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Abstract: This paper illustrates a flexible design strategy for a three-element non-uniform linear array
(NULA) aimed at estimating the direction of arrival (DoA) of a source of interest. Thanks to the
spatial diversity resulting from non-uniform sensor spacings, satisfactory DoA estimation accuracies
can be achieved by employing a very limited number of receiving elements. This makes NULA
configurations particularly attractive for low-cost passive location applications. To estimate the DoA
of the source of interest, we resort to the maximum likelihood estimator, and the proposed design
strategy is obtained by constraining the maximum pairwise error probability to control the errors
occurring due to outliers. In fact, it is well known that the accuracy of the maximum likelihood
estimator is often degraded by outliers, especially when the signal-to-noise power ratio does not
belong to the so-called asymptotic region. The imposed constraint allows for the defining of an
admissible region in which the array should be selected. This region can be further modified to
incorporate practical design constraints concerning the antenna element size and the positioning
accuracy. The best admissible array is then compared to the one obtained with a conventional NULA
design approach, where only antenna spacings multiple of λ/2 are considered, showing improved
performance, which is also confirmed by the experimental results.

Keywords: non-uniform linear arrays; direction of arrival; passive location system; threshold region

1. Introduction

Several sensors aim at estimating the direction of arrival (DoA) of narrowband signals
exploit linear antenna arrays with a small number of receiving elements. This choice allows
for the minimizing of the number of receiving channels and the reducing of the overall
system complexity, enabling the design of low-cost, lightweight, and compact sensors
which are suitable for the mass-market.

Among the many applications that could benefit from a small number of receiving
channels are low-cost radars for vehicular anti-collision applications—which estimate the
direction of the target echo passive sonar systems—as well as passive radar (PR) systems [1],
usually characterized by low-cost requirements compared to their active counterparts.
Specifically, PRs based on different RF waveforms of opportunity have been widely studied.
For example, considering the drone detection application, encouraging results have been
obtained by parasitically exploiting a variety of RF waveforms, such as GSM [2], UMTS [3],
LTE [4], DVB-T [5–9], and Wi-Fi signals [10,11].

Furthermore, low-cost sensors are particularly attractive in civil surveillance appli-
cations, e.g., PR sensors for the surveillance of private facilities [12], passive location
sensors for the indoor monitoring of human activity [13], and sensors for the localization
of survivors during the search and rescue operations after natural disasters. For all these
applications, cost containment, limited complexity, and system lightness are crucial features.
Therefore, the number of employed antenna elements and receiving channels must be kept
as low as possible.
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Three-element array configurations are currently widely considered for the practical,
cost-effective implementation of limited beamforming and/or DoA estimation capability.
As an example, the application for radio science experiments is presented in [14], whereas
an example for 5G applications is reported in [15] for the C-band case using a uniform
linear array (ULA) configuration with a pre-assigned element distance. Reference [16]
presents the design and measurements of a 122 GHz on-chip patch antenna array in a
130 nm SiGe BiCMOS technology. The array is formed by three rectangular patches in the
top metallization layer, with the ground plane in the lowest layer. Reference [17] presents
a 300 GHz three-element on-chip patch antenna for applications in broadband Sub-THz
communication and high-resolution radar sensing. The practical interest regarding the
three-element array case also suggested the investigation of the possibility of removing the
undesired e.m. coupling among its elements [18].

As pointed out in [19], when dealing with DoA estimation, two main reasons motivate
the designer to use inter-element distances greater than λ/2, especially when using a small
number of receiving channels:

1. Achieving a longer global array length, thus improving DoA estimation accuracy;
2. Attaining compliance with technological constraints (e.g., the antenna element size

might set a minimum inter-element distance).

Recently, significant efforts have been invested in the optimization of this simple, but
useful, configuration. Unfortunately, it is well known that when estimating the DoA in
an angular sector [−θ0, θ0], a ULA is affected by deterministic angular ambiguities if the
uniform spacing between adjacent antenna elements exceeds λ/2[1 + sin θ0]. In particular,
in reference [20], the binomial weight configuration is used, and both the element distance
and the array factor are selected for a specific case.

In contrast, a non-uniform linear array (NULA) is only affected by statistical ambigui-
ties, whose impact largely depends on the available signal-to-noise power ratio (SNR). The
use of NULA configurations has been explored in [21,22].

Specifically, under very high SNR conditions, the NULA estimation accuracy reaches
the Cramer–Rao bound (CRB), which essentially depends on the global array length. In this
SNR region, known as asymptotic region, the estimation variance is inversely proportional
to the SNR. However, below a specific SNR value, the presence of statistical ambiguities
results in large estimation errors, also known as outliers, occurring with a non-negligible
probability. Several authors addressed this issue in literature [23–27], exploring the use
of different lower bounds, such as the Ziv-Zakai bound [27]. In this range of SNR values,
known as the threshold region, the outlier probability monotonically grows as the SNR
decreases, while the DoA estimation variance rapidly deviates from the CRB.

Therefore, a design strategy to select the optimal NULA configuration is particularly
attractive, since the operational application of the previously introduced low-cost sensors
typically faces limited SNR conditions. The design strategy proposed in [28] provides
useful guidelines to select a proper array configuration. However, only antenna spacings
in multiples of λ/2 are considered, which in turn leads to the following two weaknesses:

1. Depending on the SNR value and on the angular sector of interest, there is no
guarantee that using inter-element distances with λ/2 quantization provides the
optimal solution;

2. Depending on the physical size of the employed antennas, operating with half-
wavelength quantization may strongly limit the available design solutions, making
the technological constraint more severe.

Moreover, it is unlikely that the quantized element spacing will allow for the inves-
tigation of the impact of the element positioning tolerance due to practical installation
and/or manufacturing.

Array layout design approaches based on the symmetrical number system were
proposed in [29,30], using an optimum symmetrical number system (OSNS) and a robust
symmetrical number system (RSNS) of a pairwise relatively prime number, respectively.
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However, these design strategies do not provide a control of the performance in terms of
statistical ambiguity resolution. More interestingly, an array spacing design procedure was
presented in [31] for three- and four-elements arrays, including a constraint on a maximum
admissible phase error in the design procedure, which allows for the exclusion of arrays
that provide DoA ambiguity if the phase error exceeds a preassigned value. This approach
can be considered as a first step towards our proposed design approach. In fact, in the
following, we present an array spacing design procedure for the three-elements case that
includes a direct control over the statistics of the ambiguity resolution. We fully characterize
the probability of ambiguity resolution and provide an array spacing design procedure that
guarantees a preassigned probability.

Specifically, based on the theoretical characterization of the DoA estimation error
carried out by the author of [32], the proposed design strategy provides an array configura-
tion which is not subject to the quantization constraint on the inter-element distance. The
findings in [32] allow us to devise a procedure that constrains the searched NULA array con-
figurations to provide an outlier probability below a maximum tolerable value. Moreover,
the prediction of the maximum likelihood estimator (MLE) performance provided therein,
in both the threshold and asymptotic regions, enables the identification of the solution with
minimum mean square error (MSE), even for limited values of the available SNR. This also
allows us to include additional constraints related to practical array manufacturing. It is
interesting to note that design approaches for arrays with more than three elements were
proposed in [33,34] as evolutions or combinations of the three-elements array procedures.
Therefore, the contribution of this paper is also expected to provide useful elements for the
design of longer arrays.

The remainder of the paper is organized as follows. In Section 2, the signal model,
DoA MLE, and theoretical characterization of the MSE are introduced. In Section 3, the
admissible pairwise probability (APP) region is defined as the parameters region containing
the arrays that satisfy the constraint on the maximum outlier probability for a chosen SNR.
Based on the APP region, the design strategy is derived as a constrained optimization
problem and is presented in Section 4. In Section 5, a numerical analysis is carried out
to assess the performance of various NULA configurations obtained with the proposed
strategy. A comparison with the design strategy proposed in [27] is also carried out to
show the limitations of the quantization constraint. Section 6 shows the benefits of the
proposed strategy over the conventional approach when adding technological constraints,
which further limits the available array configurations. Finally, in Section 7, the advantages
shown for the simulated data are tested against an experimental dataset collected in the
Wi-Fi band. Concluding remarks are reported in Section 8.

2. Array Signal Model and Performance Prediction
2.1. Array Geometry and Signal Model

Consider an N-element linear array receiving a narrowband signal from a single
source with DoA θs, measured relative to the array boresight. The displacements dn,
n = 0, . . . , N − 1 of the element positions compared to the first element are collected into
vector z = [0 d1 . . . dN−1]. The described array geometry is sketched in Figure 1.

Let s(u) be the steering vector, defined as

s(u) =
[
1 e(j 2π

λ d1u) · · · e(j 2π
λ dN−1u)

]
(1)

where λ is the wavelength, and u = sin θ is the steering direction. After I/Q demodulation
to baseband, the N received signals are sampled and digitized. The snapshot of the array,
collected at a specific time t0, is represented by the N × 1 complex vector x. Since the
receiving elements are affected by thermal noise, the complex array output after down-
conversion, filtering, and sampling can be arranged into the N-dimensional column vector

x = As(us) + n. (2)
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Assuming a deterministic signal model as in [32,35]:

• A is the generic sample of the complex baseband source signal and is modeled as a
deterministic, but unknown, parameter.

• S(us) is the target steering vector, obtained by Equation (1) along the direction of the
source, namely us = sin(θs).

• n is an N-dimensional column vector collecting the noise samples at the receiver.

Based on the pattern of the employed antenna elements and the possible presence of
additional electromagnetic shielding, we assume that the antenna array can only receive
signals with DoA in the sector Umax = [−umax, umax], being umax = sin(θmax). This angular
sector is represented by the green region in Figure 1. Noise samples at the N antenna
elements are assumed to be distributed according to an independent, zero-mean complex
Gaussian random variable, with the same mean square value σ2

n , which is also independent
of the source signal.

2.2. Maximum Likelihood DoA Estimation

To achieve the best estimation of the source DoA, we resort to the MLE. Based on the
model in Equation (2), this is obtained by looking for the value of u that maximizes the
likelihood function

V(u) =
∣∣∣sH(u)x

∣∣∣2 (3)

Looking for the maximum in the region u ∈ Umax, the ML estimate is given by:

ûs = argmax
u∈Umax

{V(u)} (4)

The estimate θ̂s of the DoA θs is then obtained by inverting the relationship us = sin(θs).
Depending on the application at hand, the sources of interest may be only those with a

DoA that lies inside the angular sector defined by Uint = [−uint, uint], being uint = sin(θint),
possibly narrower than Umax (namely θint ≤ θmax), as represented by the red region in
Figure 1. Therefore, estimates that fall outside Uint can be discarded as not being of interest.
This allows for the removal of potential outliers of the ML estimation that correspond to
largely displaced DoA. It is further noticed here that there might be a specific interest to
only optimize the estimation performance inside an even narrower angular sector Uopt
represented by the yellow region in Figure 1, which will be discussed in the following
sections of this paper.



Sensors 2023, 23, 4872 5 of 31

2.3. Performance Evaluation and MSE Approximation

The design strategy presented in the following sections of this paper aims at selecting
array configurations with the best possible performance. A basic building block for this
procedure is provided by a robust performance prediction of the DoA estimation accu-
racy, evaluated in terms of MSE. A vast amount of technical literature has addressed the
characterization of this MSE, which depends both on the array configuration and on the
signal parameters.

Figure 2 qualitatively shows the behavior of the estimation error: the continuous blue
line represents the MSE, while the dashed blue line represents the CRB.
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As shown in Figure 2, three different operative regions can be identified, which
can be explained as follows. In the absence of noise, we have an ideal value of the
likelihood function

L(u) =
∣∣∣sH(u)s(us)

∣∣∣2, (5)

This provides the array beampattern for a source coming from us, which always
exhibits a maximum in the true target DoA, and has a mainlobe width that solely depends
on the effective array length. For N > 2, L(u) is characterized by sidelobes, whose positions
um, m = 1, 2, . . ., levels, and widths depend on the array geometry (i.e., on the inter-element
distances in z).

When the SNR is very high, there is a negligible probability that the noise values
added to the signal source snapshot provide a peak of V(u) in the direction um of a sidelobe
of L(u), namely outside its main lobe, rather than in the direction of the true DoA, us. In
other words, in such conditions, thermal noise causes only slight variations in the peak
location inside the main lobe, while the outlier probability is negligible. Therefore, the MSE
of the ML DoA estimate accurately attains the CRB, derived as in [36–39]

CRB =
1

8π2SNR ∑N−1
n=0

(
dn
λ −

1
N ∑N−1

p=0
dp
λ

)2 , (6)

The CRB in Equation (6) only depends on the width of the main lobe, namely on the
global array length, and is inversely proportional to the SNR. This region is referred to as
the asymptotic region.

As the SNR decreases, the MSE rapidly deviates from its asymptotic behavior. More-
over, the probability that thermal noise results in a maximum of V(u) in correspondence of
a sidelobe of L(u) becomes non-negligible. This leads to a DoA estimate well outside the
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main lobe of the likelihood function (namely an outlier), which results in a sensibly larger
MSE. Therefore, the expression of the CRB can no longer be used as an approximation of
the MSE. This threshold region is of major interest for practical applications, since in most
cases, low-cost sensors need to operate with limited SNR values.

Finally, for very low SNR values, the probability that the effect of thermal noise
provides a peak of V(u) in the sidelobes of L(u) becomes so high that the estimation
process is undermined by the presence of several large errors. Under such conditions, the
DoA estimates are uniformly distributed across the entire parameter space, and the MLE
does not provide any reliable information on the true source DoA. This region is referred to
as the no-information region.

Based on the discussion above, the authors of [32,35], derived an approximation of the
MSE, denoted as ζ, achieved with the MLE in both the threshold and asymptotic regions:

ζ(SNR, d1, . . . , dN−1, us) , E
[
(ûs − us)

2
]
≈
[

1−
M

∑
m=1

Pm

]
·CRB +

M

∑
m=1

(um − us)
2Pm, (7)

where

• M represents the number of sidelobe peaks in the angular sector Uint, where the
estimates are considered of interest and are retained;

• Pm = Pm(SNR, d1, . . . , dN−1, us) represents the mth pairwise error probability, i.e.,
the probability that the mth sidelobe peak in position um is chosen by the MLE search
instead of the main lobe peak.

Notice that the union bound approximation derived in [40] and used in [32] ignores
the events of two or more sidelobe peaks simultaneously being higher than the main lobe
peak. Based on this, the probability of outlier Pout can be approximated as

Pout ∼=
M

∑
m=1

Pm =
M

∑
m=1

Pr{V(um) > V(us)}. (8)

Under a deterministic model assumption for the signal amplitude, a closed form
expression for the pairwise error probability was also derived in [32] based on the discussion
in [41], obtaining:

Pm = Q(a, b)− 1
2

e−
SNR

2 I0

(
SNR
2K

√
L(um)

)
, (9)

where Q(a, b) is the Marcum Q-function, I0(·) is the modified Bessel function of the first
kind and order 0, and its arguments depend on the array beampattern evaluated at the
m-th sidelobe peak, located in um = sin(θm):

a ,

√
SNR
2N

(
N −

√
N2 − L(um)

)
, b ,

√
SNR
2N

(
N +

√
N2 − L(um)

)
, (10)

In the remainder of the paper, we build upon this theoretical performance characteri-
zation to derive a flexible design strategy for a three-element NULA.

3. Admissible Pairwise Probability Region

From the approximation in Equation (7), we notice that the values of Pm act as scaling
factors for the large error contributions (um − us)

2 that add to the CRB to provide the
global MSE. Therefore, the array configuration achieving the minimum MSE certainly lies
in a region where the pairwise probabilities Pm have negligible values. Consequently, an
important step toward the array optimization consists of the identification of the region
of the array parameters, namely dn, n = 1, . . . , N − 1, where all Pm values are below an
assigned threshold (i.e., the maximum acceptable value). This region will be referred to in
the following as the APP region.
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To identify the APP region, we notice that the mth pairwise error probability in
Equation (9) is a monotonic decreasing function of both the SNR and the array beampattern
L(um) evaluated at the mth sidelobe peak location um. Therefore, the array configuration
achieving the minimum MSE depends on the specific SNR conditions. To carry out the
optimization, we first select a fixed value for the SNR, i.e., SNR0. With this choice, the
constraint on Pm ≤ Pmax is equivalent to setting an upper bound on the value of L(u),
namely L(u) ≤ Lmax, where Lmax = Lmax(SNR0, Pmax).

By using the steering vector in Equation (1), the likelihood function L(u) in Equation (5)
can be expressed in terms of the array parameters dn, n = 1, . . . , N − 1:

L(u) =

∣∣∣∣∣N−1

∑
k=0

ej2π∆n

∣∣∣∣∣
2

≤ Lmax, (11)

where
∆n ,

dn

λ
(u− us), n = 0, . . . , N − 1. (12)

While this constraint is valid for any value of N, we are especially interested to the case
of N = 3, which is appealing when addressing the design of low-cost, lightweight sensors,
as described in the Section 1. For N = 3 array elements, the constraint in Equation (11) can
be simplified as:

L(∆1, ∆2) =
∣∣∣1 + ej2π∆1 + ej2π∆2

∣∣∣2 ≤ Lmax, (13)

which is a function of two parameters and can be easily represented in a plane. Figure 3
shows a contour plot representing the function L(∆1, ∆2) on a ∆1, ∆2 axis system.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 31 
 

 

𝐿(Δ , Δ ) = 1 + 𝑒 2𝜋 + 𝑒 2𝜋 ≤ 𝐿 , (13) 

which is a function of two parameters and can be easily represented in a plane. Figure 3 
shows a contour plot representing the function 𝐿(Δ , Δ ) on a Δ , Δ  axis system. 

 
Figure 3. Contour plot of the ideal likelihood function 𝐿(Δ , Δ ). 

Notice that 𝐿(Δ , Δ ) is a periodic function of both Δ  and Δ  with a unity period, i.e., 𝐿(Δ − 𝑘, Δ − ℎ) = 𝐿(Δ , Δ ) for any ℎ, 𝑘 ∈ ℤ. For future reference, we define its single pe-
riod 𝐿  as 

𝐿 (Δ , Δ ) = 𝐿(Δ , Δ ),   − 12 < Δ , Δ ≤ 12 0,                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 . (14) 

This is represented in the red box in Figure 3, where the numeric labels refer to the 
contour lines drawn for different possible values of 𝐿  (with 𝐿 ≤ 𝑁 = 9). Using the 
definition of 𝐿 (Δ , Δ ), we can rewrite 𝐿(Δ , Δ ) as 

𝐿(Δ , Δ ) = 𝐿 (Δ − 𝑘, Δ − ℎ) 
, , (15) 

so that the replica for 𝑘, ℎ = 0 represents the main lobe of the ideal likelihood function, 
while the replicas for 𝑘, ℎ ≠ 0 represent its grating lobes. 

Our goal now is to exploit the constraint on the likelihood function 𝐿(Δ , Δ ) ≤ 𝐿  
to identify the subset of array configurations satisfying the constraint on the maximum 
pairwise error probability, under the assumed condition of 𝑆𝑁𝑅 = 𝑆𝑁𝑅 .  

To achieve this, we first represent the beampattern 𝐿(𝑢) of a specific array configura-
tion 𝒛 = [0, 𝑑 , 𝑑 ] in the plane (Δ , Δ ). From Equation (12), we notice that Δ  and Δ  de-
pend both on the array design parameters 𝑑  and 𝑑  and on the difference (𝑢 − 𝑢 ). How-
ever, the ratio between Δ  and Δ  is independent of (𝑢 − 𝑢 ), and it is equal to the ratio 

Figure 3. Contour plot of the ideal likelihood function L(∆1, ∆2).



Sensors 2023, 23, 4872 8 of 31

Notice that L(∆1, ∆2) is a periodic function of both ∆1 and ∆2 with a unity period, i.e.,
L(∆1 − k, ∆2 − h) = L(∆1, ∆2) for any h, k ∈ Z. For future reference, we define its single
period L0 as

L0(∆1, ∆2) =

{
L(∆1, ∆2), − 1

2 < ∆1, ∆2 ≤ 1
2

0, elsewhere
. (14)

This is represented in the red box in Figure 3, where the numeric labels refer to the
contour lines drawn for different possible values of Lmax (with Lmax ≤ N2 = 9). Using the
definition of L0(∆1, ∆2), we can rewrite L(∆1, ∆2) as

L(∆1, ∆2) =
∞

∑
h,k=−∞

L0(∆1 − k, ∆2 − h), (15)

so that the replica for k, h = 0 represents the main lobe of the ideal likelihood function, while
the replicas for k, h 6= 0 represent its grating lobes.

Our goal now is to exploit the constraint on the likelihood function L(∆1, ∆2) ≤ Lmax
to identify the subset of array configurations satisfying the constraint on the maximum
pairwise error probability, under the assumed condition of SNR = SNR0.

To achieve this, we first represent the beampattern L(u) of a specific array config-
uration z = [0, d1, d2] in the plane (∆1, ∆2). From Equation (12), we notice that ∆1 and
∆2 depend both on the array design parameters d1 and d2 and on the difference (u− us).
However, the ratio between ∆2 and ∆1 is independent of (u− us), and it is equal to the ratio
between d2 and d1, namely α = d2

d1
= ∆2

∆1
. Therefore, as the steering direction u changes, the

locus of points corresponding to the array beampattern L(u) of a specific 3-element array
z = [0, d1, αd1] can be represented in the plane (∆1, ∆2) as a linear segment NP with slope
α. For a specific array configuration, the endpoints N and P of the segment NP only depend
on the maximum and minimum values assumed by the difference (u− us). By recalling
that the array can only receive signals with DoA us in the sector Umax = [−umax, umax],
and that the we are only interested in estimating the DoA of the sources located in the
sector Uint = [−uint, uint], we have us ∈ Umax and u ∈ Uint. Hence, the difference u− us is
bounded as

−µmax < u− us < µmax, (16)

where µmax , umax + uint. For a given µmax, the coordinates of the endpoints N and P for
the array z in the plane (∆1, ∆2) can be derived by inverting Equation (12)N =

(
− d1

λ µmax,− αd1
λ µmax

)
P =

(
+ d1

λ µmax,+ αd1
λ µmax

) . (17)

Given the biunivocal relationship between z and NP, determining whether an array
configuration is admissible or not is now straightforward. Specifically, an array z can be
considered admissible only if the corresponding segment in the (∆1, ∆2) plane does not
intersect the contour L0(∆1 − k, ∆2 − h) = Lmax for any k, h 6= 0. This condition guarantees
that the sidelobes of the array beampattern L(u) are lower than Lmax, which in turn allows
for satisfying the constraint on the maximum pairwise error probability. The following
example allows for the visualization of the relationship between L(u) and NP, and further
clarifies the notion of admissibility.

Let us assume an SNR0 = 15 dB and a maximum acceptable pairwise probability
Pmax = 10−5. By inverting Equation (9), we obtain Lmax ≈ 5.8612. The corresponding
contour plot of the L(∆1, ∆2) function is represented in Figure 4a. As is apparent, the
region external to the contour lines, namely the green area, represents the set of (∆1, ∆2)
values that satisfy the constraint L(∆1, ∆2) ≤ Lmax.
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Now, consider the following array configurations, characterized by α = 2.1:

.


z1 = ρ [0 0.150 0.315]λ
z2 = ρ [0 0.300 0.630]λ
z3 = ρ [0 0.450 0.945]λ
z4 = ρ [0 0.600 1.260]λ

(18)

As explained previously, these array configurations can be represented in the plane
(∆1, ∆2) as segments lying on the line ∆2 = 2.1∆1, and the extrema of these segments
depend on the value of µ. Assuming µmax = 2 (i.e., umax = uint = 1), we evaluate
the endpoints N and P through Equation (17), and we represent the four considered
configurations in Figure 4a as colored segments NP to verify their admissibility.

As visible in Figure 4b, for ρ = 1, configurations z1 and z2 are admissible, since the
segments representing their beampatterns do not intersect any replica of the likelihood
function (except for the replica k = h = 0, which is the likelihood function main lobe).
Conversely, configurations z3 and z4 are not admissible, since the segments representing
their beampatterns do intersect the contour L0(∆1 − k, ∆2 − h) = Lmax for (k, h) = (1, 2)
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and for (k, h) = (−1,−2). The four array beampatterns are also represented in Figure 5
as a function of (u− us). Comparing these beampatterns, we notice that the array con-
figurations denoted as z1 and z2 achieve the lowest sidelobes, while the others have high
sidelobes that prevent fulfilling the requirement on Lmax.
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Notice how the beampatterns of the array configurations characterized by the same
α value are merely stretched versions of the same likelihood function. Specifically, the
slope α = d2/d1 defines the shape of the likelihood function, while the value µ determines
the abscissa d1

λ µmax of the ∆1 axis in which the likelihood function is cut to obtain the
array beampattern.

As mentioned in Section 1, a straightforward approach to measure the robustness
of a given array configuration to estimation ambiguities was proposed in [31], based
on the maximum admissible phase error. Therein, the authors introduced the synthetic
parameter min

(
Spq
)
, defined as the minimum distance between the folded replicas of the

line φ2 = αφ1, with the wrapped phase within the angular sector Φ = [0◦, 360◦]. The
minimum distance min(Spq) of an array provides its maximum admissible phase error and
is therefore a measure of the array’s immunity to ambiguities. By assigning a minimum
acceptable distance, the parameter min

(
Spq
)

can be used to determine the admissibility of
an array.

The approach in [31] is inherently different from the one proposed in this work, since
it capitalizes on the phase ambiguity of the involved baselines rather than on the statistical
formulation of the MLE. However, the two approaches generally provide consistent results.
To carry out a comparison, we used the algorithm described in [31] to evaluate min

(
Spq
)

for
the array configurations in Figure 4a, with size scaled by ρ = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3,
and reported their values, together with the corresponding maximum pairwise error
probability max

m
Pm, in Table 1 .

As visible in Table 1, requiring that Pm ≤ Pmax, ∀m is equivalent to requiring that
min

(
Spq
)
> Smin. However, while max

m
Pm ranges from 10−20 to 0.2, taking several inter-

mediate values for different array configurations, min
(
Spq
)

only takes two values, namely
170.25 for more robust configurations, and 15.48 for less robust examples. This suggests
that constraining min

(
Spq
)

provides an approximate admissibility criterion, while the
proposed approach enables a more accurate assessment of array robustness to outliers. As
a consequence, the two approaches provide consistent results for all array configurations,
showing a well-defined behavior with respect to the presence of outliers. In contrast, they
might yield conflicting indications for edge case configurations.
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Table 1. Minimum distance min
(
Spq
)

for the array configurations shown in Figure 4a and the
corresponding maximum pairwise error probability max

m
Pm.

z1 z2 z3 z4

ρ = 0.7
max

m
Pm 10−20 10−20 10−20 2 10−5

min
(
Spq
)

170.25 170.25 170.25 170.25

ρ = 0.8
max

m
Pm 10−20 10−20 10−14 0.2

min
(
Spq
)

170.25 170.25 170.25 15.48

ρ = 0.9
max

m
Pm 10−20 10−20 10−7 0.2

min
(
Spq
)

170.25 170.25 170.25 15.48

ρ = 1.0
max

m
Pm 10−20 10−20 10−2 0.2

min
(
Spq
)

170.25 170.25 170.25 15.48

ρ = 1.1
max

m
Pm 10−20 10−20 0.2 0.2

min
(
Spq
)

170.25 170.25 15.48 15.48

ρ = 1.2
max

m
Pm 10−20 10−14 0.2 0.2

min
(
Spq
)

170.25 170.25 15.48 15.48

ρ = 1.3
max

m
Pm 10−20 10−9 0.2 0.2

min
(
Spq
)

170.25 170.25 15.48 15.48

For example, from Table 1, we notice that the constraint Pm ≤ Pmax = 10−5, ∀m is
almost equivalent to the constraint min

(
Spq
)
> Smin = 15.48. With these parameters, the

two approaches agree on the admissibility of both configurations z1 and z2 for any ρ value.
However, when ρ = 0.7, the criterion min

(
Spq
)
> 15.48 suggests that all the included array

configurations should be considered admissible. Conversely, we notice that configuration
z4 does not satisfy the constraint Pm ≤ 10−5, ∀m, being characterized by max

m
Pm = 2 · 10−5,

and thus it would be discarded using the proposed approach. Similar considerations apply
to configuration z3 when ρ = 1.

Clearly, different values of SNR and Pmax can lead to different edge cases on these
arrays. Furthermore, additional edge cases can be found, considering array configura-
tions with different slopes α. However, the example above shows that the ML-derived
proposed approach enables a more precise assessment of the array robustness to outliers,
allowing us to better identify the boundaries of the APP region where the best constrained
configurations in terms of MSE typically lie. This is shown in the following.

The green region in Figure 4b identifies the subset of abscissa values d1
λ µmax, for which

a cut of the likelihood function provides an admissible array beampattern, namely L(u),
such that L(u) ≤ Lmax. The extrema of the green patch are denoted as ±∆max

1 . This abscissa
value defines the longest admissible array with α = 2.1, so that every array configuration
z = [0, d1, αd1] such that d1

λ µmax ≤ ∆max
1 is admissible.

Notice that the value of ∆max
1 depends on the chosen slope α. Hence, if we deter-

mine the value ∆max
1 (α) of maximum abscissa for every possible slope α, we can identify

the region in the plane (∆1, ∆2) which contains every array configuration that satisfies
L(u) ≤ Lmax, namely the APP region.

In principle, the value ∆max
1 (α) can be derived as the intersection between the contours

L0(∆1 − k, ∆2 − h) = Lmax and a line through the origin with slope α. Thus, the APP region
can be derived in the plane (∆1, ∆2) before setting a specific value for µmax.

Once the APP region has been identified, the value of µmax is required to relate the
coordinates (∆1, ∆2) to the inter-element distances (d1, d2). In other words, as visible from
Equation (17), the definition of the endpoints of the segment NP associated to an array
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z requires both the knowledge of (d1, d2) and of µmax. Therefore, the admissibility of a
specific array z depends not only on the constraint on the pairwise error probability, but
also on how the sectors Umax and Ua are chosen.

For every slope α, the analytical value of the optimal ∆max
1 (α) can be identified as fol-

lows. First, we notice that L0(∆1, ∆2) = 3+ 2 cos(2π∆1)+ 2 cos(2π∆2)+ 2 cos[(2π(∆2 − ∆1)]
is symmetrical with respect to the two bisectors of the first and the second quadrants of the
plane (∆1, ∆2).

By defining the new set of coordinates γ and δ, such that:{
∆1 = δ−γ

2π

∆2 = δ+γ
2π

. (19)

and applying the transformation, we obtain

L0(γ, δ) = 1 + 4 cos(δ) cos(γ) + 4 cos2(γ) = Lmax, (20)

which can be easily solved for δ, obtaining:

δ = ±acos
{

Lmax − 1
4cos(γ)

− cos(γ)
}

. (21)

Using Equation (21) in Equation (19) allows us to express the points on the contour of
L0(∆1, ∆2) defined by Lmax, in terms of γ, as:

∆1 = ∆1(γ) = ± 1
2π acos

{
Lmax−1
4 cos(γ) − cos(γ)

}
− γ

2π

∆2 = ∆2(γ) = ± 1
2π acos

{
Lmax−1
4 cos(γ) − cos(γ)

}
+ γ

2π

. (22)

Since the segment representing an array lies on a line through the origin, the slope of
the line crossing the contour of the replica (k, h) is given by the ratio αk,h(γ) =

∆2(γ)+h
∆1(γ)+k

α+k,h(γ) =
1

2π acos
{

Lmax−1
4 cos(γ) −cos(γ)

}
+ γ

2π +h

1
2π acos

{
Lmax−1
4 cos(γ) −cos(γ)

}
− γ

2π +k

α−k,h(γ) =
1

2π acos
{

Lmax−1
4 cos(γ) −cos(γ)

}
− γ

2π−h

1
2π acos

{
Lmax−1
4 cos(γ) −cos(γ)

}
+ γ

2π−k

, (23)

where α+k,h(γ) refers to the slope obtained from the positive solutions, and α−k,h(γ) refers to
the slope obtained from the negative ones. As γ varies in the range (−2π, 2π), the results
in Equation (23) provide the slopes of the lines crossing the replica (k, h) of the contour
L0 = Lmax and allow us to identify the maximum and minimum slope of its crossing line

αmin
k,h (γ) = min

{
α+k,h(γ), α−k,h(γ)

}
αmax

k,h (γ) = max
{

α+k,h(γ), α−k,h(γ)
} . (24)

By exploiting the previous analytical re41sults, together with the observation that the
lower order replicas block the limiting effect of the higher order replicas, we propose the
following procedure to identify the APP region in the (∆1, ∆2) plane. First, we identify
the ∆max

1 (α) relative to the slopes crossing the lowest order replica, then we progressively
evaluate the ∆max

1 (α) relative to the slopes crossing higher order replicas, until all slopes
have been assigned a value ∆max

1 (α), since by construction d2 > d1, in the following, we
only consider α > 1. The following procedure is obtained:
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I. Inside the set of all possible slopes (1,+∞), determine ∆max
1 (α) for the subset of

slopes α blocked by the first-order replica of the L(∆1, ∆2) function, i.e., (k, h) = (0, 1).
Notice that all the replicas (k, h) = (0, h) are blocked by replica (0,1) so they will be
ignored in the following.

II. Determine the set of the non-blocked slopes after step I.
III. Determine ∆max

1 (α) for the subset of slopes α blocked by next higher-order replica
of the L(∆1, ∆2) function, i.e., (k, h) = (1, 1). Notice that the replicas (k, h) = (h, h)
are blocked by replica (1,1) so they will be ignored in the following.

IV. Determine the set of the non-blocked slopes after step III.
V. Determine the subset of slopes α blocked by next higher-order replica of the

L(∆1, ∆2) function.
VI. Determine the set of the non-blocked slopes after step V.
VII. Repeat steps V and VI until the set of non-blocked slopes is empty.

Conceptually, the presented procedure could be extended to N = 4 antenna elements,
by operating in a 3D space, where the contours are replaced by surfaces, and the APP
region resembles a Swiss cheese block. While the extension is straightforward, the analytical
derivation would make the description uselessly cumbersome. Therefore, we avoid an
explicit illustration of this case and leave it to the purview of interested reader.

As an example of the application of the N = 3 case, the proposed procedure is applied
for the case with SNR = 20dB and Pmax = 10−4, resulting in Lmax = 8.1739. Since only
slopes α > 1 are of interest, the APP region occupies only the portion above the bisector of
the first and third quadrant of the plane (∆1, ∆2), as shown in Figure 6, after remapping in
the plane (∆1, ∆2 − ∆1).
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Notice that the above procedure allowed us to determine the APP region in the plane
(∆1, ∆2). By defining the extrema umax and uint of the angular sectors Umax and Uint, we can
map the admissible region in the plane of the array parameters (d1, d2). The identified APP
region will be the basis for the array design approach presented in the following section.
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4. Three-Element NULA Design Strategy

In this section, we present the design strategy for the three-elements array aimed at
low-cost low-weight sensors for DoA estimation. Based on the MSE approximation in
Equation (7), it is clear that minimizing the CRB does not guarantee the best performance
outside the asymptotic region, since for limited SNR, there might be a significant error
contribution caused by the outliers that tend to concentrate around the DoAs, um, where
the beampattern exhibits its peaks. Moreover, Equation (7) shows that the values of Pm act
as scaling factors for the large error contributions (um − us)

2 that add to the CRB.
Therefore, for a given SNR0, the only configurations that are of potential interest (i.e.,

provide small MSE) all have Pm values below the maximum acceptable value, Pmax, and
belong to the APP region. The procedure presented in Section 3 is therefore a useful tool to
restrict the search for valuable array configurations and is used as an important part of the
proposed design approach.

Inside the APP region, the optimum array configuration z = [0, d1, . . . , dN−1] is
obtained, adopting a minimax criterion as the one that minimizes the maximum MSE over
any desired range of source angles, Uopt =

[
−uopt, uopt

]
, uopt = sin

(
θopt

)
:

P


argmin
d1,...,dN−1

{
max

us∈Uopt
ζ(SNR0, d1, . . . , dN−1, us)

}

s.t. array z = [0, d1, . . . , dN−1] ∈ APP region for assigned SNR0, θmax, θint, Pmax

. (25)

U0 can be either coincident with the whole sector of sources of interest Ua (i.e., θopt = θint),
or it can be a smaller sector, where a higher accuracy is desired (i.e., θopt < θint). This
formulation is equivalent to:

P

 argmin
d1,...,dN−1

{
max

us∈Uopt
ζ(SNR0, d1, . . . , dN−1, us)

}
s.t. Pm(SNR0, d1, . . . , dN−1, us) < Pmax, um ∈ Uint, us ∈ Umax

(26)

Since this array optimization approach is based on achieving the minimum MSE while
keeping the probability of outliers under control, the obtained solution is referred to as the
best outlier controlled array (BOCA). Its implementation diagram is sketched in Figure 7.
The four blocks perform the following steps:

(i) Identify the APP region in the plane (∆1, ∆2), using the procedure in Section 3;
(ii) Set the value of µ, the maximum value for u− us, based on the sensor estimation

characteristic and operational scenario;
(iii) Map the APP region into the (d1, d2) plane, based on the value of µ;
(iv) Look for the array configuration (d1, d2) providing the minimum of the MSE inside

this region.

Notice that the APP region resulting from step (i) has been evaluated in the (∆1, ∆2)
plane. Recalling the definition of ∆n in Equation (12), the APP region in Figure 6 can be
remapped in the (d1, d2) plane by scaling the maximum acceptable value ∆max

1 (α) for every
slope α by λ/µmax. Hence, the inter-element distances dn of the array configurations inside
the APP region are given by

dn(α) < d1max(α) =
λ∆1max(α)

µmax
. (27)
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The scaling in Equation (27) requires knowledge of µmax, which in turn requires
defining the sectors Umax, and Uint. The bounds of these sectors largely depend on the
considered application and purpose, as illustrated in the following section.

Equation (27) allows us to represent the APP region in the array inter-element dis-
tances axis system, i.e., in the (d1, d2) plane, thus fulfilling step (iii). The final optimiza-
tion algorithm (step (iv)) is based on a minimax criterion by choosing the array con-
figuration that minimizes the maximum MSE obtained inside a given angular sector
Uopt =

[
− sin

(
θopt

)
, sin

(
θopt

)]
.

When compared to conventional, well-known array design strategies, such as the one
presented in [28], the proposed approach offers three main advantages:

• It allows for the relaxation of the half-wavelength quantization constraint on the
inter-element distance.

• It offers a high level of flexibility, as it allows us to distinguish the angular sector Umax
where the source can be located, the angular sector Uint where the source is pursued,
and the angular sector Uopt, where the performance is optimized.

• It allows us to obtain satisfactory DoA estimation performances, even when the SNR
is in the threshold region, thanks to the constraint imposed on the maximum pairwise
error probability.

In order to illustrate these advantages, in the next section, we assess the performances
obtained by the BOCA in different case studies via numerical analysis.

5. Performance Assessment on Simulated Data

The purpose of this section is to test the proposed design approach against simulated
data in order to prove its effectiveness. In addition, we compare it to the conventional
design strategy presented in [28], where the array inter-element distances are subject to
a λ/2 quantization. To make a fair comparison, we compare the proposed BOCA with a
quantized array that satisfies the same constraint on the maximum pairwise probability.
This can be achieved by selecting one of the quantized array configurations falling inside the
APP region, as conducted for the BOCA. The selected array will be referred to as λ/2-best
outlier controlled array (λ/2-BOCA). Due to the quantization constraint, we expect that the
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λ/2-BOCA will obtain an equal or higher MSE than the BOCA. Furthermore, there might
be cases in which a λ/2-BOCA is impossible to locate, as all quantized configurations fall
outside the APP region.

As mentioned in the previous sections, the APP region depends on both θmax and θint,
while the selected BOCA inside the APP region changes with θopt. Since different values
for θmax, θint, and θopt can be selected based on the requirements of different applications,
we define two case studies that will be used for performance assessment:

(i) Case A: θmax = 90◦, so that the source can be located at any possible DoA. There-
fore, the possibility of having sources outside the angular sector Uint of interest
is considered.

(ii) Case B: θmax = θint, so that the possibility of having targets outside a given angular
sector [−umax, umax] is excluded. This can be useful when electromagnetic shielding
is employed, or when the antennas are characterized by a very directive pattern.

Both case studies are considered in Sections 5 and 6, respectively dedicated to uncon-
strained and constrained design solutions. Notice that restricting θmax, as in case B, leads
to smaller values of µ, and thus to larger APP regions, as shown in Equation (27). In turn,
this allows us to choose longer array configurations, which exhibit better performances in
terms of MSE.

To study the performance of the resulting BOCA, for both Case A and Case B, we
evaluate the MSE of its DoA estimate inside the area of interest (−θopt, θopt) as a function of
the two remaining parameters, namely θopt and θint, assuming assigned values for SNR
and Pmax. Since the MSE is variable in this region, a compact method to represent the
performance is to average its value inside the sector Uopt. This provides us with a single
averaged MSE value for each choice of θopt and θint, since θopt ≤ θint, the angular sector
Uopt in which performances are studied, is a subset of the sector Uint of the sources of
interest, i.e.,: Uopt ⊆ Uint.

To show numerical results, we assume an SNR value of 20 dB, and we fix Pmax = 10−4.
Figure 8a,b shows the map of the average MSE for case A and case B, respectively,
for all the admissible values of θint and θopt. According to these results, the following
observations apply:
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(i) Wider angular sectors Uopt result in higher values of MSE, whereas when we are
interested only to the DoA estimate inside a narrow angular sector, much better MSE
values can be obtained.

(ii) For greater values of θint the admissible region becomes smaller, leading to BOCA
solutions with a higher MSE.

(iii) Hence, the larger the θint and θopt are, the higher is the average MSE.
(iv) Case B provides generally lower values for the average MSE, since the smaller value

of θmax provides a wider APP region, thus increasing the opportunity to select a longer
BOCA configuration.

To compare the performance of the BOCA and the λ/2-BOCA, it is convenient to
define the ratio R

(
θopt, θint

)
between the two mean MSEs, namely:

R
(
θopt, θint

)
=

E
{

MSEλ/2−BOCA
(
θopt, θint

)}
E
{

MSEBOCA
(
θopt, θint

)} . (28)

While the maximum (worst) MSE inside the sector Uopt for the BOCA is always smaller
compared to the λ/2-BOCA, the ratio R

(
θopt, θint

)
of the averaged MSEs over the sector

Uopt are not necessarily greater than the unity. This ratio allows us to quantify the average
improvement achieved by the proposed approach over the conventional method, as a
function of θopt and θint, over the whole area of interest. Figure 9a,b shows the R

(
θopt, θint

)
map for case study A and case study B, respectively.
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Figure 9. A 2D contour plot of the ratio R
(
θopt, θint

)
as a function of θopt and θint; (a) case study A

(θmax = 90◦); (b) case study B (θmax = θint).

By observing these results, the following remarks apply:

(i) The maximum achievable ratio is R
(
θopt, θint

) ∼= 3. This means that
E
{

MSEλ/2−BOCA
(
θopt, θint

)}
is at most about 3.5 times higher than

E
{

MSEBOCA
(
θopt, θint

)}
).

(ii) As anticipated at the beginning of this section, there are cases in which no λ/2-BOCA
can be found. For the selected parameters SNR = 20 dB and Pmax = 10−4, this
occurs when choosing θa ≥ 80◦. In these cases, the ratio shown in the figures has
been conveniently saturated to its maximum value, namely 3.5, to denote that the
improvement is not measurable.

(iii) As previously mentioned, in case B, we obtain wider APP regions. Therefore, longer
arrays are generally admissible, and the average MSE in case B is always smaller or
than or equal to the average MSE in case A, for any given pair of θint and θopt.
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(iv) Finally, while in case A, the best ratio values are obtained for smaller θint and θopt, in
case B, the best ratio values are obtained for θmax = θint = θopt ≈ 30◦.

To complete the analysis, we show the detailed performance analysis for few spe-
cific parameter sets

(
θopt, θint

)
, corresponding to the points of the R

(
θopt, θint

)
maps in

Figure 9a,b, as shown with black circles, with the selected parameters θmax, θint, and θopt
for each case study.

5.1. Case Study A—Source Located within the Whole [−90◦, 90◦] Angular Sector (θmax = 90◦)

In case study A, we focus on three subcases characterized by θint = 30◦. However,
while the average MSE of both the BOCA and the λ/2-BOCA monotonically increase
with θopt, their ratio shows a different behavior, namely R

(
θopt, θint

)
≈ 1.25 at θopt = 18◦

and R
(
θopt, θint

)
≈ 1.7 at both θopt = 6◦ and θopt = 30◦. As the considered subcases

are characterized by the same values of θmax, θint, SNR, and Pmax, they all share the same
admissible region, as represented in Figure 10.
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Figure 10. Admissible region and obtained solutions for case study A with θint = 30◦, SNR = 20dB,
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The location of the BOCA and λ/2-BOCA for the three subcases is represented with
a blue and a green circle, respectively, in the three subplots. With the selected set of
parameters, the optimization procedure leads to the BOCA and λ/2-BOCA configurations
reported in Table 2.
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Table 2. Selected case studies, BOCA and λ/2 -BOCA solutions, and achieved ratio R
(
θopt, θint

)
.

θmax θint θopt zλ/2−BOCA zBOCA R(θopt,θint)

Case study A1

90◦ 30◦

6◦ [0.00, 1.00, 4.50]λ [0.00 1.30 5.84]λ 1.6838

Case study A2 18◦ [0.00, 1.00, 4.50]λ [0.00 0.66 5.22]λ 1.2561

Case study A3 30◦ [0.00, 0.50, 4.00]λ [0.00 0.66 5.26]λ 1.7253

Case study B1
30◦ 30◦

15◦ [0.00, 1.00, 4.50]λ [0.00 0.98 7.74]λ 2.7682

Case study B2 30◦ [0.00, 0.50, 4.00]λ [0.00 0.94 7.82]λ 3.2847

Figure 11a–c shows the MSE obtained using the zBOCA and the zλ/2−BOCA, respectively,
for case studies A1, A2, and A3 as a function of θ. The solid curves represent the theoretical
MSE, while the dashed examples represent CRB. Furthermore, dots represent the MSE
obtained through simulation, and the vertical dash-dot lines denote the area where we look
for the optimal solution.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 31 
 

 

 

   
(a) (b) (c) 

Figure 11. MSE of BOCA and 𝜆/2-BOCA for case study A: 𝜃 = 30°, 𝑆𝑁𝑅 = 20 dB, 𝑃 = 10 , 
and (a) 𝜃 = 6°; (b) 𝜃 = 18°; (c) 𝜃 = 30°. 

Figure 11a shows the MSE of 𝒛 = [0.00 1.30 5.84]  to be lower than those of 𝒛 / = [0.00, 1.00, 4.50] (see × markers in Figure 10) for |𝜃 | ≤ 6°; however, for |𝜃 | ≥12°, the BOCA is subject to the presence of a sidelobe, and its MSE shows a step increase, 
whereas the 𝜆/2-BOCA is not subject to this effect. As clear from Figure 11b, for values of |𝜃 | ≥ 12° , the BOCA configuration changes to 𝒛 = [0.00 0.66 5.22] , while the 𝜆/2 -
BOCA remains unchanged (see ○ markers in Figure 10).  

While the new BOCA still has a lower MSE than the 𝜆/2-BOCA, its value is not as 
low as it was previously. When |𝜃 | ≥ 22°, the array [0.00, 1.00, 4.50] is subject to the pres-
ence of a sidelobe, which provides a step increase in the MSE, so that the 𝜆/2-BOCA con-
figuration changes to 𝒛 / = [0.00, 0.50, 4.00], as apparent from Figure 11c. Its aver-
age MSE value increases, whereas the BOCA configuration is not subject to significant 
changes (see + markers in Figure 10). 

We also observe that when the MSE is too high, the simulated and theoretical MSE 
curves do not match exactly. This is because the union-bound approximation in Equations 
(7) and (8) is not tight. 

To complete the analysis, Figure 12 shows the maximum pairwise probability for 
each array configuration. The vertical dash-dot lines denote the area where the constraint 
must be guaranteed, while the horizontal dashed line represents the constraint value 𝑃 . 
Figure 12 illustrates that both the 𝜆/2-BOCA and the BOCA satisfy the constraint on the 
maximum pairwise probability inside the angular sector 𝑈 , as we expected. However, 
as shown in Figure 11, the BOCA performs better inside the [−𝜃 , 𝜃 ] angular sector in 
terms of MSE. 
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The numerical MSE values were obtained through a Monte Carlo simulation, with
NMC = 105 runs. The simulated array output x was generated according to the signal
model in Equation (2), where the N random samples in the noise vector n were assumed
to be complex valued and Gaussian distributed, namely: n ∼ CN

(
0, σ2

n
)
. The complex-

valued amplitude A of the source baseband signal is a deterministic parameter, set so as to
guarantee the required SNR condition, namely A =

√
2σ2

nSNR.
Figure 11a shows the MSE of zBOCA = [0.00 1.30 5.84] to be lower than those of

zλ/2−BOCA= [0.00, 1.00, 4.50] (see × markers in Figure 10) for |θs| ≤ 6◦; however, for
|θs| ≥ 12◦, the BOCA is subject to the presence of a sidelobe, and its MSE shows a step
increase, whereas the λ/2-BOCA is not subject to this effect. As clear from Figure 11b, for
values of |θs| ≥ 12◦, the BOCA configuration changes to zBOCA = [0.00 0.66 5.22], while
the λ/2-BOCA remains unchanged (see # markers in Figure 10).

While the new BOCA still has a lower MSE than the λ/2-BOCA, its value is not as
low as it was previously. When |θs| ≥ 22◦, the array [0.00, 1.00, 4.50] is subject to the
presence of a sidelobe, which provides a step increase in the MSE, so that the λ/2-BOCA
configuration changes to zλ/2−BOCA = [0.00, 0.50, 4.00], as apparent from Figure 11c. Its
average MSE value increases, whereas the BOCA configuration is not subject to significant
changes (see + markers in Figure 10).
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We also observe that when the MSE is too high, the simulated and theoretical MSE
curves do not match exactly. This is because the union-bound approximation in
Equations (7) and (8) is not tight.

To complete the analysis, Figure 12 shows the maximum pairwise probability for
each array configuration. The vertical dash-dot lines denote the area where the constraint
must be guaranteed, while the horizontal dashed line represents the constraint value Pmax.
Figure 12 illustrates that both the λ/2-BOCA and the BOCA satisfy the constraint on the
maximum pairwise probability inside the angular sector Uint, as we expected. However,
as shown in Figure 11, the BOCA performs better inside the

[
−θopt, θopt

]
angular sector in

terms of MSE.
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5.2. Case Study B—Source Only Located within the Angular Sector [−θint, θint] of the DoA of
Interest (θmax = θint)

As opposed to case study A, in case B, the possibility that a source might be located
outside the angular sector of interest is excluded, i.e., θmax = θint. We focus on two subcases
characterized by θint = 30◦, as they seem to be the cases in which the best ratios R

(
θopt, θint

)
are obtained. As in case A, the different subcases are characterized by the same admissible
region, as represented in Figure 13. With the selected set of parameters, the optimization
procedure leads to the BOCA and λ/2-BOCA reported in Table 2.

Note that the decrease in θmax yields a larger admissible region. This allows us to
choose longer array configurations, which were non-admissible in case A. Despite this, the
λ/2-BOCA is still the one selected in the previous cases, confirming the reduced flexibility
of the quantized approach. These considerations are further confirmed by Figure 14a,b and
Figure 15a,b, where the MSE and the maximum pairwise error probability obtained using
the different configurations is evaluated across a grid of θ values.

As a final consideration, we notice that the admissible regions shown in Figures 10 and 13,
have very spiky shapes in certain areas. Selecting an array configuration inside one of
those thin portions would mean requiring an installation accuracy that would be unlikely
to be guaranteed in practice. Furthermore, these types of solutions are highly unstable, and
lead to the variability of the ratio R

(
θopt, θint

)
with θopt. Therefore, in the next section, we

modify the optimization problem by adding additional constraints that might be required
for the practical application of the proposed approach.
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6. Constrained Three-Element NULA Design Strategy

In this section, we consider two technological constraints that are likely to arise in real
case scenarios, and we introduce a slight modification in the proposed strategy that will
make it suitable for practical applications.

The first technological constraint is introduced based on the following observation:
the APP regions shown in the previous sections always include solutions in which the
inter-element distance is very small. In practical applications, depending on the signal
wavelength, the physical size of the antennas, and the coupling effects that might occur, it
might not be possible to position the antenna elements at the required proximity. Therefore,
we consider the possibility to exclude the solutions characterized by inter-element distances
shorter than a fixed value l from the admissible region.

The second technological constraint is related to installation accuracy. We define a
finite installation accuracy δ, representing the maximum error tolerated in the installation.

Specifically, a given array
¯
z =

[
0 d1 d2

]
inside the APP region is considered admissible

only if the four arrays
[
0
(

d1 ± δ
) (

d2 ± δ
)]

also lie within the admissible region. This
excludes all the thinner areas from the admissible region.

The block diagram in Figure 16 illustrates the constrained optimization procedure.
Clearly, for l = 0 and δ = 0, the constrained design strategy corresponds to the one in
Equation (26).

To show the effect of the additional constraints on the results, let us consider a passive
location system operating in the Wi-Fi band at f0 = 2.447 GHz (λ = 0.1226 m). We assume
that the employed commercial antennas have a size l ≈ 0.13 m = 1.1λ, constraining
the minimum inter-element distance. Two different values are considered for δ, namely
δ = 0.005λ = 6.1·10−4 m (micrometric positioning) and δ = 0.05λ = 6.1·10−3 m (man-
ual positioning). Figure 17a,b shows the admissible region obtained by including the
technological constraints for the two cases, assuming SNR = 20 dB, Pmax = 10−4 and
θmax = θint = 30◦. The blue-colored areas are the portions of the APP region excluded
by the constraint on the minimum inter-element distance, while the red-colored areas are
the portions of the APP excluded to consider installation accuracy tolerance. As visible
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from Figure 17, the installation accuracy constraint removes thinner areas from the APP
region. These areas contain array configurations with highly unstable performance, for
which a slight modification in the inter-element distance causes the array configuration to
fall outside the APP region.

Sensors 2023, 23, x FOR PEER REVIEW 24 of 32 
 

 

6. Constrained Three-Element NULA Design Strategy 
In this section, we consider two technological constraints that are likely to arise in 

real case scenarios, and we introduce a slight modification in the proposed strategy that 
will make it suitable for practical applications. 

The first technological constraint is introduced based on the following observation: 
the APP regions shown in the previous sections always include solutions in which the 
inter-element distance is very small. In practical applications, depending on the signal 
wavelength, the physical size of the antennas, and the coupling effects that might occur, 
it might not be possible to position the antenna elements at the required proximity. There-
fore, we consider the possibility to exclude the solutions characterized by inter-element 
distances shorter than a fixed value 𝑙 from the admissible region. 

The second technological constraint is related to installation accuracy. We define a 
finite installation accuracy 𝛿, representing the maximum error tolerated in the installation. 
Specifically, a given array 𝐳 = 0 �̅�  �̅�   inside the APP region is considered admissible 
only if the four arrays 0 �̅� ± 𝛿  �̅� ± 𝛿  also lie within the admissible region. This ex-
cludes all the thinner areas from the admissible region. 

The block diagram in Figure 16 illustrates the constrained optimization procedure. 
Clearly, for 𝑙 = 0  and 𝛿 = 0 , the constrained design strategy corresponds to the one in 
Equation (26). 

 
Figure 16. Block diagram illustrating the constrained design strategy. 

To show the effect of the additional constraints on the results, let us consider a pas-
sive location system operating in the Wi-Fi band at 𝑓 = 2.447 GHz (𝜆 = 0.1226 m). We as-
sume that the employed commercial antennas have a size 𝑙 ≈ 0.13 m = 1.1𝜆, constraining 
the minimum inter-element distance. Two different values are considered for 𝛿, namely 𝛿 = 0.005𝜆 = 6.1 10  m  (micrometric positioning) and 𝛿 = 0.05𝜆 = 6.1 10  m  (man-
ual positioning). Figure 17a,b shows the admissible region obtained by including the tech-
nological constraints for the two cases, assuming 𝑆𝑁𝑅 = 20 dB, 𝑃 = 10  and 𝜃 =𝜃 = 30°. The blue-colored areas are the portions of the APP region excluded by the con-
straint on the minimum inter-element distance, while the red-colored areas are the 

Figure 16. Block diagram illustrating the constrained design strategy.

Sensors 2023, 23, x FOR PEER REVIEW 25 of 32 
 

 

portions of the APP excluded to consider installation accuracy tolerance. As visible from 
Figure 17, the installation accuracy constraint removes thinner areas from the APP region. 
These areas contain array configurations with highly unstable performance, for which a 
slight modification in the inter-element distance causes the array configuration to fall out-
side the APP region. 

  
(a) (b) 

Figure 17. Admissible region for the constrained case, with 𝜃 = 𝜃 = 30°, 𝑆𝑁𝑅 = 20 dB, 𝑃 =10 , 𝑙 = 1.1𝜆, and (a) 𝛿 = 0.005𝜆, (b) 𝛿 = 0.05𝜆. 

As visible in Figure 17, the technological constraints lead to significant changes in the 
APP region, so that most of the array configurations considered in case studies A1-A3, 
and B1 and B2, are no longer admissible. Therefore, for each choice of 𝜃 , 𝜃 , and 𝜃 , 
new BOCA and 𝜆/2-BOCA configurations must be identified. For example, considering 𝑙 = 1.1𝜆 and 𝛿 = 0.05𝜆, as shown in Figure 17b, and assuming 𝜃 = 𝜃 = 𝜃 = 30° , 
the new BOCA configurations become 𝒛 = [0 1.96 6.82]𝜆 and 𝒛 / = [0 1.5 3.5]𝜆. 
We also notice that the obtained BOCA configuration 𝒛  is characterized by a very low 
value of 𝑚𝑖𝑛 𝑆 = 4.74, as evaluated following the procedure in [31], and it would have 
not been considered admissible based on the maximum error criterion. However, 𝒛  is 
guaranteed to satisfy the constraint 𝑃 < 𝑃 , since it belongs to the APP region. There-
fore, in this case, the 𝑚𝑖𝑛 𝑆  value is not a good proxy for robustness to estimation am-
biguities, since our ML-based admissibility criterion allows us to find a robust array con-
figuration with low 𝑚𝑖𝑛(𝑆 ). This is further confirmed by observing the ratio 𝑅 𝜃 , 𝜃  
between the MSEs of the 𝒛   and that of the 𝒛 /   . Since we have 𝑅 𝜃 , 𝜃 =3.1510, the BOCA design solution ultimately achieves an MSE which is about one-third 
of the MSE obtained by the 𝜆/2-BOCA. In conclusion, 𝒛  is indeed a good alternative 
to both the 𝜆/2-BOCA and to the BOCA designs obtained in the case studies without tech-
nological constraints.  

Depending on the value of the constraints and on the extrema of the considered an-
gular sectors, the modified APP region might become so restrictive that no 𝜆/2 -BOCA 
configurations could be found. In such cases, the ratio 𝑅 𝜃 , 𝜃  is saturated at its max-
imum value, namely 𝑅 𝜃 , 𝜃 = 3.5 . Figure 18a,b shows the contour plots of 𝑅 𝜃 , 𝜃 , obtained considering case studies A and B, respectively, and assuming an 

Figure 17. Admissible region for the constrained case, with θmax = θint = 30◦, SNR = 20 dB,
Pmax = 10−4, l = 1.1λ, and (a) δ = 0.005λ, (b) δ = 0.05λ.



Sensors 2023, 23, 4872 24 of 31

As visible in Figure 17, the technological constraints lead to significant changes in
the APP region, so that most of the array configurations considered in case studies A1-A3,
and B1 and B2, are no longer admissible. Therefore, for each choice of θmax, θint, and θopt,
new BOCA and λ/2-BOCA configurations must be identified. For example, considering
l = 1.1λ and δ = 0.05λ, as shown in Figure 17b, and assuming θmax = θint = θopt = 30◦ , the
new BOCA configurations become zBOCA = [0 1.96 6.82]λ and zλ/2−BOCA = [0 1.5 3.5]λ.
We also notice that the obtained BOCA configuration zBOCA is characterized by a very
low value of min

(
Spq
)
= 4.74, as evaluated following the procedure in [31], and it would

have not been considered admissible based on the maximum error criterion. However,
zBOCA is guaranteed to satisfy the constraint Pm < Pmax, since it belongs to the APP
region. Therefore, in this case, the min

(
Spq
)

value is not a good proxy for robustness
to estimation ambiguities, since our ML-based admissibility criterion allows us to find
a robust array configuration with low min

(
Spq
)
. This is further confirmed by observing

the ratio R
(
θopt, θint

)
between the MSEs of the zBOCA and that of the zλ/2−BOCA. Since we

have R
(
θopt, θint

)
= 3.1510, the BOCA design solution ultimately achieves an MSE which

is about one-third of the MSE obtained by the λ/2-BOCA. In conclusion, zBOCA is indeed
a good alternative to both the λ/2-BOCA and to the BOCA designs obtained in the case
studies without technological constraints.

Depending on the value of the constraints and on the extrema of the considered an-
gular sectors, the modified APP region might become so restrictive that no λ/2-BOCA
configurations could be found. In such cases, the ratio R

(
θopt, θint

)
is saturated at its maxi-

mum value, namely R
(
θopt, θint

)
= 3.5. Figure 18a,b shows the contour plots of R

(
θopt, θint

)
,

obtained considering case studies A and B, respectively, and assuming an installation accu-
racy tolerance of δ = 0.005λ. As is apparent, the additional design constraints degrade the
estimation accuracies of both the λ/2-BOCA and the BOCA configurations. Therefore, the
ratio R between the two MSEs still assumes values between R ∼= 1 and R ∼= 3.5.
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By increasing the installation accuracy tolerance to δ = 0.05λ, we obtain the contour
plots of R

(
θopt, θint

)
, as shown in Figure 19a,b, relative to cases A and B, respectively.
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As visible from these contour plots, the effect of the higher tolerance can provide a
significant change in the array design. Specifically, most of the

(
θopt, θint

)
plane is saturated

to 3.5. Based on this observation, we conclude that the proposed approach is always able to
provide a valid array configuration, while there is no λ/2-BOCA solution that satisfies all
the imposed constraints at the same time.

In conclusion, the results obtained in case study B, assuming δ = 0.005λ, are also used
to validate the obtained design strategy in a real-case scenario using experimental data, as
reported in the following section.

7. Experimental Results

To further support the effectiveness of the design procedure proposed in the previous
sections, an experimental trial was conducted in a parking area.

For this experiment, we assumed θmax = θint = 45◦. The design of the array has
been carried out to guarantee Pm < Pmax = 10−4 when the operative SNR value is set to
SNR0 = 20 dB. Finally, the minimum inter-element distance has been constrained to be
l = 1.1λ, as in the previous section, with δ = 0.005λ. With these parameters, we obtain the
admissible region in Figure 20.

To carry out the experimental acquisition, we exploited a four-channel National
Instruments NI USRP-2955 board, operating in the 2.5 GHz Wi-Fi frequency band. To collect
samples simultaneously with the two arrays, we must operate with two configurations
that have two elements in common. For this purpose, we selected a non-optimal array,
addressed in the following as Almost-BOCA array zABOCA = [0 2 5.35]λ, that has one inter-
element distance in common with the λ/2-BOCA, zλ/2−BOCA = [0 2 4.5]. This allowed us
to make the acquisitions with a single 4-elements array with z = [0 2 4.5 5.35], with the
individual element connected channels 0,1,2,3 of the 4-channel USRP acting as the coherent
receiver. With this arrangement, the snapshots of the λ/2-BOCA array were obtained by
using only the samples received by channels 0,1, and 2, whereas those of the Almost-BOCA
array were obtained by using only the samples received by channels 0,1, and 3. Moreover,
in this way, the snapshots of the two arrays are coherent and simultaneous. Note that
the resulting array zABOCA provides only slightly degraded performance with respect to
the BOCA.
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Figure 21a shows a sketch of the acquisition geometry. The green markers represent
the element of the λ/2-BOCA, while the blue markers indicate the elements of the Almost-
BOCA. The two sensors in the middle are common between the two arrays. The four-
element array that includes both the Almost-BOCA and the λ/2-BOCA solutions was
realized by deploying four Wi-Fi antennas on a plastic support mounted on a tripod.
Figure 21b shows this receiving system set in the origin of the reference system. The Wi-Fi
access point (AP) in Figure 21c is used as the transmitting source, which has been initially
placed at 20 m with DoA θs = 0◦ from the receiving antennas and then moved to θs = 30◦

with respect to the boresight of the array. This was set to transmit the Wi-Fi beacons with a
beacon interval of 3ms at f0 = 2.447 GHz, (namely, using wavelength λ = 0.1226 m).

The expected performance for SNR = 20 dB in terms of both MSE and Pout is reported
in Figure 22a,b, as obtained from the theoretical framework in Equations (7)–(9) for both
the Almost-BOCA and the λ/2-BOCA. The following remarks apply:

When the source is located at θs = 0◦, the MSE obtained with the λ/2-BOCA should
be about 2 times higher than the MSE obtained with the Almost-BOCA, while the Pout is
about 4 times lower.

When the source is located at θs = 30◦, the MSE obtained with the λ/2-BOCA should
be about 1.5 times higher than the MSE obtained with the Almost-BOCA, while the Pout is
about 3 times lower.
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The experimental results have been obtained by simultaneously collecting long se-
quences of samples with the 4 elements when the AP is active. These data are received with
a measured SNR = 23 dB. White Gaussian noise was added to the data to emulate lower
SNR values, specifically between 14 dB and 23 dB, with a 0.5 dB step.
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By averaging the received samples, the resulting MSE and Pout curves are obtained
and reported in Figure 23a,b, respectively, as a function of the SNR value and for both
considered DoAs. By observing Figure 23, we note that:
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• For both the considered DoAs, the Almost-BOCA solution outperforms the λ/2-BOCA
in the asymptotic region, since a longer array is used;

• For θs = 0◦, the Almost-BOCA solution outperforms the λ/2-BOCA, both in terms of
MSE and Pout for SNR ≥ 16 dB;

• For θs = 30◦, the improvement is lower as predicted by theory, and starts at a higher
SNR (SNR ≥ 19 dB).

As apparent, the experimental results show that the non-λ/2-spaced array always
outperforms its λ/2 counterpart for the design value SNR0 = 20 dB and for higher
SNR values. This confirms that the design procedure effectively allows us to design an
array that provides a better performance than the λ/2-BOCA in a realistic experimental
scenario.

We recall that a slightly different and better performing BOCA solution would be
selected if we did not force it to have one inter-element distance in common with the
λ/2-BOCA. Therefore, higher improvements are expected if the design strategy is applied
with its entire set of degrees of freedom.

8. Conclusions

DoA estimation of narrowband signals is a ubiquitous task in several civil surveillance
applications, such as passive coherent location systems, passive sonar, or passive radar. The
main challenge in these applications is to comply with the typical low-cost requirements
involving not only the economic cost, but also the computational load. Additionally, the
DoA estimation accuracy is usually degraded by the presence of outliers, which occur as a
result of the poor SNR conditions characterizing low-cost systems. To achieve the required
features of limited complexity and system lightness, the number of antenna elements must
be kept sufficiently low. With this perspective, NULA configurations represent a viable
solution to reduce the number of receiving elements without compromising performance.

The design strategy presented in this paper is set within the context of low-cost
sensors applications, as it allows us to identify the so-called best outlier-controlled NULA
configuration, achieving satisfactory DoA estimation performance by exploiting just three
antenna elements. As a matter of fact, the BOCA solution allows for minimizing the MSE,
while keeping the outlier probability under reasonable control.
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The design procedure is based on the following two steps. First, an admissible
pairwise probability region is identified, exploiting the algorithm presented in Section 3.
The APP region contains all the arrays for which the outlier probability is kept under
control. Second, the BOCA configuration achieving the minimum MSE is located inside
the APP region. It has also been shown that the APP region can be easily modified to
incorporate practical design constraints, such as the minimum inter-element distance and
the installation accuracy tolerance.

The proposed design strategy has been compared to the one presented in [28], which
represents our benchmark. Therein, the array inter-element distances are quantized to half-
wavelength. To carry out a fair analysis, we compared the estimation accuracy achieved
by the BOCA with the one achieved by the best outlier-controlled array with the half-
wavelength quantization constraint, namely the λ/2-BOCA. As shown via both theoretical
and numerical analyses, the BOCA solutions generally achieve improved estimation accura-
cies compared to the λ/2-BOCA estimations, with an improvement depending on how the
angular sectors Umax, Uint, and Uopt are chosen. The effectiveness of the proposed design
procedure has also been verified using experimental data, confirming that the optimized
array outperforms the λ/2-quantized benchmark array. The comparison with a recent
three-element NULA design approach to control ambiguity outliers is also included, which
emphasizes the capability of our proposed model to accurately characterize and control the
probability of ambiguities.

As a future research scope, it might be interesting to extend the design strategy to
four-element and five-element NULA configurations in order to improve the estimation
accuracy without significantly increasing the number of receiving channels. In such cases,
alternative design strategies, such as nested or coprime array configurations, may also
provide a useful benchmark. Furthermore, non-linear array configurations, such as circular
arrays, could be investigated, as they would allow us to estimate the DoA regarding both
azimuth and elevation. Lastly, the DoA estimation problem could be extended to multi-
source scenarios, which would be useful not only when multiple sources of interest are
present, but also to take any multipath effect into proper account.
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