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Abstract
The use and creation of machine-learning-based solutions to solve problems or reduce their computational costs are becoming
increasingly widespread in many domains. Deep Learning plays a large part in this growth. However, it has drawbacks such
as a lack of explainability and behaving as a black-box model. During the last few years, Visual Analytics has provided several
proposals to cope with these drawbacks, supporting the emerging eXplainable Deep Learning field. This survey aims to (i)
systematically report the contributions of Visual Analytics for eXplainable Deep Learning; (ii) spot gaps and challenges; (iii)
serve as an anthology of visual analytical solutions ready to be exploited and put into operation by the Deep Learning community
(architects, trainers and end users) and (iv) prove the degree of maturity, ease of integration and results for specific domains.
The survey concludes by identifying future research challenges and bridging activities that are helpful to strengthen the role of
Visual Analytics as effective support for eXplainable Deep Learning and to foster the adoption of Visual Analytics solutions in
the eXplainable Deep Learning community. An interactive explorable version of this survey is available online at https://aware-
diag-sapienza.github.io/VA4XDL.

Keywords: deep learning, explainable artificial intelligence, interpretability, neural networks, visual analytics, visualization

CCS Concepts: • General and reference → Surveys and overviews; • Human-centred computing → Visual analytics; • Com-
puting methodologies → Neural networks; Artificial intelligence

1. Introduction

Ranging from health care [APA*16] and cybersecurity [XKL*18]
to self-autonomous vehicles [HY22] and natural language process-
ing [Gol17], Machine Learning (ML) approaches for automati-
cally solving tasks and domain problems are becoming increas-
ingly widespread. Among them, Deep Learning (DL) [LBH15]
techniques correspond to a family of state-of-the-art ML methods
that handle large amounts of data thanks to Neural Networks (NNs)
composed of several stacked layers of computation and thousands
of neurons.

Despite its great success, DL suffers from a significant issue:
the complexity of these networks makes it difficult to understand
how they make decisions and why they fail. In the last few years,
this problem has led to the rise of eXplainable Deep Learning
(XDL) [RXGD22], a sub-field of eXplainable Artificial Intelligence
(XAI) [GSC*19] which aims at ML as a whole. At the same time,

Visual Analytics (VA) [HKPC19] solutions designed to support ex-
plainability and interpretability for DL have been developed to meet
the needs of various stakeholders. These contributions help iden-
tify visualization and VA as well-suited disciplines to support re-
searchers, developers and users of DL solutions.

However, the current level of maturity of the integration of the
proposed VA solutions and the XDL approaches is unclear. More
specifically, we do not yet know when VA is a desirable solution for
a given application domain, which solutions are pre-dominant and
why, and which XDL solutions the literature adopts. We propose
this survey on VA for XDL to answer these questions.

Objectives of the survey. This paper presents a timely survey
and an analysis of the existing works that advance the capability of
VA solutions to improve the understanding of DL models. Our goal
is threefold: (i) collect and organize the design choices, explana-
tions and solutions proposed by these VA systems; (ii) analyse them,
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extracting common characteristics, foundations and limits and (iii)
bridge the communities to which this article is directed. For the last
point, we aim to make them aware of the best integration practices,
identify promising areas for collaboration and present limitations
in the current state of the art. The manuscript targets researchers
and practitioners working in DL, XAI and VA. We aim to make DL
and XAI practitioners aware of the benefits and opportunities of cur-
rent state-of-the-art VA solutions. Specifically, they can gain knowl-
edge of solutions that can improve the understanding of their models
and potentiate the benefits of explanations returned by explanation
methods. At the same time, practitioners and researchers working in
VA can find a concise summary of the solutions adopted in the liter-
ature when dealing with DLmodels that are ready to be exploited by
practitioners. Finally, identifying research gaps could stimulate the
investigation of novel research directions by researchers working
in both the VA and XDL fields to support different functionalities
and explanations.

Comparison with existing work. While other works in the liter-
ature partially describe the state of the art of VA forXDL, their scope
is different from that in our proposal. For example, Alicioglu and
Sun [AS22] focused on the whole area of XAI, while our proposal
targets only XDL. Hohman et al. [HKPC19] proposed a survey of
DL visualization; however, unlike our proposal, their work did not
focus on the explainability problem. Finally, Choo and Liu [CL18]
provided an interesting initial overview of VA for XDL, but it is not
a survey and contains just a brief overview of 18 research works.
In contrast, we review the whole field, having analysed more than
60 papers.

Contributions and findings. Our paper contributes to the liter-
ature as follows. We analysed the literature on the topic and pro-
posed a five-way categorization (Section 4) to organize, compare
and place solutions with similar goals in the literature. We identi-
fied, extracted and analysed 38 dimensions useful to classify and
analyse the papers on the topic (Section 3). From the analysis (Sec-
tion 5), we observe a rising interest in the subject and a progressive
increase in complexity in the adopted solutions, especially for the
most recent DL techniques. The advantages of these systems are
undeniable: they help experts in designing, understanding and cor-
recting the failures of DL models. However, we also identify some
areas where future research could bring additional benefits. Namely,
we argue for more research on VA systems supporting end users and
systems supporting more confirmatory and what-if analysis in ad-
dition to exploratory analysis. Those analyses should work at both
the model level (e.g. by changing the DL model internals) and the
input level (i.e. by changing input features). Additionally, we in-
vite researchers of the three communities to a tighter collaboration
(Section 7) to fix some issues and challenges identified in the liter-
ature, such as the usage of a limited set of explanation methods, the
trustworthiness of these systems and the lack of a standard interface
between their frameworks (Section 6).

2. Background

To provide basic knowledge to the reader unfamiliar with some of
them, this section introduces the core concepts and terminology
used in the research areas of DL (Section 2.1), XDL (Section 2.2)
and VA (Section 2.3).

Figure 1: Graph-based representations of a DNN. The computa-
tional graph (a) encodes all the operations, while the layered ab-
straction graph (b) provides an overview of the architecture.

2.1. Deep Learning

This section presents the basics of DL [DWA21]. We invite inter-
ested readers to look at recent surveys [PSY*19, DWA21] and pop-
ular books [GBC16] on the subject. A DL system is characterized
by the data it handles, its architecture, the training and inference
procedures, and its evaluation.

Data. We consider two types of data: input and output data. The
input data, often called samples, are composed of several features
and correspond to the information consumed by the Deep Neural
Network (DNN) during the inference phase. Input data can be asso-
ciated with labels, often called ground truth, which correspond to
the expected results of the inference on the samples. Their shape de-
pends on the task to solve (e.g. classification, regression, segmenta-
tion), and, together with their modality (e.g. image, video, text, time
series), they directly influence the architecture of the DNN. The out-
put data correspond to the result of the inference by the DNN of
the input sample. For classification tasks, the ground truth and out-
put are usually represented by a probability vector whose dimension
corresponds to the number of classes.

Architecture. The smallest component of a DNN is the neuron,
which computes an activation value by applying a non-linear trans-
formation on the weighted sum of its input, where the weights are
learned during the training process. A complete DNN is built from
a computational graph (or network) (Figure 1a) where the nodes are
neurons, and the edges are their dependency (weights). We name
model a network with its learned weights. Neurons are usually ar-
ranged in layers: neurons of the same layer share the same input and
output neurons. This computational graph can be abstracted by an
architecture graph (Figure 1b) where each node is a layer, and the
edges represent a quantity (output) sent by a layer to the next one.
The layers are classified based on their location: input, hidden and
output layers. The input layer is the first layer of the network; each
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neuron i provides the features xi of the input sample x to the next
layer. Neurons of hidden layers take as input a set of activations of
the previous layers and send their activations to the next layer. Fi-
nally, the output layer neurons take as input the activation of the last
hidden layer, and their activations are precisely the network’s out-
put. Complex networks can havemultiple input or output layers (e.g.
taking an image and a caption as inputs or generating them). Layers
can rely on the attention mechanism, which aims at computing, at
inference time, a type of sample-dependent weight that allows the
layer to selectively focus on some parts of the input while ignoring
other irrelevant information [XBK*15].

The type and the operations performed by layers vary depending
on the complexity of their connections. For example, recurrent lay-
ers maintain a memory of their state and reuse it for following oper-
ations, while convolutional layers convolve kernels on local patches
of the activations of the previous layer. Thus, we describe the main
families of architectures analysed by VA papers.

Convolutional Neural Networks (CNNs) [KSZQ20] leverage
on convolutions, pooling and fully connected layers [LSL*17]
to analyse matrix-based data while exploiting spatial informa-
tion [LBH15]. The convolutional layer’s output is called a feature
map or activation map.

Recurrent Neural Networks (RNNs) [YSHZ19] exploit the tem-
poral information encoded in the data. Neurons process one step at a
time, adding the results of the operations performed on the previous
features as additional input to the current one. The Long Short-Term
Memory Network (LSTM) [HS97] is an example of these networks,
widely used to deal with time series and textual data, a type of data
that typically exhibits meaningful temporal patterns ready to be ex-
ploited by these models.

Transformers [VSP*17] are composed of several layers employ-
ing attention mechanisms across neurons’ activation. Each layer
contains several heads, specialized in capturing different aspects of
the input through learned attention weights. While they were ini-
tially designed for machine translation, their application spreads to
several domains, including computer vision and text classification.

Autoencoders such as the one used in Generative Networks and
Language Models project input data in a latent space and then trans-
form them into artificial data. They are trained to approximate the
training data distribution and produce new samples similar to them.
Inputs of these networks can be a description of what to generate,
a starting input to be transformed, or a generic instruction. Vari-
ational Auto-Encoders [KW13] and Generative Adversarial Net-
works [GPM*14] are examples of this class.

Graph Neural Networks (GNNs) [WPC*21] are DNNs designed
to deal with graph data. Based on the layers’ definition, the research
community explored several variants of GNNs, among which the
most popular are: Graph Convolutional Networks [KW17], which
use convolutional layers similar to CNNs; Graph Attention Net-
works [VCC*18], which use attention weights; Graph Isomorphism
Network [XHLJ19], which use non-linear layers.

Deep Reinforcement Learning Models leverage previously pre-
sented models to solve tasks where agents interact with the environ-
ments [MKS*13]. Usually, they take as input the environment state

Figure 2: Illustration of inference and gradient descent over a
batch for a DNN. The process generates several data: predictions,
activation maps, loss, metrics and gradients. Each of them can be
used to compute explanations.

observed by the agent and suggest which actions to take to maxi-
mize a reward. For example, the Deep-Q Networks [MKS*13] is a
CNN, while the Advantage Actor-Critic (A3C) [MPV*16] Network
adds an LSTM stacked on top of a CNN.

Similarly, self-explainable Prototypes-based Models leverage
previously presented models. Additionally, they use specific repre-
sentations of input training samples or artificially generated ones as
prototypes to represent a family of samples [SSZ17, CLT*19]. The
idea is to use the similarity between the computed prototypes and
the current input to aid the model during the inference process.

Inference. During inference (Figure 2), the model is executed on
unlabelled input data to generate its prediction: o = f (x, θ ). This
output, as well as the result of the inner computations (latent vectors
and attention), can serve for XDL methods. The latent vector hl of
x for layer l corresponds to the activations obtained at layer l when
applying x to f (., θ ). The model until layer l is a data projector
in another manifold, the latent space. The latent space of the last
hidden layer p is of interest in many applications: it contains the
latent vector hp generated by the model, directly used by the output
layer to compute the final prediction o. Knowing what information
is encoded in this space could allow users to understand the reasons
behind the predictions of these systems.

Training. The training process (Figure 2) aims to adjust the
model’s parameters θ (i.e. the weights). It is an iterative process
where N-sized batches of samples are fed to the model at each step
j. An optimization algorithm (the optimizer) [LNC*11] computes
the error of the approximation between the predicted output and the
ground truth using a loss function. Then it adjusts the weights ac-
cordingly to the gradients of the model (e.g. the partial derivatives
with respect to each parameter for each input sample/neuron). An
epoch has been executed when all the training samples have been
covered in the previous batches; a training process usually performs
several epochs to train a network.

The public availability of models pre-trained on large corpora is
one of the key elements that boosted the spread of DL. Transfer
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learning and fine-tuning techniques [TSK*18] use them as starting
points for the training process on a different dataset by using the
weights of the pre-trained models as the initial weights of the new
model. While transfer learning allows the model to adjust the pre-
learned weights during the new training process, fine-tuning keeps
them frozen but the ones of the last layer. The idea is that the pre-
training on the large corpora makes the network capable of captur-
ing the essential latent characteristics common to several tasks, then
exploited to speed up the learning process of the current task.

Evaluation. Once the training ends (Figure 2), the model’s per-
formance is evaluated on an unseen dataset, called the testing
dataset, to assess its generalization power (i.e. its ability to make
correct predictions on unseen samples). This process uses loss func-
tions and evaluation metrics that are task-dependent (e.g. precision,
accuracy, RMSE, IOU).

2.2. eXplainable deep learning

XDL field aims at developing methods to improve the explainabil-
ity of systems that use DL models. In literature, there is no consen-
sus about the difference between the terms explainability and in-
terpretability, and their definitions [CPC19, AB18]. In this regard,
we do not take any side and use the term explainability as a gen-
eral term, including all the methods that ‘enable human users to un-
derstand, appropriately trust and effectively manage the emerging
generation of AI systems’ [GA19].

There are several ways to classify XDL methods. A first coarse
distinction separates post hoc approaches and self-explainable
DNNs [ZTLT21, ADS*20]:

• post hoc approaches use external means, like input perturbations
or gradients, to explain the behaviour of a model that is not ex-
plainable by design [ADS*20];

• self-explainable DNNs include components embedded in the ar-
chitecture to ease the explanation of the results, but without ex-
plaining the whole inference process yet.

This last category has recently emerged as a novel category of
DNNs. Examples of this category are attentive models [BCB15],
models based on prototypes [CLT*19] or models that generate an
explanation along with the prediction (e.g. neural language mod-
els [LYW19]).

A further distinction [AB18] separates between local and global
methods:

• localmethods explain the decision of a model for a specific input
sample;

• globalmethods describe the model behaviour on a wider range of
inputs, often a whole dataset, capturing and extracting common
patterns.

These methods can rely on various components to generate an
explanation, such as:

1. Gradients. Their magnitude describes how a function f (·, ·) (i.e.
the DNN) changes around the values of a variable (i.e. the fea-
ture xi). It is often used to compute the contribution of each
feature towards the current prediction by propagating back the

gradient information from the output to the input. Intuitively, a
high gradient towards a feature means a more significant impact
since changes in its value produce big changes in the predic-
tion; GradCAM [SCD*19] and Integrated Gradients [STY17]
are two widely used methods of this category. Gradients can
also be combined with activations to guide the generation of
synthetic inputs containing a ‘summary’ of features recognized
or learned by a neuron [OMS17, MV15].

2. Perturbations. The idea of perturbation-based methods is to
modify the current input to probe the model’s behaviour to test
different scenarios and extract insights about its decision pro-
cess. For example, by erasing or editing parts of the current in-
put features and observing the effect on the output, it is possi-
ble to estimate the importance of each input feature [GKDF18,
FV17, PDS18]. Another set of methods uses a dataset of per-
turbations of the current input to train surrogate models, like
LIME [RSG16] or SHAP [LL17], that approximate the model
behaviour on the neighbourhood of a given input. Finally, per-
turbations can also be used to extract contrasting explanations
or counterfactuals, samples similar to the current input but as-
sociated with a different prediction.

3. Activations. They are the core elements of DNNs, and several
methods propose to analyse them to extract insights about their
behaviour. These methods usually start from specific (local) set-
tings and analyse the changes in activation strengths since car-
rying a global analysis is often prohibitive due to a large number
of neurons. For example, their changes can be used by optimiza-
tion processes to discover what type of patterns in input features
produce the highest activations [OMS17, MV15] or to find the
most influential concepts of the input [KWG*18].

4. Search algorithms. Explanation methods can use search algo-
rithms to extract samples from data and use them as explana-
tions. For example, when they are used to find dataset samples
similar to the current input, they can be used to reinforce or
invalidate the current prediction. Other methods use them for
discovering the most influential examples for the training pro-
cess [KL17], or they can be combined with neuron activations to
select dataset samples that maximally activate them [BZK*17].

5. Attention weights. They are one of the latest tools used for ex-
plainability, and they can be combined with the structure of
the models, often self-explainable DNNs (e.g. prototypes-based
models), to extract insights and explanations about their deci-
sion process [SGPR18, LCN20, AZ20].

While there exist several other taxonomies in the XDL litera-
ture that further distinguish between types of methods [ADS*20,
GMR*19, AB18, ABZ21], they appear too broad and detailed in the
context of this survey. For this reason, we propose a smaller catego-
rization described in Section 4.1 alongside the main characteristics
of explanation methods.

2.3. Visual analytics

VA is the science of analytical reasoning supported by interac-
tive visual interfaces [TC06]. Keim et al. [KAF*08] provided a
more formal definition: ‘Visual Analytics combines automated anal-
ysis techniques with interactive visualizations for an effective un-
derstanding, reasoning and decision-making based on large and
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Figure 3: VA process model [SSS*14] composed of four stages:
data, computational model, visualization and knowledge. They are
involved in a reasoning process based on three loops: exploration
loop, verification loop and knowledge generation loop.

complex data sets’. According to Kohlhammer et al. [KKP*11], a
VA system should be able to synthesize and derive insights from
massive, dynamic and uncertain data. The goal is to detect the
expected, discover the unexpected and communicate these assess-
ments effectively to the human user for further actions.

VA joins the computer-driven and the human-driven components
by exploiting what computers and humans are good at [AAF*20].
The VA process model was proposed by Keim et al. [KAF*08]
and extended by Sacha et al. [SSS*14] into the Knowledge Gen-
eration Model, emphasizing the human-centred part, as shown in
Figure 3. The VA process model combines automatic and visual
analysis methods and comprises four stages: data, computational
model, visualization and knowledge. The first three stages repre-
sent the computer-driven component, while knowledge represents
the human-driven component. There is no clear separation between
the two parts since both are required in the most general workflow.
While data is the starting point of all VA systems, computational
models (e.g. DL models) work on them and transform them by us-
ing different techniques such as descriptive statistics, data mining
and ML algorithms. Visualization is often the primary interface be-
tween analysts and VA systems, allowing the analyst to detect rela-
tionships and insights. Knowledge consists in finding evidence for
existing assumptions or learning new knowledge about the problem
domain. This stage is part of a broad reasoning process based on
three loops: exploration loop, verification loop and knowledge gen-
eration loop.

Visual design guidelines often follow the Shneiderman’s Visual
Information Seeking Mantra [Shn96]: overview first, zoom and fil-
ter, then details-on-demand. The overview allows users to observe
global patterns and general properties of the data. The details,
typically in separate views, enable the users to comprehend the
characteristics of the data at the low-level grain of analysis. In the
context of VA, the mantra has been extended by Keim et al. in ‘Anal-
yse first, show the important, zoom/filter, analyse further, details-
on-demand’ [KMSZ06]. It indicates that more than retrieving and
displaying the data using a visual metaphor is required. In fact, it is
necessary to analyse the data, show the most relevant aspects and
support the users by providing interaction models to get details.

Interaction. Human interaction is a key component in the VA
workflow [TS20]. By interacting with a VA system, the user can
steer it to generate new visualizations or computational mod-
els [EFN12, HASS22], analyse data from different perspectives,
visually explore parameterization spaces for model and visualiza-

tion [SHB*14, SW22]. Interaction allows both practical purposes
like bringing the users closer to the desired goal and helping them
to create a better mental model of the investigated problem. Yi
et al. [YKSJ07] proposed seven high-level classes of interaction in-
tents. The user can: Select something interesting by marking it for
further investigation; Explore data to have a comprehensive under-
standing; Reconfigure data to obtain different insights; visually En-
code data to adapt to her needs; Abstract/Elaborate to see the big
picture or switch between different levels of detail; Filter to restrict
the space of analysis and Connect/Compare to evaluate data simi-
larities or relations.

Visualization methods and techniques. Visualization tech-
niques represent data by exploiting combinations of visual marks
(e.g. points, lines, areas) and visual variables (e.g. position, length,
area, shape, angle, colour) [Ber67]. Visualization techniques de-
pend on the kind of represented data, such as text, numbers, multi-
dimensional or hierarchical data, or networks.

Text visualization techniques (e.g. [KK15]) range from classic
matrix and area charts to word clouds [AWS05, HLLE14], and to
the more complex word sequences. The latter exploit sequence vi-
sualization techniques [HDH*13] using node-link diagrams, glyph-
based small multiples or directly annotating a text.

Number visualization techniques are various [AAF*20,
KKEM10, TS20] and the common ones are bar charts, pie
charts, line charts and area charts, and heatmaps. Data distribu-
tions, instead, are commonly represented with histograms, box
plots and violin plots [HN98].

Multi-dimensional Data visualization techniques are various. The
scatterplot [SG18] represents data as 2D or 3D points using Carte-
sian or polar coordinates. For high-dimensional data, often dimen-
sionality reduction techniques (e.g. PCA, MDS, t-SNE, ISOMAP
and UMAP) [EMK*21] are used with scatterplots. They allow
projecting the data in a low-dimensional space while trying to
keep intact characteristics of the data existing in the original high-
dimensional space. Parallel coordinate plots (PCPs) [ID90] show
multi-dimensional data as polylines that cross vertical parallel axes
(dimensions). Several approaches have been proposed to enhance
Parallel Coordinate Plot (PCP) visual quality, like clustering or sam-
pling the polylines or axes sorting [HW12, JLJC05, BZP*20]. Rad-
Viz [HGM*97] and star coordinates [Kan00] are two of the most
popular projection methods that represent high-dimensional data as
2D points on a radial layout while preserving at the same time their
relationship with the original dimensions [RLSR21]. Several pa-
rameterizations have been proposed to enhance their visual quality
(e.g. [DFF10, dCT19, ABL*22, RLSR21, RS14, ABL*19]).

Hierarchical data visualizations usually correspond to
Treemaps [Shn92, SW01], a space-filling method of visualizing
hierarchical datasets showing the hierarchy using nested rectangles.
Their area encodes a numerical attribute, while colour [STLD20]
or even more complex glyphs inside them [ABC*19] encode
additional information.

Network visualization techniques are in general, adjacency ma-
trix or node-link diagrams. The first is a basic technique, and
the discovery of patterns highly depends on the rows/columns
order [BBR*16]. The second represents graph nodes as circles
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and edges as lines that connect them. The visibility of interest-
ing sub-structures is highly dependent on the used layout algo-
rithm [BBDW16].

3. Procedure

This section describes the procedure for collecting and analysing
this survey’s final set of papers. We adopted a three-fold strategy:

• Keyword search on the main indexing platforms (e.g. Elsevier
Scopus, IEEE Xplore) where the main searched keywords are: vi-
sual analytics, visualization, deep learning, neural network, deep
model, explainable, interpretable and understanding;

• The collection of seed papers coming from existing surveys
on similar but broader topics; we considered the works by
Alicioglu and Sun [AS22] reviewing XAI literature, Hohman
et al. [HKPC19] on DL visualization and Choo and Liu [CL18]
brief overview on VA for XDL;

• The systematic collection of papers from the last 10 years of the
main journals, conferences and workshops related to the topic of
this survey, namely: ML (e.g. NeurIPS, ACL, ICML), Human–
computer interaction conferences (e.g. ACMSIGCHI), visualiza-
tion and VA (e.g. IEEE TVCG, IEEE CGA, CGF, IEEE VIS, EU-
ROVIS), as well as some works available through preprint repos-
itories (arXiv) or web-journals (Distill).

We constrained each collected paper to several key requirements
for selecting them for this survey:

• It must contain a VA solution where the user can actively interact
with the data/model;

• The proposed solution must involve a DNN or must be tested on
it (e.g. cases of model-agnostic solutions);

• The proposal aims to explain the behaviour of a DL model in
terms of either what it has learned, why/how it produces a given
prediction or identifying what elements of the input most influ-
ence the current prediction.

We do not include works that focus on monitoring and improving
the performance of a DNN, as they do not pertain to our primary
goal of describing solutions that help explain and understand a given
network’s behaviour.

According to these criteria, our survey does not cover the follow-
ing types of proposals:

• model-agnostic systems that are not tested on DL architec-
tures (including the ones only tested on shallow architec-
tures) [KDS*17, KCC*20, CYO*20];

• systems that focus on embeddings [STN*16, LNH*18] since they
often include embeddings computed with algorithms not based on
DL;

• educational systems that focus on simplified simulations rather
than real-world applications [KTC*19, NQ17, Har15, SCS*17,
WTS*20];

• static visualizations [WLC18, HGBA20];
• systems that focus only on assessing and presenting the per-
formance of the system [CPCS20, LCJ*19, RAL*17, AHH*14,
ACD*15];

Figure 4: Thirty-eight dimensions were used to characterize each
paper, aggregated within nine groups. They allowed us to properly
extract information of interest for each paper and organize the pa-
per.

Figure 5: Distribution of the VA solutions considered in this survey
grouped by the methods employed by the XDL field.

• analytic or visual solutions that aim at improving the explain-
ability of DNN, but that are not implemented in a VA sys-
tem [RFFT17, CEP20];

• systems that identify bugs and problems on DNN without con-
necting them to the knowledge learned by the systems [CEH*19,
ZWM*19] (e.g. classifying amodel as biased usingmetrics, with-
out inspecting feature attributions or features learned by the neu-
rons).

This 5-month process allowed us to initially collect 196 papers,
then filtered to 67, thanks to our key requirements. Each paper was
read by at least two team members, categorized in one of the five
categories (Section 4.1), and then analysed according to 38 dimen-
sions (some of them with multiple sub-categorization, in particu-
lar for visualization usage). The dimensions are organized into nine
groups (papers metadata, DL, XDL category, visualization, analyt-
ics, interactivity, users, evaluation, reproducibility and availability)
capturing paper-related (e.g. year of publication, venue, information
about the code), DL-related (e.g. model, year of publication of the
model’s paper, phase, data type) and VA-related (e.g. target users,
application domain, interactivity type, degree of evaluation, visual-
ization techniques, analytics, dimensionality reduction techniques)
aspects. The full categorization is visible in Figure 4. Based on the
forward and backward analysis of citations and references, a second
refinement phase brought the final number of papers to 67, whose
distribution is visible in Figure 5. This final set of papers is listed in
Table 1 and discussed in the following sections.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14733 by C

ochraneItalia, W
iley O

nline L
ibrary on [28/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



B. La Rosa et al. / State of the Art of Visual Analytics for eXplainable Deep Learning 325

Table 1: List of the 67 Visual Analytics systems considered in this state-of-the-art report. The systems belong to five XDL categories: feature attribution (FA),
Learned features (LF), explanation by examples (EE), counterfactuals examples (CE) and model behaviour (MB). Target users can be: architects (A ),
trainers (T ) and end users (E ). Interactivity can be: passive (P ), interactive input observations (I , and interactive model observations (M .
Phase can be: training (TR) and testing (TE). Evaluation can be: quantitative user study (Q-USt), user study with feedback (F-USt), case study with feedback
(F-CSt), case study (CSt) and usage scenarios (Usc). Furthermore, the table reports whether the authors have provided the source code of a system. Table 2
shows additional aspects of the considered systems.
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Figure 6: Categorization of explanation methods. We can distin-
guish betweenmethods that use external means (post hoc) andmeth-
ods that use the model’s internals (intrinsic), and between methods
that provide explanations only for the current input (local) and the
ones for the general model’s behaviour (global).

The complete categorization is provided in the supplemental
material and through an interactive literature explorer1 based on
SurVis [BKW16], which allows to explore and analyse the final set
of papers.

4. Papers Categorization

This section provides a general overview of the analysed VA solu-
tions by describing them in terms of the explanation category they
support. We introduce our categorization, describing its rationale
and some key XDL methods in each category (Section 4.1). Then,
we describe howVA solutions support and use them for explainabil-
ity (Section 4.2).

4.1. Explanations categories

While several taxonomies have been proposed in the literature to
distinguish between types of methods [ADS*20, GMR*19, AB18],
they usually focus on multi-level and fine-grained categorizations.
However, considering the current literature on VA for XDL, these
taxonomies could lead to many categories that include only one or
few papers, thus missing the objective of providing proper discrim-
ination of the works. Moreover, often the analysed papers use dif-
ferent wording to refer to the same explanation, thus lacking con-
sistency across the literature.

Starting from a cross-analysis between common categories used
in XAI surveys [ADS*20, GMR*19, AB18], the ones currently sup-
ported by VA systems, and a process of abstraction, we propose to
separate the methods using the following categories (Figure 6): fea-
ture attribution [BSH*10, STY17], learned features [EBCV09], ex-
planation by example [Lip18, KK19], counterfactuals [WMR17]
and model behaviour. The first four are well-known concepts
in the XDL literature, but they are often further divided into
more fine-grained sub-categories. Conversely, the model behaviour
category is specific to VA systems and identified during our
analysis.

1https://aware-diag-sapienza.github.io/VA4XDL

In particular, we follow the rationale of getting a dense catego-
rization where each category includes a single group of methods
that share the same goals. This rationale leads us to merge some too
fine-grained categories and split others. For example, in XDL tax-
onomies, feature attribution techniques are often split based on the
model [ADS*20], the data on which they are applied [GMR*19], or
the method [AB18], and counterfactuals are set as a sub-category
of explanation by example [AB18] since both categories elect ex-
amples similar to the input. Conversely, in our categorization, we
merge all the types of attribution methods in a single category to
keep together methods with the same goal and, simultaneously, to
avoid producing a sparse categorization. At the same time, we split
explanations by examples and counterfactuals since they have dif-
ferent goals and require different methods.

Below, we describe each category, the questions they address,
how they can be computed, and some popular methods.

1. Feature attribution: These methods assign a score to each
input feature based on its impact in determining the predicted
outcome from the model [STY17]. They answer the ques-
tion ‘Where is the model focusing on for computing the pre-
diction?’ and give clues about the question ‘Why does the
model return this specific output?’. They can be computed
at the global and local levels, using either post hoc meth-
ods or self-explainable DNNs. This category is the most stud-
ied in the literature; thus, we observe the highest heterogene-
ity in the proposed techniques. They include gradients-based
methods, like Grad-CAM [SCD*19] and Integrated Gradi-
ents [STY17], methods based on hand-crafted decision rules
that back-propagate information from the last layers back to the
inputs, like Layer Relevance Propagation (LRP) [BBM*15] and
Deconvolution Network [ZKTF10, ZF14], perturbation-based
methods, like LIME [RSG16] or SHAP [LL17], and intrinsic
methods, which combine properties of the model and attention
weights [AZ20].

2. Learned features: These methods associate sets of concepts
to neurons, groups of neurons or layers in terms of features they
can recognize. They address the question of ‘What has it learned
during the training process?’. Most of them exploit a combina-
tion of activations, gradients, search algorithms and supporting
models (e.g. generativemodels). They can be combined to select
dataset samples that maximally activate the neurons, to guide
the generation of synthetic inputs or to extract rules [AK12] and
decision trees [CS95] that approximate the system’s behaviour.
When these methods consider different activation ranges, the
extracted learned features are referred to as ‘multi-facet learned
features’, where each facet captures one behaviour of a given
range. Since the goal is to interpret part of the network, they can
be considered global and post hoc.

3. Explanations by examples: These methods extract and use
training samples as explanations. They address the question of
‘Which samples are considered similar by the model’ by show-
ing samples on which the model acts similarly. The idea is
to expose such samples and let the user extracts the features
that lead the model to create the association between the cur-
rent input and the prediction. Methods are usually search-based
and differ in the way in which they define the similarity (e.g.
at the input, latent space or feature attributions level) and are
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usually based on enhanced versions of the K-nearest neighbour
algorithm (KNN) [Lip18] or on self-explainable DNN [CLT*19,
RCN22]. These methods are usually local and post hoc, but
they can also be computed at the global level for some self-
explainable DNNs.

4. Counterfactuals: these methods aim at finding the minimum
number and magnitude of edits needed on the current input sam-
ple to obtain a different prediction [LLM*19]. In other words,
counterfactuals are samples as similar as possible to the cur-
rent input but associated with a different prediction. They an-
swer the question ‘What do I have to change to obtain a dif-
ferent outcome’ and they are beneficial for recourse (i.e. the
actions required for reversing unfavourable decisions by algo-
rithms [VA20]). Counterfactuals can be generated by perturba-
tions or algorithms [PSS*20], satisfying some constraints about
the edits, or extracted from a dataset [WMR17], using proper
distance functions and search algorithms. Methods of this cate-
gory are local and post hoc methods.

5. Model Behaviour: Methods of this category aim at extract-
ing common patterns of the model behaviour. They address the
question ‘How does themodel react in a given situation?’, where
the situation is a set of similar inputs or the whole dataset. They
combine pattern mining on activations, human-in-the-loop (i.e.
interactions with the user) techniques, and often methods of the
previous categories. They can be categorized as global post hoc
methods. Examples of this category are methods that use activa-
tion patterns of the last hidden layer to understand and steer the
output of generative models [BLW*20], methods that combine
activation patterns and learned features to explain misclassifica-
tions on adversarial examples [LLS*18], or methods that com-
bine patterns in inputs and outputs of the model with feature
attribution to extract the policies followed by an agent trained
using reinforcement learning [WGSY19].

4.2. Papers overview

In this section, we describe how VA solutions support and use the
categories presented in the previous section for explainability pur-
poses. In particular, while the categories represent the WHAT, and
thus the explanation objects used to provide explanations, here we
describe WHY VA systems use them in terms of addressed analyti-
cal tasks and goals, and HOW they support them, in terms of com-
binations of visualizations, analytics and user interactions. The VA
solutions are listed in Tables 1 and 2, while Figure 5 shows their
distribution according to the categorization.

4.2.1. Feature attribution

As described in the previous section, feature attribution methods
highlight the input features the model is focusing on at the infer-
ence stage. VA systems use them for providing explainability and
supporting several analytical tasks, such as understanding the moti-
vations behind the model’s predictions. They can achieve this goal
by identifying the key factors (i.e. features) affecting the predic-
tion results [SMM*19, CHS20, vdBCR*20, CWGvW19, KCK*19,
ŠSE*21, HSL*21, WGYS18], without going into detail about the
mathematical operations behind the model. By visualizing and

analysing these information, users can assess the reliability [vd-
BCR*20] or the robustness [PYN*21] of a prediction, detect when
a decision is biased [Vig19, JKV*22], dissect failures [CHS20,
HCC*20, WGZ*19], discover new relations among factors, espe-
cially in the medical domain [vdBCR*20], compare different mod-
els’ behaviour [HSL*21, DWB21], or improve the design of the
models themselves [HSL*21].

We observe heterogeneous visual encodings adopted to sup-
port feature attributions. The most used ones are heatmaps for
local post hoc feature attributions on images (Figure 7b) [vd-
BCR*20, HSL*21, HJZ*21, ZZM16, HCC*20, WGZ*19, SW17,
CBN*20, JVW20] and text [CHS20, CGR*17, ŠSE*21, JTH*21];
matrices [WONM18, DWB21, JKV*22, PCN*19, LLL*19], node-
link diagrams [JTH*21, Vig19, JCM20, LLL*19] and custom
Sankey diagrams [DWSZ20, PCN*19, HSG20, MSHB22] for self-
explainable attentive models; bar charts[WWM20, PCN*19] or
averaged inputs [WGYS18, WGSY19] for global feature attribu-
tion; and enhanced line [SMM*19, CWGvW19, LYY*20, SWJ*20,
ŠSE*21], area chart [KCK*19] or bar chart [MXC*20, KCK*19,
SWJ*20, WWM20] for post hoc approaches to sequential data.
Among them, systems that support the analysis of attentive mod-
els, and in particular of Transformers, employ the most complex
and novel visualization techniques (Figure 7a) such as radial lay-
outs [WTC21, DWB21] or grid ones [WTC21, DWB21, ŠSE*21]:
these systems must show the flow of attention weights across mul-
tiple layers simultaneously to help the user understand the most im-
portant features.

These visualizations are usually enriched by additional elements
and linked to other system views. Combined with interactions,
they allow users to investigate and analyse the models. Exam-
ples of added information are the attribution scores’ magnitude,
which is encoded using colours, size [JCM20], opacity [WSP*21]
or just its value, or bounding boxes [HSL*21, JKV*22, CBN*20],
which highlight the most important region over images. While sort-
ing [CHS20, MXC*20, KCK*19, Vig19, PCN*19] and filtering
[WONM18, DWSZ20, JKV*22, JTH*21] by attribution scores ca-
pabilities are quite common to ease the data exploration and reduce
the visual clutters, some works provide additional tools for a deeper
understanding. For example, feature removal interactions guided by
local attributions [HSL*21, HJZ*21, KCK*19] (e.g. via brushing
over an image) can be exploited to perform a What-If Analysis. A
similar analysis is also supported by the VATUN system [PYN*21]
where, by applying several transformations, the user can alter the
current input to let the system show the difference between post
hoc feature attributions of the original and the transformed image
as heatmaps. Interactive comparison between attributions of several
data instances [vdBCR*20, KCK*19, SWJ*20, JTH*21] can guide
the user to discover crucial features across whole categories. In the
case of self-explainable DNNs, some systems also allow users to
dynamically change the value of the elements used for providing in-
trinsic feature attributions (e.g. attention weights) for a given input
to see how the model changes its prediction accordingly [KCK*19,
JKV*22, SGB*19, LLL*19] or even steer the model forcing it to
update its parameters to align the attribution scores to the expected
ones [MXC*20, KCK*19]. Additionally, in the global feature at-
tribution case, by using classic interactions, like lasso selection
and filtering [HLW*19], users can select a sub-set of the dataset,
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Table 2: List of the 67 Visual Analytics systems considered in this state-of-the-art report by looking at the VA aspects: visualization and analytics. Concerning
the analytics proposed to the users, the table reports the high-level family, and the subject (i.e. data handled). The analytics are then divided into novel analytics
( ), custom analytics ( ) based on slight modifications of existing solutions, and classic analytics that are existing solutions used as is (blank space). The IDs
are consistent with Table 1.
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Figure 7: Examples of how VA systems support feature attribution (a) attention flow [DWB21] employs a complex visualization for text data
and Transformers models. It supports comparing and analysing attention weights across layers and heads between two different models by
adopting a radial layout. Each ring corresponds to a given layer, while small rectangles adjacent to the word encode the attention heads.
The cell colour indicates whether the token is attended equally (orange) or one model attends it stronger than the other (purple or turquoise).
Users can select tokens or heads, and the system will highlight paths of attention relative to the selection. (b) A colour-encoded heatmap for
feature attribution on images in the VisLRPDesigner [HJZ*21] system, where orange and blue colours encode input pixels that contributed to
the prediction in a positive or negative way, respectively. The user can brush over the heatmap or the input image to change the contribution’s
‘sign’ or remove some pixels and study whether the relevance scores are faithful to the CNN behaviour.

usually depicted in a scatter plot, on which to aggregate the
attribution scores based on the sum [CHS20, JTH*21], the
mean [ZDXR20] or Clustering algorithms [PCN*19] of the indi-
vidual contributions. The computed scores are then visualized us-
ing aggregated saliency maps, bar plots, graphs or more complex
visualizations for attention heads.

Illustrative example. Attention flow (Figure 7a) deeply relies on
the feature attributionmethod. One of its evaluations proves that the
application is useful for tasks of type question answer verification:
when the user has selected the glyphs that correspond to the words
of an answer, the system has highlighted dependent tokens’ glyphs
that correspond to the question. This shows the model has properly
learned the concepts of interest.

Summary. Overall, most systems choose an a priori static fea-
ture attribution method and its configuration to compute the scores
and then use its outputs. Few of them [HJZ*21, WGZ*19, SSSE19]
allow users to modify the method’s configuration or choose an al-
ternative method. Only two systems address the problem of feature
attribution for multi-modal models. They can highlight the impact
of each modality by using side-by-side visualization [JKV*22] or
swarm plots [WHJ*22] both at the local and global levels. They
highlight the most important modality for the current prediction in
the first case. In the second case, they measure and aggregate the
influence of each modality across the whole dataset. Despite that,
we observe a high heterogeneity in the adopted solutions, cover-
ing a wide range of models and data. Therefore, feature attributions
appear as (i) the most supported category, (ii) the category that sup-
ports the highest number of analytical tasks and (iii) the most mature
one in terms of visualizations, interactions and analytics. This result
is not surprising since feature attribution is the most popular cate-
gory for XDL methods and probably the easiest to relate to when
approaching the XDL research field.

4.2.2. Learned features

Learned features methods aim to discover which features a neu-
ron, group of neurons, or layer has learned to recognize dur-
ing the training. They differ from global feature attributions be-
cause there is no relation with predictions, but they only focus
on properties recognized by the component. VA systems employ
them mainly to help users discover the semantics captured by neu-
rons [BJY*18, HPRC20, JLL*19, ZDXR20, MCZ*17, MMD*19,
RCPW21, PCN*19] and understand how the network works, by
checking how low-level features are aggregated into high-level fea-
tures [LSL*17, HPRC20, DPW*20, PDD*22, JTH*21, LLS*18].
However, learned features can also be used to diagnose the training
process [ZXZ*17, PHG*18], for example, by visualizing the evo-
lution of neurons over different epochs [ZXZ*17], to explore the
role of layers [SW17], to decipher adversarial attacks [DPW*20],
to check that the learned knowledge is reasonable or aligned to the
expected one [LSL*17, JTH*21] or to compare the learned knowl-
edge of different models [MFH*21].

The core visual elements representing learned features are
modality-dependent but stay quite homogeneous. Most VA systems
focusing on learned features are related to vision or text modalities.
Vision modality leverages on image patches [YCN*15, ZHP*17,
HPRC20, DPW*20, JLL*19, ZDXR20, PDD*22, RCPW21,
LLS*18] or generated synthetic images [YCN*15, HPRC20,
MFH*21, DPW*20, HHC17, RCPW21, SW17], while text modal-
ity mainly relies on word clouds [MCZ*17, PCN*19, JTH*21]
(Figure 8b). While these are usually accessed through separated
views or popups [YCN*15, ZHP*17, ZDXR20, PDD*22,MCZ*17,
NHP*18] triggered by users during the exploration and inspection of
the network, some VA systems use them as the core element of their
interface, building more complex environments[LSL*17, HPRC20,
DPW*20, MCZ*17].
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Figure 8: Examples of how VA systems support learned features. (a) An example of abstractions that helps users to understand how the model
misclassifies a giant panda (green) as an armadillo (blue) when attacked. The BLUFF system [DPW*20] abstracts the network structure
by highlighting only the neurons and their connections that change their behaviour significantly after the attack. Users can hover over a
neuron to visualize the learned feature associated with it, in terms of dataset samples and generated images that maximally activate it. (b)
RNNVis [MCZ*17] helps users to interpret what and where information is captured by hidden states in RNNs for text data by using a co-
cluster layout. It clusters both hidden states of the given layer and the recognized words and then represents them as memory chips and word
clouds, respectively. When the user clicks on a memory chip, the edges of its highly correlated word clusters are highlighted, showing what
information is captured. When the user clicks on a word, the system visualizes the model’s expected response as a heat map in the memory
chips.

Systems that support users in the analysis of how low-level
features (e.g. individual pixels of an image) are aggregated into
high-level features (e.g. the pixels that form the ‘cat’ concepts)
can be placed into the latter category since they use learned fea-
tures methods as the main focus of the system. In this context,
they have to deal with several challenges, such as the fact that
deep networks have numerous layers, and each layer contains thou-
sands of neurons; thus, the visualization and analysis of learned
features for all of them simultaneously is a challenging task to
accomplish.

A common solution is to provide an abstraction as an overview
that summarizes the concepts learned by groups of neurons or lay-
ers and then let the user access more details-on-demand. This so-
lution aims to facilitate user exploration by lightening the cogni-
tive burden needed to explore the full spectrum of the network.
The crucial step, in this case, is to provide an abstraction use-
ful for the user task. The literature proposes several summariza-
tion techniques by using aggregation or average of the activations
[HPRC20, JTH*21], Clustering [ZXZ*17, PDD*22], a combina-
tion of rectangle packing algorithms and hierarchical clustering
[LSL*17], and pathways extracted based on neurons activations
or importance [DPW*20]. These techniques are usually based on
the similarity between learned features or activations. The results
can be then compactly represented in enhanced Sankey diagrams
[HPRC20, DPW*20], segmented DAG visualizations [LLS*18],
graphs [RCPW21] or scatter plots using dimensionality reduction
techniques, such as t-SNE[vdMH08] and its variants [PHL*16],
where neurons that recognize similar concepts are embedded
closely.

Usually, users can explore these visualizations in depth
through zoom [HPRC20, PDD*22], details-on-demand [HPRC20,
DPW*20, LLS*18] and filtering [HPRC20, PDD*22]. When the
abstraction is provided through average or aggregation, other use-
ful capabilities are letting the user change the clusters [LSL*17,
ZXZ*17], analysing them [LSL*17], and switching between facets
[LSL*17, HPRC20]. When the visualization is a graph, highlight-
ing edges that flow in and out of a selected neuron makes it easier
to understand how features are aggregated layer by layer [HPRC20,
PDD*22].

Illustrative example. One evaluation scenario of RNNVIs (Fig-
ure 8b) considers sentiment analysis with a single-layeredGRUwith
50 cell states. The expert involved in the evaluation process used its
co-clustering visualization to detect that two word clouds of two
hidden unit clusters correspond to different sentiments. This shows
that different parts of the network focus on different kind of words
whose semantics is clear and understandable by an expert.

Summary. Overall, learned feature methods tend to be used as a
secondary tool for inspecting and validating the knowledge learned
by the networks. Thus, they rely on well-established techniques for
visualization and analysis. The systems that exhibit the most novel
designs are the ones that extract the activation pathways along with
the network, where several Clustering algorithms and representa-
tions have been proposed [LSL*17, HPRC20, DPW*20]. Almost
all the analysed systems assume a trained network as input, while
only a couple of them [BJY*18, ZXZ*17] allow the user to inspect
how the learned knowledge unfolds during the training process. This
gap represents a promising direction for further development.
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Figure 9: Examples of how VA systems support explanations by examples. (a) The Melody system [CBN*20] visualizes explanations by
examples for the current image by highlighting regions similar to the most important one of the input. In the case shown, the model predicted
a blue-winged warbler since its peck and neck are similar to the features of other blue-winged warblers. (b) Explanations by examples for
text data. The task is to help users to understand machine translations of Seq2Seq models. The system visualizes the hidden states of the input
sequence as a trajectory, where dots in the plane represent similar states. The user can select vertices on the graph, and then the system will
show a list of sentences that produces similar states to the selected ones as explanations by example. The colours (blue and yellow) indicate
whether the similar states come from the encoder or decoder, while the word that produced the similar state is highlighted in red.

4.2.3. Explanations by examples

Explanations by examples methods extract and use training sam-
ples as explanations. The idea is to expose such samples and let the
user extract the features that lead the model to create the association
between the current input and the prediction.

The idea of many VA systems concerned with this aspect is to
use samples from training data as a proxy to understand better the
decision made on the input [SGB*19] or use them to estimate the
meaning of latent vectors by looking at samples that produce sim-
ilar ones [SGB*19, HSG20, SGPR18]. The latter facilitates error
identification and training adjustments [SGB*19] and allows users
to better assess the representativeness of a prototype representa-
tion [MXC*20] in self-explainable DNNs based on prototypes, thus
easing the task of improving the model design [MXC*20]. Addi-
tionally, by providing explanations by examples for multiple lay-
ers simultaneously, users can analyse the sequence of explanations
layer by layer and extract insights about the behaviour of the sys-
tem [HSG20, SGB*19]. For example, users can compare two simi-
lar inputs predicted in different classes and checkwhen (i.e. in which
layer) and how (i.e. what is the difference) their representations di-
verged.

Usually, systems that employ post hoc approaches exploit infor-
mation retrieval (IR) techniques to extract explanations by exam-
ples and achieve the previous goals. These techniques can be based
on the latent representation [SGB*19, HSG20, HLvB*20], attention
patterns [JTH*21] or feature patterns [HLvB*20]. Most algorithms
include a hard-coded threshold to limit the number of elements to vi-
sualize, thus reducing the cognitive load and the visual clutter when
depicted. Thresholds are usually based on the distance measured us-
ing popular metrics, such as L2 norm or cosine distance [JTH*21]. A
particular case concerns systems that support data sequence, where
the models generate several latent vectors (one for each step of the
sequence): the IR algorithms must search for patterns of latent vec-
tors instead of a single latent vector. This change is not trivial since

there are cases where the representation of two different inputs can
be misaligned, for example, when data include sequences of various
lengths. In these cases, a solution is to use Dynamic Time Warping
(DTW) algorithms [SC07, SC78] to align sub-representations and
then use a standard distance across them [HLvB*20].

The visualization of explanations by examples, usually repre-
sented as a list of inputs, can be enriched by attaching additional
information or other explanations [CBN*20] (e.g. feature attribu-
tions). Examples of information that enrich the visualization are the
summary of the common features between the neighbours and the
current input [HSG20, CBN*20, SGPR18, CBN*20] (Figure 9a),
the predictions [CBN*20], the similarity score or other metadata
[HLvB*20, SGPR18]. Valuable functionalities connected to this
category highlight the common features between the input and the
neighbour selected by the user [SGPR18] and sorting mechanisms.
These functionalities can be used together with explanations by ex-
amples to conduct What-if analysis. Indeed, some systems for nat-
ural language processing [SGB*19] use the similarity between the
current word latent representations and the latent representation of
the explanation by examples to suggest edits to the user. In the case
of sequential data, the sequences can be compactly visualized ei-
ther as a node-link diagram, using layouts based on dimensionality
reduction techniques [SGB*19] (Figure 9b), or by linking the se-
quence to PCPs and visualizing the neighbours as lists. Moreover,
providing more details-on-demand is crucial for this type of sys-
tem, especially through comparison modes that allow users to anal-
yse commonalities and differences between selected samples and an
explanation by examples [HLvB*20].

Illustrative example. One use case of Melody (Figure 9a) is
to understand a DL model for image classification. When the ex-
pert involved in the experiment has removed clusters too small or
with too low explanation values, he has discovered three broad
groups of birds with similar prediction logics but different visual
explanatory features. By selecting one instance cluster, he has un-
derstood how the network classifies some birds by first looking at
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Figure 10: Examples of how VA systems support Counterfactuals. (a) DECE [CMQ21] employs an enhanced parallel coordinate view to let
the user analyse counterfactuals (orange) for tabular data inputs (blue). The histograms show the distribution of the feature in the dataset. The
user can interact and customize counterfactuals by changing the value of the input features, setting constraints that counterfactuals should
satisfy, or setting their number. (b) Recast [WSP*21] exploits counterfactuals to help user to lower the toxicity score of their text. When the
user hovers over a word or a part of the sentence, the systems show counterfactuals in terms of words that the user should replace to obtain
a different score. A tooltip shows the list of possible replacements, while the bars give the user hints about how the prediction changes. The
user can click on any suggestion to update the input accordingly.

coarse-level features (colour) and then more detailed ones (head or
belly). He has also identified wrongly classified birds and has ob-
served that it is because they share similar features to other classes.
This shows how the application can help the expert to discover some
parts of the reasoning process of the network.

Summary. Despite its ease of implementation and use, this cate-
gory of explanations is not widely adopted yet and is mainly used as
a complementary tool for other types of explanations. The only ex-
ceptions are VA systems that support self-explainable DNNs based
on prototypes, where explanations by examples are used to guide the
user to specify alternative prototypes ormodify themwhen they can-
not satisfactorily represent their nearby samples [MXC*20]. While
in almost all the other cases, explanations by examples are valid
only for the current input (i.e. they are local), in these cases, they
can be used to get insights into the global behaviour captured by
the model. They can also be exploited to improve the design of the
model themselves by letting the user to specify the nearby desired
explanation by examples. Then the system generates a new proto-
type that includes the desired samples as neighbours [MXC*20].
We do not observe noticeable complex novel visual solutions for
this category, and most of the effort is directed towards the post hoc
algorithms needed to extract them. The customization is very lim-
ited, often only to the sorting mechanism and rarely to the selection
of the number of explanations to visualize [JTH*21].

4.2.4. Counterfactual examples

Counterfactual examples [WMR17, WPB*19] correspond to sam-
ples different but close to the current input and associated with a
different prediction. VA systems use them to support users in veri-

fying and refining the hypotheses about the decision process on se-
lected data instances [CMQ21, SGPR18], in applying edits to input
to obtain a different decision [WPB*19,WSP*21, LLL*19,WM20]
or in exploring alternative scenarios on reinforcement learning
agents [MSHB22]. These explanations can be employed when the
DL model is deployed and static, and the user wants to understand
the change one has to make to the input sample to obtain a mod-
ified output. Application scenario examples are loan applications
and toxicity detection on text [WSP*21] (Figure 10b). Given the
few works about self-explainable DNNs that support counterfactu-
als and their scope, all the analysed VA systems use post hoc lo-
cal approaches.

Counterfactuals can be selected from the dataset [WPB*19,
CBN*20, WM20, SGPR18], based on the distance between la-
tent representations [SGPR18], input features [WPB*19] or fea-
ture attributions [CBN*20]. They can also be generated [CMQ21,
MSHB22, WSP*21] by exploiting XDL algorithms using perturba-
tions [CMQ21, WSP*21], synonyms [WSP*21] or generative mod-
els [WSP*21]. In most cases, the configurations about counterfac-
tuals are fixed by design [MSHB22, WSP*21, LLL*19, CBN*20].
However, some systems that select counterfactuals from the dataset
allow the user to choose between preselected distances [WPB*19].
Systems that generate them can allow the user to specify the num-
ber of counterfactuals, the number of features that are allowed to
change, or which features can be changed [CMQ21].

The most common visual solutions to summarize the number of
counterfactuals found [CMQ21, WM20] are enhanced bar charts
[CMQ21], enhanced tables (e.g. Table Lens[RC94]) or Sankey
diagrams [CBN*20]. These can be used to show how chang-
ing the input features affects the distribution of predictions and
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counterfactuals, especially for systems that support users in veri-
fying and refining the user hypotheses. Conversely, when the fo-
cus is on individual instances, it is important to highlight both the
differences between the input and the counterfactuals (Figure 10a),
and the difference in terms of predictions [WSP*21, SGPR18], for
example, by using tables [WPB*19, CMQ21], enhanced represen-
tation of the input [CBN*20] (e.g. heatmaps for images) or colour
coding. [WPB*19]. Finally, VA systems can sort and filter the ex-
planations by applying hard-coded thresholds [WM20, SGPR18] or
leave the task of adjusting the visualization to the user through sort-
ing options or lasso selections [CMQ21, LLL*19].

Illustrative example. One evaluation scenario of DECE (Fig-
ure 10a) considers graduate admissions where a student wants to
know how to improve her chance of being admitted to a school when
a classifier predicted his rejection. Thanks to the interaction (e.g.
lock of ratings that cannot be changed) with DECE, he has detected
that a better ‘GRE’ or ‘TOEFL’ score would increase his chance.
He has also identified some minimum boundaries for some scores.
The acquired knowledge would help him to focus on which lesson
to improve his grades.

Summary. Overall, only one system uses counterfactuals as the
primary tool for explainability [CMQ21], while the others use them
as a complementary approach, thus being supported similarly to the
explanations by examples category (Section 4.2.3). It is also worth
noting that half of the analysed papers supporting this category also
support explanation by examples; it suggests that these two explana-
tions can be complementary even if they aim at different goals. Fi-
nally, their adoption seems quite limited, and we do not observe no-
ticeable novel visual solutions for this category since most of the ef-
fort is directed towards the algorithms needed to extract them rather
than their representation.

4.2.5. Model behaviour

Systems that support the model behaviour category employ tech-
niques to extract patterns from the model’s inputs, outputs or in-
ternals, and link them to specific behaviours of the model through
VA. These techniques aim to extract global explanations about the
model and make its behaviour more predictable. They combine pat-
tern mining on activations, human-in-the-loop (i.e. interactions with
the user) techniques, and often methods of the previous categories.

The resulting explanations can be used to explore the role of
different layers [BDME20], visualize the logical process of a
model [ZZM16, PYN*21,WGSY19, JVW20,WHJ*22], extract de-
cision rules for neurons or layers [JLL*19], analyse the cause of
error patterns [JWW*22], or formulate and refine hypotheses about
the semantics associated with the latent spaces [SWJ*20, WZY*22,
WZY20, SGPR18].

When the goal is to approximate the logical process fol-
lowed by layers or the entire model, VA systems employ algo-
rithms [HPYM04] that record and aggregate activation or feature
attribution across data and layers [WSP*21, WM20] into patterns,
and then provide them directly to the user. These can be repre-
sented as sequences of lists of neurons and their associated seman-
tics [PYN*21], as tables [WHJ*22], as sets of partial dependency
plots [WM20], or summarized into decision trees, which can be

represented as icicle plots [BDME20] or novel visualizations, like
TreeFlow [JLL*19] (Figure 11a). Views including these represen-
tations are usually linked to scatter plots that show the extent to
which a decision rule holds and open the door to deeper analy-
sis [WZY*22]. Since these summary decision trees can be very deep
or wide, several VA systems employ summarization techniques,
such as automatic tree cutting [JLL*19], and allow users to expand
or shrink the visualizations to hide or get more details [JLL*19].

On the other side, when the goal is to explore the latent space and
identify its associated semantics, the systems provide more tools for
the user to discover the patterns. This can be done through Interac-
tive Input Observations and Interactive Model Observations ana-
lytics (Section 5.3.3). A popular solution, in this case, is to link en-
hanced PCPs, representing the latent space of a set of input, to other
views that show input data [WZY20, SGPR18], and then make it
possible for the user to modify either the range of activations or the
input data [WZY20, SGPR18]. In this way, the user can inspect and
extract patterns associated with categories of inputs or concepts as-
sociated with latent dimensions. Some systems [SWJ*20, BJY*18,
KAKC18] can be placed in between those solutions (i.e. the ones
that approximate the logical process and the ones that explore the
latent space) since they ease the detection of patterns in the model
behaviour through sub-sets’ analysis, sub-sets definition and sorting
algorithms but without directly extracting the patterns.

It is worth mentioning the case when the model is a reinforce-
ment learning agent. Here, systems use patterns to reconstruct the
policy the agent is following [ZZM16, WZY*22, WGSY19]. This
task is not achievable using only one of the categories mentioned
above (e.g. feature attribution) since the policy aggregates informa-
tion from previous experience and often makes decisions based on
future outcomes. Instead, since reinforcement learning involves se-
quences of actions, VA systems combine segment clustering, pat-
tern mining and algorithms to align the sequences (e.g. DTW), to
extract common patterns [WGSY19] and achieve the goal. Then,
they visualize the extracted information by relying upon linked
views that combine feature attributions, line charts [WGSY19] de-
picting sequences of actions, dendrograms representing the seg-
ments clusters [WGSY19] and plots summarizing statistics or ac-
tivations [ZZM16]. In this way, they simultaneously provide differ-
ent points of view to the user about the agent’s behaviour in that
situation (Figure 11b). In these cases, semantic zoom [WZY*22],
lasso selection [WZY*22] and other similar functionalities that al-
low users to filter and highlight information are extremely useful.
Linked views that combine dimensionality reduction techniques de-
picting different points of view of the same data and functionali-
ties, such as lasso selection or semantic zoom [WZY*22, JWW*22,
JVW20], are also popular among the systems that aim at exposing
the cause of error patterns [JWW*22]. Moreover, like in the case of
PCPs, some systems allow specifying patterns in terms of actions,
rewards or input features, to ease the analysis [WGSY19], and they
are often associated with feature attribution methods that highlight
the most important features for each step [WGSY19, JVW20].

Illustrative example. One use case of CNN2DT (Figure 11a)
considers the interpretation of a surrogate decision tree that repre-
sents VGG16 [SZ14] trained on CIFAR10 [KH*09]. The analysis
of the Semantic map projection view has shown that the visual se-
mantics of different car parts is extracted by different neurons. The
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Figure 11: Examples of howVA systems support model behaviour. (a) CNN2DT [JLL*19] extracts a surrogate decision tree to approximate the
model behaviour of a CNN and combines it with learned features. The user can inspect the decision tree through the TreeFlow representation.
The widths of brands correspond to the proportions of samples of each class, colours represent classes, and the label represents the decision
rule. Users can navigate the tree by collapsing and expanding leave, and they can access the complexity of neuron semantics, computed by a
learned feature method, by clicking on a tree node. (b) DRLive [WZY*22] helps the user to interpret the behaviour of a reinforcement learning
agent by presenting data in five synchronized t-SNE scatter plots depicting the internals of the model, actions and inputs. Each point represents
one game step and is coloured based on the action of that step. The user can click on the bars to highlight and analyse consecutive game steps
or select a cluster of points to get more details in the form of game replays that show the average screen for that steps.

analysis of TreeFlow confirms that most nodes of the decision tree
use coherent semantic information to classify the samples. More in-
teraction and filtering have allowed the user to understand the rea-
son for true positives and false positive decisions by investigating
the patterns searched by some neurons.

Summary. Overall, we observe a high heterogeneity in the
adopted solutions both from a visualization perspective and sup-
ported analytics. Moreover, we note that the model behaviour cate-
gory is often used as a support in the most challenging cases when
other post hoc explanation methods alone are not applicable or not
mature enough. This is the case, for example, of reinforcement
learning agents or latent space interpretation for DNNs dealing with
data sequences. Finally, as previously mentioned, this is the cate-
gory where the VA solutions expose their full power to assist the
user with tasks much harder to address without a system of this
type.

5. Papers Analysis

This section analyses the general concepts behind the solutions
described in Section 4, using the taxonomical scheme presented
in Figure 4 and adopting a VA-oriented focus. It analyses sup-
ported application and DL domains (Section 5.1), target users (Sec-
tion 5.2), common patterns in VA implementation (Section 5.3), re-
producibility and availability (Section 5.4), evaluation of solutions
(Section 5.5) and temporal trends (Section 5.6). We present a gen-
eral description and refer to a few papers, selected as illustrative
examples. The findings of this section set the stage for identifying
open challenges (Section 6) and future actionable activities (Sec-
tion 7). We compactly summarize the provided categorization and
the characteristics of the papers in Tables 1 and 2.

Figure 12: (a) Number of papers at the intersection between the DL
domain and the application domain. Each paper targets one or more
DL domains and one application domain. Domain agnostic refers
to research papers targeting general applications. (b) Distribution
of the number of papers targeting a specific application domain.

5.1. Application and deep learning domains

This section analyses the domains for which VA systems have been
designed and provides a hint about their adoption. Each system is
designed both for a DL-domain and an application domain. The
term DL-domain indicates the DL area of research involved in the
system (e.g. vision domain and reinforcement learning). In contrast,
the application domain refers to real-world applications (e.g. med-
ical applications and games). We use the category application do-
main agnostic to group systems tested only on research applications
with no real-world case and where the user is typically a DL expert.
Figure 12a suggests that most works are related to the computer vi-
sion DL-domain and are application domain agnostic.

Among the 48 application domain agnostic papers, some are
generic enough to potentially target a large set of application
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domains [KAKC18]. Others are limited to specific data types and
DLmethods [LSL*17]. A large number of papers suggests that these
VA systemsmainly target the DL community to help researchers un-
derstand their models (Figure 12b). For those targeting specific tasks
of specific application domains, the three most popular application
domains are games, linguistics and medical domains. The games
domain includes five papers. They propose interfaces to visualize
specific player actions [ZZM16,WGSY19] and extract their learned
strategies. While several components are general enough to be ap-
plied to different games, some encoding and visual components re-
main tightly linked to their specific game of interest [JVW20]. The
popularity of this category can be explained by the recent rise of re-
inforcement learning techniques for games. The linguistics domain
contains four papers using visual elements similar to the tools for
linguistics. For example, the visualization techniques employed by
Recast [WSP*21] (Figure 10b) are similar to spellcheckers, thus
making the usage by the application domain experts easier. In the
medical domain (four papers), VA solutions help clinicians to ben-
efit from the high performance of the DL models and, at the same
time, verify that their behaviour is correct, a crucial task given the
impact of their decisions. For example, given the tasks’ peculiar
characteristics, these systems often employ views specific to the
task and are hardly generalizable to other tasks of the same applica-
tion domain.

Finally, a few other VA systems are directed towards XDL, Envi-
ronment, Cybersecurity and Bioinformatics domains. Among them,
it is worth mentioning: VisLRPDesigner [HJZ*21] (Figure 7b), the
work of Shen et al. [SWJ*20], and the works that focus on Bioin-
formatics. The first allows XDL experts to configure their meth-
ods [BBM*15]. The second proposes glyphs that mix information
from neurons and sensors locations. The works focusing on Bioin-
formatics employ views that are hard to reuse in other contexts since
they are specific to their problems.

Considering the categorization introduced in Section 4, we found
that 16 of the 19 systems targeting a specific application domain rely
on feature attribution, eight onmodel behaviour, two on counterfac-
tual, two on explanation by example and none on learned features
methods. This analysis suggests that the learned features are a type
of explanation directed mainly to DL research and are less effective
when the user is a domain expert with limited knowledge ofML. It is
worth noting that these systems represent a fraction of the surveyed
systems and the results need future confirmation and investigation in
adapting them to different application domains. We argue for more
applicative research efforts to test the efficacy of domain-agnostic
solutions when applied to specific domains.

5.2. Users

In this section, we analyse the surveyed papers for different kinds
of users. This paper adopts the taxonomy defined by Strobelt
et al.[SGPR18] to classify the target users of a VA system, grouping
them into architects, trainers and end users.

Architects are DL experts that develop new DL components
or architectures and modify the existing ones for application in
new domains.

Trainers have a background in DL; their task is not to develop
novel architectures but to apply the existing ones to new ap-
plication domains. They apply well-known recipes for various
tasks of their application domain, limiting the modifications to
hyperparameters and data. They are also named practitioners
in the literature.
End users have limited or no DL knowledge and use pre-

trained models in their specific application domain. Examples
of this category are clinicians, domain experts and the public.

The categorization is not mutually exclusive: a system designed
for end users is understandable for trainers and architects. However,
the opposite is false, and a usable system for architects is hardly un-
derstandable for trainers and end users. Consequently, each paper is
assigned to the less expert category of users that can use the system
and fully understand it. When the paper claims the intended target
users, the lowest ones are associated with it. Otherwise, the category
is chosen based on the type of users involved in the evaluation or the
one closest to the general system description.

Architects are the target users of 27 papers, which mainly rely on
feature attribution (13), learned features (11) and model behaviour
(10).

Trainers are the target users of 30 systems; again, they mainly
rely on feature attribution (17), learned features (10) and model be-
haviour (8).

End users are the smallest group of target users, targeted by only
10 papers; they mainly rely on feature attribution (10), with two
also coping with counterfactuals. No paper is related to model be-
haviour and learned features, stressing the insight that these types
of explanations are specific to DL experts. How to bring these types
of explanations to the end users is an open research topic.

Explanation category coverage. Relating these data to the pro-
posed categorization (Figure 13), we note the following insights.

Among the 13 collected contributions for feature attri-
bution that have images as the data type, only one targets end
users [vdBCR*20]. It supports them with simple visualizations
(e.g. heatmaps, images, area and line charts). The other papers are
split into architects (7) and trainers (4). For the text data type, in-
stead, while trainers are the most targeted users (7), the solutions
for architects (4) present the highest number of visual environ-
ments and richness (e.g. many visualizations per environment are
present). Interestingly, three solutions target end users, with Proto-
Steer [MXC*20] as an example of a medium-complex VA system
that allows end users to steer the DL model, which is an unusual
task for end users and more often provided to architects. Even more
interestingly, when the data type is time series, only one solution tar-
gets architects [SMM*19]; end users are the most prominent class
(5) with a strong presence in the health care domain (4).

The learned features category does not present any work
targeting end users. ShapeShop [HHC17] is the closest solution for
supporting them, using a plain environment composed of just classic
heatmaps and node-link diagrams. Trainers (10) and architects (11)
are the most prominent targets.
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Figure 13: Visual summary of user support, where the edge width
is proportional to the number of users, and the opacity of XDL cat-
egories is proportional to the total number of contributions. Fea-
ture attribution presents the most varied support, but it strongly de-
pends on the data type. Learned features and model behaviour do
not present any support to end users, while evenly supporting the
other ones. The remaining categories present a slight skew towards
trainers and architects but for a much lower number of total contri-
butions.

The same result holds for the explanations-by-example cat-
egory, where end users are slightly targeted (1) and the solutions
are split among trainers and architects. Only exBERT [HSG20] and
LSTMVis [SGPR18] provide more advanced environments, focus-
ing on custom word sequence visualizations and targeting the train-
ers.

Contributions in the counterfactuals category present two so-
lutions for end users, four for trainers and two for architects. Among
them, only DECE [CMQ21] and PolicyExplainer [MSHB22]
present custom visual solutions for trainers and end users, respec-
tively. Among the two works targeting architects, NLIZE [LLL*19]
proposes a rich visual environment composed of novel visualiza-
tion techniques.

As expected for model behaviour, no solution exists that
targets end users. More surprisingly, the collected 18 solutions are
split almost evenly among architects (10) and trainers (8). Focusing
on the former, they present a high level of custom visual solutions,
while the latter use more classic visualization techniques for sup-
porting trainers.

In summary, most VA systems target trainers or architects (85%
of the papers) since they need to understand what happens with their
system and update them accordingly to the identified errors. Works
targeting end users are less numerous (15%). The explanation can be
twofold: they target either simple systems with an educational focus
or specific systems that require strong application domain knowl-
edge to be designed (e.g. medical domain). In the latter case, the
domain knowledge is acquired by exchanges and the participation
of application domain experts, which is costly. Thus, this impacts
the speed and the number of proposals.

Figure 14: Distribution of general families of visualization tech-
niques adopted by the systems. While most works use custom visual-
ization solutions, heatmaps and node-link diagrams appear to be the
second most commonly used techniques. Few systems use treemaps,
boxplots and tree visualizations, such as icicle plots.

5.3. Visual analytics implementation

This section illustrates how the surveyed solutions implemented the
VA principles. The first part focuses on the usage of visualization
techniques (Section 5.3.1), the second part focuses on the degree of
analytical support provided by the VA solutions (Section 5.3.2) and
the final part illustrates the interactive workflow capabilities they
provide (Section 5.3.3), completing the VA cycle.

5.3.1. Visualization

Visualization techniques usage. TheVA systems considered in this
survey use different visualization techniques, which are reported in
Table 2 and summarized in Figure 14. Looking at the global usage
of visual encodings in the surveyed solutions (Figure 14), charts
for numeric data can handle input data, activations, output data,
network weights and evaluation metrics with different encodings.
We report line charts as the most prominent examples for perfor-
mance analysis over epochs [CGR*17], stacked area charts for ac-
tion distribution [WGSY19], histograms for parameters [ZHP*17],
pie charts for the number of actions [WGSY19], bar plots for fea-
ture visualization [KCK*19] and heatmaps [HJZ*21]) for feature
attributions. Charts for multi-dimensional data mostly concern in-
put data and activation with scatter plots (e.g. for sample visual-
ization [WGYS18]), PCP (e.g. for logits visualization [CGR*17]),
tables (e.g. for experimental parameters [HLW*19]) or images for
input data and generated features [HPRC20]). Charts for hierar-
chical or relational data handle data such as the model itself,
the sample hierarchy or dependencies with different visual tech-
niques: node link diagrams (e.g. for depicting proximity in clus-
ters of samples [RCPW21]), icicle plots (e.g. to depict a decision
tree [BDME20]), treemaps (e.g. for error distributions [MMD*19]),
chord diagrams (e.g. to link words [WTC21]) or Sankey diagrams
(e.g. for feature distribution over samples [JWW*22]). Finally,
charts for textual data visualize textual information using Word
clouds [MCZ*17] and Word sequence [HSG20]), possibly aug-
mented with a heatmap [SGPR18].

Most papers complement these standard visualization techniques
with custom or novel techniques, usually central in the relative
VA system and related to the explanations. We report using cus-
tom/enhanced form visualizations for all the reported visualization

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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techniques. Unlike the trend of their classic usage, the novelty
tends to be focused on visualizations for network data (Sankey dia-
grams [MCZ*17, PDD*22, DPW*20, HPRC20, LSL*17, PCN*19,
SGB*19], node-link graphs [SWJ*20, WGYS18, WONM18,
JKV*22, NHP*18, LLS*18], matrices [ZDXR20], hierarchical data
(trees [DWB21, JLL*19, PHG*18] and word sequences [WTC21,
CHS20, HSG20]) and map data, particularly for images (heatmaps
and saliency maps [ZHP*17, JVW20, LLL*19, HCC*20, Vig19]).
Some contributions also propose novel glyphs for summarizing
data, such as MultiRNNExplorer [SWJ*20] for input data and ac-
tivations, Dodrio [WTC21] to encode the behaviour of attention
heads at specific layers, and Attention Flows [DWB21] (Figure 7a),
which proposes a specific view that contains attention information
computed at different words of input sentences.

Explanation category coverage. After looking at the general
trend, we analyse the visualization usage for each category of ex-
planation (Section 4.1). The full results are shown in Table 2. In
conducting this activity, we modelled the complexity of a VA sys-
tem as a combination of two properties: the number of visual envi-
ronments (e.g. pages of a web-based system) of which the system is
composed (quantitative factor) and the visual richness of each visual
environment comprising visualizations, i.e. the visual sophistication
of each environment (qualitative factor). The richness can take three
possible values, low, medium or high, based on human assessment
from two VA experts and one XDL expert. The complexity scale is
qualitatively evaluated with five discrete values (low, medium/low,
medium, medium/high and high). We assessed the system itself if it
was available, and in its absence, we referred to supplemental video
and figures of a paper representing the VA solution.

Feature attribution. The 40 solutions in this category use
different visualization techniques depending on the supported data
type: text, images, time series and multi-modal data.

The 15 solutions supporting the text data type exhibit environ-
ments of variable complexity, with most of them composed of a
single environment, even if with variable richness (equal presence
of low, medium and high). The majority use standard node-link dia-
grams as a common approach to represent attention-based informa-
tion. Five solutions introduce custom designed visualizations: en-
hanced word sequences [MXC*20, WTC21, CHS20] and enhanced
Sankey diagrams [SGB*19, PCN*19]. The use of dimensionality
reduction visualizations is not common.

The 12 solutions supporting the image data type exhibit envi-
ronments of medium average complexity, most composed of three
or more environments with medium average richness. While all of
them use heatmaps, node-link diagrams are used by a few [HSL*21,
CBN*20, WGYS18]. None of them propose custom visualiza-
tions to support feature attribution, except for an enhanced bar
plot [CBN*20] and a custom video augmentation [HCC*20]. Only
five works use dimensionality reduction visualizations, all relying
on t-SNE.

The nine solutions supporting time series exhibit environments of
average complexity, most composed of three or more environments
with medium to high richness. Line charts are widely used, with two
custom approaches proposed [CWGvW19, MSHB22]. The use of
dimensionality reduction visualizations is common, and most rely
on t-SNE.

The four solutions supporting multi-modal data exhibit environ-
ments of high average complexity, half composed of a single envi-
ronment [SSSE19, JKV*22] and the remaining composed of at least
four environments [WHJ*22, HLW*19]. No custom visualization
techniques emerged from the analysis.

In summary, the visual support for the feature attribution cate-
gory seems highly dependent on the data type used, which influ-
ences most of the visualization techniques used and the number and
richness of visual environments. All the proposed systems present
a medium-to-high visual richness, even if they rely on classic tech-
niques with limited novelty.

Learned features. The 22 solutions in this category ex-
hibit environments of medium/low average complexity; one-third
support the image data type. Among them, 14 solutions propose
visualizations specifically designed as entry points for the analy-
sis of learned features, and most of them propose novel or cus-
tom visualization designs in the form of enhanced Sankey dia-
grams [DPW*20, HPRC20, LSL*17, PDD*22, PCN*19], enhanced
node-link diagrams [LLS*18, NHP*18] and an enhanced tree repre-
sentation called TreeFlow [JLL*19]. Only systems that exclusively
support the learned features category use dimensionality reduction
visualizations, relying on different techniques (MDS, PCA, t-SNE
and UMAP).

In summary, unlike the previous category, the VA systems for
learned features show a high degree of novel visual solutions paired
with lower average complexity (fewer visual environments and
fewer visualizations per environment), customized for this specific
explanation. We report a frequent usage of dimensionality reduc-
tion techniques.

Explanations by examples. The seven solutions in this cate-
gory exhibit environments of medium/high average complexity us-
ing standard visualization techniques, such as heatmaps and node-
link diagrams, while none uses dimensionality reduction visual-
izations. Among them, four solutions propose custom visualiza-
tions specifically designed for explanations by examples, such as
enhanced word sequence views (e.g. [SGPR18, HSG20]).

Counterfactuals. The eight solutions in this category show
a medium average complexity, most composed of a single envi-
ronment, with the visualization of the input/output data as a com-
mon goal. Only NLIZE [LLL*19], DECE [CMQ21] and LST-
MVis [SGPR18] propose custom visualization techniques explic-
itly designed for counterfactual analysis. Hypperster [WM20] is the
only solution that uses a t-SNE visualization as the entry point of
the analysis workflow.

Model behaviour. The 13 solutions in this category visu-
alize the model internals as a common goal and show a medium
average complexity. They can be divided into two groups: (a) four
solutions that exclusively belong to the model behaviour category
and (b) five solutions that also belong to the feature attribution
category. Solutions in (a) rely on standard visualizations such as
node-link diagrams and dimensionality reduction visualizations (t-
SNE). The only exception is GNNLens [JWW*22], which proposes
an enhanced visualization for the model internals, still based on
t-SNE. Conversely, solutions in (b) exhibit environments of high
complexity. Most of them rely on custom visualizations, such as

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 15: Distribution of general families of complex analytics
techniques used by the systems. Analytics belonging to the Similar-
ity Analysis family are the most prominent ones, followed by Fea-
ture Influence, Aggregation/Summarization and Clustering families.
The remaining families show a similar adoption, except for Pattern
Analysis.

enhanced Sankey diagrams [WHJ*22], enhanced node-link dia-
grams [LLS*18, NHP*18] or techniques aimed at addressing scal-
ability problems, such as pixel-based or unitary visualizations (e.g.
[JVW20, WHJ*22]). Most of the solutions use node-link diagrams
or scatter plots as entry points for the analysis workflow, except for
three [SGPR18, HLvB*20, WZY20], which use PCP.

Overall, the reported analysis shows the effect of the targeted
XDL category on the design of the VA systems supporting it, pre-
dominantly in terms of using classic visual solutions instead of novel
or custom ones, and it shows the average complexity of the vi-
sual sub-system and usage of dimensionality reduction techniques.
Specifically, on this last topic, we note that only two solutions
propose custom dimensionality reduction visualizations [WHJ*22,
JWW*22], enriching the visualization with glyphs. Given the fre-
quent usage of dimensionality reduction techniques for learned fea-
tures and model behaviour and the presence of some specific tech-
niques to adapt them to DL [RFFT17, CEP20, CP20], it would be
interesting for future VA research to focus more on adapting them
to XDL. We proceed by looking at what kinds of analytics those
systems support.

5.3.2. Analytics

Analytics usage. The VA systems considered in this survey use
different analytics techniques, reported in Table 2 and summa-
rized in Figure 15. While almost every system implements ba-
sic analytics supporting data exploration and filtering, the use
of more complex analytics depends on the supported tasks and
the XDL category. We collected 89 instances of complex ana-
lytics, grouped into 12 families: Similarity Analysis, Feature In-
fluence, Aggregation/Summarization, Clustering, What-if Analysis,
Model/Framework (declared by authors and meaning a full stack
composed of multiple analytics), Search/Mining, Saliency Analy-
sis, Activation Maximization, Statistical Analysis, Semantic Analy-
sis and Pattern Analysis. Complex analytics are divided into three
categories, namely, novel analytics, custom analytics based on slight
modifications of existing solutions and classic analytics, which are

Figure 16: The Token-wise Sentiment Decomposition [CHS20]
analytics computes the contributions of each token in the input sen-
tence towards the final classification class and represents them us-
ing an enhanced word sequence visualization.

existing solutions used as is. While basic analytics provide no nov-
elty by definition, for complex analytics, we based our analysis on
the description of the analytics support in each paper and on the
claims that each contribution stated for each analytics (usually re-
sulting in a deep explanation of its behaviour and implementation).

Explanation category support. After looking at the general
trend, we analysed the analytics support for each category of ex-
planation (Section 4.1). Feature attribution. The 40 solutions
in this category use different analytics techniques depending on
the supported data type: text, images, time series and multi-modal
data. The 15 solutions supporting the text data type show a vari-
able usage of analytics. Analytics belonging to the Feature Influ-
ence family are the most used, and among them, three novel solu-
tions exist [CHS20, DWB21, WHJ*22], aiming at identifying the
most influencing tokens for the predictions. For example, Chawla
et al. [CHS20] propose the Token-wise Sentiment Decomposition
analytics to compute the contributions of each token in the input
sentence towards the final classification class and represented them
using an enhanced word sequence visualization (Figure 16). At the
same time, AttentionFlows [DWB21] presents a novel radial lay-
out to represent feature attributions for text data in Transformers
models. Five papers use analytics in the Clustering or Aggrega-
tion/Summarization family but without proposing novel approaches.
Two systems supportWhat-if Analysis, allowing users to change at-
tention weights [SGB*19] or prune the attention heads [JKV*22].

The 12 solutions supporting the image data type mostly use com-
mon Saliency Analysis or Activation Maximization analytics. No-
table are two solutions [WGYS18, CBN*20] that propose two novel
frameworks oriented towards ML architects and based on node-link
diagrams to interpret the model.

The nine solutions supporting time series data show a heteroge-
neous usage of the analytic families. Novel approaches are oriented
towards Feature Influence analytics [SMM*19, SWJ*20, WWM20,
MSHB22], paired in most cases with line charts or their visually
enhanced versions (e.g. [MSHB22]).

The four solutions that support multi-modal data include Feature
Influence and What-if Analysis. For example, M2Lens [WHJ*22]
proposes a novel analytics that aims to identify the influences of
features on model predictions.

In summary, similar to what we observed for visualizations,
we note that the feature attribution category tends to use clas-
sic analytics to support the interactive analysis, where Aggre-
gation/Summarization and Clustering are the analytics families
most commonly used to support exploration. In contrast, Feature

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 17: SUMMIT [HPRC20] presents the Attribution Graph
View, a VA approach that can reveal and summarize crucial neuron
associations and sub-structures that contribute to the outcome of a
model. The system presents an enhanced Sankey diagram based on
the aggregation of activations and intralayer influences.

Influence and Activation Maximization are mostly used to support
the explanation. In addition, on the analytics side, the data type has
much less influence on the choice of the analytics compared to its
influence on the choice of visualization technique.

Learned features. The 22 solutions in this category
make a heterogeneous use of complex analytics, covering 10
out of 12 analytics families. The prominent families are Aggre-
gation/Summarization (6), Clustering (3), Activation Maximiza-
tion (3), Model/Framework (3) and Similarity Analysis (3). Pat-
tern Analysis and What-if Analysis are not supported. Although
most of the solutions propose custom visualizations and use com-
plex analytics, only SUMMIT [HPRC20] presents a novel visu-
alization design coupled with a novel complex analytics. Among
the solutions supporting Aggregation/Summarization, three analyt-
ics approaches are novel [BJY*18, HPRC20, ZDXR20]. SUM-
MIT [HPRC20] (Figure 17) presents both an enhanced Sankey di-
agram and a novel Aggregation Analytics approach to visualize
highly activated neurons. The remaining novel solutions belong
to Model/Framework [MFH*21, LYY*20] and Similarity Analy-
sis [PHG*18, PDD*22]. An example Activation Maximization an-
alytics is the one used by BLUFF [DPW*20] (Figure 8a), which
extracts the learned features and presents synthetic images that max-
imally activate the neurons over an enhanced Sankey diagram.

In summary, the learned features category is confirmed to present
a higher degree of novelty and solution coverage, even from an an-
alytics aspect. On the other hand, note that the novelty in visual-
izations and analytics is rarely coupled, meaning that novel analyt-
ics results tend to be visually represented in a traditional way. In
contrast, basic analytics tend to exploit novel visual solutions. The
rationale could lay in the designers of these systems using visual-
ization and analytics separately to support explainability. A second
rationale could be to avoid overloading the user to understand novel
analytics and novel visual encodings simultaneously. Explana-
tions by examples. Solutions in this category use only three fami-
lies of complex analytics: Similarity Analysis (2), Search/Mining (1)
and What-if Analysis (1). No completely novel analytics have been
proposed, while all are customized forms of classic ones. The
exBERT [HSG20] system is remarkable, which uses an enhanced
word sequence visualization and a custom Search/Mining analyt-

ics to support the nearest neighbour search of tokens and attention
heads for explanations by examples.

Counterfactuals. The solutions belonging to this category
focus only on the Search/Mining (3) and Feature Influence (1) fam-
ilies. Among them, only DECE [CMQ21] presents a novel analytic
approach. As shown in Figure 10a, the system presents a counter-
factual generation method coupled with an enhanced parallel coor-
dinate view to let the user analyse counterfactuals.

Model behaviour. Most of the 13 solutions in this category (8)
rely on Similarity Analysis, where all systems use classic dimension-
ality reduction algorithms, with t-SNE as the most commonmethod.
For example, DRLive [WZY*22] (Figure 11b) helps the user inter-
pret the behaviour of a reinforcement learning agent by presenting
data in five synchronized t-SNE scatter plots depicting the internals
of the model, actions and inputs. The second most common analyt-
ics approach is Statistical Analysis (2), which is oriented towards
the model internals [WZY20] and the model memory [JVW20].

Overall, the analysis of analytics use in the surveyed system con-
firms a variety of approaches for feature attribution and learned
features categories, with the first proposing more conservative ap-
proaches (but more present in the literature), while the second shows
novel efforts. Explanations by example and counterfactuals cate-
gories present a more balanced usage of classic and novel analytics
(both slight modifications or completely novel) but are flawed by the
presence of fewer contributions. Finally, model behaviour surpris-
ingly has a more conservative approach on the analytics side than
expected. More research could be conducted to expand the capabil-
ities of VA systems, given the natural tendency of this category to
include human-in-the-loop approaches.

As a final remark, we note the scarce support for more than ex-
ploration capabilities, with only six solutions [HJZ*21, LYY*20,
JKV*22, SGB*19, LLL*19, WZY*22] exploiting the knowledge
generation model to support not only exploration tasks but also ver-
ification tasks. More on this will follow in the next section.

5.3.3. Interactivity

This section discusses the degree of visual interactivity the surveyed
solutions offer to the targeted users (Figure 18). We obtain inspi-
ration from the categorization of Gehrmann et al. [GSK*19], dif-
ferentiating between three types of interactions: Passive Observa-
tions, Interactive Input Observations and Interactive Model Obser-
vations.

Passive Observations include interactions that do not allow
the editing of input data or models loaded into the system. Ex-
amples are the navigation across data, layers, explanations or
the selection of dataset samples.
Interactive Input Observations allow users to modify models’
input data or create new ones on demand (e.g. through forms).
An example is brushing over an image to delete some pixels
and check if the model changes its predictions.
Interactive Model Observations allow users to interact with

the model by modifying, for example, activations or attention
weights and checking how its behaviour changes (e.g. select
neurons that must be shut down during the next iteration).

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 18: Distribution of the type of interactivity. Systems can al-
low users to modify the input (Interactive Input Observation), the
model’s internals (Interactive Model Observation) or make them
unmodifiable (Passive Observations).

The 37 papers using Passive Observations rely on feature attribu-
tion (19) and learned features (17). No paper is related to counter-
factuals, while two papers rely on explanations by examples and 11
rely on model behaviour. An example of a supported task is given
by Blocks [BJY*18], which allows the analysis of prediction errors.
It only needs the classification results and the sample data to make
its representation, and it exploits the interactivity to mainly support
exploration, summarization and filtering capabilities.

The 20 papers using Interactive Input Observations rely on fea-
ture attribution (13), counterfactual (6) and model behaviour (5).
This type of interaction is a core interaction for counterfactuals and
model behaviour. In the first case, the interaction allows users to
perform counterfactual reasoning [WPB*19], investigate decision
boundaries and analyse the incidence of general changes to sam-
ples. In the second case, it is an entry point used to verify the system
behaviour in multiple cases and extract explanations.

Interactive Model Observations are supported by 10 papers over-
all, mainly for feature attribution (eight papers). The remaining pa-
pers cover the remaining XDL categories with only one or two sam-
ples per category (usually with more than one category covered per
paper), apart from learned features. As in the previous case, this
is a key component for systems that support the extraction of the
model behaviour since it allows the user to verify the model be-
haviour for different configurations and steer it. For example, Pro-
toSteer [MXC*20] allows the user to update the prototypes during
the training stage of a self-explainable deep sequence model. Sur-
prisingly, this steering ability and the possibility of observing the
training behaviour [PHG*18] in real time is barely present in the
literature (column TR of Table 1) and is a direction for future re-
search (e.g. [FCdMP21]).

In summary, the totality of the surveyed contributions implements
Passive Observations by definition, resulting in exploration capabil-
ities for precomputed data for all the five XDL categories except
counterfactuals. Twenty works add VA capabilities for confirma-
tory analysis and hypothesis testing by acting on the input observa-
tions. Feature attribution, counterfactuals and model behaviour are
the XDL categories benefiting the most from this approach, while
future research contributions could target learned features and ex-

planations by examples. Finally, InteractiveModel Observations are
mainly dedicated to just one XDL category (feature attribution) and
present the highest degree of user control in the analysis workflow,
including steering capability and what-if analysis. Supporting this
level of control and allowing model steerability for the remaining
XDL categories are promising research directions.

5.4. Reproducibility and availability

This section addresses the reproducibility and availability of a solu-
tion by analysing its capability to be exploited by researchers.

These aspects directly impact the ease of use of a solution, de-
pending on different degrees of availability of materials related to
a contribution. The lowest degree is represented by just the paper
itself, followed by the availability of a demonstration environment,
which helps experience the solution. Moving towards better avail-
ability, we find the usage of well-established implementation frame-
works, source code availability and difficulty in using the provided
code. This last consideration applies only to contributions that make
source code available. We classified them into one of the three sub-
categories: easy to use (meaning that the material is easy to use as
is), easy to reproduce results and easy to extend (meaning that the
material can be customized to user needs).

Three members of our team investigated the ease of using, re-
producing and extending the surveyed VA solutions by acting as a
researcher needed to conduct these activities. Each grade was bi-
nary (i.e. easy/not easy). To limit the subjectivity of the evaluation,
we formed each judgement by a majority vote. The evaluation con-
cerned both the experimental setup and the analysis of documenta-
tion.

Forty-two out of 67 contributions provide only the textual pa-
per without any supporting material. While two papers provide
only a demonstration environment, 23 papers provide public source
code, where eight only provide source code [KCK*19, WWM20,
SGPR18, MCZ*17, MFH*21, LLL*19, YCN*15, SMM*19],
and 15 only provide source code and demonstration environ-
ment [JVW20, SGB*19, JWW*22, HSG20, LYY*20, HPRC20,
Vig19, SSSE19, ŠSE*21, WPB*19, JKV*22, RCPW21, WTC21,
DPW*20, PDD*22]. In general, only approximately 36% of con-
tributions provide something to support the interested researcher in
testing the proposal, and only 33% provide source code.

For works providing source code, it is possible to examine the
most commonly used implementation frameworks in the back-end
and front-end. Eighteen out of 23 works use a back-end, where Py-
Torch (11) and TensorFlow (4) represent the predominant choices
(others: 3). Flask is the most commonly used web server. On the
other hand, 16 of 23 works use a dedicated front-end, while the
remaining delegate the visualization management to the back-end
part. Among the former, D3.js is the most commonly used frame-
work (10), followed by other JavaScript-based environments (e.g.
React.js and vue.js) with six occurrences. Interestingly, only one
contribution uses computer graphics technology [SMM*19] (Unity
Game Engine). Overall, where available, the solutions use standard
and well-accepted technology for their implementations. Most use
web-based technologies, whereas none seem to rely on native ap-
plications (e.g. C++, OpenGL) that could be preferred due to their

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 19: Distribution of the evaluation procedure. The usage sce-
nario is the most common approach used to evaluate VA systems,
whereas few have conducted quantitative user studies.

better performance and scalability. In the future, these technologies
could be used more due to the increasing size of DNNs.

Looking at the ease of a researcher would encounter in exploit-
ing those solutions, our tests show that four contributions are al-
ready considered difficult to use as intended by the authors due to the
limited documentation [KCK*19, WWM20, SMM*19, MFH*21].
Seven are easy to use, and their results are easy to reproduce. The
remaining 10 are easy to use, their results are easy to reproduce and
their functionalities can be extended. Finally, two are considered
easy to use, their results are easy to reproduce and they are very
easy to extend due to their plugin nature [WPB*19, SSSE19].

Looking at the results for papers providing source code, approx-
imately 80% allow easy reproducibility and use. This result is good
since it means that researchers working in XDL or VA can easily
exploit the capabilities of the solutions. At the same time, we must
consider that no form of code or demonstration environment is pro-
vided for the remaining part of the papers (45).

5.5. Evaluation

Although some XDL methods in Section 4 have been individu-
ally evaluated (e.g. features attribution [AGM*18]), VA systems for
XDL have to be evaluated as a whole to assert their efficacy and
capability to be trusted by users. A global evaluation is essential
because incorrect explanations influence humans to make bad de-
cisions when teamed with an AI system [BWZ*21]. Since the field
is new, there is not yet any well-accepted and evaluation pipeline
in use. However, some authors [LGM20] propose mitigation in this
direction by providing a list of questions that could be used as a
checklist for evaluating a system.

Figure 19 shows that the VA solutions for XDL follow common
trends in VA fields. Specifically, they mainly evaluate their systems
using user studies with quantitative information or feedback, case
studies with or without feedback and usage scenarios. Other than
the modality chosen by the authors to evaluate a proposed solution,
papers are systematically peer-reviewed and validated by expert re-
viewers.

Q-USt: A Quantitative User Study (five papers) involves partici-
pants recruited to interact with the system and answer a
questionnaire [vdBCR*20, HJZ*21, DWSZ20, JKV*22,
PDD*22]. The results are provided in a quantifiable way
(e.g. the amount of time a system performs better than an-
other).

F-USt: A User Study With Feedback (16 papers) is similar to
a Quantitative User Study but only provides descriptive
feedback in a qualitative form. Usually, the first part of the
process consists of an interview to acquire the experience
and expectations of users. Then the system is presented to
them with the task they must solve. The focus is on the
user, and the study can use a mix of realistic and synthetic
data, with the constraint for the data to be fit for the task.
Users must think aloud when solving their tasks, and an-
other interview is conducted afterwards.

F-CSt: A Case Study With Feedback (11 papers) corresponds to
a case study run by participants that use the tool in a
controlled way for a specific task and where participants
also provide feedback [vdBCR*20, WGZ*19, MXC*20,
CWGvW19, JKV*22, HLW*19, JTH*21, WZY*22,
WZY20, WGSY19, WHJ*22]. The focus is on the case
under analysis, and the case study is normally run in real
conditions using real data, with the goal of generalizing the
results over cases in similar conditions.

CSt: A Case Study (24 papers) without feedback is also avail-
able in the literature. In this case, papers describe case
studies with experts. The discoveries and workflows of the
experts are reported in the results. Sometimes feedback can
still be indirectly collected during case studies.

USc: Usage Scenario (31 papers) corresponds to the execution
of a scenario by the authors without participants and/or the
experts involved.

Looking at the distribution of evaluation types, almost 36% of
papers propose only a Usage Scenario (24 papers), with additional
five papers complementing it with an additional evaluation activi-
ties. Twenty-four works provide case studies, whereas only ≈ 8%
(five papers) include a Quantitative User Study, exclusively cover-
ing feature attribution and learned features categories. Overall the
evaluation activities align with what is expected by VA best prac-
tices. At the same time, increasing the user’s involvement in testing
activities is recommended, particularly looking at DL experts and
end users (e.g. application domain experts).

Although user involvement is essential, it is not the only resource
to consider, and the correct evaluation methodology choice depends
on the kind of problem or research question at hand [GB08]. Note
that also alternative evaluation methods can also be used, even look-
ing at practices in the XDL domain (Section 6.1).

5.6. Temporal trends

Temporal trends allow one to understand how methods are adopted
and abandoned over time. Figure 20 shows when the 67 papers con-
sidered in this survey were published. While the years 2015 and
2016 show one paper each, since 2017, the frequency of publication
has considerably increased, reaching a peak of 19 papers in 2020.
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Figure 20: Publication year for the 67 papers in this survey.

The fact that 2015 and 2016 presented only two papers means that
those years can be considered the starting epoch of VA for XDL.

Further analyses of temporal trends are summarized in Figure 21.
Figure 21a shows how the VA systems employed methods in the
XDL field during the years, according to the categorization pre-
sented in Section 4. Feature attribution is the most employed: ap-
proximately 50% of papers use them every year.

Concerning the coverage of DL models, as shown in Figure 21b,
the most commonly used models belonged to the CNN class un-
til 2018, after which their adoption started to decline. Conversely,
transformers usage emerged during the last 4 years, appearing in
42% of the papers in 2021. This trend aligns with the AI research
trends, where transformers are gradually replacing CNNs in com-
puter vision and RNNs in natural language processing [KNH*22].

An interesting aspect to consider is the time elapsed between the
first publication of a DL model and the publication of VA systems
targeting it and proposing XDL approaches. The solution showing
the shortest gap is BertViz [Vig19]: the authors proposed explain-
able approaches for transformers in 2019, the same year the relative
DLmodels (BERT andGPT-2) were proposed. Conversely, in 2020,
MultiRNNExplorer [SWJ*20] and HypperSteer [WM20] proposed
explainable approaches for RNN models that were introduced 23
years before.

Figure 21d shows the distribution of the gaps in terms of years
grouped by classes. While the median of the gaps is 4 years, with a
lower quartile of 2 years and an upper quartile of 6 years, Figure 21c
shows that models belonging to the RNN class are affected by the
highest gaps. They show amedian and lower quartile in line with the
trend, 4 years and 2 years, respectively, but an upper quartile of 20
years. On the other hand, transformers show the lowest gaps, with
a median of 2 years, suggesting increasing interest in the explain-

ability of those models and, more generally, in the newly proposed
models. As stated before, VA for XDL already emerged when trans-
formers emerged in the DL community [KNH*22].

6. Research Challenges

This section lists some important challenges to address in future VA
works for XDL.

6.1. Make the XDL systems more trustworthy thanks to VA

The adoption of any system is closely linked to the trust users have in
it. We identified several directions systems designers should follow
to improve the trustworthiness of their systems. First, we consider it
necessary to improve systems evaluation procedures by considering
their explanation performance.

In Section 5.5, we analysed the main trends in evaluating VA
systems for XDL. However, these evaluations are rather generic
for any VA system, and they do not consider the specificities of
XDL that also have proper evaluation methods from the XDL com-
munity. Therefore, we think research is needed to properly define
evaluation procedures dedicated to such systems by taking inspira-
tion from both the VA and XDL communities. For example, Meske
et al. [MBSG20] and Mohseni et al. [MZR21] described several
quality criteria to quantify the effectiveness of explanations. They
can be extended by considering VA aspects, such as the evolution
over time and the interaction with the user. Additionally, building
benchmarks that include well-defined data and tasks ready to be
solved by VA systems can help create more easily comparable sys-
tems thanks to their standard evaluation procedure.

Building systems is not sufficient; it is necessary to enforce their
trust. Since few works focus on this aspect, a large gap exists. One
way to increase trust is to incorporate semantics within the expla-
nations or use ad hoc methods [CMJ*20]. The preliminary work of
Panigutti et al. [PPP20] uses ontologies that label the input data, but
we expect future works to use input datasets with no ontology anno-
tations. Poli et al. [POP21] presented a sentence generation system
for image segmentation. Such an approach can be adapted to similar
contexts relying on DL.

Most explainable systems generate visualizations to help under-
stand the DLmodel. However, it is still up to the user to infer knowl-
edge from this generated information. For example, it is common for

Figure 21: Temporal trend analyses. (a) XDLmethod usage over the years. (b)Models usage over the years, grouped by class. (c) Distributions
of elapsed years between the first publication of a DL model and the publication of VA systems proposing XDL approaches on that model. (d)
Overall trend grouping all the models of the previous point.
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feature-attribution-like methods to generate a heatmap of features of
interest and overlay it on the input image data (Section 4.2.1): the
user can easily see which pixels of the image strongly take part in
the final decision. However, there is no more information, and the
user should infer the reasons for their importance without knowing
why the network focused on this specific part. VA solutions can pro-
videmore guidance [CGM*17] and better support the user in insight
generation and verification.

6.2. Make the explanations more versatile

Most VA systems target standard CNNs used in a classification con-
text with few classes without necessarily using state-of-the-art XDL
methods and without exploring the most challenging and recent
problems, as also noted by [PvSvdE*22]. We think systems should
be more versatile by focusing on a deeper variety of DL model fam-
ilies and by using more recent XDL methods.

Although there is a considerable diversity of DL architecture fam-
ilies studied in the VA and XDL literature, there is a substantial bal-
ancing issue among them. Indeed, while there are many systems
about CNNs and RNNs, others have been barely studied, such as
generative networks. It would be interesting, in the future, to focus
on a broader family of models and input data, possibly by proposing
more VA systems that are model-agnostic or data-agnostic.

Up to 2021, many works directed towards the VA commu-
nity rarely include recent models and explanation methods, and
works directed towards the XDL community often provide basic
visualizations. For example, only five systems include recent and
popular baselines, such as SHAP [LL17], Grad-CAM [SCD*19]
and LIME [RSG16]. In all the other cases, systems prefer to
use older methods (e.g. Deconvolution [ZF14], Vanilla Saliency
Maps [SZ14]). The same observation holds for other categories of
explanation methods (Section 2.2) and models used. While these
choices have no impact on the quality of VA systems, they can
limit their usefulness and spread, especially when directed towards
DL experts.

6.3. Increased adoption of XDL through VA

End users need to be concerned about DL, as it can profoundly im-
pact them. We think that XDL is the key to helping understand the
outcomes of DL and that VA can make XDL entertaining, under-
standable and usable (Figure 22).

We observe that most VA systems target DL or application do-
main specialists, whereas explanations should also be understand-
able by non-experts since they are an important target [GTFA19].
In fact, if the public cannot understand the benefits or drawbacks of
DL systems, they cannot trust them or make appropriate decisions
based on the use of such systems. The main difficulty relies on find-
ing a trade-off between the high complexity of DL models and what
users can understand without a background in ML. In this regard,
the combination of explanations and VA systems appears crucial
for future research. Verbalization [SBE*18] and the generation of
explanations with a balance between cognitive load and explana-
tion accuracy [AvdWKL20] (adaptation) could be promising ways
to broaden the audience of such tools.

Figure 22: VA systems for XDL should help the public better han-
dle DL applications. The dotted rectangles represent unhandled as-
pects: public users, the adaptation of the explanation to the user and
verbalization of the explanation.

Figure 23: Steps needed to bridge the gaps among XDL, VA and
DL. The steps are related to the communities, their collaborations
and the software.

7. Bridging XAI, VA and DL

Section 6 has discussed research challenges at the intersection be-
tween VA, DL and XAI. Here, we identify a series of temporal ac-
tion items that could help fill those gaps (Figure 23).

1. Community awareness. The first step is to increase awareness
among the communities. To build complete and adequate sys-
tems, developersmust be aware of the strengths andweaknesses
of each involved field. In this direction, some VA and AI con-
ferences have already hosted workshops that discuss the topic.
Examples include, VISxAI [PBH*] and VADL 2017 [CYPL]
for VA conferences, and XAI4Debugging [CFG*] and EDL-AI
for XAI [BQ] for AI conferences. While these workshops are
not all specific to the VA topic for explaining DL, they discuss
it to some extent. The distill.pub journal was another initiative
in this direction (i.e. currently in a hiatus). It promoted inter-
active peer-reviewed articles on ML, where users can visually
interact with the models and findings of the papers. Many arti-
cles deal with XDL, thus making it clear that visual interaction
is a key element to understand them better. Similar initiatives,
especially when they involve experts from all the communities
involved, are crucial to increase awareness and the exchange
between the communities, helping them grow.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14733 by C

ochraneItalia, W
iley O

nline L
ibrary on [28/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



344 B. La Rosa et al. / State of the Art of Visual Analytics for eXplainable Deep Learning

Figure 24: Distribution of the areas of expertise the authors in VA,
DL and XAI. VA expertise is pre-dominant, partly due to the prove-
nance (e.g. venue) of most of the surveyed contributions.

2. Collaborations. A more significant number of initiatives and
deeper awareness would increase collaborations between the
communities. We rated the authors’ VA, XAI and DL expertise
in the surveyed papers on a qualitative scale (two values: expert
or not showing expertise for each area) by analysing their pub-
lication histories. The primary source was Google Scholar and
we looked at the number of papers published in each area by
an author. Two-thirds of the authors (170 over 234) of the anal-
ysed papers came from the VA community, while one-third are
from the DL community. Among them, only a small fraction
(23 authors) has expertise on XAI (i.e. has published at least
two papers on the topic). This result is also confirmed by the
distribution of authors for papers (Figure 24

24 ), where VA is the dominant area, less than half of papers usu-
ally involve at least one author from DL, and very few involve
XAI experts.While most papers come fromVA venues, the ma-
jority of the authors are expected to come from VA; the result
concerning the involved XAI experts is still surprising, given
the topic of the analysed papers. This phase aims to balance the
distribution and promote the inclusion of experts from all fields
in each design phase.

3. Alignment between areas. Starting from the considerations
expressed in Sections 5.6 and 6, the actions described in the
previous paragraphs can help communities close the temporal
gap between the solutions adopted in DL, XAI and VA. Greater
awareness and collaboration between the communities, and the
availability of more integrated tools, would make implement-
ing novel architectures and XDL methods on VA systems more
accessible and faster. It would be possible to reduce the tempo-
ral gap observed between the availability of novel AI solutions
to the public and their support from VA systems. Moreover,
VA systems that support state-of-the-art models and explana-
tion methods could further speed up the innovations in XDL,
the main area of target users of these systems, making these
efforts profitable for all three areas.

4. Middleware software. Finally, in a more mature field where
both areas contribute significantly, we foresee a critical further
step: building standard interfaces between VA and DL in terms
of libraries and tools. Currently, a user must follow instructions,
often tailored to the specific VA system, to upload a custom
model or dataset into a VA system. The same difficulties arise
when VA researchers have to adapt their systems to different
models and workflows. Hence, there is a need for a set of tools
and APIs that, starting from the already available frameworks
(e.g. PyTorch [PGM*19], TensorFlow [ABC*16] and OpenAI
Gym [BCP*16]) can be used as an interface between the DL li-
braries and the VA libraries (e.g. D3.js [BOH11]). Ideally, they
should abstract the access to the DL frameworks, making sup-

port for a wide range of modifications easier and speeding up
the spread of such systems. While the plugins for DL frame-
works (Section 5.4) represent an initial attempt, they cannot
modify the visual components yet. Apart from technical consid-
erations, the study and research of more integrated data analy-
sis pipelines that include humans in the loop are needed. These
efforts could mitigate the contrast between DL (data-centric-
controlled-loop) and VA (human-centric-controlled-loop) and
help in developing more effective middleware. The availability
of these tools could also boost the number of works that publish
their code contextually in the paper.

8. Conclusions

This paper presented a report on the state of the art of VA for XDL.
We hope this work provides researchers from VA, DL or XAI with
the correct overview to begin novel research activities at the inter-
section of those fields. We provide them with the main background
concepts, the existing works that fit those fields, and the analysis of
trends, commonalities and specificities of 67 VA solutions in cop-
ing with XDL. Specifically, we hope that researchers in DL, or XAI
have gained a solid understanding of the functionalities provided
by VA in terms of support for explaining DNN. At the same time,
practitioners working in VA can use this manuscript as a guide for
the state-of-the-art solution available in specific contexts. Finally,
we encourage VA researchers to start from this analysis to fill re-
search gaps and improve the support for XDL in terms of available
explanation methods and supporting analyses.

As additional future directions to explore the integration of these
communities, we foresee an analysis of the trade-off between added
advantages and the carbon footprint [MBB*22] of these systems
compared to the usage of XDL methods alone and the employment
of an alternative medium to improve the ease of use for end users,
such as paper-based interfaces [BvOR21] and augmented reality.
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