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Information Extraction (IE) is the task of automatically organizing in a structured form data ex-
tracted from free text documents. In several contexts, it is often desirable that extracted data are then
organized according to an ontology, which provides a formal and conceptual representation of the
domain of interest. Ontologies allow for a better data interpretation, as well as for their semantic in-
tegration with other information, as in Ontology-based Data Access (OBDA), a popular declarative
framework for data management where an ontology is connected to a data layer through mappings.
However, the data layer considered so far in OBDA has consisted essentially of relational databases,
and how to declaratively couple an ontology with unstructured data sources is still unexplored.

By leveraging the recent study on document spanners for rule-based IE by Fagin et al., in this
paper we propose a new framework that allows to map text documents to ontologies, in the spirit of
OBDA. We investigate the problem of answering conjunctive queries in this framework. For ontologies
specified in the Description Logics DL-LiteR and DL-LiteF , we show that the problem is polynomial
in the size of the underlying documents. We also provide algorithms to solve query answering by
rewriting the input query on the basis of the ontology and its mapping towards the source documents.
Through these techniques we pursue a virtual approach, similar to that typically adopted in OBDA,
which allows us to answer a query without having to first populate the entire ontology. Interestingly,
for DL-LiteR both the spanners used in the mapping and the one computed by the rewriting algorithm
belong to the same class of expressiveness. This holds also for DL-LiteF , modulo some limitations on
the form of the mapping. These results say that in these cases our framework can be easily implemented
by decoupling ontology management and document access, which can be delegated to an external IE
system able to compute the extraction rules we use in the mapping.
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1. Introduction

A huge portion of information is nowadays spread in free-text documents, like reports, e-
mails, web pages, articles, etc. These sources are obviously tailored for the human reading,
but it is also often desirable within an organization that relevant data contained therein is
extracted and integrated with other corporate data. Information Extraction (IE) is the task
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of automatically performing such extraction and organizing gathered data into a structured
representation, typically a spreadsheet, database, or even a knowledge base [1, 2].

IE has been intensively studied starting from the late '80s [3], and since then several
extraction methods have been proposed, which, in broad terms, can be classified as either
statistical or rule-based [4]. In the former case, IE is based on probabilistic models, e.g.,
classifiers or sequence models, (e.g., [5,6]). Instead, rule-based approaches encode specific
extraction tasks into rules, mostly corresponding to finite-state transducers (e.g., [7–9]).

Recently, Fagin et al. [10, 11] have initiated a foundational study on rule-based IE, and
proposed a new framework for it constructed on the notion of (document) spanner. In a nut-
shell, a spanner is a program that extracts from a text document D (i.e., a string) a relation
containing tuples of spans, which are pairs of indices identifying substrings of D. For ex-
ample if D is the string Albert Einstein from Ulma, the span [8, 16⟩ selects the substring
Einstein which is the slice of D going from the eighth to the fifteenth character in D (by
definition, a span [i, j⟩ goes from position i to position j-1, included). Fagin et al. have in
depth investigated how to represent spanners and how to combine them through algebraic
operators. In particular, they have studied spanners defined by regular expressions with
capture variables (called “regex formulas”) and operators adapted from relational algebra.

Whereas the relations returned by the spanners represent a basic way of structuring
the extracted information, more rich and semantically meaningful representations are typ-
ically desired, to better interpret data and integrate them with the information asset of an
organization. This calls for the definition of a conceptual and formal representation of the
application domain and for its coupling with the data extracted from documents.

Ontologies have proved themselves over the years to be one of the best means to model
knowledge at the conceptual level, and their role in information management is now unan-
imously recognized. The main advantages in the use of ontologies can be seen in their
high-level, easy-to-understand, and unambiguous representation of a domain of discourse,
as well as the possibility of reasoning over such representation to obtain all the information
it infers (and not only the asserted one). Linking ontologies to data and providing (effi-
cient) reasoning services over them is the main objective of Ontology-based Data Access
(OBDA) [12,13]. In OBDA the ontology is coupled with external databases through a map-
ping, which declaratively specifies the semantic relationship between the ontology and the
data. A user interacts only with the ontology, e.g., by posing queries, which are automati-
cally processed by sophisticated algorithms that return the answers to the user by reasoning
on the ontology and the mapping. In OBDA, however, ontologies have been essentially used
so far only on top of relational databases, with very few exceptions (as, e.g., [14]), and how
to access unstructured data, like those contained in text documents, using the ontologies as
in OBDA is still unexplored.

In this paper we take a first step in this direction and propose a formal framework
for coupling ontologies with spanners for IE from documents. Within this framework, we
focus on the problem of query answering and provide some complexity results and practical
algorithms for the case when the ontologies are specified in some languages of the DL-Lite
family of Description Logics [15] and are coupled with expressive spanners. More in detail,
our contributions can be summarized as follows:
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• We introduce the notion of Ontology-based document spanning (OBDS) system.
In an OBDS system, an ontology is linked to text documents through extraction
assertions, which act similarly as mapping assertions in OBDA. Roughly speak-
ing, an extraction assertion associates a document spanner P to a query q over the
ontology, with the intended meaning that the tuples of strings corresponding to the
spans returned by P evaluated over a text document must be among the answers to
q evaluated over the ontology. An extraction assertion can be thus seen as a rule,
where P is the body and q is the head.

• We study query answering over an OBDS system, i.e., how to answer a user query
specified over the ontology by retrieving the answers from the text documents
mapped to the ontology. We consider the case in which (i) the ontology is speci-
fied in either DL-LiteR or DL-LiteF [15], (ii) user’s queries are CQs, (iii) span-
ners in the body of extraction assertions belong to the class [[RGX{∪,π,⋊⋉,ζ=}]], i.e.,
are defined as regex formulas extended with the relational algebra operators union,
projection, join, and string selection [10], (iv) queries in the head of extraction as-
sertions are CQs. We show that query answering is in PTIME in data complexity
(i.e., the complexity computed only with respect to the size of the underlying
documents). We remark that DL-LiteR and DL-LiteF are two popular ontology
languages, tailored to OBDA and to deal with large datasetsa, CQs are the most
expressive queries for which query answering over ontologies has been shown to
be decidable, and spanners in [[RGX{∪,π,⋊⋉,ζ=}]] are among the most expressive
document spanners considered in [10]. We note also that extraction assertions we
define resemble GLAV mapping assertions used in data integration and in OBDA,
i.e., the most expressive form of mappings adopted in these contexts [12, 17–19].

• We investigate query rewriting in OBDS systems, i.e., whether it is possible to
answer a query by first rewriting it and then evaluating the rewriting over the data
layer. Our aim is to understand whether we can reduce query answering to the
execution of a document spanner of the same kind of those used in the extrac-
tion assertions. We notice that a similar property is considered crucial in OBDA,
where one typically looks for the so-called first-order rewritability of query an-
swering, that holds when query answering can be solved by evaluating over the
source database a first-order query computed independently from the data. This
indeed means that such evaluation can be delegated to the DBMS managing the
source data. In our OBDS framework, we positively answer the above question
for the case in which ontologies are specified in DL-LiteR. We indeed provide an
algorithm that rewrites every CQ issued over an OBDS system (i.e., over its ontol-
ogy) into a spanner belonging to [[RGX{∪,π,⋊⋉,ζ=}]]. We also show that the same
holds when the ontology is expressed in DL-LiteF and extraction assertions are
GAV, i.e., they have in their heads only CQs without existential variables. We be-
lieve that these results have an interesting practical fallout, since in these cases it is
possible to delegate the evaluation of the rewriting to same engine that is in charge

aIn particular, DL-LiteR is the formal counterpart of OWL2QL, one of the tractable profiles of OWL2 [16]
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of evaluating the spanners in the body of the extraction assertions. Interestingly,
as IE engine we can use an off-the-shelf tool like IBM SystemT [8], whose AQL
language allows for expressing spanners belonging to [[RGX{∪,π,⋊⋉,ζ=}]]. Also, the
modular nature of our rewriting technique seems to streamline the incorporation
of OBDS capabilities into current OBDA engines (e.g., [20, 21]).

We conclude this section by observing that the use of ontologies in IE has been already
widely considered in the literature (see [22] for a survey on the topic). However, none of
the previous works on this matter has proposed a formal declarative framework for the
adoption of ontologies in IE, nor did they study the problem of query answering, with the
exception of [23], of which the present paper is an extended version. Also, we believe that
our framework paves the way for an in-depth investigation of the role of ontologies in IE,
and in particular for the understanding of how reasoning over the ontology can help IE.

The rest of the paper is organized as follows. In Section 2 we give some preliminar-
ies. In Section 3 we introduce our OBDS framework, and in Section 4 we establish our
complexity results on query answering. Then, in Section 5, we provide our query rewrit-
ing algorithms for OBDSs systems equipped with DL-LiteR or DL-LiteF ontologies. We
finally conclude the paper in Section 6.

2. Preliminaries

In this section we first recall some basic notions on Description Logic (DL) ontologies and
on queries over them. Then, we turn our attention to document spanners and describe the
formal framework proposed by Fagin et al. in [10, 11].

2.1. Description Logic ontologies

Description Logics (DLs) [24] are decidable fragments of first-order logic (FOL) that are
largely recognized as one of the best means to specify ontologies, being them formally
well-understood and equipped with powerful mechanisms to reason upon the representa-
tions they allow to specify. DLs model the domain of interest in terms of objects, a.k.a.,
individuals, concepts, that are abstractions for sets of objects, and roles, that are binary
relations between objects. They are widely used in the context of the Semantic Web, and
indeed are at the basis of OWL2, the W3C standard for specifying ontologies [25].

Formally an DL ontology O is defined as a pair ⟨T ,A⟩ where:

• T , called TBox, is the terminological component, which contains assertions (i.e.,
closed formulas of the logic, a.k.a. sentences) representing intensional knowledge,
and
• A, called ABox, is the assertional component, which contains assertions repre-

senting extensional knowledge.

From now on we assume to have a fixed infinite countable alphabet Γ of names for
concepts, roles and individuals. The formal semantic of a DL language is given in terms
of FOL interpretations. An interpretation I = (∆I , ·I ) over Γ consists of a non-empty
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set ∆I (the interpretation domain) and an interpretation function ·I that assigns to each
concept C a subset CI of ∆I , and to each role R a binary relation RI over ∆I , and to
each individual a an object o ∈ ∆I .

An interpretation I is a model of an ontology O if I satisfies all the assertions in T
and A. The satisfaction of an assertion is defined in the standard way for DLs [24]. We
denote with Mod(O) the set of all models of an ontology O. We say that O is satisfiable
if Mod(O) ̸= ∅, unsatisfiable, otherwise. We also say that O entails a FOL sentence ψ,
denoted O |= ψ, if ψI evaluates to true in every I ∈ Mod(O), where ψI denote the
standard interpretation of a FOL sentence [26].

In this work we will focus on ontologies expressed in DL-Lite, a family of DLs partic-
ularly suited for specifying ontologies on top of large data repositories [15, 27], and that is
at the basis of OWL2QL, one of the tractable profiles of OWL 2 [16]. More specifically, we
will consider the two basic members of this family, i.e., DL-LiteR and DL-LiteF .

In DL-LiteR, the TBox is a finite set of assertions having the following forms:

B1 ⊑ B2 Q1 ⊑ Q2 (concept/role inclusion)

B1 ⊑ ¬B2 Q1 ⊑ ¬Q2 (concept/role disjointness)

where: each Qi, with i ∈ {1, 2}, is basic role, i.e., a role name R ∈ Γ (a.k.a. atomic
role) or its inverse R−; each Bi, with i ∈ {1, 2}, is a concept name A ∈ Γ (a.k.a. atomic
concept), or a concept of the form ∃R, or ∃R−, i.e., unqualified existential restrictions,
which denote the set of objects occurring as first argument (a.k.a., domain) or second argu-
ment (a.k.a. range) of R, respectively. For all details on the semantics of all above concept
and role expressions we refer the reader to [15]. We however recall that an interpretation I
satisfies an inclusion B1 ⊑ B2 if BI

1 ⊆ BI
2 , and satisfies B1 ⊑ ¬B2 if BI

1 ∩BI
2 = ∅, and

analogously for assertions on roles.
In DL-LiteF , inclusions and disjointnesses between roles are not allowed but it is pos-

sible to specify functionalities, which are assertions of the form:

(funct Q) (role functionalities)

where Q is a basic role. An interpretation I satisfies (funct Q) if there are no o1, o2, o3 ∈
∆I such that both (o1, o2) and (o1, o3) belong to QI .

In both the above logics, the ABox is a finite set of membership assertions of the form
C(a) or R(a, b), where C and R are an atomic concept and an atomic role, respectively,
and a and b are individual names (a.k.a., constants). We finally note that DL-Lite logics
adopt the Unique Name Assumption, that is, in every interpretation different constants are
interpreted with different objects.

Example 1. Consider the atomic concepts Professor and Course, the atomic roles
teaches and expert in, and the following DL-LiteR TBox:

θ1 : Course ⊑ ¬Person θ2 : Professor ⊑ Person

θ3 : teaches ⊑ expert in θ4 : ∃teaches− ⊑ Course
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Such a TBox states that a course is not a person (θ1), every professor is a person (θ2),
whoever teaches a course is an expert about it (θ3), and that everything that is taught (i.e.,
occurs in the range of teaches) is a course (θ4).

Instead, we obtain a TBox in DL-LiteF if we substitute θ3 with the assertion

(funct teaches−)

specifying that each course can be taught by at most one professor.
The following assertions are an example of ABox (for both DL-LiteR and DL-LiteF ).

α1 : Professor(Einstein)

α2 : teaches(Einstein, Physics)

Such an ABox states that (the individual denoted by) Einstein is a Professor (α1) and
that Einstein teaches Physics (α2). □

Query answering. One of the most important reasoning service in the presence of ontolo-
gies coupled with data, and which is the service we are mainly interested in for this paper,
is query answering. We start with a general notion of queries in FOL, and then we move to
the definition of queries over DL ontologies. A query is a function-free FOL open formula,
which we denote as:

{x⃗ |∃y⃗.ϕ(x⃗, y⃗)} (1)

where ∃y⃗.ϕ(x⃗, y⃗) called the body of the query is a FOL formula with free variables x⃗, also
called the target list of the query, and existentially quantified variables y⃗, possibly contain-
ing constants. The number of variables in x⃗ is the arity of the query. Among FOL queries,
we in particular consider conjunctive queries (CQs), i.e., queries in which ∃y⃗.ϕ(x⃗, y⃗) is a
conjunction of the form ∃y⃗.p1(x⃗1, y⃗1)∧ . . .∧pn(x⃗n, y⃗n), where each pi(x⃗i, y⃗i) is an atom,
x⃗ = ∪ni=1x⃗i and y⃗ = ∪ni=1y⃗i. When queries are specified over an ontology, each atom
predicate pi is either an atomic concept or an atomic role from the ontology signature. A
union of conjunctive query (UCQ) is a FOL query of the form:

{x⃗ | ∃y⃗1.ϕ1(x⃗, y⃗1) ∨ · · · ∨ ∃y⃗n.ϕn(x⃗, y⃗n)} (2)

such that each {x⃗ | ∃y⃗i.ϕi(x⃗, y⃗i)} is a CQ. To simplify notation, throughout the paper we
can write a FOL query {x⃗ |∃y⃗.ϕ(x⃗, y⃗)} as the formula ∃y⃗.ϕ(x⃗, y⃗), and a UCQ as a set of
CQs.

Query answering over an ontology amount to computing the so-called certain answers,
i.e., those answers that hold in all models of the ontology. Formally, given a query q of
arity n of the form (1) over an ontology O = ⟨T ,A⟩, an n-tuple c⃗ of constants is a certain
answer to q in O if O |= ∃y⃗.ϕ(c⃗, y⃗), i.e., the sentence obtained by substituting in q each
variable in x⃗ with the corresponding constant in c⃗ is entailed by O. In the following, we
can write q(x⃗) to denote a query of the form (1) with free variables x⃗, and q(c⃗) to denote
∃y⃗.ϕ(c⃗, y⃗). The set of certain answers to q in O is denoted by cert(q,O).

We recall that establishing whether an ontology is satisfiable, i.e., whether it admits at
least one model, can be reduced to query answering over a satisfiable ontology, for both



7

DL-LiteR and DL-LiteF , as shown in [15,28]. Also, query answering over an unsatisfiable
ontology is meaningless, since computing the certain answers to a query amounts to get all
tuples of constants having the same arity of the query. For these reasons, in this work we
will consider only query answering over satisfiable ontologies.

Computing the certain answers to a query q with respect to a satisfiable DL-LiteR or
DL-LiteF ontology O = ⟨T ,A⟩ can be solved by first computing the so called perfect
reformulation qr of q with respect to the TBox T , and then evaluating qr over the ABox
A (that is, evaluating it over an interpretation that is isomorphic to A, which intuitively
corresponds to consider A a relational database instance). Formally, given a query q and a
TBox T , a perfect reformulation of q with respect to T is a query qr such that, for every
ABox A, cert(q, ⟨T A⟩) = cert(qr,A) (notice that cert(qr,A) indeed corresponds to
evaluate qr over A seen as a database).

Calvanese et al. proposed in [15] a prototypical algorithm, called PerfectRef, for com-
puting the perfect reformulation of a UCQQwith respect to a DL-LiteR or DL-LiteF TBox.
At the basis of the algorithm there is a property saying that to compute the certain answers
via rewriting over satisfiable DL-Lite ontologies, only concept/role inclusions (also called
positive inclusions) need to be used in the reformulation process. According to PerfectRef,
such inclusions are used as rewriting rules, from right to left, to repeatedly rewrite atoms
in the queries in Q (seen as a set of CQs). When an atom is rewritten, a new CQ is added
to the result, as long as a fix point is reached. The final rewriting is indeed a UCQ. For
example, given a TBox assertion B ⊑ A, and a query {x | A(x)} the atom A(x) is rewrit-
ten into B(x) and the query {x | B(x)} is added to the result. Notice however that for an
atom to be rewritten according to an inclusion assertion in T its terms must respect some
syntactic conditions [15]. Moreover, when atoms in the query unify, PerfectRef performs
such unification, which may then trigger some further atom rewritingb.

For more details on PerfectRef we refer the reader to [15]. Below, we simply provide
an example to intuitively show how it works.

Example 2. Consider the following query q expressed over the ontologyO of Example 1:

q = {x | ∃y.Person(x) ∧ teaches(x, y) ∧ Course(y)}

asking for persons who teaches a course.
The certain answers to q in O are given by the evaluation of the UCQ Q produced by

the algorithm PerfectRef over A. Q is a set consisting of the following CQs:

q : {x | ∃y.Person(x) ∧ teaches(x, y) ∧ Course(y)}
q1 : {x | ∃y.Professor(x) ∧ teaches(x, y) ∧ Course(y)}
q2 : {x | ∃y.Person(x) ∧ teaches(x, y)}
q3 : {x | ∃y.Professor(x) ∧ teaches(x, y)}.

bWe note that, as a consequence of unification operations, the target list of a query in the set of CQs returned
by PerfectRef may also contain constants, and that the taget lists of the CQs in the returned set may also not be
equal to one another.
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P r o f e s s o r E i n s t e i n t a u g h t p h y s i c s .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

T h e P r o f e s s o r w o n a n o b e l .

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. Document Dex

The query q1 is obtained from q by rewriting Person(x) into Professor(x), according
to inclusion θ2. q2 is obtained from q after rewriting Course(y) into ∃z.teaches(z, y)
(according to inclusion θ4) and after unifying teaches(x, y) and teaches(z, y). Similarly
for q3, which is derived from q1. Since O is satisfiable, we can obtain the certain answers
to q in O by evaluating Q over the ABox A, which returns the set {Einstein}. □

Interestingly, the perfect rewriting returned by PerfectRef is a UCQ, thus showing that
query answering in DL-Lite logics is tractable in data complexity (the complexity computed
with respect to the size of the ABox only), more precisely, in AC0. At the same time, the
evaluation of such UCQ can be delegated to a relational DBMS in charge of managing the
data in the ABox, thus making DL-Lite logics particularly suited for ontology-based data
management.

2.2. Document spanners

We now recall the definitions of spans and spanners, discuss a way of representing spanners,
and present an algebra, through which the spanners of interest in this work are defined. Our
presentation is necessarily concise. For more details we refer the reader to [10].

Strings and spans. We fix a finite alphabet Σ of symbols, which we assume totally ordered.
In the following examples Σ is composed by the lower and capital letters of English alpha-
bet, the full stop (“.”), and the underscore (“ ”), which stands for the space character. We
denote by Σ* the set of all finite strings, called also documents over Σ. Thus, a document
D ∈ Σ∗ is such that D = σ1 . . . σn, with n ≥ 0 and σi ∈ Σ for i ∈ {1, . . . , n}.

A span identifies a substring of D by specifying its bounding indices. Formally a span
of D has the form [i, j⟩, where 1 ≤ i ≤ j ≤ n + 1. If [i, j⟩ is a span of D, then D[i,j⟩
denotes the substring σi . . . σj−1. Note that D[i,i⟩ is the empty string, and that D[1,n+1⟩ is
D. Two spans [i, j⟩ and [i′, j′⟩ are equal if and only if i = i′ and j = j′.

We denote by Spans(D) the set of all possible spans of D.

Example 3. Consider the document Dex given in Figure 1, and the span [11, 19⟩. It iden-
tifies the substring Einstein, i.e., Dex

[11,19⟩ = Einstein. □

We assume to have a fixed and infinite set SVars of variables, disjoint from Σ∗. Given
a finite set V ⊆ SVars and a document D ∈ Σ∗, a (V,D)-tuple is a mapping µ : V →
Spans(D) that assigns a span of D to each variable in V . When V is clear from the context,
we simply call the above tuple a (D)-tuple . A (V,D)-relation is a set of (V,D)-tuples .

A document spanner (or simply spanner) is a function P over V that maps a document
D to a (V,D)-relation . We use SVars(P ) to denote the set of variables of a spanner P .
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eval([[γtok]],D
ex)

x

µ1 [1, 10⟩
µ2 [11, 19⟩
µ3 [20, 26⟩
µ4 [27, 34⟩
µ5 [35, 38⟩
µ6 [39, 48⟩
µ7 [49, 52⟩
µ8 [53, 54⟩
µ9 [55, 60⟩

Figure 2. Spanner [[γtok]] applied to the document in Figure 1

The cardinality of SVars(P ) is the arity of P . We may also use P (v1, . . . , vn) to denote
a spanner P over variables V = v1, . . . , vn. Furthermore, given a document D, we write
eval(P,D) to denote the (V,D)-relation returned by P with D as input.

Example 4. In Figure 2 we provide an example of (V,D)-relation , for the spanner [[γtok]],
such that SVars([[γtok]]) = {x}. (V,D)-tuples in this figure correspond to the words of
Dex from Figure 1 (we discuss below how to represent such spanner in formulas). □

Spanner representation. Among the possible ways of representing spanners [10], in this
paper we use so-called regex formulas. A variable regex is an extension of a regular ex-
pression with capture variables. Its grammar is defined as follows:

γ := ∅ | ϵ | σ | (γ ∨ γ) | (γ· γ) | γ* | x{γ} (3)

The symbol ∅ defines the empty set, ϵ is the empty string, and σ ∈ Σ. The ∨, · , and
∗ symbols denote disjunction, concatenation, and the Kleene-star operators, respectively.
x{γ} instead indicates that the match obtained through the variable regex γ is mapped (in
the form of a span) to the variable x ∈ SVars. Parenthesis may be used in a variable regex
in the usual way to specify precedence between operators.

We denote by SVars(γ) the set of variables that occur in γ. We use γ+ as abbreviations
γ· γ*, and [σi-σj ] as a shortcut for the disjunction of all characters σ ∈ Σ such that σi ≤
σ ≤ σj .

In this paper we consider only variable regex expressions that are functional, i.e., such
that in a matching over a document each variable is associated with one span. A functional
variable regex is also called regex formula. The class of regex formulas is denoted by RGX.

Example 5. l Consider the following (simplified) regex formulas system:

• γtok = (ϵ ∨ (Σ∗· (. ∨ )))·x1{[a-zA-Z]+}· ((. ∨ )·Σ∗),
i.e., a regex formula assigning to x1 the words in a document (that is, every non-
empty sequence of alphabetic characters preceded by either a space or an empty
string, and followed by either a fullstop or a space);
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• γcap = (ϵ ∨ (Σ∗· (. ∨ ))·x1{[A-Z]·Σ∗}· ((. ∨ )·Σ∗),

γcap = (ϵ ∨ (Σ∗· (. ∨ )))·x1{[A-Z]·Σ∗}· ((. ∨ )·Σ∗)

i.e., a regex formula assigning to x1 the words in a document that begin with
a capital letter;

• γaft prof = (Σ∗· )· (Professor· )·x1{Σ+}· ( ·Σ∗),
i.e., a regex formula assigning to x1 the words in a document that follow the word
Professor (plus a space). □

A regex formula γ naturally represents a spanner, and by [[γ]] we denote the spanner
that is represented by γ. Then, with [[RGX]] we denote the class of all spanners represented
by regex formulas.

An algebra over spanners. We now present an algebra over spanners. This algebra extends
the class of spanners that are represented by regex formulas, i.e., [[RGX]], with the following
operators: union (∪), projection (π), (natural) join (⋊⋉), and string-equality selection (ζ=).
The set of spanners represented by formulas in the class RGX closed under ∪, π,⋊⋉ and
ζ= is denoted by [[RGX{∪,π,⋊⋉,ζ=}]]. Formally, let P , P1 and P2 be spanners and let D be
a document, the above operators are defined as follows [10]:

• Union. The union P1 ∪ P2 is defined when P1 and P2 are union compatible, that
is, SVars(P1) = SVars(P2). In that case, SVars(P1 ∪ P2) = SVars(P1) and
eval(P1 ∪ P2,D) = eval(P1,D) ∪ eval(P2,D).

• Projection. If v ⊆ SVars, then πv(P ) is the spanner such that SVars(πv(P )) =
v and eval(πv(P ),D) is obtained from eval(P,D) by restricting the domain of
each (D)-tuple to v.

• (Natural) Join. The join between spanners is defined as P1 ⋊⋉ P2. It holds that
SVars(P1 ⋊⋉ P2) = SVars(P1) ∪ SVars(P2), and eval(P1 ⋊⋉ P2,D) consists of
all (D)-tuples µ that agree with some µ1 ∈ eval(P1,D) and µ2 ∈ eval(P2,D).

• String selection. Let x and y be two variables in SVars(P ), the string-equality
selection operator is defined as ζ=x,yP . We have that SVars(ζ=x,yP ) = SVars(P ),
and eval(ζ=x,yP,D) consists of all (D)-tuples µ in eval(P,D) such that Dµ(x) =

Dµ(y).

Example 6. Using the regex formula defined in Example 5 we can define, using the span-
ner algebra, the following more expressive and complex [[RGX{∪,π,⋊⋉,ζ=}]]-spanner.

• [[ρprof ]] = [[γcap]] ⋊⋉ [[γaft prof ]], i.e., the spanner represented by a regex formula
that assigns to the variable x each word that both begins with a capital letter and
follows the string Professor . The result of applying [[ρprof ]] to the document Dex

in Figure 1 is shown in Figure 3. The extracted span is [11, 19⟩ corresponding to
the substring Einstein. □
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eval([[ρprof ]],D
ex)

x1
µ1 [11, 9⟩

Figure 3. Result of spanner [[ρprof ]] applied to the document in Figure 1

In our framework, which we introduce in the next section, we will consider only span-
ners belonging to [[RGX{∪,π,⋊⋉,ζ=}]]. It is worthwhile to remind the reader that spanners
in such class are called core spanners, for being them able to capture the core of AQL,
the declarative language used in SystemT, the IBM rule-based IE tool [8]. Therefore, an
actual implementation of our framework can be straightforwardly based on the usage of a
state-of-the-art tool like SystemT for declarative IE from text documents.

3. Linking text documents to ontologies

In this section we present our framework for coupling documents to ontologies, which we
call Ontology-based document spanning (OBDS) framework. In the last part of the section,
we also describe the problem of query processing in OBDS, which we will then study in
depth in the last part of the paper.

Before delving into the details of the framework, we discuss how to deal with the fol-
lowing main problem: when mapping text documents to ontologies, it is likely that the text
does not directly contain the identifiers that are used at the ontology level to denote the
objects that are instances of the predicates of the ontology. Rather, the strings that are ex-
tracted from the document should more correctly interpreted as values.Our basic idea to
deal with this problem is to devise a linking mechanism that is inspired by the mapping
used in OBDA, and adopt the same technique adopted in OBDA to construct objects from
values: consider object identifiers formed by (logic) terms built out from the string values
extracted from the documents [27]. To formally describe this mechanism we recall the no-
tions of object term and variable term. An object term has the form f(d⃗) where d⃗ is an
m-tuple of either constants or variables and f is a function symbols of arity m. If t⃗ is a
tuple of variables without constants, f(d⃗) is called variable object term. If instead d⃗ is a
tuple of constants, f(d⃗) is called ground object term.

We now turn to the framework definition. The three ingredients for an OBDS system
are the ontology, a set of extraction assertions linking text data to the ontology, and a source
text document.

Definition 1. An OBDS System E is a pair ⟨T ,R⟩, where

• T is a DL TBox.
• R is a set of extraction assertions of the form

P (x⃗)⇝ Ψ(x⃗) (4)

where

– P (x⃗) (the left-hand side of the assertion) is a [[RGX{∪,π,⋊⋉,ζ=}]]-spanner.



12

– Ψ(x⃗) (the right-hand side of the assertion) is a CQ over T with free variables
x⃗, possibly using variable terms f(w⃗), such that w⃗ ⊆ x⃗, as arguments of its
atoms. Note that Ψ(x⃗) may contain also existentially quantified variables.

In the following, when the TBox of an OBDS system E is specified in a DL language
L we say that E is an L OBDS system.

Example 7. Let E = ⟨T ,R⟩ be an OBDS system where T is as in Example 1, and let
[[ρprof]] and [[γteaches]] be two spanners, where [[ρprof ]] is as defined in Example 6, whereas
the regex formula representing [[γteaches]] is:

γteaches = (ϵ ∨ (Σ∗· ))·x2{Σ+}· ( · taught· )· y2{Σ+}· ((. ∨ )·Σ∗)

i.e., a regex assigning to x2 the words before the word taught, and to y2 the words after
taught.

The set of extraction assertionsR is as follows:

m1 : [[ρprof ]](x1) ⇝ Professor(prof(x1))
m2 : [[γteaches]](x2, y2) ⇝ teaches(prof(x2), course(y2))

Notice that both prof and course are function symbols of arity 1 used to construct
individuals from the string returned by the spanners. □

The semantic of an OBDS system E = ⟨T ,R⟩ is defined with respect to a document
D. Given one such document, an interpretation I is a model for E with respect to D if:

• I is a model for T , and
• Ψ(Dµ(x1), . . . ,Dµ(xn)) evaluates to true in I for each µ ∈ eval(P,D).

We use Mod(E ,D) to denote the set of models of E with respect to D. The notion
of entailment naturally extends to OBDS systems, i.e., given a sentence ψ we write that
⟨E ,D⟩ |= ψ if ψI for every I ∈ Mod(E ,D).

In a similar way to what happens for mappings in the context of data integration [17]
and OBDA, we can have two types of extraction assertions, i.e., GAV and the GLAV. GLAV
assertions are exactly assertions of the kind we discussed so far. Instead, in a GAV extrac-
tion assertion there are no existentially quantified variables in its right-hand side. In this
case, Ψ(x⃗) in assertions of type (4) is in the form p1(x⃗1)∧ . . .∧ pk(x⃗k), with ∪ki=1x⃗i = x⃗.
It is easy to see that the previous extraction assertion is equivalent to the set of assertions:

P (x⃗1) ⇝ p1(x⃗1)

. . .

P (x⃗k) ⇝ pk(x⃗k),

that is, the right-hand side of each assertion is a single-atom query without existential
variables (but still possibly containing variable terms). Therefore, from now on, we always
assume that GAV extraction assertions have the form above (unless otherwise specified).

We conclude this section by talking about query answering in OBDS systems. Query
answering in one such system refers to the task of computing the answer set to a query
posed on the ontology. As stated earlier, we adopt the notion of certain answers for the
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semantics of query answering. In a OBDS system, computing the certain answers to a
query q with respect to a document D, denoted by cert(q, E ,D), amounts to finding the
answers to q that hold in all models for E with respect to D.

Definition 2. Let E = ⟨T ,R⟩ be an OBDS system, let q be a query, and let D be a
document. A tuple of constants and ground object terms t⃗ is a certain answer to q in E with
respect to D if for every model I ∈ Mod(E ,D) it holds that (q(⃗t))I evaluates to truec.

For example, the set of the certain answers to the query {x | Person(x)} in the OBDS
system E of Example 7 with respect to the document Dex in Figure 1 is {prof(Einstein)}.

4. Complexity of query answering in OBDS systems

To establish computational complexity of query answering in our framework we show how
to reduce this problem to query answering in an OBDA system. We thus first recall some
basic notions of OBDA.

An OBDA system J is a triple ⟨T ,M,S⟩, where T is a DL TBox, S is a relational
source schema, andM is a mapping between T and S. The mappingM is a set of asser-
tions of the form

Φ(x1, . . . , xn)⇝ Ψ(x1, . . . , xn)

where Ψ(x1, . . . , xn) (the right-hand side of the assertion) is exactly as for an extraction
assertion in an OBDS system (cf. assertion (4)), whereas Φ(x1, . . . , xn) (the left-hand side
of the assertion) is a FOL query expressed over the schema S. The semantics of OBDA
systems is similar to the semantics of OBDS systems, but it is defined with respect to
a database instance for S. More precisely, given one such database DB (called source
database), a model for J is any interpretation I that satisfies T and such that for every
tuple (c1, . . . , cn) in the evaluation of the query Φ(x1, . . . , xn) over DB, (Ψ(c1, . . . , cn))

I

evaluates to true. The notion of entailment in an OBDA system is analogous to the same
notion for ontologies and OBDA systems. Also the notion of certain answers to a query q
in an OBDA system J is as the one for OBDS systems (cf. Definition 2), but in this case it
is given with respect to a source database DB, denoted cert(q,J ,DB).

Given these similarities between the two frameworks, we can easily reduce query an-
swering in an OBDS system to query answering in an OBDA system. Intuitively, given
an OBDS system E = ⟨T ,R⟩ and a document D, we can construct an OBDA system
J = ⟨T ,M,S⟩ and a source database DB for J such that:

• T is the same TBox of E ;
• S is a source schema which contains a relation schema TP for each spanner P

occurring in R, such that the arity of TP coincides with the number of variables
in SVars(P ) (in other terms, S is the schema “produced” by the spanners inR);

c(q(⃗t))I is the interpretation in I of the sentence q(⃗t), which possibly contains ground object terms. Each such
term f(c⃗) is interpreted exactly as a constant, i.e., (f(c⃗))I ∈ ∆I and no two different terms are interpreted with
the same object in ∆I (i.e., we adopt the unique name assumption on terms, too).
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Algorithm obds2obda
Input: A set of extraction assertionsR, a document D
Output: A mappingM, a relational schema S and a relational database DB

begin
S ← ∅;
DB← ∅;
M← ∅;
for each r ∈ R, where r = P (x⃗)⇝ Ψ(x⃗), do

S ← S ∪ {TP | such that TP is a fresh relation schema of the same arity of P};
DB← DB ∪ {TP (Dµ(x1), . . . ,Dµ(xn)) | µ ∈ eval(P,D)};
M←M∪ {TP (x⃗)⇝ Ψ(x⃗)};

returnM, S, and DB

end

Figure 4. The obds2obda(R,D) algorithm

• M is a mapping containing an assertion m for each extraction assertion e in R,
such that m and e have the same right-hand side, and, let P be spanner of e such
that |SVars(P )| is n, the left-hand side of m is the query TP (x1, . . . , xn) (in
other terms,M contains the same assertions of R, modulo a substitution of the
spanners with the corresponding relation symbol in S);

• DB is a source database instance for S obtained by evaluating each spanner in
R over the document D, which returns tuples of spans, and by extracting the
substrings of D identified by such spans.

In Figure 4, we give an algorithm, called obds2obda, that taken as input a set of
extraction assertionsR returnsM, S, and DB as described above.

The following lemma shows the semantic relation between an OBDS system and the
corresponding OBDA system constructed with the algorithm obds2obda.

Lemma 1. Let E = ⟨T ,R⟩ be Given an OBDS system and D be a document. LetM, S
and DB be respectively the mapping, the relational schema, and the database returned by
obds2obda(R,D), and let J = ⟨T ,M,S⟩ be an OBDA system. Then, Mod(E ,D) =

Mod(J ,DB).

Proof. Let us assume that there exists I ∈ Mod(E ,D) such that I ̸∈ Mod(J ,DB). Since
I is a model for E with respect to D, then I satisfies T . Thus, if I is not a model of
J with respect to DB, I does not satisfyM. This means that there must be an assertion
Φ(x⃗)⇝ Ψ(x⃗) belonging toM such that there exists a tuple of constants c⃗ in the evaluation
of Φ(x⃗) over DB for which (Ψ(c⃗))I evaluates to false. However, by construction of DB,
Φ(x⃗) = TP (x⃗), and every tuple c⃗ is such that c⃗ = (Dµ(x1), . . . ,Dµ(xn)) for some µ ∈
eval(P,D), and since I satisfies R (by hypothesis), it holds that (Ψ(c⃗))I evaluates to true
in I. This leads to a contradiction and thus shows that Mod(E ,D) ⊆ Mod(J ,DB). The
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fact that Mod(J ,DB) ⊆ Mod(E ,D) can be proved in an analogous way, thus finally
showing the thesis.

The theorem below follows from Lemma 1 and the fact that computing the certain
answers to a CQ over an OBDA system whose TBox is specified in either DL-LiteR or
DL-LiteF is in AC0 in data complexity [15].

Theorem 1. Let E = ⟨T ,R⟩ be either a DL-LiteR or DL-LiteF OBDS system,R be a set
of GLAV extraction assertions, D be a document, and q be a CQ over E . Then computing
cert(q, E ,D) can be solved in time polynomial in the size of D.

Proof. From Lemma 1 it follows that cert(q, E ,D) = cert(q,J ,DB), where J =

⟨T ,S,M⟩, and M, S and DB are returned by obds2obda(R,D). Thus the data com-
plexity of computing cert(q, E ,D) is equal to the execution cost of obds2obda, with
respect to the input document D, and the cost of computing cert(q,J ,DB). It is also easy
to verify that obds2obda runs in polynomial time in the size of D. Indeed, the only steps
of obds2obda that depend on D concern with the construction of DB, which is obtained
by the evaluation of all the spanners inR over D, and the subsequent extraction of the sub-
strings of D identified by the spans returned by such evaluations, which clearly are tasks
polynomial in D (see also [10]). As for the cost of computing cert(q,J ,DB), we recall
that conjunctive query answering in OBDA systems having either DL-LiteR or DL-LiteF
TBoxes and GAV mappings is in AC0 in data complexity [27]. This result extends also to
GLAV mappings, for DL-LiteR TBoxes, as shown in [29]. When mappings are GLAV and
TBoxes are in DL-LiteF the complexity rises to PTIME, which follows from the results in
[30] and [15]. Thus, in all cases the problem can be solved in time polynomial in the size
of D.

We notice that the above technique that reduces query answering over OBDS systems
to query answering over OBDA systems is obviously general and can be used also when
the TBox is specified in other DL languages. In all cases, however, we need to pay the cost
of constructing a source database for the OBDA system J by evaluating the spanners inR
over the document D (which is polynomial).

From practical perspective, however, the approach of “materializing” the result of span-
ner evaluation may have some drawbacks. Indeed, the source document is independent
from the ontology, and thus it may happen that, during the lifetime of an OBDS system, its
content is modified (in other terms, the system can be coupled with a new document, still
using the same extraction assertions). This would clearly require to set up a mechanism for
keeping the database created via spanner execution up-to-date with respect to the document
“evolution”. Furthermore, this is not in the spirit of virtual data integration, which is typi-
cally performed through OBDA systems. To overcome such problems, in the next section
we propose a different approach to query answering, which we base on query rewriting.



16

5. Query Answering via Query Rewriting in DL-Lite

In this section we study query rewriting over OBDS systems, i.e. how to answer a CQ q

posed over one such system E by transforming q into a spanner whose evaluation over an
underlying document D returns the certain answers to q in E with respect to D.

We start by considering OBDS systems equipped with GAV extraction assertions, and
show that, in this case, CQ answering in both DL-LiteR and DL-LiteF OBDS systems
is reducible to the evaluation of a [[RGX{∪,π,⋊⋉,ζ=}]]-spanner over a document D, i.e. a
spanner of the same expressiveness of those allowed in the extraction assertions.

Then we tackle the general case of GLAV extraction assertions. For this setting, we
show that the above result still holds for DL-LiteR OBDS systems, and actually, we can
use the same technique of the GAV case, modulo an easy transformation of the extraction
assertions. We also show that, instead, this technique does not work for DL-LiteF OBDS
systems. For this case, we envisage that input queries should be rewritten in an algebra
over regex formulas allowing for recursion, i.e. that allows for expressing spanners that go
beyond [[RGX{∪,π,⋊⋉,ζ=}]] (e.g. a spanner in RGXlog [31]).

5.1. GAV Extraction Assertions

Given a GAV DL-LiteR or DL-LiteF OBDS system E = ⟨T ,R⟩ and a query q over E , we
rewrite q in three steps, which we call rewriting based on the ontology, rewriting based on
the extraction assertions and reformulation into document spanners. The first step is aimed
at compiling the TBox into the query. The second is aimed at rewriting the query obtained in
the first step (which is still a query expressed over the ontology) according to the assertions
inR. The result produced at this step is a set U of queries, having an “intermediate syntax”
between CQs and spanners in [[RGX{∪,π,⋊⋉,ζ=}]]. The final step transforms the queries in
U into document spanners in the class [[RGX{∪,π,⋊⋉,ζ=}]].

Rewriting based on the ontology. For the first step we adopt the algorithm PerfectRef pre-
sented in [15], which we have briefly described in Sec. 2.

Rewriting based on the extraction assertions. The second step is through an unfolding
method, similar to the one described in [27]. Roughly, the unfolding procedure substitutes,
in all possible ways, each atom α in each query returned by PerfectRef with the spanners
occurring in the left-hand side of extraction assertions referring to the predicate occurring
in α. To this aim, we use the procedure Unfolding, which takes as input a UCQ Q and a
set of extraction assertions R. This procedure, for each CQ q ∈ Q, each atom pi(⃗ti) in q
(where t⃗i is a tuple of terms, i.e. variables and/or constants), and each extraction assertion
P (v⃗i) ⇝ pi(v⃗i), computes the most general unifier σ between pi(⃗ti) and pi(v⃗i), and,
if such a σ exists, substitutes pi(⃗ti) with P (v⃗i) and applies σ to the obtained formula.
Note that only queries having all atoms that unify with at least one extraction assertion
are completely unfolded and returned by Unfolding. After this step, the returned set U
contains queries of the form {t⃗ | ∃y⃗1, . . . , y⃗n.P1(⃗t1, y⃗1) ∧ · · · ∧ Pn(⃗tn, y⃗n)}, where the
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target list t⃗ may contain variables, constants, and object termsd, each Pi is a spanner, each
y⃗i is a (possibly empty) sequence of variables, and each t⃗i is a (possibly empty) sequence
of variables occurring also in t⃗. An example of unfolding is given in Example 8.

Reformulation into document spanners. The last step is carried out by the Transform algo-
rithm. Roughly speaking, such an algorithm transforms the body of each query f ∈ U into
a document spanner in [[RGX{∪,π,⋊⋉,ζ=}]], and returns this spanner together with the tar-
get list of f , suitably modified on the basis of certain variable substitutions needed for the
transformation. In particular, Transform converts each join between values (expressed by
multiple occurrences of a variable in the body of f ) and each selection (specified through
the occurrence of a constant in the body of f ) into a Cartesian product between spanners
(i.e. a ⋊⋉ between spanners with no common variables), to which a string selection (i.e. ζ=)
is applied. More precisely, Transform operates in three steps. First of all, it substitutes each
constant c occurring in f with a fresh (existentially quantified) variable, say w, and adds to
the conjunction in f the atom Pc(w), where Pc = [[Σ∗·w{c}·Σ∗]], i.e. Pc is the spanner
represented by a regex formula that assigns to the variable w only the spans matching with
the constant c. For example, given the query f̂ = {y | ∃x.P1(x, y)∧P2(y, c)}, Transform,
in its first step, reformulates f̂ into f̂ ′ = {y | ∃x,w.P1(x, y) ∧ P2(y, w) ∧ Pc(w)}. In the
second step, for each variable z that appears more than once in the query body, Transform
substitutes each occurrence of z with a fresh variable, and adds to the query body a con-
junction of equalities specifying that all such fresh variables are equal to one another. If z
occurs in the target list (as free variable or as argument of object terms), it is substituted
with any of the newly introduced variables. In our ongoing example, f̂ ′ is reformulated
into f̂ ′′ = {y1 | ∃x, y2, w1, w2.P1(x, y1) ∧ P2(y2, w1) ∧ Pc(w2) ∧ y1 = y2 ∧ w1 = w2}.
In its third step, Transform iteratively applies the following rule, as long as it is ap-
plicable: let f ′′ be the query computed after the second step of Transform, let β be
a conjunction of atoms of the from α1 ∧ α2 ∧ x = y occurring in f ′′, such that x
occurs in α1 and y occurs in α2, substituting β in f ′′ with ζ=x,y(α1 ⋊⋉ α2). Finally,
Transform adds a projection (i.e. π) to the query body in order to project out only the
variables occurring in the target list of the query, eliminates the existential quantification
to obtain a syntactically correct span representation, and returns both the target list and
the computed spanner. In our example, the body of f̂ ′′ is thus finally transformed into
πy1(ζ

=
y1,y2

(P1(x, y1) ⋊⋉ (ζ=w1,w2
(P2(y2, w1) ⋊⋉ Pc(w2))))), whereas the target list returned

by Transform is simply constituted by the variable ye.

The rewriting algorithm for the GAV case, which put together the three functions we
have just described is given below. A complete example of the entire rewriting process is
given in Example 8 (see Eq. 6).

Algorithm OBDS Rewriting(E , q)

dWith a little abuse of notation we continue to call t⃗ target list, even though it does not contain only variables (as
defined in Sec. 2).
eIn this simple example, Transform could even not explicitly return the target list, but in general the target list
conveys information crucial to construct object terms that may occur in the certain answers (see Example 8).
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Input: OBDS E = ⟨T ,R⟩, such that T is either a DL-LiteR or a DL-LiteF TBox
andR is a set of GAV extraction assertions,

CQ q

Output: Sequence of terms T (i.e. a target list),
Document spanner P ∈ [[RGX{∪,π,⋊⋉,ζ=}]]

begin
Q = PerfectRef(T , q)
U = Unfolding(Q,R)
(T, P ) = Transform(U)

return (T, P )

end

Example 8. Consider the setting of Example 7, and the following query q that asks for the
persons who teach a course:

q = {x | ∃y. Person(x) ∧ teaches(x, y) ∧ Course(y)} (5)

as shown in Example 2, the result of PerfectRef(T , q) is the setQ containing the following
CQs:

q : {x | ∃y.Person(x) ∧ teaches(x, y) ∧ Course(y)}
q1 : {x | ∃y.Professor(x) ∧ teaches(x, y) ∧ Course(y)}
q2 : {x | ∃y.Person(x) ∧ teaches(x, y)}
q3 : {x | ∃y.Professor(x) ∧ teaches(x, y)}.

After the execution of PerfectRef, Unfolding(Q,R) unfolds the queries in Q by
using the extraction assertions in R. In our example only q3 can be completely un-
folded. For q3, the atom Professor(x) unifies with the atom Professor(prof(x1))

in the extraction assertion m1 through the unifier σ′ = {x → prof(x1)}, and
then the atom σ′(teaches(x, y)) = teaches(prof(x1), y) unifies with the atom
teaches(prof(x2), course(y2)) in the extraction assertion m2 with the unifier σ′′ =

{x1 → x2, y → course(y2)}. The unfolding will thus produce the following queryf :

{prof(x2) | ∃y2.([[ρprof ]](x2) ∧ [[γteaches]](x2, y2))} (6)

In the above query (6), we are slightly abusing the notation, since, after the unfolding,
the variables denote spans, and not directly the strings we are looking for. Thus, when
we write prof(x2) we in fact mean prof(Dx2

), where D denotes the underlying text
document. In other words, prof(x2) indicates that the answer to the query consists of
ground object terms with function symbol prof and as argument the strings identified by
the spans returned through x2, when the spanner represented by the regex formula in (the
body of) the query (6) is evaluated.

Afterwards, the algorithm Transform(U) rewrites the above query in the spanner syntax
in order to obtain a document spanner ready to be evaluated over the underlying document.

fNote that the application of the unifiers actually renames the variables used in the spanners.
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Transform(U) first produces the following query, where no variable occurs more than once
(see the description of the second step of Transform):

{prof(z1) | ∃y2, z2.([[ρprof ]](z1) ∧ [[γteaches]](z2, y2) ∧ z1 = z2)} (7)

Then, it produces a representation of (the body of) the above query in the [[RGX{∪,π,⋊⋉,ζ=}]]

syntax. More precisely, it computes the spanner, which we denote [[ρtransf ]], defined as
follows:

[[ρtransf ]] = πz1(ζ
=
z1,z2([[ρprof ]] ⋊⋉ [[γteaches]])) (8)

The above spanner is returned together with the target list T = prof(z1). Note that, in
Eq. (8), [[ρprof ]] and [[γteaches]] are the spanners as defined in Examples 5 and 6, but in
which the variables have been renamed by the functions Unfolding and Transform. More
in detail, the original variable x1 in [[ρprof ]] is now z1, and the original variable x2 of
[[γteaches]] is now z2. □

We show in the following that the algorithm OBDS Rewriting can be used to obtain the
certain answers to a CQ q. It is indeed sufficient to evaluate over the underlying document
the spanner returned by the algorithm, extract the strings corresponding to the spans pro-
duced by such an evaluation, and use them to bind the variables in the target list returned
by OBDS Rewriting. To formalize this last aspect, we need to introduce the function res.
Given a document D, a spanner P such that SVars(P ) = V = v1, . . . , vm, a target list
T = t1, . . . , tn, such that set of variables occurring in T coincides with V , and given a
(V,D)-tuple µ ∈ eval(P,D), we define res(T, µ) as the function that returns a tuple of
constants and ground object terms c1, . . . , cn such that each ci is obtained as follows:

• if ti is a constant, ci = ti;
• if ti = vj , where 1 ≤ j ≤ m, ci = Dµ(vj);
• if ti = fi(vj1 , . . . , vjk), where 1 ≤ ji ≤ m for i ∈ {1, . . . , k}, ci =

fi(Dµ(vj1 )
, . . . ,Dµ(vjk )

).

We are now ready to provide the main result of this section.

Theorem 2. Let E = ⟨T ,R⟩ be either a DL-LiteR or DL-LiteF OBDS system, such that
R is a set of GAV extraction assertions, let D be a document, let q be a CQ over E , and let
T and P be the target list and spanner returned by OBDS Rewriting(E , q), respectively.
Then, cert(q, E ,D) =

⋃
µ∈eval(P,D) res(T, µ). Furthermore, P ∈ [[RGX{∪,π,⋊⋉,ζ=}]].

Proof. The result follows from the following facts: (i) PerfectRef(q, T ) returns the perfect
rewriting of a CQ q with respect to a DL-LiteR or DL-LiteF TBox T , i.e. given an ABox
A, the certain answers to q over ⟨T ,A⟩ coincide with the evaluation of q over A, seen as
a database [15]; (ii) the soundness of the procedure Unfolding to rewrite queries in GAV
OBDA systems, as shown in [27], and (iii) the correctness of the algorithm Transform,
which performs a purely syntactic/symbolic conversion. As for this last point, Transform
simply converts CQs whose atoms use (symbols denoting) document spanners as predi-
cates, into spanners represented in [[RGX{∪,π,⋊⋉,ζ=}]]. It is not difficult to see that, for each
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CQ q in U , the first and second step of Transform(U) produce a CQ query that is equiv-
alent to q. Then the algorithm simply turns joins in the CQ (which are expressed through
equalities between variables) into Cartesian products between spanners (i.e. natural joins
between spanners with no common variables), which are in fact expressed over spans. The
semantics of the joins between values is then obtained through the string-selection opera-
tor applied to the result of the natural joins between spans. As a final step, the algorithm
simply re-expresses the projection specified in the query through the target list by using the
projection operator π. It is then easy to see that T and P respect the pre-conditions of the
function res, i.e. that the set of variables occurring in T coincides with SVars(P ). Then,
by construction we get that P belongs to the class [[RGX{∪,π,⋊⋉,ζ=}]].

Example 9. In continuation of Example 8, we execute eval([[ρtransf ]],D
ex), where Dex

is the document in Fig. 1, and we obtain the span [11, 19⟩. Then, cert(q, E ,Dex) =

{prof(Einstein)}. □

5.2. GLAV Extraction Assertions

We now consider the case in which we do not pose any restriction on the extraction asser-
tions, i.e. they are GLAV. We first consider DL-LiteR OBDS systems, and show that one
such system E with GLAV extraction assertions can be transformed into a system E ′ having
GAV extraction assertions only and an analogous behaviour for query answering. That is,
the set of certain answers to a CQ q in E with respect to a document D coincides with the
set of certain answers to q in E ′ with respect to D. To this aim we exploit a transforma-
tion technique from GLAV to GAV OBDA systems presented in [29]. Since this technique
only requires to modify the right-hand side of mapping assertions, which have the same
form in both OBDS and OBDA systems, we can in fact apply this transformation exactly
as it is given in [29]. For the sake of completeness, we describe below the transformation
from [29] (slightly adapted to the OBDS setting).

First thing, we recall that a GLAV extraction assertion r has the form P (x⃗) ⇝ Ψ(x⃗)

where Ψ(x⃗) is a CQ, i.e. an expression of the form ∃y⃗.ϕ(x⃗, y⃗), and P (x⃗) is a document
spanner. Given an OBDS system E = ⟨T ,R⟩, we can thus turn it into a system having only
GAV assertions by transforming each assertion r ∈ R as follows:

Substituting each yi in the right-hand side of r with the term fi(x⃗), such that
fi is a fresh function symbol, i.e. it is different from all function symbols used
in the assertions in R, it is different from all other fresh function symbols used
to transform other extraction assertions, and it is such that fi ̸= fj , for each
i, j ∈ 1, . . . , n, where n is the number of variables in y⃗;

We denote with τ(r) the GAV extraction assertion obtained from a GLAV assertion r

through the above procedure. Given a set of GLAV extraction assertions R, we define
τ(R) = {τ(r) | r ∈ R}. The following theorem rephrases in the OBDS setting the analo-
gous theorem given in [29] for OBDA systems.
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Theorem 3. Let E = ⟨T ,R⟩ be a DL-LiteR OBDS system, let q be a CQ, let D be a
document, and let Eτ = ⟨T , τ(R)⟩. Then cert(q, E ,D) = cert(q, Eτ ,D).

With the above result in place we are thus able to compute the certain answers to a
conjunctive query q in a general (i.e. GLAV) OBDS system E = ⟨T ,R⟩ when the TBox
is specified in DL-LiteR. It is indeed sufficient to apply the transformation τ to the set of
extraction assertions R, thus obtaining Eτ = ⟨T , τ(R)⟩, and then proceed with the query
rewriting method described in Sec. 5.1, i.e. execute OBDS Rewriting(Eτ , q), modulo a triv-
ial split of each extraction assertion in such a way that the resulting set of extraction asser-
tions contains only assertions with a single atom query in their right-hand side (as described
in Sec. 3). Certain answers are thus obtained through the evaluation over the underlying
document of the spanner returned by OBDS Rewriting(Eτ , q) and the use of the coupled
target list that this algorithm also returns (see Theorem 2), provided that tuples containing
object terms constructed with the fresh function symbols introduced by the transformation
τ are excluded from the answer (these tuples are indeed not certain answers, because the
object terms produced by τ are denoting only the existence of individuals, which may be
different in the various models).

Let us now consider DL-LiteF OBDS systems. According to [29], Theorem 3 does
no longer hold when the TBox is specified in that logic. This is related to the fact that
functionalities present in DL-LiteF OBDS systems (or OBDA systems) induce equalities
on existential variables which can never be satisfied by object terms introduced by the
transformation τ due to the Unique Name Assumption adopted on DL-LiteF ontologies.

For this case, as already said at the beginning of this section, we think that input queries
should be rewritten in spanners specified in an algebra over regex formulas allowing for
recursion, in the same spirit of rewriting algorithms for answering conjunctive queries in
data integration systems in the presence of (G)LAV mappings, such as the one proposed
in [30].

6. Conclusions

The research in the OBDS framework can be continued in many directions. From the theo-
retical perspective, it would be obviously interesting to close the case of DL-LiteF OBDS
systems with GLAV extraction assertions, by providing a tailored rewriting technique for
this setting. Also, query answering might be investigated for OBDS systems with more
expressive languages for the ontology. In particular we plan to study the cases where the
TBox is expressed in other DLs for which standard query answering over ontologies is
polynomial in data complexity, e.g, EL [32], or horn DLs [33, 34].

More in general, we believe that our framework paves the way for a comprehensive
study on the use of ontologies in IE, and it can help understanding how reasoning services
over the ontology may improve IE. For example, we believe that in our framework it is
possible to exploit reasoning to identify anomalies in the specification of extraction rules
(e.g., inconsistencies), in the spirit of the work on mapping analysis in OBDA [35]. Finally,
an obvious future line of research is to develop software tools for OBDS, in order to verify
the realizability of our approach in the practice.
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