w.r.t. Theorem 2, we need some observations. If G’s vertices have

maximum degree 𝑑, then, after bounding capacities as in Remark 1, we have maxv∈V(G) c(v) ≤ 𝑑MF. Otherwise, we note that

a real-world planar graph is expected to have few vertices with high degree (it is also implied by Euler’s formula for planar

graphs). The exact vitality of these vertices can be computed by Theorem 4 from [29, 35] or by Theorem 3 of this paper.

Now we compare the results stated in Theorem 4 with our results in Theorems 1 and 2. It is clear that Theorem 4 computes

the exact vitalities, thus a direct comparison is impossible. But, because of the previous arguments, under a general distribution

of edge capacities, we can compute a useful approximation of all edge vitalities in O(n log log n) time and a useful approximation

of all vertex vitalities in O(n log n) time by using the results in Theorems 1 and 2, respectively; while computing the exact

vitality of each edge and/or each vertex by using Theorem 4 costs O(n5∕3
log

8∕2n) time. Thus the time complexity is significantly

decreased.

With respect to Theorem 3, if we denote by ES =
∑

v∈S 𝑑eg(v), where 𝑑eg(v) is the degree of vertex v, then Theorem 3

improves on Theorem 4 if either |S| < log n and ES > |S| log n or |S| ≥ log n and ES >
|S|n1∕3

log
8∕3

.

Our approach: We adopt Itai and Shiloach’s approach [28], that first computes a modified version D of a dual graph of G,

then reduces the computation of the max flow to the computation of noncrossing shortest paths between pairs of vertices of the

infinite face of D. We first study the effect on D of an edge or a vertex removal in G, showing that computing the vitality of an

edge or a vertex can be reduced to computing some distances in D (see Propositions 2 and 3).

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 573

Then we determine required distances by solving SSSP instances. To decrease the cost we use a divide-and-conquer strategy:

we slice D in regions delimited by some of the noncrossing shortest paths computed above. We choose noncrossing shortest

paths with similar lengths, so that we compute an additive guaranteed approximation of each distance by looking into a single

region instead of examining the whole graph D (see Lemma 3).

Finally we have all the machinery to compute an approximation of required distances of Propositions 2 and 3 and obtain

edge and vertex vitalities.

Structure of the article: In Section 2, we report main results about how to compute max flow in planar graphs; we focus

on the approach in [28] on which our algorithms are based. In Section 3, we show some preliminary results that allow us to

compute edge and vertex vitality. In Section 4, we explain our divide-and-conquer strategy. In Section 5, we state our main

result about edge vitality. Vertex vitality is described in Section 6 and in Section 7, we obtain some corollaries about planar

graphs with small integer capacities. Finally, in Section 8 conclusions and open problems are given.

2 MAX FLOW IN PLANAR GRAPHS

In this section we report some well-known results concerning max flow, focusing on planar graphs.

Given a connected undirected graph G = (V(G),E(G))with n vertices, we denote an edge e = {i, j} ∈ E(G) by the shorthand

notation ij, and we define distG(u, v) as the length of a shortest path in G joining vertices u and v. Moreover, for two sets of

vertices S,T ⊆ V(G), we define distG(S,T) = minu∈S,v∈T distG(u, v). We write for short v ∈ G and e ∈ G in place of v ∈ V(G)
and e ∈ E(G), respectively. We say that a path p is an ab path if its extremal vertices are a and b. Basic notations used throughout

the paper are summarized in Figure 1.

Let s, t ∈ G, s ≠ t, be two fixed vertices. We denote by c(e) the capacity of an edge e. A feasible flow in G assigns to each

edge e = ij ∈ G two real values xij ∈ [0, c(e)] and xji ∈ [0, c(e)] such that:
∑

j∶ij∈E(G) xij =
∑

j∶ij∈E(G) xji, for each i ∈ V(G)⧵{s, t}.
The flow from s to t under a feasible flow assignment x is defined as F(x) =

∑
j∶sj∈E(G) xsj −

∑
j∶sj∈E(G) xjs. The maximum flow

from s to t, denoted by MF, is the maximum value of F(x) over all feasible flow assignments x.

An st-cut is a partition of V(G) into two subsets S and T such that s ∈ S and t ∈ T . The capacity of an st-cut is the sum of

the capacities of the edges ij ∈ E(G) such that |S∩{i, j}| = 1 and |T ∩{i, j}| = 1. The well known Min-Cut Max-Flow theorem

[21] states that the maximum flow from s to t is equal to the capacity of a minimum st-cut for any weighted graph G.

We denote by G− e the graph G after the removal of edge e. Similarly, we denote by G− v the graph G after the removal of

vertex v and all edges adjacent to v. The following definition about edge and vertex vitality is written according to the general

concept of vitality in [33].

Definition 1. The vitality vit(e) (resp., vit(v)) of an edge e (resp., vertex v) with respect to the maximum flow from

s to t is defined as the difference between the maximum flow in G and the maximum flow in G − e (resp., G − v).

We deal with planar undirected graphs. A plane graph is a planar graph with a fixed embedding. The dual of a plane

undirected graph G is an undirected planar multigraph G∗
whose vertices correspond to faces of G and such that for each edge

e in G there is an edge e∗ = {u∗, v∗} in G∗
, where u∗ and v∗ are the vertices in G∗

that correspond to faces f and g adjacent to e
in G. Length of e∗ equals the capacity of e; for this reason we denote the length of e∗ by c(e∗); clearly c(e∗) = c(e). Moreover,

for a subgraph H of G∗
we define c(H) =

∑
e∈H c(e).

FIGURE 1 Summary of notation used throughout the article.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

574 BALZOTTI and FRANCIOSA

We fix a planar embedding of the graph, and we work on the dual graph G∗
defined by this embedding. A vertex v in G

generates a face in G∗
denoted by f ∗v . We choose in G∗

a vertex v∗s in f ∗s and a vertex v∗t in f ∗t . A cycle in the dual graph G∗

that separates vertex v∗s from vertex v∗t is called an st-separating cycle. Moreover, we choose a shortest path 𝜋 in G∗
from

v∗s to v∗t .

Proposition 1 ([28, 45]). A (minimum) st-cut in G corresponds to a (shortest) cycle in G∗ that separates vertex v∗s
from vertex v∗t .

2.1 Itai and Shiloach’s approach/decomposition
According to the approach by Itai and Shiloach in [28] used to find a min-cut by searching for minimum st-separating cycles,

graph G∗
is “cut” along the fixed shortest path 𝜋 from v∗s to v∗t , obtaining graph DG, in which each vertex v∗i in 𝜋 is split into two

vertices xi and yi; when no confusion arises we omit the subscript G. In Figure 2 there is a plane graph G in black continuous

lines and in Figure 3 on the right graph D. Now we explain the construction of the latter.

Let us assume that 𝜋 = {v∗
1
, v∗

2
, … , v∗k}, with v∗

1
= v∗s and v∗k = v∗t . For convenience, let 𝜋x be the duplicate of 𝜋 in

D whose vertices are {x1, … , xk} and let 𝜋y be the duplicate of 𝜋 in D whose vertices are {y1, … , yk}. We assume that

𝜋 splits the plane into two parts A and B in the following way: we add two dummy edges, the first joining v∗s to a dummy

vertex 𝛼 inside face f ∗s and the second joining v∗t to a dummy vertex 𝛽 inside face f ∗t , and then we extend these two edges

to the infinity. For convenience, we state that part A is “above” 𝜋 and part B is “below” 𝜋. These two parts can be chosen

arbitrarily.

For any i ∈ [k], where [k] = {1, … , k}, edges in G∗
incident on each v∗i from below 𝜋 are moved to yi and edges

incident on v∗i from above 𝜋 are moved to xi. In Figure 2 there is a graph G in black continuous line, G∗
in red dashed

lines and shortest path 𝜋 from v∗
1

to v∗k . In Figure 3, on the left there are the graph G and G∗
of Figure 2 where path 𝜋 is

doubled.

For each e∗ ∈ 𝜋 in G∗
, in D we denote by e∗x the copy of e∗ in 𝜋x and e∗y the copy of e∗ in 𝜋y. Note that each v ∈ V(G)⧵{s, t}

generates a face f ∗v in G∗
that still remains a face in D, still denoted by f ∗v . There are not faces f ∗s and f ∗t in D because the dummy

vertices 𝛼 and 𝛽 are inside faces f ∗s and f ∗t in G∗
, respectively. Both faces f ∗s and f ∗t in G∗

“correspond” in D to the leftmost x1y1

path and to the rightmost xkyk path, respectively. Since we are not interested in removing vertices s and t, then faces f ∗s and f ∗t
are not needed in D. In Figure 3, on the right there is graph D built on G in Figure 2.

FIGURE 2 Graph G in black continuous line, G∗
in red dashed lines, shortest path 𝜋 from v∗s (v∗

1
) to v∗t (v∗k) in green, 𝛼 and 𝛽 are dummy vertices.

FIGURE 3 On the left green path 𝜋 is doubled into paths 𝜋x and 𝜋y, and edges incident on x1, y1, x4, y4 in G∗
are moved according to the dummy vertices 𝛼

and 𝛽 in Figure 2. On the right graph D.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 575

TABLE 1 Notations of edges, vertices and faces between graphs G,G∗
, and D.

G G∗ D

edge e edge e∗ edge e∗, if e∗ ∉ 𝜋 in G∗

edge e∗x ∈ 𝜋x and edge e∗y ∈ 𝜋y, if e∗ ∈ 𝜋 in G∗

vertex v face f ∗v face f ∗v , if v ∉ {s, t}
nothing, if v ∈ {s, t}

face fi vertex v∗i vertex v∗i , if v∗i ∉ 𝜋 in G∗
(iff i > k)

vertex xi and vertex yi, if v∗i ∈ 𝜋 in G∗
(iff i ≤ k)

FIGURE 4 Starting from graph G in Figure 2, we show on the left graph G − eg and (G − eg)∗, and graph DG−eg on the right.

If e∗ ∉ 𝜋 in G∗
, then we still denote the corresponding edge in D by e∗. Similarly, if v∗i ∉ 𝜋 in G∗

(that is,

i > k), then we still denote the corresponding vertex in D by v∗i . In Table 1 all notations for graph G, G∗
and D are

summarized.

3 PRELIMINARY RESULTS

In this section we show preliminary but crucial results (Propositions 2 and 3) that allow us to compute edge and vertex vitality.

In Section 3.1, we show the effects in G∗
and D of removing an edge or a vertex from G. In Section 3.2, we prove that we can

focus only on st-separating cycles that cross 𝜋 exactly once, and in Section 3.3, we state the two main propositions about edge

and vertex vitality.

3.1 Effects on G∗ and D of deleting an edge or a vertex of G
We observe that removing an edge e from G corresponds to contracting endpoints of e∗ into one vertex in G∗

. With respect to

D, if e∗ ∉ 𝜋 in G∗
, then the removal of e corresponds to the contraction into one vertex of endpoints of e∗ in D. If e∗ ∈ 𝜋 in G∗

,

then both copies of e∗ (e∗x and e∗y) have to be contracted. In Figure 4 we show the effects of removing edge eg from graph G in

Figure 2.

Let v be a vertex of V(G). Removing v corresponds to contracting vertices of face f ∗v in G∗
into a single vertex. If f ∗v and 𝜋

have no common vertices in G∗
, then in D all vertices of f ∗v are contracted into one. Otherwise, in G∗

face f ∗v intersects 𝜋 on

vertices
⋃

i∈Iv
{v∗i } for some non empty set Iv ⊆ [k]. Then, in D, all vertices of f ∗v are contracted into one vertex, all vertices of⋃

i∈Iv
{xi} not belonging to f ∗v are contracted into another vertex and all vertices of

⋃
i∈Iv
{yi} not belonging to f ∗v are contracted

into a third vertex. For convenience, we define qx
f ∗v
= (

⋃
i∈Iv
{xi}) ⧵ V(f ∗v) and qy

f ∗v
= (

⋃
i∈Iv
{yi}) ⧵ V(f ∗v). To better understand

these definitions, see Figure 5. In Figure 6 it is shown what happens when we remove vertex g of graph G in Figure 2.

3.2 Single-crossing st-separating cycles
Itai and Shiloach [28] consider only shortest st-separating cycles that cross 𝜋 exactly once, that correspond in D to paths from

xi to yi, for some i ∈ [k]. Formally, given two paths p1, p2 in a plane graph, a crossing between p1 and p2 is a minimal subpath

of p1 defined by vertices v1, v2, … , vk, with k ≥ 3, such that vertices v2, … , vk−1 are contained in p2, and, fixing an orientation

of p2, edge v1v2 lies to the left of p2 and edge vk−1vk lies to the right of p2, or vice-versa. We say p1 crosses p2 t times if there

are t different crossings between p1 and p2.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

576 BALZOTTI and FRANCIOSA

FIGURE 5 A face f ∗v , for some v ∈ V(G), and sets qx
f ∗v

and qy
f ∗v

. Removing v from G corresponds in D to contracting vertices of f ∗v , qx
f ∗v

and qy
f ∗v

in three distinct

vertices.

FIGURE 6 Starting from graph G in Figure 2, we show on the left graph G − g and (G − g)∗, and graph DG−g on the right.

In our approach, we contract vertices of an edge or a face of G∗
. Despite this we can still consider only st-separating cycles

that cross 𝜋 exactly once. The proof of this is the goal of this subsection.

Lemma 1. Let 𝛾 be a simple st-separating cycle and let S be either an edge or a face of G∗
. Let r = |V(𝛾) ∩V(S)|.

After contracting vertices of S into one vertex, then 𝛾 becomes the union of r simple cycles and exactly one of them
is an st-separating cycle.

Proof. Since an edge can be seen as a degenerate face, we prove the statement only in the case in which S is a face

f . Let v∗ ∈ V(𝛾) and let u∗
1
, u∗

2
, … , u∗r be the vertices of V(𝛾) ∩ V(f) ordered in clockwise order starting from v∗.

For convenience, let u∗r+1
= u∗

1
. For i ∈ [r], let qi be the clockwise u∗i u∗i+1

path on 𝛾 . After contracting the vertices

of f into one, qi becomes a cycle. Every qi’s joined with the counterclockwise u∗i u∗i+1
path on the border cycle of

f defines a region Ri of G∗
. We remark that if qi is composed by a single edge e∗, then qi becomes a self-loop and

region Ri is a composed only by e∗.
Cycle 𝛾 splits graph G∗

into two regions: a region internal to 𝛾 called Rin and an external region called Rout.

W.l.o.g., we assume that s ∈ Rin and t ∈ Rout. Now we split the proof into two cases: f ⊆ Rin and f ⊆ Rout.

• Case f ⊆ Rin. By above, it holds that R1, … ,Rr ⊆ Rin (see Figure 7 on the left). Being 𝛾 an st-separating cycle,

then there exists a unique j ∈ [r] such that s ∈ Rj. Thus, after contracting vertices of f into one, pj becomes

the unique st-separating cycle, while all others Ri’s become cycles that split G∗
into two regions, and each region

contains neither s nor t (see Figure 7 on the right).

• Case f ⊆ Rout. By above there exists a unique j ∈ [r] such that Ri ⊆ Rout for all i ≠ j and Rin ⊆ Rj (see Figure 8

on the left). W.l.o.g., we assume that j = r. After contracting the vertices of f into one, all regions R1, … ,Rr−1

become regions inside Rr because of the embedding (see Figure 8 on the right). We recall that s ∈ Rin, thus there

are two cases: if t ∈ Ri for some i ∈ [r − 1], then pi becomes the unique st-separating cycle; otherwise, t ∈ Rout,

and thus pr becomes the unique st-separating cycle. ▪

Let Γ be the set of all st-separating cycles in G∗
, and let Γ1 be the set of all st-separating cycles in G∗

that cross 𝜋 exactly

once. Given 𝛾 ∈ Γ and either an edge or a face S of G∗
, thanks to Lemma 1 we can define ΔS(𝛾) as “the length of the

unique st-separating cycle contained in 𝛾 after contracting vertices of S into one”. Being MF equal to the length of a minimum

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 577

FIGURE 7 On the left, cycle 𝛾 and face f belonging to Rin. On the right, cycle 𝛾 after contracting all vertices of f into one, the dashed edge represents a

self-loop.

FIGURE 8 On the left, cycle 𝛾 and face f belonging to Rout. On the right, cycle 𝛾 after contracting all vertices of f into one, dashed edges represent self-loops.

st-separating cycle, the following relations hold:

for any e ∈ E(G), vit(e) = MF −min
𝛾∈Γ

Δe∗ (𝛾),

for any v ∈ V(G) ⧵ {s, t}, vit(v) = MF −min
𝛾∈Γ

Δf ∗v (𝛾).

Now we show that in the above equations we can replace set Γ with set Γ1.

Lemma 2. Let e ∈ E(G) and v ∈ V(G) ⧵ {s, t}. It holds that vit(e) = MF − min𝛾∈Γ
1
Δe∗ (𝛾) and vit(v) = MF −

min𝛾∈Γ
1
Δf ∗v (𝛾).

Proof. We recall that removing an edge e from G corresponds to contracting endpoints of e∗ into one vertex, while

removing a vertex v from G corresponds to contracting all the vertices in face f ∗v into one vertex. So we prove the

thesis only in the more general case of vertex removal. For convenience, we denote f ∗v by f . Let 𝛾 ∈ Γ be such that

vit(f) = MF − Δf (𝛾) and assume that 𝛾 ∉ Γ1. If V(𝛾) ∩ V(f) = ∅, then vit(f) = 0, hence it suffices to remove

crossings between 𝛾 and 𝜋, see [28]. Thus let us assume that V(𝛾) ∩ V(f) ≠ ∅.

By Lemma 1, there exist unique a∗, b∗ ∈ V(f) ∩ V(𝛾) such that the clockwise a∗b∗ path p on 𝛾 becomes an

st-separating cycle after the contraction of vertices of f into one. Then we remove crossing between p and 𝜋 in

order to obtain a path p′ not longer than p as above. Finally, let 𝛾 ′ = p ◦ q, where q is the clockwise a∗b∗ path on f .

It holds that 𝛾 ′ ∈ Γ1 and Δf (𝛾 ′) ≤ Δf (𝛾), the thesis follows. ▪

3.3 Vitality versus distances in D
The main results of this subsection are Propositions 2 and 3. The first proposition shows which distances in D are needed to obtain

edge vitality and in the latter proposition we do the same for vertex vitality. In Section 3.1 we have proved that removing an edge

or a vertex from G corresponds to contracting in single vertices some sets of vertices of D. The main result of Propositions 2

and 3 is that we can consider these vertices individually.

We observe that the capacities of edges in G become lengths in G∗
and D. We recall that, given an edge e ∈ G, we denote

by c(e∗) the length of e∗ in G∗
and c(e∗) = c(e). The same happens passing from G∗

to D: given an edge e∗ ∈ G∗
satisfying

e∗ ∉ 𝜋, we denote the length of edge e∗ in D by c(e∗); given an edge e∗ ∈ G∗
satisfying e∗ ∈ 𝜋 in G∗

, we denote the lengths of

edges e∗x and e∗y by c(e∗x) and c(e∗y), respectively.

Let e be an edge of G. The removal of e from G corresponds to the contraction of endpoints of e∗ into one vertex in G∗
.

Thus if an st-separating cycle 𝛾 of G∗
contains e∗, then the removal of e from G reduces the length of 𝛾 by c(e∗). Thus e has

strictly positive vitality if and only if there exists an st-separating cycle 𝛾 in G∗
whose length is strictly less than MF + c(e∗)

and e∗ ∈ 𝛾 . This is the main idea to compute the vitality of each edge. Now we have to translate it to D.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

578 BALZOTTI and FRANCIOSA

For i ∈ [k], we define 𝑑i = distD(xi, yi). We observe that MF = mini∈[k] 𝑑i. For a subset S of V(D) and any i ∈ [k] we define

𝑑i(S) = min{𝑑i, distD(xi, S) + distD(yi, S)}. We observe that 𝑑i(S) represents the distance in D from xi to yi if all vertices of S are

contracted into one.

For every x ∈ V(G) ∪E(G) we define MFx as the max flow in graph G− x. By definition, vit(x) = MF−MFx and, trivially,

x has strictly positive vitality if and only if MFx < MF.

Proposition 2. For every edge e of G, if e∗ ∉ 𝜋 in G∗
, then MFe = mini∈[k]{𝑑i(e∗)}. If e∗ ∈ 𝜋 in G∗

, then
MFe = mini∈[k]

{
min{𝑑i(e∗x), 𝑑i(e∗y)}

}
.

Proof. Let e be an edge of G. If vit(e) = 0, then MFe = MF and the thesis trivially holds. Hence let us assume

vit(e) > 0, then Lemma 2 there exists an st-separating cycle in G∗
that crosses 𝜋 exactly once satisfying c(𝛾) <

MF+ c(e∗) and e∗ ∈ 𝛾 . If e∗ ∉ 𝜋, then e corresponds in D to edge e∗, thus the thesis holds. If e∗ ∈ 𝜋 in G∗
, then we

note that every path in D containing both e∗x and e∗y corresponds in G∗
to an st-separating cycle that passes through

e∗ twice, thus its length is equal or greater than MF + 2c(e). Thus we consider only paths that contain e∗x or e∗y but

not both. The thesis follows. ▪

Note that if f ∗v and 𝜋 have some common vertices in G∗
, then one among qx

f ∗v
and q∗f ∗v could be empty. For this reason, we set

𝑑i(∅) = +∞, for all i ∈ [k].

Proposition 3. For every vertex v of G, if f ∗v and𝜋 have no common vertices in G∗
, then MFv = mini∈[k] {𝑑i(f)},

wheref = f ∗v in D, otherwise

MFv = min

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

mini∈[k]{𝑑i(f)}
mini∈[k]{𝑑i(qx

f)}
mini∈[k]{𝑑i(qy

f)}
distD(f , qx

f)
distD(f , qy

f)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

. (1)

Proof. If f ∗v and 𝜋 have no common vertices in G∗
, then the proof is analogous to the edge case. Thus let us assume

that f ∗v and 𝜋 have common vertices in G∗
. Let D′

be the graph obtained from D by adding vertices u, v, z connected

with all vertices of qx
f , of qy

f , of f , respectively, with zero weight edges; for convenience we assume that qx
f and qy

f
are both not empty. By Lemma 2 and discussion in Section 3.1, MFv = c(p), where p is a shortest xiyi path in D′

,

varying i ∈ [k].
Note that after contracting vertices of f into one vertex there exists an xiyi path whose length is 𝑑istD(f , xi), for

each xi ∈ qx
f . In particular, there exists an xiyi path whose length is 𝑑istD(f , qx

f), for some i satisfying xi ∈ qx
f . The

same argument applies for qy
f . This implies that if vit(v) = 0, then Equation (1) is correct. Hence we assume that

vit(v) > 0, so at least one among u, v and z belongs to p.

If u ∈ p and v, z ∉ p (resp., v ∈ p and u, z ∉ p), then c(p) = mini∈[k]{𝑑i(qx
f)} (resp., c(p) = mini∈[k]{𝑑i(qy

f)}).
If z ∈ p and u, v ∉ p then c(p) = mini∈[k]{𝑑i(f)}. We have analyzed all cases in which p contains exactly

one vertex among u, v and z. To complete the proof, we prove that, for any i ∈ [k], every xiyi path that con-

tains at least two vertices among u, v and z also contains a subpath whose length is at least min{distD(f , qx
f),

distD(f , qy
f)}.

Let 𝓁 be an xiyi path, for some i ∈ [k]. If u, z ∈ 𝓁, then there exists a subpath 𝓁′ of 𝓁 from a vertex xj of qx
f to a

vertex r of f . If we add to 𝓁′ the two zero weigthed edges rz and zyj we obtain a xjyj path whose length is at least

distD(f , qx
f). We can use a symmetric strategy if v, z ∈ 𝓁.

It remains only the case in which u, v ∈ 𝓁. If qx
f and qy

f are both nonempty, then f splits D and D′
into two or

more parts and no part contains vertices of both qx
f and qy

f (see Figure 5). Thus if u, v ∈ 𝓁, then 𝓁 passes through

at least one vertex of f , implying that 𝓁 has a subpath from a vertex of f to a vertex of qx
f , or qy

f . As above, this

path can be transformed in a xjyj path shorter than 𝓁 whose length is at least min{distD(f , qx
f), distD(f , qy

f)}, for

some j ∈ [k]. ▪

4 SLICING GRAPH D PRESERVING APPROXIMATED DISTANCES

In this section we explain our divide-and-conquer strategy. We slice graph D along shortest xiyi’s paths. If these paths have

lengths that differ at most 𝛿, then we have a 𝛿 additive approximation of distances required in Propositions 2 and 3 by looking

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 579

into a single slice instead of the whole graph D. This result is stated in Lemma 3. These slices can share boundary vertices and

edges, implying that their dimension might be O(n2). In Lemma 4 we compute an implicit representation of these slices in total

linear time.

From now on, we mainly work on graph D, thus we omit the superscript D unless we refer to G or G∗
. To work in D we need

a shortest xiyi path and its length, for each i ∈ [k]. In the following theorem we show time complexities for obtaining elements

in D. We say that two paths are single-touch if their intersection is still a path.

Given two graphs A = (V(A),E(A)) and B = (V(B),E(B)) we define A ∪ B = (V(A) ∪ V(B),E(A) ∪ E(B)) and A ∩ B =
(V(A) ∩ V(B),E(A) ∩ E(B)).

Theorem 5 ([10, 23, 29]). If G is a positive edge-weighted planar graph,

• we compute U =
⋃

i∈[k] pi and c(pi) for each i ∈ [k], where pi is a shortest xiyi path in D and {pi}i∈[k] is a
set of pairwise noncrossing single-touch paths, in O(n log log n) time—see [29] for computing U and [10] for
computing c(pi)’s,

• for every I ⊆ [k], we compute
⋃

i∈I pi in O(n) time—see [23] by noting that U is a forest and the paths can be
found by using nearest common ancestor queries.

From now on, for each i ∈ [k] we fix a shortest xiyi path pi, and we assume that {pi}i∈[k] is a set of pairwise single-touch

noncrossing shortest paths. Let U =
⋃

i∈[k] pi, see Figure 9A.

Given an ab path p and a bc path q, we define p ◦ q as the (possibly not simple) ac path obtained by the union of p and q.

Each pi’s splits D into two parts as shown in the following definition and in Figure 9B.

Definition 2. For every i ∈ [k], we define Lefti as the subgraph of D bounded by the cycle

𝜋y[y1, yi] ◦ pi ◦𝜋x[xi, x1] ◦ l, where l is the leftmost x1y1 path in D. Similarly, we define Righti as the subgraph of D
bounded by the cycle 𝜋y[yi, yk] ◦ r ◦𝜋x[xk, xi] ◦ pi, where r is the rightmost xkyk path in D.

Based on Definition 2, for every i, j ∈ [k], with i < j, we define Ωi,j = Righti ∩ Leftj, see Figure 9C. We classify (xi, yi)’s
pairs according to the difference between 𝑑i and MF. Each class contains pairs for which this difference is between 𝛿r and

𝛿(r + 1); we recall that 𝛿 > 0 is an arbitrarily fixed value.

For every r ∈ N, we define Lr = (𝓁r
1
, … ,𝓁r

zr) as the ordered list of indices in [k] such that 𝑑j ∈ [MF + 𝛿r,MF + 𝛿(r + 1)),
for all j ∈ Lr, and 𝓁r

j < 𝓁
r
j+1

for all j ∈ [zr − 1]. It is possible that Lr = ∅ for some r > 0, while L0 ≠ ∅ because MF = mini∈[k] 𝑑i
and there is at least one couple xi, yi whose distance in D is exactly MF. If no confusion arises, we omit the superscript r; thus

we write 𝓁i in place of 𝓁r
i .

The following lemma is the key of our slicing strategy. In particular, Lemma 3 can be applied for computing distances

required in Propositions 2 and 3, since the vertex set of a face or an edge of D is always contained in a slice. An application is

in Figure 10.

Lemma 3. Let r > 0 and let Lr = (𝓁1,𝓁2, … ,𝓁z). Let S be a set of vertices of D with S ⊆ Ω𝓁i,𝓁i+1
for some

i ∈ [z − 1]. Then
min
𝓁∈Lr

𝑑𝓁(S) > min{𝑑𝓁i (S), 𝑑𝓁i+1
(S)} − 𝛿.

Moreover, if S ⊆ Left𝓁
1

(resp.,S ⊆ Right𝓁z
) thenmin𝓁∈Lr 𝑑𝓁(S) > 𝑑𝓁1

(S) − 𝛿 (resp.,min𝓁∈Lr 𝑑𝓁(S) > 𝑑𝓁z(S) − 𝛿).

Proof. We need the following crucial claim.

a) Let i < j ∈ Lr. Let L be a set of vertices in Lefti and let R be set of vertices in Rightj. Then 𝑑i(L) < 𝑑j(L) + 𝛿
and 𝑑j(R) < 𝑑i(R) + 𝛿.

(A) (B) (C)

FIGURE 9 (A) The graph U in bold and (B) subgraphs Lefti and Righti are highlighted. (C) Subgraph Ωi,j, for some i < j.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

580 BALZOTTI and FRANCIOSA

FIGURE 10 By Lemma 3, it holds that min𝓁∈Lr
𝑑𝓁(S) ≥ min{𝑑𝓁3

(S), 𝑑𝓁4
(S)} − 𝛿.

FIGURE 11 Example of paths and subpaths used in the proof of (a).

Proof of (a): we prove that 𝑑i(L) < 𝑑j(L) + 𝛿. By symmetry, it also proves that 𝑑j(R) < 𝑑i(R) + 𝛿. Let us assume by

contradiction that 𝑑i(L) ≥ 𝑑j(L) + 𝛿.

Let 𝛼 (resp., 𝜖, 𝜇, 𝜈) be a path from xi (resp., yi, xj, yj) to z𝛼 (resp., z𝜖 , z𝜇, z𝜈) whose length is 𝑑(xi,L) (resp.

𝑑(yi,L), 𝑑(xj,L), 𝑑(yj,L)), see Figure 11 on the left. Being xj, yj ∈ Righti and L ⊆ Lefti, then 𝜇 and 𝜈 cross pi. Let v
be the vertex that appears first in pi∩𝜇 starting from xj on 𝜇 and let u be the vertex that appears first in pi∩𝜈 starting

from yj on 𝜈. An example of these paths is in Figure 11 on the left. Let 𝜁 = pi[yi, u], 𝜃 = pi[u, v], 𝛽 = pi[xi, v],
𝜅 = 𝜇[xj, v], 𝜄 = 𝜈[yj, u], 𝜂 = 𝜈[u, z𝜈] and 𝛾 = 𝜇[v, z𝜇], see Figure 11 on the right.

Now c(𝛽) + c(𝛾) ≥ c(𝛼), otherwise 𝛼 would not be a shortest path from xi to L. Similarly c(𝜁) + c(𝜂) ≥ c(𝜖).
Moreover, being c(𝜁) + c(𝜃) + c(𝛽) = 𝑑i, then c(𝜃) ≤ 𝑑i − c(𝛼) + c(𝛾) − c(𝜖) + c(𝜂). Being 𝑑i(L) ≥ 𝑑j(L) + 𝛿, then

c(𝛼) + c(𝜖) ≥ c(𝜇) + c(𝜈) + 𝛿, this implies c(𝛼) + c(𝜖) ≥ c(𝜅) + c(𝛾) + c(𝜄) + c(𝜂) + 𝛿.

It holds that c(𝜃)+c(𝜅)+c(𝜄) ≤ 𝑑i−c(𝛼)+c(𝛾)−c(𝜖)+c(𝜂)+c(𝛼)+c(𝜖)−c(𝛾)−c(𝜂)−𝛿 = 𝑑i−𝛿 < 𝑑j because

i, j ∈ Lr imply |𝑑i−𝑑j| < 𝛿. Thus 𝜅 ◦ 𝜃 ◦ 𝜄 is a path from xj to yj strictly shorter than 𝑑j, absurdum. End proof of (a).

Being S ⊆ Right𝓁j
for all j < i and S ⊆ Left𝓁j′ for all j′ > i+ 1, then the first part of the thesis follows from (a).

The second part follows also from (a) by observing that if S ⊆ Left𝓁
1
, then S ⊆ Left𝓁i for all i ∈ Lr. ▪

To compute distances in D we have to solve some SSSP instances in some Ωi,j’s subsets. These subsets can share boundary

edges, thus the sum of their edges might be O(n2). We note that, by the single-touch property, if an edge e belongs to Ωi,j and

Ωj,𝓁 for some i < j < 𝓁 ∈ [k], then e ∈ pj.

To overcome this problem we introduce subsets Ω̃i,j in the following way: for any i < j ∈ [k], if pi ∩ pj is a nonempty path

q, then we define Ω̃i,j as Ωi,j in which we replace path q by an edge with the same length; note that the single-touch property

implies that all vertices in q but its extremal have degree two. Otherwise, we define Ω̃i,j = Ωi,j. Note that distances between

vertices in Ω̃i,j are the same as in Ωi,j. It the following lemma we show how to compute some Ω̃i,j’s in O(n) time.

Lemma 4. Let A = (a1, a2, … , az) be any increasing sequence of indices of [k]. It holds that
∑

i∈[z−1]
|E(Ω̃ai,ai+1

)| = O(n). Moreover, given U, we compute Ω̃ai,ai+1
, for all i ∈ [z − 1], in O(n) total time.

Proof. For convenience, we denote by Ωi the set Ωai,ai+1
, for all i ∈ [z − 1]. We note that if e ∈ Ωi ∩ Ωi+1, then

e ∈ pi+1. Thus, if e belongs to more than two Ωi’s, then e belongs to exactly two Ω̃’s because it is contracted in all

other Ωi’s by definition of the Ω̃i’s. Thus
∑

i∈[z−1] |E(Ω̃i)| = O(n) + O(z) = O(n) because z ≤ k ≤ n.

To obtain all Ω̃i’s, we compute Uz =
⋃

a∈A pa in O(n) time by Theorem 5. Then we preprocess all trees in Uz

in O(n) time by using Gabow and Tarjan’s result [23] in order to obtain the intersection path pai ∩ pai+1
via lowest

common ancestor queries, and its length in O(1) time with a similar approach. Finally, we build Ω̃i in O(|E(Ω̃i)|),
for all i ∈ [z − 1], with a BFS visit of Ωi that excludes vertices of pai ∩ pai+1

. ▪

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 581

5 COMPUTING EDGE VITALITY

Now we can give our main result about edge vitality stated in Theorem 1. We need the following preliminary lemma that is an

easy consequence of Lemmas 3 and 4.

Lemma 5. Let r ∈ N, given U, we compute a value 𝛼r(e) ∈ [mini∈Lr{𝑑i(e)},mini∈Lr{𝑑i(e)} + 𝛿) for each e ∈ E(D)
in O(n) total time.

Proof. We compute Ur =
⋃

i∈Lr
pi in O(n) time by Theorem 5. Let e ∈ E(D). If e ∈ Ur, we set 𝛼r(e) = MF+ 𝛿(r+

1) − c(e). If e ∉ Ur, then either e ∈ Ω̃𝓁i,𝓁i+1
for some i ∈ [zr − 1], or e ∈ Left𝓁

1
, or e ∈ Right𝓁z

.

For each e ⊆ Left𝓁
1
, we set 𝛼r(e) = 𝑑𝓁

1
(e), similarly, for each e ⊆ Right𝓁z

, we set 𝛼r(e) = 𝑑𝓁z(e). Finally, if

e ∈ Ω̃𝓁i,𝓁i+1
, then we set 𝛼r(e) = min{𝑑𝓁i (e), 𝑑𝓁i+1

(e)}. All these choices satisfy the required estimation by Lemma 3.

To compute required distances, it suffices to solve two SSSP instances with sources xi and yi to vertices of

Ω̃i ∪ Ω̃i+1, for every i ∈ Lr. In total we spend O(n) time by Lemma 4 by using algorithm in [26] for SSSP

instances. ▪

Theorem 1. Let G be a planar graph with positive edge capacities. Then for anyc, 𝛿 > 0, we can compute a value
vit𝛿(e) ∈ (vit(e) − 𝛿, vit(e)] for each e ∈ E(G) satisfying c(e) ≤ c, in O(c

𝛿
n + n log log n) time.

Proof. We compute U in O(n log log n) time by Theorem 5. If 𝑑i > MF + c(e), then 𝑑i(e∗) > MF, so we are only

interested in computing (approximate) values of 𝑑i(e∗) for each i ∈ [k] satisfying 𝑑i < MF + c. By Lemma 5, for

each r ∈ {0, 1, … , ⌈ c
𝛿
⌉}, we compute 𝛼r(e∗) ∈ [mini∈Lr 𝑑i(e∗),mini∈Lr 𝑑i(e∗)+𝛿), for each e∗ ∈ E(D), in O(n) total

time. Then, for each e∗ ∈ E(D), we compute 𝛼(e∗) = minr∈{0,1,… ,
c
𝛿
} 𝛼r(e∗); it holds that 𝛼(e∗) ∈ [mini∈[k]{𝑑i(e∗)},

mini∈[k]{𝑑i(e∗)} + 𝛿). Then, by Proposition 2, for each e ∈ E(G) satisfying c(e) ≤ c, we compute a value vit𝛿(e) ∈
(vit(e) − 𝛿, vit(e)] in O(1) time. ▪

6 COMPUTING VERTEX VITALITY

In this section, we show how to compute vertex vitality by computing an additive guaranteed approximation of distances required

in Proposition 3.

Let us denote by F the set of faces of D. By Proposition 3, for every face f ∈ F we need mini∈[k]{𝑑i(f)}, this is discussed

in Lemma 6. For faces f ∈ Fx = {f ∈ F | f and 𝜋x have common vertices} we need also mini∈[k]{𝑑i(qy
f)} and distD(fv, qy

f).
Similarly, for faces f ∈ Fy = {f ∈ F | f and 𝜋y have common vertices} we need also mini∈[k]{𝑑i(qx

f)} and distD(fv, qx
f).

We observe that there is symmetry between qx
f and qy

f . Thus we restrict some definitions and results to the “y case” and then

we use the same results for the “x case”. In this way, we have to show only how to compute distD(f , qy
f) (it is done in Section 6.1)

and mini∈[k]{𝑑i(qy
f)} (see Section 6.2) for every face f ∈ F that intersects 𝜋y on vertices.

By using the same procedure of Lemma 5, we can also computing 𝑑i(f) for f ∈ F. Thus we can state the following lemma.

Lemma 6. Let r ∈ N, given U, we compute a value 𝛼r(f) ∈ [mini∈Lr{𝑑i(f)}, mini∈Lr{𝑑i(f)} + 𝛿) for each f ∈ F in
O(n) total time.

6.1 Computing distD(f , qy
f)

The unique our result of this subsection is stated in Lemma 7. To obtain it, we use the following result that easily derives from

Klein’s algorithm about the multiple source shortest path problem [32].

Theorem 6 ([32]). Given an n vertices undirected planar graph G with nonnegative edge-lengths, given r pairs
{(ai, bi)}i∈[r] where the bi’s are on the boundary of the infinite face and the ai’s are anywhere, it is possible to
compute 𝑑istG(ai, bi), for each i ∈ [r], in O(r log n + n log n) total time and O(n) space.

Lemma 7. We compute distD(f , qy
f), for each f ∈ Fy

, in O(n log n) total time.

Proof. For every i ∈ [k] let Fi ⊆ Fy
be the set of faces such that xi ∈ f , for each f ∈ Fi. We observe that if |Fi| = m,

then 𝑑egD(xi) ≥ m + 1, where 𝑑egD(xi) is the degree of xi in D.

Let D′
be the graph obtained by adding a new vertex uf for each face f ∈ Fy

and connecting uf to all vertices of

f by an edge of length L, where L =
∑

e∈E(D) c(e) (see Figure 12 for an example of construction of graph D′
). Thus

distD(yi, f) = distD′ (yi, uf) − L.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

582 BALZOTTI and FRANCIOSA

FIGURE 12 Graph D, faces in Fy
and graph D′

used in the proof of Lemma 7.

FIGURE 13 On the left c ≺ b ≺ a and e ≺ 𝑑; a and 𝑑 are the only maximal faces; it holds that c− = c+ = 𝛼, [𝑑−, 𝑑+] = [e−, e+] = [𝛽, 𝛾]. On the right let

Lr = (𝓁1,𝓁2, … ,𝓁7), it holds that: [f −r , f +r] = [𝓁1,𝓁5], [g−r , g+r] = [𝓁2,𝓁5], [h−r , h+r] = [𝓁4,𝓁6], [i−r , i+r] = [j−r , j+r] = [𝓁6,𝓁7].

We compute 𝑑D′ (yi, uf), for i ∈ [k] and f ∈ Fi, by using the result stated in Theorem 6. Being |V(D′)| = O(n),
we spend O

(
log n

∑
i∈[k] |Fi| + n log n

)
≤ O

(
log n

∑
i∈[k](𝑑egD(xi) − 1) + O(n log n)

)
= O(n log n + n log n) =

O(n log n) time. Finally, for each f ∈ Fy

distD(f , qy
f) = min

{i∈[k] | xi∈f }
distD(yi, f) = min

{i∈[k] | xi∈f }
distD′ (yi, uf) − L.

Thus we obtain what we need adding no more time than
∑
{i∈[k] | xi∈f } O(1) ≤ O(

∑
f∈Fy |V(f)|) ≤ O(

∑
f∈F |V(f)|) =

O(n). ▪

6.2 Computing di(qy
f)

We note that for computing the 𝑑i(qy
f)’s we can not directly use Lemma 3 as we have done for the 𝑑i(e)’s and the 𝑑i(f)’s. Indeed,

it is possible that vertices in qy
f are not contained in any slice Ωi,j, with i, j consecutive indices in Lr. To overcome this, we have

to introduce a partial order on faces of D.

For each f ∈ Fy
, we define f − and f + as the minimum and maximum indices in [k], respectively, such that xf− , xf+ ∈ V(f).

Now we introduce the concept of maximal face. Let f ∈ Fy
and let pf and qf be the two subpaths of the border cycle of f from

xf− to xf+ . We say that g ≺ f if g is contained in the region R bounded by 𝜋x[xf− , xf+] ◦ pf , this implies that g is also contained in

the region R′ bounded by 𝜋x[xf− , xf+] ◦ qf , thus the definition does not depend on the choice of pf and qf . Finally, we say that f
is maximal if it does not exist any face g ∈ Fy

satisfying f ≺ g, and we define Fmax = {f ∈ Fy | f is maximal}, see the left part

of Figure 13. We find Fmax in O(n) time.

Given r ∈ N and f ∈ Fy
, we define f +r as the smallest index in Lr such that f + < f +r (if f + > 𝓁r

zr , then we define f +r = 𝓁r
zr).

Similarly, we define f −r as the largest index in Lr such that f −r > f − (if f − < 𝓁r
1
, then we define f −r = 𝓁r

1
), see the right part of

Figure 13.

Now we deal with computing 𝑑i(qy
f), for each f ∈ Fy

. By following Equation (1), we can restrict only to the easier case in

which f satisfies 𝑑i(qy
f) < distD(f , qy

f); indeed, if f does not satisfy it, then we are not interested in the value of 𝑑i(qy
f).

Lemma 8. Let r ∈ N. Given distD(f , qy
f) and given U, for each f ∈ Fy satisfying mini∈Lr 𝑑i(qy

f) < distD(f , qy
f) we

compute a value 𝛽r(f) ∈ [mini∈Lr 𝑑i(qy
f), mini∈Lr 𝑑i(qy

f) + 𝛿) in O(n) total time.

Proof. Let f ∈ Fy
. We observe that if i ∈ [f −, f +], then every path from xi to qy

f passes through either xf− or xf+ . Thus,

for every i ∈ [f −, f +], it holds that 𝑑i(qy
f) ≥ distD(f , qy

f). Hence for any f ∈ Fy
satisfying mini∈Lr 𝑑i(qy

f) < distD(f , qy
f)

it holds that

min
i∈Lr

𝑑i(qy
f) = min

i∈Lr ,i∉[f−,f+]
{𝑑i(qy

f)}, (2)

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 583

being qy
f ⊆ Rightf−r

and qy
f ⊆ Leftf+r , then Lemma 3 and Equation (2) imply

min
i∈Lr

𝑑i(qy
f) = min

i∈Lr ,i∉[f−,f+]
{𝑑i(qy

f)} ≥ min{𝑑f−r (q
y
f), 𝑑f+r (q

y
f)} − 𝛿. (3)

To complete the proof, we need to show how to compute 𝑑f−r (q
y
f) and 𝑑f+r (q

y
f), for each f ∈ Fy

satisfying

mini∈Lr 𝑑i(qy
f) < distD(f , qy

f) in O(n) total time. In the following claim we prove it by removing the request that every

face f ∈ Fy
has to satisfy mini∈Lr 𝑑i(qy

f) < distD(f , qy
f).

1. We compute 𝑑f−r (q
y
f) and 𝑑f+r (q

y
f), for each f ∈ Fy

, in O(n) total time.

Proof of 1: we recall that 𝑑i(qy
f) = distD(xi, qy

f) + distD(yi, qy
f), for all i ∈ [k] and f ∈ Fy

. Being qy
f ⊆ V(𝜋y) we

compute distD(yi, qy
f) in O(|V(qy

f)|) time. Thus we have to compute only distD(xi, qy
f), for required i ∈ Lr and f ∈ Fy

.

For every f ∈ Fy
, let Rf = Ωf−r ,f+r , and let =

⋃
f∈F

max

Rf . We observe that, given two maximal faces f and g,

it is possible that Rf = Rg. This happens if and only if f −r = g−r and f +r = g+r (see face i and face j in Figure 14). We

overcome this abundance by introducing F̃ as a minimal set of faces such that =
⋃

f∈F̃ Rf and Rf ≠ Rg, for all

distinct f , g ∈ F̃ (see Figure 14 for an example of F̃).

For every f ∈ F̃, it holds that 𝜋y[f −r , f +r] ⊆ Rf . Thus, by the above argument, if g ∈ Fy
and Rg ⊆ Rf , then

qy
g ⊆ Rf . We solve 4 SSSP instances in Rf with sources xj, for each j ∈ {f −r , f +r , f −, f +} (possibly, f −r = f − and/or

f +r = f + and/or f − = f +). Now we have to prove that this suffices to compute 𝑑f−r (q
y
f) and 𝑑f+r (q

y
f), for each f ∈ Fy

. In

particular we show that, after solving the SSSP instances, we compute 𝑑g−r (q
y
g) and 𝑑g+r (q

y
g) in O(|V(g)|) total time,

for each g ∈ Fy
.

Let g ∈ Fy
, and let f ∈ F̃ be such that g ⊆ Rf . There are two cases: either g−r = f −r and g+r = f +r , or g−r ≠ f −r

and/or g+r ≠ f +r .

If the first case occurs, then we compute distD(xg−r , q
y
g) = distD(xf−r , q

y
g) and distD(xg+r , q

y
g) = distD(xf+r , q

y
g) in

O(|V(g)|) time, because qy
g ⊆ Rf and |V(qy

g)| < |V(g)|. Otherwise, w.l.o.g., we assume that g−r ≠ f −r (if g+r ≠ f +r ,

then the proof is similar). By definitions of F̃, Ωg, and Ωf , it holds that g ≺ f . Thus g−r ∈ [f −, f +], therefore every

path from xg−r to qy
g passes through either f − or f + (see g3 and f5 in Figure 14). By this discussion, it follows that

distD(xg−r , q
y
g) = min

{
distD(xg−r , xf−) + distD(xf− , qy

f)
distD(xg−r , xf+) + distD(xf+ , qy

f)

}

= min

{
|𝜋[xg−r , xf−]| + distD(xf− , qy

f)
|𝜋[xg−r , xf+]| + distD(xf+ , qy

f)

}
.

We compute all these distances by the solutions of previous SSSP instances in O(|V(qy
g)|) time, and thus we compute

distD(xg−r , q
y
g) in O(|V(qy

g)|) time. By symmetry, the same cost is required to compute distD(xg+r , q
y
g).

We have proved that, after solving the described SSSP instances, we compute 𝑑f−r (q
y
f) and 𝑑f+r (q

y
f), for all f ∈ Fy

,

in O(|V(f)|) time for each f ∈ Fy
. Being

∑
f∈Fy |V(f)| = O(n), it remains to show that we can solve all the previous

SSSP instances in O(n) total time. We want to use Lemma 4 (we recall that, for our purposes, distances in Ωf−r ,f+r
are the same in Ω̃f−r ,f+r).

Let us fix i ∈ [h] and let a = fi, b = fi+1, c = fi+2 and 𝑑 = fi+3. We can not use directly Lemma 4 because it is

possible that a−r < b+r (see in Figure 14 a = f3 and b = f4, thus b−r = 𝓁4 < 𝓁5 = a+r) and thus we might have not an

increasing set of indices. But, by definition of F̃, it holds that a+r ≤ 𝑑−r , indeed a+r ∈ [b−r , c+r] otherwise Rb = Rc;

these relations do not depend on i. Similarly, 𝑑−r ≥ a+r . Thus we solve first the SSSP instances in Rfi , for each i ∈ [h]
such that i ≡ 0 mod 3; then for i ≡ 1 mod 3 and finally for i ≡ 2 mod 3. By Lemma 4 it costs O(n) time. End proof

of 1.

FIGURE 14 Assume that Lr = (𝓁1, … ,𝓁7). A possible F̃ is F̃ = {f1, … , f6}. Moreover, g1, g3, g4 are not in Fmax, g2 ∈ Fmax and Rg2
= Rf4 thus g2 ∉ F̃.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

584 BALZOTTI and FRANCIOSA

Finally, by Equation (3), we set 𝛽r(f) = min{𝑑f−r (q
y
f), 𝑑f+r (q

y
f)} for each f ∈ Fy

satisfying 𝛽r(f) < distD(f , qy
f) and

we ignore faces in Fy
that do not satisfy it. ▪

6.3 Computational complexity of vertex vitality
Now we give our theorems about vertex vitality. To prove Theorem 2 we follow the same approach used in Theorem 1, by

referring to Proposition 3 in place of Proposition 2.

We recall that the result stated in Theorem 3 is more efficient than the result in Theorem 4 if either |S| < log n and

ES > |S| log n or |S| ≥ log n and ES >
|S|n1∕3

log
8∕3

, where ES =
∑

v∈S 𝑑eg(v).

Theorem 2. Let G be a planar graph with positive edge capacities. Then for anyc, 𝛿 > 0, we can compute a value
vit𝛿(v) ∈ (vit(v) − 𝛿, vit(v)] for each v ∈ V(G) satisfying c(v) ≤ c, in O

(
c
𝛿
n + n log n

)
time.

Proof. We compute D and U in O(n log log n) time by Theorem 5. If c(v) < c, then c(f ∗v) < c. For convenience, in

D, we denote f ∗v by f . By Lemma 7, we compute distD(f , qy
f) (resp., distD(f , qx

f)) in O(n log n) time, for each f ∈ Fy

(resp., for each f ∈ Fx
). Now we have to show how to obtain mini∈[k]{𝑑i(f)}, mini∈[k]{𝑑i(qy

f)} and mini∈[k]{𝑑i(qx
f)}

that we may compute with an error depending on 𝛿.

We note that mini∈[k] 𝑑i(f) = mini∈[k],𝑑i<MF+c(f) 𝑑i(f). Indeed, if 𝑑i(f) = MF − z, for some z > 0, then 𝑑i is at

most MF − z + c(f). For the same reason, mini∈[k] 𝑑i(qx
f) = mini∈[k],𝑑i<MF+c(f) 𝑑i(qx

f) and, similarly, mini∈[k] 𝑑i(qy
f) =

mini∈[k],𝑑i<MF+c(f) 𝑑i(qy
f).

By using Lemma 5, for each r ∈ {0, 1, … , ⌈ c
𝛿
⌉}, we compute a value 𝛼r(f) ∈ [mini∈Lr 𝑑i(f), mini∈Lr 𝑑i(f) + 𝛿),

for each f ∈ F, in O(n) total time. Then, for each f ∈ F, we compute 𝛼(f) = minr∈{0,1,… ,
c
𝛿
} 𝛼r(f). By above, for any

f ∈ F satisfying c(f) < c, it holds that 𝛼(f) satisfies 𝛼(f) ∈ [mini∈[k]{𝑑i(f)}, mini∈[k]{𝑑i(f)} + 𝛿).
With a similar strategy, by replacing Lemma 5 with Lemma 8, for each f ∈ Fy

satisfying c(f) < c and

mini∈Lr 𝑑i(qy
f) < distD(f , qy

f), we compute a value 𝛽(f) ∈ [mini∈[k]{𝑑i(qy
f)}, mini∈[k]{𝑑i(qy

f)} + 𝛿). The same results

hold for the “x case”: for each f ∈ Fx
satisfying c(f) < c and mini∈Lr 𝑑i(qx

f) < distD(f , qy
f), we compute a value

𝛾(f) ∈ [mini∈[k]{𝑑i(qx
f)}, mini∈[k]{𝑑i(qx

f)} + 𝛿).
Then, by Proposition 3, for each v ∈ V(G) satisfying c(v) ≤ c (c(f) < c) we compute a value vit𝛿(v) satisfying

vit𝛿(v) ∈ (vit(v) − 𝛿, vit(v)] in O(1) time by using distD(f , qx
f), distD(f , qy

f), 𝛼(f), 𝛽(f) and 𝛾(f). ▪

Theorem 3. Let G be a planar graph with positive edge capacities. Then for any S ⊆ V(G), we can compute vit(v)
for each v ∈ S in O(|S|n + n log log n) time.

Proof. We compute D and U in O(n log log n) time by Theorem 5. For convenience, we denote f ∗v by f . To compute

mini∈[k]{𝑑i(f)}, distD(f , qx
f) and distD(f , qy

f)we put a vertex uf in the face f and we connect it to all vertices of f with

zero weighted edges. Then we solve an SSSP instance with source uf and we compute mini∈[k]{𝑑i(f)}, distD(f , qx
f)

and distD(f , qy
f) in O(n). With a similar strategy, we compute mini∈[k]{𝑑i(qy

f)} and mini∈[k]{𝑑i(qx
f)} in O(n) time.

Finally, by Proposition 3, for each v ∈ S, we compute vit(v) in O(1) time. ▪

7 SMALL INTEGER CAPACITIES AND UNIT CAPACITIES

If the edges capacities are integer, then we can compute the max flow in O(n+L) time [20] and also U in O(n+L) time [8, 51],

where L is the sum of all the edges capacities.

Corollary 1. Let G be a planar graph with integer edge capacity and let L be the sum of all the edges capacities.
Then

• for any H ⊆ E(G) ∪ V(G), we can compute vit(x) for each x ∈ H, in O(|H|n + L) time,

• for any c ∈ N, we can compute vit(e) for each e ∈ E(G) satisfying c(e) ≤ c, in O(cn + L) time.

Proof. Note that, being all the edge capacities integer, then every edge or vertex vitality is an integer. Thus, by

taking 𝛿 = 1 in Theorems 1 and 2, we obtain all the vitalities without error. The two statements follow from the

proof of Theorems 1 and 2 by taking 𝛿 = 1 and by computing U in O(n + L) time instead of O(n log log n) time by

using algorithm in [8]. ▪

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALZOTTI and FRANCIOSA 585

Corollary 2. Let G be a planar graph with unit edge capacity. Let n>𝑑 be the number of vertices whose degree
is greater than 𝑑. We can compute the vitality of each edge in O(n) time and the vitality of each vertex in
O(min{n3∕2, n(n>𝑑 + 𝑑 + log n)}) time.

Proof. The complexity of edge vitality is implied by Corollary 1 by taking c = 1 and because L = O(n).
Being the vitality integers, then we compute the vitality of each vertex in O((n>𝑑 + 𝑑)n + n log n) time by

Theorem 2.

To compute the vitality of each vertex in O(n3∕2) total time we note that in a planar graph, by Euler formula,

there are at most 6
√

n vertices whose degree is greater than
√

n. Thus it suffices to take 𝑑 =
√

n, that implies

n>𝑑 ≤ 6
√

n and O((n>𝑑 + 𝑑)n + n log n) = O(n3∕2). ▪

Kowalik and Kurowski [34] described an algorithm that, given an unweighted planar graph G and a constant 𝑑, with a O(n)
time preprocessing can establish in O(1) time if the distance between two vertices in G is at most 𝑑 and, if so, computes it in

O(1) time.

Corollary 3. Let G be a planar graph with unit edge capacity where only a constant number of vertices have degree
greater than a fixed constant 𝑑. Then we can compute the vitality of each vertex in O(n) time.

Proof. By above discussion, Corollary 2 and the proof of Theorem 2, it suffices to show that we can compute

distD(fv, qy
f), for each f ∈ Fy

, in O(n) total time. For every i ∈ [k] let Fi ⊆ Fy
be the set of faces such that xi ∈ f , for

each f ∈ Fi. Note that if |Fi| = m, then 𝑑egD(xi) = m + 1.

Let 𝑑 be the maximum degree of G. We need 𝑑D(yi, z), for each i ∈ [k], and z ∈ V(f), for each f ∈ Fi. If we

use the algorithm in [34], then we spend
∑

i∈[k]

(∑
f∈Fi

|V(f)|
)
≤

∑
i∈[k] |Fi|𝑑 = ∑

i∈[k](𝑑egD(xi) + 1)𝑑 = O(n)
time. ▪

8 CONCLUSIONS AND OPEN PROBLEMS

We proposed algorithms for computing an additive guaranteed approximation of the vitality of each edge or vertex with bounded

capacity with respect to the max flow from s to t in undirected planar graphs. These results are relevant for determining the

vulnerability of real world networks, under various capacity distributions.

It is still open the problem of computing the exact vitality of each edge of an undirected planar graph within the same time

bound as computing the max flow value, as is already known for the st-planar case.

ACKNOWLEDGMENTS

The authors appreciate the valuable and deep comments from the unknown referees.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

REFERENCES

[1] R. K. Ahuja and T. L. Magnanti,J. B. Orlin, Network Flows, Alfred P. Sloan School of Management, Cambridge, Massachusetts, (1988).

[2] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. Reddy, Applications of network optimization, handbooks in operations research and
management, Science 7 (1995), 1–83.

[3] D. L. Alderson, G. G. Brown, W. M. Carlyle, and L. A. Cox Jr., Sometimes there is No “Most-vital” arc: Assessing and improving the operational
resilience of systems, Mil. Oper. Res. 18 (2013), 21–37.

[4] D. S. Altner, Ö. Ergun, and N. A. Uhan, The maximum flow network interdiction problem: Valid inequalities, Integrality gaps, and
approximability, Oper. Res. Lett. 38 (2010), 33–38.

[5] J. Ambjørn, B. Durhuus, and T. Jónsson, Quantum geometry: A statistical field theory approach, Cambridge University Press, Cambridge, 1997.

[6] G. Ausiello, P. G. Franciosa, I. Lari, and A. Ribichini, Max flow vitality in general and st-planar graphs, Networks 74 (2019), 70–78.

[7] G. Ausiello, P. G. Franciosa, I. Lari, and A. Ribichini, Max-flow vitality in undirected unweighted planar graphs, CoRR, abs/2011.02375 (2020).

[8] L. Balzotti and P. G. Franciosa, Non-crossing shortest paths in undirected unweighted planar graphs in linear time, J. Graph Algorithms Appl.

26 (2022), 589–606.

[9] L. Balzotti and P. G. Franciosa, “Non-crossing shortest paths in undirected unweighted planar graphs in linear time,” Computer science – Theory
and applications, CSR 2022, Lecture Notes in Computer Science, Vol 13296, Springer International Publishing, Berlin, 2022, pp. 77–95.

[10] L. Balzotti and P. G. Franciosa, How vulnerable is an undirected planar graph with respect to max flow, in algorithms and complexity: 13th
international conference, CIAC 2023, June 13–16, 2023, Springer, Proceedings, 2023.

[11] M. Barthélemy, Spatial networks, Phys. Rep. 499 (2011), 1–101.

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

586 BALZOTTI and FRANCIOSA

[12] M. Barthélemy and A. Flammini, Modeling urban street patterns, Phys. Rev. Lett. 100 (2008), 138702.

[13] W. Baumgarten and M. J. Hauser, Functional organization of the vascular network of Physarum polycephalum, Phys. Biol. 10 (2013), 026003.

[14] G. Boeing, A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood, environment
and planning B: Urban analytics and City, Science 47 (2020), 590–608.

[15] G. Borradaile and P. N. Klein, An O(nlogn) algorithm for maximum st-flow in a directed planar graph, J. ACM 56 (2009), 9:1–9:30.

[16] J. Bouttier, P. D. Francesco, and E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin. 11 (2004).

[17] J. Buhl, J. Gautrais, N. Reeves, R. V. Solé, S. Valverde, P. Kuntz, and G. Theraulaz, Topological patterns in street networks of self-organized
urban settlements, Eur. Phys.J. B Conden. Matter Complex Syst. 49 (2006), 513–522.

[18] A. Cardillo, S. Scellato, V. Latora, and S. Porta, Structural properties of planar graphs of urban street patterns, Phys. Rev. E 73 (2006), 066107.

[19] V. Chauhan, Planar graph generation with application to water distribution networks, PhD thesis, Clemson University, 2018.

[20] D. Eisenstat and P. N. Klein, “Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs,” Symposium
on theory of computing conference, STOC’13, ACM, New York, 2013, pp. 735–744.

[21] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Can. J. Math. 8 (1956), 399–404.

[22] M. Formann and F. Wagner, “The VLSI layout problem in various embedding models,” Graph-theoretic concepts in computer science, Vol 1991,

Springer, Berlin, 1991, pp. 130–139.

[23] H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. Syst. Sci. 30 (1985), 209–221.

[24] T. Harris and F. Ross, Fundamentals of a method for evaluating rail net capacitiestech. Tech rep., Rand Corporation, Santa Monica, California,

1955.

[25] R. Hassin, Maximum flow in (s,t) planar networks, Inf. Process. Lett. 13 (1981), 107.

[26] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian, Faster shortest-path algorithms for planar graphs, J. Comput. Syst. Sci. 55 (1997),

3–23.

[27] M. Herrera, E. Abraham, and I. Stoianov, A graph-theoretic framework for assessing the resilience of Sectorised water distribution networks,

Water Resour. Manag. 30 (2016), 1685–1699.

[28] A. Itai and Y. Shiloach, Maximum flow in planar networks, SIAM J. Comput. 8 (1979), 135–150.

[29] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen, “Improved algorithms for min cut and max flow in undirected planar graphs,”

Proceedings of the 43rd ACM symposium on theory of computing, ACM, New York, 2011, pp. 313–322.

[30] E. Katifori and M. O. Magnasco, Quantifying loopy network architectures, PLoS One 7 (2012), e37994.

[31] V. King, S. Rao, and R. E. Tarjan, A faster deterministic maximum flow algorithm, J. Algorithms 17 (1994), 447–474.

[32] P. N. Klein, “Multiple-source shortest paths in planar graphs,” In proceedings of the sixteenth annual ACM-SIAM symposium on discrete
algorithms, SIAM, Philadelphia, 2005, pp. 146–155.

[33] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski, “Centrality indices,” Network analysis:
Methodological foundations, Lecture Notes in Computer Science, Vol 3418, Springer, Berlin, 2004, pp. 16–61.

[34] L. Kowalik and M. Kurowski, “Short path queries in planar graphs in constant time,” Proceedings of the 35th annual ACM symposium on
theory of computing, ACM, New York, 2003, pp. 143–148.

[35] J. Łacki and P. Sankowski, “Min-cuts and shortest cycles in planar graphs in O(nloglogn) time,” Algorithms–ESA 2011–19th annual European
symposium, Lecture Notes in Computer Science, Vol 6942, Springer, Berlin, 2011, pp. 155–166.

[36] S. Marshall, Streets and patterns, Routledge, London, 2004.

[37] A. P. Masucci, D. Smith, A. Crooks, and M. Batty, Random planar graphs and the London street network, the, Eur. Phys. J. B 71 (2009), 259–271.

[38] L.-G. Mattsson and E. Jenelius, Vulnerability and resilience of transport systems–a discussion of recent research, Transp. Res. A Policy Pract.

81 (2015), 16–34.

[39] A. W. McMasters and T. M. Mustin, Optimal interdiction of a supply network, Naval Res. Log. Quart. 17 (1970), 261–268.

[40] Y. Mileyko, H. Edelsbrunner, C. A. Price, and J. S. Weitz, Hierarchical ordering of reticular networks, PLoS One 7 (2012), e36715.

[41] A. T. Murray, An overview of network vulnerability modeling approaches, GeoJournal 78 (2013), 209–221.

[42] J. B. Orlin, “Max flows in O(nm) time, or better,” Symposium on theory of computing conference, STOC’13, ACM, New York, 2013, pp. 765–774.

[43] C. A. Phillips, “The network inhibition problem,” Proceedings of the twenty-fifth annual ACM symposium on theory of computing, ACM,

New York, 1993, pp. 776–785.

[44] H. D. Ratliff, G. T. Sicilia, and S. Lubore, Finding the n most vital links in flow networks, Manag. Sci. 21 (1975), 531–539.

[45] J. H. Reif, Minimum s-t cut of a planar undirected network in O
(
nlog

2(n)
)

time, SIAM J. Comput. 12 (1983), 71–81.

[46] M. Southworth and E. Ben-Joseph, Streets and the shaping of towns and cities, Island Press, Washington, D. C., 2013.

[47] W. T. Tutte, A census of planar maps, Can. J. Math. 15 (1963), 249–271.

[48] M. P. Viana, E. Strano, P. Bordin, and M. Barthelemy, The simplicity of planar networks, Sci. Rep. 3 (2013), 3495.

[49] R. D. Wollmer, Some methods for determining the Most vital link in a railway network, Rand Corporation, Santa Monica, California, 1963.

[50] R. K. Wood, Deterministic network interdiction, Math. Comput. Model. 17 (1993), 1–18.

[51] L. Balzotti, and P. G. Franciosa, (2024). Non-crossing shortest paths lengths in planar graphs in linear time, Discrete Applied Mathematics,

346, 183–191. https://doi.org/10.1016/j.dam.2023.12.011

How to cite this article: L. Balzotti and P. G. Franciosa, How vulnerable is an undirected planar graph with respect
to max flow, Networks. 83 (2024), 570–586. https://doi.org/10.1002/net.22205

 10970037, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22205 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.dam.2023.12.011
https://doi.org/10.1002/net.22205
https://doi.org/10.1002/net.22205
https://doi.org/10.1002/net.22205
https://doi.org/10.1002/net.22205
https://doi.org/10.1002/net.22205
https://doi.org/10.1002/net.22205

	{How vulnerable is an undirected planar graph with respect to max flow}
	1 INTRODUCTION
	1.1 Small integer case

	2 MAX FLOW IN PLANAR GRAPHS
	2.1 Itai and Shiloach's approach/decomposition

	3 PRELIMINARY RESULTS
	3.1 Effects on [[math]] and [[math]] of deleting an edge or a vertex of [[math]]
	3.2 Single-crossing [[math]]-separating cycles
	3.3 Vitality versus distances in [[math]]

	4 SLICING GRAPH [[math]] PRESERVING APPROXIMATED DISTANCES
	5 COMPUTING EDGE VITALITY
	6 COMPUTING VERTEX VITALITY
	6.1 Computing [[math]]
	6.2 Computing [[math]]
	6.3 Computational complexity of vertex vitality

	7 SMALL INTEGER CAPACITIES AND UNIT CAPACITIES
	8 CONCLUSIONS AND OPEN PROBLEMS

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES

