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Abstract. Strong seismic excitations can induce considerable displacements in base-isolated
structures. These may in turn cause damage to the isolation system or impacts against adjacent
structures in the event of an insufficient seismic gap. A strategy of reducing displacements can be
achieved through the interposition, between the isolated structure and adjacent structures, of
deformable and dissipative devices, called bumpers. In this paper, the response of single-degree-
of-freedom (SDOF) base-isolated systems subjected to sine excitations and whose displacements
are limited by optimally designed bumpers are analyzed, the bumpers being designed according to
an optimal design criterion.

Introduction

One of the most widely used strategies for passive control of the dynamic response of sensitive
structures and equipment is base isolation. This strategy consists of interposing a highly
horizontally deformable element between the base floor and the structure (or equipment), so that
the period of the system is increased significantly resulting in a reduction of the transmitted
acceleration. However, strong earthquakes can cause large displacements at the isolated floor level,
exceeding its limit deformation, or induce impacts with adjacent elements. Rigid impact causes
significant increases in acceleration and floor drifts that can cause serious damage to both structural
and nonstructural elements [1].

An effective strategy to reduce and control the adverse effects due to large isolation floor
displacements is the interposition of deformable and dissipative devices, called bumpers. Various
experimental investigations have been conducted by the authors on the influence of bumpers on
the dynamic response of single-degree-of-freedom (SDOF) systems subjected to sine base
excitation [2-4]. From these studies, it was observed that the parameters governing the impact
between system and bumper can be identified by three elements: gap (distance between mass and
bumper), stiffness and damping of the bumper. The authors, moreover, based on the experimental
investigations defined a numerical model that allowed the identification of optimality relations
between bumper stiffness, bumper damping coefficient and gap, reducing the design of such a
control strategy to a single parameter [3-7].

This paper analyzes the response obtained from a numerical model of SDOF system constrained
by two bumpers, arranged symmetrically on both sides of the mass of the system with an initial
gap, subjected to sine excitation. The design of bumpers is done in accordance with the optimality
relationship [6] and the optimal design curve [7]. The absolute maximum values of the response
in absolute mass acceleration and relative mass displacement are represented as a function of
frequency ratio and for six initial gaps. All results shown are represented in dimensionless terms
so that they can be generalized.

The text is organized as follows: the first paragraph introduces the model and its equations of
motion; the second paragraph explains the optimal design criterion that is used to identify the

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials
Research Forum LLC.
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parameters governing the impact; the third paragraph reports the results of the numerical analysis;
and finally, the fourth paragraph reports the conclusions and possible future developments of the
work.

Model and equations of motion

The model adopted in the numerical analyses is shown in Fig. 1. The figure represents a vibro-
impact single-degree-of-freedom (SDOF) system that consists of a mass M, a damper D and two
deformable and dissipative obstacles, arranged symmetrically on both sides of the mass with an
initial gap G ; (=R right side, j=L left side) and denoted as right bumper By and left bumper B,
respectively. The damper and the bumpers are modeled by a linear elastic element, with stiffness
K and K; (j=R,L), respectively, and a linear viscous dashpot, with damping coefficient C and
C; =R,L), respectively, arranged in parallel. The system is subjected by a sine base acceleration
A;(t) = Agsin(02t), where A is the amplitude and 2 in the circular frequency of this excitation.
Finally, in figure 1 u(t) refers to the relative displacement of the mass with respect to the ground,
and u;(t) (j=R L) refers to the deformation of the bumper.

The equations of motion were written in dimensionless form to make them as general as
possible. The components of the equation were normalized with respect to F* = Mw?u*, which
represents the maximum force in the SDOF system in free flight (without obstacles, FF): the
quantity u* = Uge R4 max represents the maximum relative displacement in FF, where ug =

Ag/w? is the static displacement and Ry max = 1/(2&4/1 — €2) is the maximum value of the

dynamic amplification factor R; (&, £); while w = /K /M denotes the frequency of the system.
The frequency ratio f = 2/w and the damping ratio § = C/(2Mw), are introduced and the
dimensionless time T = wt is defined. In the dimensionless equations, the quantities ¢ = u/u* and
qj = uj/u” (=RL) are the dimensionless displacement of the mass and dimensionless
deformation of the bumper, respectively. Similarly, the dimensionless gap is 8y; = Go;/u” (j=R,L)
and can take values comprised within the range 0 < &§,; < 1. Finally, f(7) = 2£q'(7) + q(7) is
the damper dimensionless force, f;(7) = 2§y;q’;(t) + A;q;(v) with (7=R,L) —where y; = C;/C
and 4; = K;/K— as the dimensionless contact forces, and ag = 2§4/1 — &2 as the dimensionless
amplification of the dimensionless sine excitation a; (7).
Thus, the motion equations of the model can be written in the following dimensionless form:

{Q”(T) + (@ + i@ - 1[6(D] - Yolfj (D] = —agsinpt,
fi(®) =0 '
where it is assumed that if the mass is in contact with the left bumper, then j=L and i=R, or if the

mass is in contact with the right bumper, then j=R and i=L. In the equations the Heaviside
functions 1, and 1, are defined as follows:

(1)

(0, &5@>0
contact Y, [§;(7)] = 1, 5,() = 0 (j =R, L); (2)
separation ¥, [f;(0)] = {2: ]Cigg i 8 Z: ;’;Eg i 8; (3)

where §;(7) (j=R,L) represents the gap function in terms of the dimensionless time 7 and, if j=R,
isequal to 6z (1) = Spg + qr (1) — q(7), and, if j=L, isequal to 6, (1) = §y,—q.(7) + q(7). Inall
the equations introduced the apex (") denotes differentiation with respect to the dimensionless time
T.

Because the bumpers are equal and arranged symmetrically on both sides of the mass yp =
YL =7V.Ag = A, = Aand §og = Sor = &o.
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Fig. 1. Model of the vibro-impact system. Fig. 2. Optimal design curve of the bumper.

Optimal design of the bumpers
In order to optimize the control of the dynamic response of the system, the physical parameters
governing the impact (gap 9§y, stiffness A and damping y of the bumper) to be adopted are obtained
in relation to an optimal design criterion based on a relationship that links damping ratio ¢ of the
system with parameters A and y of the bumpers [6], and on a curve in which bumper stiffness 4 is
identified in relation to the gap &, [7].

The optimality relationship is defined as follows:

Y 1

A 28 (4)

This relationship was obtained by a parametric analysis in which, for each investigated &, and
for fixed values of ¢ and of y, the value of A was searched such that the peak acceleration of the
mass in the primary resonance is minimized. This is possible because the bumper is fully exploited:
the bumper has sufficient time to recover its deformation before the next impact, dissipating all
the deformation energy accumulated up to then, and it does not remain inactive because the next
impact occurs practically immediately after recovery.

The optimality relationship (4) is independent of the gap and, through this relationship, it is
possible to reduce the number of impact parameters from three, which in dimensionless terms can
be identified as §,, 4 and y, to two, since by choosing A we obtain the value of the corresponding
Y.

With the introduction of the optimal curve an additional constraint is introduced, reducing the
bumper design to one parameter, the dimensionless gap §,. The optimal design curve, shown in
Fig. 2, associates to each §, a pair of values A and y (Eq. 4), which minimizes the peak absolute
acceleration of the mass in primary resonance and therefore the force acting on the mass.

Looking at the red curve in figure 2, it is clear how the control over the response of vibro-impact
system with a dimensionless gap §, > 0.82, is ineffective. This is because, for these values of §,
the optimal stiffness ratio A is so small that the presence of the bumpers is negligible.

Analysis of numerical response
In this paragraph, the numerical responses of the model characterized as follows are analyzed: the
damping ratio of the damper is ¢ = 0.10, the bumper parameters A and y are designed in
accordance with the optimality relationship (4) and the optimal design curve (Fig.2). The
represented response quantities are dimensionless excursion of the absolute acceleration and of the
relative displacement, of the mass, both normalized with respect to two different factors:

Aa Aa Aq Aq

== = — =—L =— 5
nal Aag, naZ Aat, ndl Aq()’ ndZ Aqt, ( )
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where @ = a; + q'', the dimensionless quantities whit subscript (o) are related to the case of free
flight in resonance (FF) and the dimensionless quantities whit subscript (;) are related to the
ground. The excursion (4i,i = a,q) was calculated as the difference between the maximum and
minimum values recorded at steady state of each sub-frequency range.

Figures 3 show the normalized quantities analyzed as a function of the frequency ratio f and in
the terms of six dimensionless gaps §, = 1,0.5,0.3,0.2,0.1,0, where §, = 1 represents the FF
and &, = 0 the case of mass adjacent with bumper.

The curves in Fig. 3a-3b represent the Pseudo-Resonance Curves (PRCs) of the dimensionless
absolute acceleration of the mass, normalized in (a) with respect to the FF, and in (b) with respect
to the ground. The black curves reproduce dimensionless excursion of the absolute acceleration of
the mass in FF, subjected to the dimensionless sine excitation a;. The curve 144 .(f) starts from

the value 1741 (0) = 0.20 and then attains a peak at resonance, for § = /1 — 2§# =~ 0.99, equal
to 1. Once the peak has been passed, for increasing 8 the acceleration 144 .. tends to 0. The curve

Nazpp(B) starts from value 1 (B = 0), reaches the resonance peak at f = /1 — 2§ = 5.12, and,
for increasing values of B, 14 . decreases tending to 0 for B tending to infinity. The red dashed

curves represented the cases with impact (thinner dashes imply smaller values §,). The study of
Fig. 3a-3b shows that the curves 1,4, (B) are scaled by TR, that is the maximum value of the
resonance transmissibility, relative to curves 174, (). so the comments will be unique for both two
types of curves, with percentage changes. In Fig. 3a-3b, as §, decreases, a reduction and a shift
toward larger [ of the acceleration peaks are observed. The lowest value of the peak occurs in the
case §p = 0, where a 62% reduction of the maximum acceleration value is obtained with respect
to FF. The other cases show a reduction of 48% for §, = 0.1, 30% for §, = 0.2, 22% for §, = 0.3
and 9% for §, = 0.5. The 8 of resonance increases from 0.99 in the FF to 1.02 for §, = 0.5, 1.09
for 6, = 0.3, 1.15 for 6, = 0.2, 1.24 for 6, = 0.1 up to 1.66 for §, = 0. The dashed curves, for
some values of B, overlap with the FF curve: this is because for those values of 5 and for the value
of §, relative to that dashed curve, impact does not occur. The only case in which impact always
occurs is the case of mass adjacent to bumpers (6, = 0), which, for § > 1.25, reports larger
accelerations than FF and, for f > 1.52, larger than the other cases. For the other §, investigated,
the acceleration turns out to be greater than FF in a small range of 8, between 1.04 and 1.72.

Fig. 3¢c-3d shows the PRCs of the dimensionless relative displacement of the mass, normalized
with respect to FF, in (c), and with respect to the ground, in (d). The black curves represent the
dimensionless excursion of the relative displacement of the mass in FF, subjected to the
dimensionless sine excitation a;. The dimensionless displacement curve in FF 144 ..(8), reports

the maximum at § = /1 — 2&2 = 0.99, in which it takes value 1. For B between 0, in which

Na1pr(0) = 0.20, and /1 — 282, ngy,, grows as f increases. Passing the peak value, for
increasing B the displacement 7g; .. decreases, tending, in the limit, to the value 0. The

dimensionless displacement in FF, 745 ..(B), reports the maximum in g = 1/y/1—2§2? = 1.01
of intensity equal to 5.03. In the first range between 0 and f relative to the maximum, 743 .. has
an increasing monotonic trend, after which, as f increases, it decreases tending, for infinite 3, to
the value 1 (maximum ground displacement). In contrast to gy .., Naz zp 8t B = 0 assuming zero
value.

The red dashed curves show the displacement responses of the impacted cases (thinner dashes
imply smaller values of §,). Referring to Fig. 3c, the peaks of displacements, as §, decreases,
move toward larger f and decrease. With respect to FF (8§, = 1), 4, decreases by 90% for §, =
0, by 69% for 6, = 0.1, by 55% for §, = 0.2, by 42% for §, = 0.3, and by 22% for §, = 0.5,
while the [ relative to these maximum values turns out to be 1.59, 1.19, 1.13, 1.09, and 1.03,
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respectively. Each curve related to 6, = 2 &,/1 — &2 (= 0.2) is initially coincident with the FF
case, until 144, growing, reaches the value §,, causing the impact to occur because the
displacement in FF is greater than the gap. Conversely, once the value of  has been exceeded
beyond which 1g; .. < 8, the curve for that value of §, turns out to coincide with the FF case.
The only curve that shows a single point of coincidence with free flight is the one related to §, =
0, for = 1.75; this curve also, for f < 1.75, shows smaller values than for FF, while for § >
1.75 larger values, with a maximum increase of 28% in displacement value in FF case. The PRCs
for the other values of §, > 0 exhibit larger values than FF for 1.27 < < 1.72 with §, = 0.1,
for1.18 < f < 1.40 with §, = 0.2, for 1.13 < f < 1.27 with §, = 0.3, and for 1.07 < f < 1.15
with §; = 0.5 with maximum increases of 33% (for f = 1.5), 24% (for § = 1.3), 18% (for g =
1.2), and 7% (for f = 1.12). In Fig. 3c, as §, decreases, there is, as in Fig. 3d, a shift to the right
and a reduction of peak displacement whit respect to FF, but at different dimensionless frequencies
f and with different percentage reduction: for §, = 0 the peak is for § = 2.04 with 68% reduction,
for 6, = 0.1 the peak is for § = 1.35 with 50% reduction, for §, = 0.2 the peak is for f = 1.22
with 38% reduction, for §, = 0.3 the peak is for § = 1.15 with 28% reduction, and for §, = 0.5
the peak is for § = 1.07 with 13% reduction. As observed in Fig. 3c-3d, the response for §, = 0
never coincides with the FF curve except at § = 1.75.

1
———=§,=0
0.8 ==z B=0.1
-— 6“ =0.2
0.6 e SR
) -— i =05
a4 — Fig. 3. PRCs of
dimensionless
e acceleration: (a) PRC of
: nai(); (b) PRC of
4 na2(p); and PRCs of
1 dimensionless
displacement: (c) PRC
0.8 of nai(P); (d) PRC of
na2(P). The curves are
) - related to different
< values of do: in black
o0o=1 (FF), in dashed
0.2 red 0p=0.5, 0.3, 0.2, 0.1,
a 0 (lower thicknesses
4 represent lower dy).

Conclusions and future developments
In this paper, the numerical dynamic response of the SDOF system, subjected to sine excitation,
constrained by two symmetrically arranged deformable and dissipative bumpers designed with
optimality relation (4) and optimal design curve (Fig. 2) is analyzed. Six different values of the
design parameter §, (dimensionless gap) are considered: two extreme cases, §, = 1, a touching
condition between mass and bumpers representative of FF, and §; = 0, a condition with mass
adjacent to the bumpers; and intermediate cases, §, = 0.5, 6§, = 0.3, §, = 0.2 and §, = 0.1.

The response quantities which have been analyzed are the absolute acceleration of the mass and
the relative displacement of the mass with respect to the ground, normalized with respect to both
(i) the peak values of acceleration and displacement in FF, and (ii) the peak values of base
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acceleration and ground displacement. It was found that as §, decreases, the maximum values of
peak acceleration and displacement undergo greater reductions with respect to FF, reporting in the
case 0, = 0 the greatest reductions (peak of acceleration reduced by 62% for both 1,4, (8) and
Naz(B). peak of displacement reduced by 90% for 14, (8), and by 68% for 14, (8)). However, the
case 8y = 0 reports larger values of acceleration for f > 1.52, compared with the other cases
examined. A phenomenon of increased displacement, due to the presence of bumper, was also
observed for some [ following the primary resonance in FF (1.08 < f < 1.15 for §, = 0.5,
1.13 < p <1.27ford, =0.3,1.18 < < 14 ford, =0.2,1.27 < B < 1.71for5, =0.1, 5 >
1.72 for 6, = 0). This phenomenon is named bouncing-effect in the literature.

These results show that the adoption of this optimal design criterion and an appropriate choice
of the gap parameter §, allow beneficial effects in mitigating the dynamic response to be gained.
Thus, the need emerges to extend this study to cases of real dynamic actions, such as earthquakes,
and evaluate the effects of appropriately designed dissipative and deformable bumpers on systems
subjected to different seismic excitations.
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