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Abstract
It is well-known that DG-enhancements of the unbounded derived category Dqc(X) of quasi-
coherent sheaves on a scheme X are all equivalent to each other. Here we present an explicit
model which leads to applications in deformation theory. In particular, we shall describe
three models for derived endomorphisms of a quasi-coherent sheafF on a finite-dimensional
Noetherian separated scheme (even if F does not admit a locally free resolution). Moreover,
these complexes are endowed with DG-Lie algebra structures, which we prove to control
infinitesimal deformations of F .
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1 Introduction

A classical problem in deformation theory concerns the study of infinitesimal deformations
of a quasi-coherent sheafF on a scheme X over a fieldK . Deformations up to isomorphisms
define a functor DefF : ArtK → Set, where ArtK denotes the category of local Artin K -
algebraswith residuefieldK . The classical approach is based on afinite locally free resolution
E → F , which for instance exists provided that X is smooth projective. In fact, a deformation
of F can be understood as the data of local deformations of E together with suitable gluing
conditions. It is proven in [11] thatDefF is controlled by theDG-Lie algebra of global sections
of an acyclic resolution of the sheaf End∗(E) in the sense of [16, 27]. In particular, it is well-
known that T 1 DefF ∼= Ext1(F,F) and obstructions are contained in Ext2(F,F). This
highlights the considerable role of derived endomorphisms REnd(F), and the importance
of being able to compute its cohomology Ext∗(F,F). Classically REnd(F) is defined (up
to quasi-isomorphisms) as the complex Hom∗

OX
(F, I) for any injective resolution F → I.

Unfortunately, despite the outstanding fact that injective resolutions always exist, it is often
very hard to describe them. Here comes the aim of this paper to present another approach to
compute REnd(F) when dealing with concrete geometric situations, always trying to keep
the exposition as clear as possible with the attempt to reduce the use of simplicial and model
category techniques at minimum.

The main tool is the introduction of the category Mod(A·) of modules over the diagram
A· representing a separated K -scheme X . Fix an open affine covering U = {Uh} for X , then
the associated diagram A· with respect to U is defined as

A· : N → AlgK , α �→ Aα = �(Uα,OX )

where N = {α = {h0, . . . , hk} |Uα = Uh0 ∩ . . .Uhk 	= ∅} is the nerve of U . Recently,
this way of thinking of a K -scheme X has been used in [31] in order to study infinitesimal
deformations of X by virtue of the general theory developed in [30].

An A·-module G can be understood as the following data

(1) a DG-module Gα over Aα for every α in the nerve N of U ,
(2) a morphism gαβ : Gα ⊗Aα Aβ → Gβ of Aβ -modules, for every α ⊆ β in N ,

satisfying the cocycle condition, see Definition 3.1. Similar notions were considered in [10,
13, 15, 37]. Taking advantage of the standard projective model structure on DG-modules, the
category Mod(A·) can be endowed with a model structure, see Theorem 3.9, where weak
equivalences are pointwise quasi-isomorphisms. The above model structure can be seen as a
geometric example of an abstract recent result obtained in [2]. In order to work with quasi-
coherent sheaves, we need a homotopical version of quasi-coherence for A·-modules: G
is called quasi-coherent if all the maps gαβ introduced above are quasi-isomorphisms, see
Definition 3.12. To the author knowledge the last definition does not appear in the existing
literature, a part for the case of non-graded modules for which the theory is carried out in [10,
37]. Now, denote by Ho(QCoh(A·)) the category of quasi-coherent A·-modules localized
with respect to the weak equivalences: Theorem 5.7 states that there exists an equivalence of
triangulated categories

Ho(QCoh(A·)) � Dqc(X)
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with the unbounded derived category of quasi-coherent sheaves on X , hence leading to an
explicit description of a DG-enhancement of Dqc(X), see Corollary 5.8. It is worth to notice
that some of the functors involved in Sect. 5 have been somehow already considered in the
literature, see [19, 21]. Moreover a result similar to the equivalence of Theorem 5.7 was
partially proven in [7, Proposition 2.28].

In [25] it was shown the uniqueness of DG-enhancements for the derived category of
a suitable Grothendieck category up to equivalence. In particular, this applies to Dqc(X)

under some mild hypothesis on X (e.g. if X is a quasi-projective K -scheme). On the other
hand, our construction turns out to be very useful when dealing with derived endomorphisms
of a quasi-coherent sheaf F of OX -modules. In fact, the category of A·-modules allows
to easily describe REnd(F) in terms of a cofibrant replacement of F , see Theorem 6.4.
Moreover, Example 3.7 shows the feasibility of the computation of such cofibrant replacement
in interesting cases. In Sect. 6 we propose two more models for REnd(F): the first is again
in terms of a cofibrant replacement in the model category of A·-modules and involves the
Thom–Whitney totalization, while the other assumes the existence of a locally free resolution
for F .

The last section is devoted to our main application in deformation theory; in particular,
we deal with the functor DefF : ArtK → Set of classical infinitesimal deformations of F .
Recall that since the eighties the leading principle in deformation theory (due to Quillen,
Deligne, Drinfeld, Kontsevich...) states that any deformation problem is controlled by a DG-
Lie algebra viaMaurer–Cartan solutions modulo gauge equivalence, see [16, 27, 32]. Around
2010 this was formally proven independently by Lurie [26, Theorem 5.3] and Pridham [34,
Theorem 4.55]; it is dutiful to mention that partial results in this direction where previously
obtained by Hinich and Manetti, see [18, 28, 34] and references therein. In Sect. 7 we adopt
this point of view proving that the three complexes representing REnd(F) described in Sect. 6
are all equippedwith aDG-Lie algebra structure, and each of themcontrolsDefF viaMaurer–
Cartan elements modulo gauge equivalence. In particular, we give two proofs of this fact: the
first (Sect. 7.1) involves the semicosimplicial machinery together with standard arguments
of descent of Deligne groupoid, while the second (Sect. 7.2) relies on a direct computation
in Mod(A·).

A remarkable fact is that our descriptions of REnd(F) in terms of A·-modules does not
require the existence of a locally free resolution for F , since cofibrant replacements always
exist. Hence we recover that T 1 DefF ∼= Ext1(F,F) and that obstructions are contained in
Ext2(F,F) only assuming X to be a finite-dimensional Noetherian separated K -scheme.

2 Preliminaries and Notation

This brief introductory section aims to fix the geometric framework where we shall work
throughout all the paper, and to briefly recall some basic constructions.

We work on a fixed finite-dimensional Noetherian separated scheme X over a field K of
characteristic 0. Actually, the assumption on the characteristic of K will be necessary only
in Sects. 6 and7, where applications to algebraic geometry will be discussed. For simplicity
of exposition we shall work over K throughout all the paper, although the results of the first
sections hold for schemes over Z. Moreover, we fix an open affine covering U = {Uh}h∈H
together with its nerve

N = {{h0, . . . , hk} |Uh0 ∩ · · · ∩Uhk 	= ∅}
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which carries a degree function deg : N → N defined by deg({h0, . . . , hk}) = k. Moreover,
for every α = {h0, . . . , hk} ∈ N we denote byUα the intersectionUh0 ∩· · ·∩Uhk , and define
Aα = �(Uα,OX ). Each Uα is affine since X is assumed to be separated. The nerve N is a
partially ordered set where α ≤ β if and only if α ⊆ β; notice that if α ≤ β then Uβ ⊆ Uα

so that there exists a flat map of K -algebras Aα → Aβ satisfying Aβ
∼= Aβ ⊗Aα Aβ . Hence,

once we have fixed U , the scheme X can be represented by the diagram

A· : N → AlgK , α �→ Aα

where Aα → Aβ is the opposite map of Spec(Aβ) → Spec(Aα) for every α ≤ β in N .
For any open subsetU ⊆ X let DGMod(OU ) be the category of unbounded complexes of

OU -modules, and by QCoh(U ) the full subcategory of complexes of quasi-coherent sheaves.
For every inclusion i : U → V between open subsets there are three associated functors:

i!, i∗ : DGMod(OU ) → DGMod(OV ), i∗ : DGMod(OV ) → DGMod(OU ).

Recall that i∗G = G|U because OV |U = OU , and i!F is the sheaf associated to the presheaf
i(F) defined by

{
i(F)(W ) = F(W ) if W ⊆ U

i(F)(W ) = 0 otherwise.

The obvious retraction i(F) → i∗(F) → i(F) of presheaves gives a retraction of sheaves

i!F → i∗F → i!F and then a retraction of functors i! → i∗
r−→ i!. Notice also that for every

G ∈ DGMod(OV ) there exists an injective morphism

i!i∗G → G
and therefore a natural morphism given by composition with the retraction r

i∗i∗G → G ,

which is an isomorphism on stalks over every x ∈ U , and 0 over x /∈ U .
If F and G are complexes of quasi-coherent sheaves, then also i∗F and i∗G are so, see

e.g. [17, Proposition 5.8]. This is not true in general for i!F , see e.g. [17, Example 5.2.3].
In the above notation, ifU is affine then the functor i∗ : QCoh(U ) → QCoh(V ) is exact.

3 TheModel Category of A·-Modules

In the following, for every ring R we denote by DGMod(R) the category of DG-modules
over R. As explained in Sect. 2 we denote by N the nerve of the affine open covering U of
X .

Definition 3.1 An A·-module F over the scheme X (with respect to the fixed covering U)
consists of the following data:

(1) an object Fα ∈ DGMod(Aα), for every α ∈ N ,
(2) a morphism fαβ : Fα ⊗Aα Aβ → Fβ in DGMod(Aβ), for every α ≤ β in N ,

satisfying the cocycle condition fβγ ◦ ( fαβ ⊗Aβ IdAγ

) = fαγ , for every α ≤ β ≤ γ in N .

In the setting ofDefinition 3.1, the data of themap fαβ : Fα⊗Aα Aβ → Fβ inDGMod(Aβ)

is equivalent to its adjoint morphism Fα → Fβ in DGMod(Aα), where the Aα-module
structure on Fβ is induced via Aα → Aβ .
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For instance, to any sheaf G of OX -modules it is associated the A·-module ϒ∗G defined
as

(
ϒ∗G)

α
= G(Uα) ∈ DGMod(Aα) and gαβ : G(Uα) ⊗Aα Aβ → G(Uβ)

for every α ≤ β in N , where the map gαβ is induced by the restriction map of the sheaf G.

Definition 3.2 A morphism of A·-modules ϕ : F → G over X consists of the following
data:

(1) a morphism ϕα : Fα → Gα in DGMod(Aα), for every α ∈ N ,
(2) for every α ≤ β in N , the diagram

Fα ⊗Aα Aβ

ϕα

fαβ

Gα ⊗Aα Aβ

gαβ

Fβ ϕβ
Gβ

commutes in DGMod(Aβ).

The set of morphisms between F and G is denoted by HomA·(F,G).

Recall that for any ring R and any pair of DG-modules M, N ∈ DGMod(R) it is defined
total-Hom complex Hom∗

R(M, N ) as follows:

Hom p
R(M, N ) =

∏

n∈Z
HomR(Mn, Nn+p) ,

∂
p
Hom : ( f n)n∈Z �→ ( f n+1dnN − (−1)pdn+p

N f n)n∈Z .

Definition 3.3 The set of ∗-morphisms between A·-modules F and G over X is defined by:

Hom∗
A·(F,G) ⊆

∏

α∈N
Hom∗

Aα
(Fα,Gα)

where {ϕα}α∈N belongs to Hom∗
A·(F,G) if the diagram

Fα ⊗Aα Aβ

ϕα

fαβ

Gα ⊗Aα Aβ

gαβ

Fβ ϕβ
Gβ

commutes for every α ≤ β ∈ N .

Notice that HomA·(F,G) are precisely the 0-cocycles of the complex Hom∗
A·(F,G),

whose differential is the inherited (graded) commutator.We shall denote byMod(A·) the cat-
egory of A·-modules, with morphisms of A·-modules as in Definition 3.2, and by Mod∗(A·)
the DG-category of A·-modules, with ∗-morphisms as in Definition 3.3. Since the covering
U is assumed to be fixed at the beginning, we do not emphasise the dependence on it.

Recall that by [9, 22, 35] for every α ∈ N the category DGMod(Aα) is endowed with a
model structure where

• weak equivalences are quasi-isomorphisms,
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• fibrations are degreewise surjective morphisms,
• every object is fibrant

• C ∈ DGMod(Aα) is cofibrant if and only if for every cospan C
f−→ D

g←− E with g a
surjective quasi-isomorphism there exists a lifting h : C → E .

• cofibrations are degreewise split injective morphisms with cofibrant cokernel.

Moreover if a complex in DGMod(Aα) is bounded above then it is cofibrant if and only if it
is degreewise projective, see [22, Lemma 2.3.6].

Our next goal is to endow the categoryMod(A·)with amodel structure. FixF ∈ Mod(A·)
and α ∈ N ; define the latching module of F at α to be

LαF = colim
γ<α

(Fγ ⊗Aγ Aα

) ∈ DGMod(Aα)

and notice that there exists a natural map LαF → Fα . We call an A·-module F ∈ Mod(A·)
cofibrant if for every α ∈ N the latching map LαF → Fα is a cofibration in DGMod(Aα).
Cofibrant A·-modules define full subcategories Mod(A·)c ⊆ Mod(A·) and Mod∗(A·)c ⊆
Mod∗(A·).

Remark 3.4 Let {Uh}h∈H be an open cover of X and letN be its nerve. Choose a total order
on H ; then to every α ∈ N it is associated the abstract oriented simplicial complex P(α),
whose faces are the subsets of α, and denote by Cα the corresponding chain complex. Recall
that Cα in degree r is the free abelian group of rank

(deg(α)+1
r+1

)
, and its homology is given by:

H0(Cα) = Z and H j (Cα) = 0 for every j 	= 0. Now consider the category Ch(Z) of chain
complexes of abelian groups; we define the diagram

C : N → Ch(Z); α �→ Cα

where for every α ≤ β in N the map Cα → Cβ is the natural inclusion. We have a a short
exact sequence

0 → colim
γ<α

Cγ
ια−→ Cα → coker(ια) → 0

where coker(ια) is Z concentrated in degree deg(α).

Example 3.5 (Cofibrant A·-module associated to OX ) To the scheme X it is associated a
cofibrant A·-module QX ∈ Mod(A·) as follows. Define

Qr
X ,α = C−r

α ⊗Z Aα and drQX
= d−r

Cα
⊗ IdAα

for every r ∈ Z and every α ∈ N . For every α ≤ β the map QX ,α ⊗Aα Aβ → QX ,β is
induced by the natural inclusion Cα → Cβ . Now denote by Ĉα the cochain complex defined
by Ĉr

α = C−r
α and dr

Ĉα
= d−r

Cα
, r ∈ Z; hence QX ,α = Ĉα ⊗Z Aα for every α ∈ N . Notice

that by Remark 3.4 for every α ∈ N we have a short exact sequence

0 → LαQX
ια⊗IdAα−−−−−→ QX ,α → coker(ια) ⊗Z Aα → 0

so that the latching map ια ⊗ IdAα is degreewise injective and its cokernel is zero except for
degree deg(α). Finally, since coker(ια ⊗ IdAα )deg(α) = Aα is a free Aα-module, then the
latching map is in fact a cofibration in DGMod(Aα) by [22, Lemma 2.3.6].

A cofibrant replacement for a given A·-module F ∈ Mod(A·) is a morphism Q → F
in Mod(A·) such that
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1: Q is a cofibrant A·-module,
2: the map Qα → Fα is a surjective quasi-isomorphism for every α ∈ N .

Cofibrant replacements are not unique.

Example 3.6 (Cofibrant replacement for the structure sheaf OX ) As already noticed, to
any sheaf G of OX -modules it is associated an A·-module ϒ∗G ∈ Mod(A·). In partic-
ular, ϒ∗OX ∈ Mod(A·) is defined as (ϒ∗OX )α = Aα on every α ∈ N , and the map
(ϒ∗OX )α ⊗Aα Aβ → (ϒ∗OX )β is the identity for every α ≤ β.

Let QX ∈ Mod(A·) be as in Example 3.5, then by Remark 3.4 the set of maps {Cα →
H0(Cα) = Z}α∈N induce a morphism QX → ϒ∗OX in Mod(A·) which is a cofibrant
replacement. In fact, by the flatness of the map Aα → Aβ it follows that

πα : QX ,α = Ĉα ⊗Z Aα → Aα = (ϒ∗OX
)
α

is a surjective quasi-isomorphism for every α ∈ N .

Example 3.7 (Cofibrant replacement for a locally free sheaf) Consider a locally free sheaf
E on X , and take a cover {Uh}h∈H such that E|Uα is a free Aα-module for every α ∈ N .
Since for every α ∈ N the (DG-)module ϒ∗Eα = E(Uα) is concentrated in degree 0, it
is cofibrant in DGMod(Aα) by [22, Lemma 2.3.6]. Nevertheless, the latching maps need
not to be cofibrations in general; hence ϒ∗E provides an example of an A·-module which
is pointwise cofibrant but not globally cofibrant. Following Example 3.6 we can explicitly
construct a cofibrant replacement QE → ϒ∗E :
• QE,α = QX ,α ⊗Aα E(Uα) for every α ∈ N ,
• for every α ≤ β in N the morphism QE,α ⊗Aα Aβ → QE,β is induced by the corre-

sponding restriction map of E ,
• the morphism QE,α → E(Uα) = (ϒ∗E)α is defined as πα ⊗ IdE(Uα) for every α ∈ N .

By Example 3.6 π : QX → ϒ∗OX is a cofibrant replacement; therefore the map π ⊗
Id : QE → ϒ∗E is a cofibrant replacement for ϒ∗E .

Now fix α ∈ N ; define Rα = {γ ∈ N | γ < α} and recall that the category of diagrams
DGMod(Aα)Rα is endowed with the Reedy model structure where a natural transformation
f : Y → Z is a Reedy weak equivalence (respectively: Reedy fibration) if and only if for
every γ < α the map fγ : Yγ → Zγ is a quasi-isomorphism (respectively: degreewise
surjective). Moreover, f is a Reedy cofibration if and only if the map

colim
β<γ

Zβ

∐

colim
β<γ

Yβ

Yγ → Zγ

is a cofibration in DGMod(Aγ ) for every γ ∈ Rα , see [20, Theorem 16.3.4].
We have a restriction functor resα : Mod(A·) → DGMod(Aα)Rα defined by

(resα F)γ = Fγ ⊗Aγ Aα , γ < α

for every F ∈ Mod(A·).

Lemma 3.8 For every morphism ϕ : F → G inMod(A·) the following conditions are equiv-
alent.
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(1) For every α ∈ N , the morphism ϕα : Fα → Gα is a quasi-isomorphism in DGMod(Aα),
and the natural morphism

LαG �(LαF) Fα −→ Gα

is a cofibration in DGMod(Aα).
(2) For every α ∈ N , the natural morphism

LαG �(LαF) Fα −→ Gα

is a trivial cofibration in DGMod(Aα).

Proof Fix α ∈ N and consider the following diagram

LαF Fα

ϕα

LαG LαG �(LαF) Fα

ψ

Gα .

Now define two diagrams in DGMod(Aα)Rα as Y = resα F and Z = resα G, and notice
that if either (1) or (2) holds the morphism Z → Y induced by ϕ is a Reedy cofibration,
since colimits commute with coproducts. Moreover, by [20, Theorem 15.3.15] it follows that
Y → Z is aReedyweak equivalence if either (1)or (2)holds, so that the verticalmorphisms in
the diagram above are trivial cofibrations inDGMod(Aα); in fact colim : DGMod(Aα)Rα →
DGMod(Aα) is a left Quillen functor and trivial cofibrations are closed under pushouts.
Therefore, ϕα is a weak equivalence if and only if ψ is so. ��
Theorem 3.9 (Model structure on A·-modules) The category of A·-modules over X is
endowed with a model structure, where a morphism F → G in Mod(A·) is

(1) a weak equivalence if and only if the morphism Fα → Gα is a quasi-isomorphism in
DGMod(Aα) for every α ∈ N ,

(2) a fibration if and only if the morphism Fα → Gα is surjective in DGMod(Aα) for every
α ∈ N ,

(3) a cofibration if and only if the natural morphism

LαG �(LαF) Fα −→ Gα

is a cofibration in DGMod(Aα) for every α ∈ N .

Proof It is sufficient to prove that Mod(A·) with the classes defined in the statement sat-
isfies the axioms of a model category. First notice that the category Mod(A·) is complete
and cocomplete since limits and colimits are taken pointwise. Moreover, the class of weak
equivalences satisfies the 2 out of 3 axiom by definition.

The closure with respect to retracts holds since if F → G is a retract of F ′ → G′ in the
category of maps ofMod(A·), then the natural morphism LαG�(LαF)Fα −→ Gα is a retract
of the natural morphism LαG′ �(LαF ′) F ′

α −→ G′
α in the category of maps of DGMod(Aα),

for every α ∈ N .
In order to show that the lifting axiom holds, observe that a morphism F → G is a trivial

cofibration in Mod(A·) if and only if for every α ∈ N the natural morphism LαG �(LαF)
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Fα −→ Gα is a trivial cofibration in DGMod(Aα), see Lemma 3.8. Therefore the required
lifting can be constructed inductively on the degree of α.

The factorization axiom can be proved inductively as follows. Take a morphism ϕ : F →
G, we need to define (functorial) factorizations F → Q → G in Mod(A·) as a cofibration
(respectively, trivial cofibration) followed by a trivial fibration (respectively, fibration). Now,
fix α ∈ N of degree d and suppose ϕγ has been factored for all γ ∈ N of degree less that d .
Consider a (functorial) factorization of the natural morphism

LαG �(LαF) Fα −→ Qα −→ Gα

in DGMod(Aα) as a cofibration (respectively, trivial cofibration) followed by a trivial fibra-
tion (respectively, fibration). Lemma 3.8 implies that Q satisfies the required properties by
construction. ��

Cofibrant A·-modules previously defined coincides with cofibrant objects in Mod(A·)
with respect to the above model structure.

Remark 3.10 A morphism f : F → G in Mod(A·) is a weak equivalence (respectively:
fibration, cofibration) with respect to the model structure of Theorem 3.9 if and only if for
every α ∈ N the induced morphism resα( f ) is a Reedy weak equivalence (respectively:
Reedy fibration, Reedy cofibration) in DGMod(Aα)Rα . This follows immediately by the
flatness of the map Aβ → Aγ for every β ≤ γ .

The idea of Theorem 3.9 is not far from the one recently used in [33], where a similar
argument provided amodel structure on the category of certain quiver representations. On the
other hand, in [33] such model structure has been applied in order to characterize Gorenstein
projective modules over certain rings, while in the present paper we shall use it to provide
results in a geometric deformation problem.

Remark 3.11 For any α ∈ N , consider the full subcategory DGMod≤0(Aα) ⊆ DGMod(Aα)

whose objects are complexes concentrated in non-positive degrees. This is endowed with a
model structure where

• weak equivalences are quasi-isomorphisms,
• fibrations are surjections in negative degrees,
• cofibrations are degreewise injective morphisms with degreewise projective cokernel.

We may define the full subcategory of non-positively graded A·-modules Mod≤0(A·) ⊆
Mod(A·) simply replacing DGMod(Aα) by DGMod≤0(Aα). Notice that the same argument
of Theorem 3.9 provides a model structure for Mod≤0(A·), where a morphism F → G in
Mod≤0(A·) is a weak equivalence (respectively: cofibration, trivial fibration) if and only if it
is a weak equivalence (respectively: cofibration, trivial fibration) in Mod(A·). The same does
not hold for fibrations. In particular, the natural inclusion functor Mod≤0(A·) → Mod(A·)
is a left Quillen functor.

Definition 3.12 An A·-module F over X is called quasi-coherent if the morphism

fαβ : Fα ⊗Aα Aβ → Fβ

is a weak equivalence in DGMod(Aβ) for every α ≤ β in N .

We shall denote byQCoh(A·) ⊆ Mod(A·), and respectively byQCoh∗(A·) ⊆ Mod∗(A·),
the full subcategories whose objects are quasi-coherent A·-modules. Every quasi-coherent
sheaf over X induces a quasi-coherent A·-module in the obvious way.

123



   12 Page 10 of 35 F. Meazzini

Remark 3.13 Quasi-coherent A·-modules are closed under weak equivalences, i.e. given a
weak equivalence ϕ : F → G in Mod(A·) then F is quasi-coherent if and only if G is so. To
prove the claim it is sufficient to consider the commutative diagram

Fα ⊗Aα Aβ

fαβ

ϕα⊗Id

Fβ

ϕβ

Gα ⊗Aα Aβ gαβ
Gβ

for every α ≤ β inN . The statement follows by the flatness of the map Aα → Aβ and by the
2 out of 3 property. This implies in particular that the subcategory QCoh(A·) ⊆ Mod(A·) is
closed under both factorizations given by Theorem 3.9.

Lemma 3.14 Let Q ∈ Mod(A·) be a cofibrant A·-module. Given a cospan Q f−→ R π←− P
in Mod∗(A·), if π is degreewise surjective then there exists h ∈ Hom∗

A·(Q,P) such that
πh = f .

Proof For simplicity we assume that f ∈ Hom0
A·(Q,R); the general case can be obtain by

a shift. Fix i ∈ Z; the map π i : Ri → P i induces the map of A·-modules

R̂ :
π̂

· · · 0 Ri Id

π i

Ri

π i

0 · · ·

P̂ : · · · 0 P i Id P i 0 · · ·
which is a trivial fibration. Moreover, f i : Qi → Ri induces the map of A·-modules

Q :
f̂

· · · Qi−2
di−2
Q Qi−1

di−1
Q

f i di−1
Q

Qi

f i

Qi+1 · · ·

P̂ : · · · 0 P i Id P i 0 · · ·
which can be lifted to R̂ because Q is cofibrant by assumption; i.e. there exists a map of
A·-modules ĥ : Q → R̂ such that π̂ ĥ = f̂ . Now define hi = ĥi : Qi → Ri ; reproducing
the same argument for every i ∈ Z we obtain the required map h ∈ Hom0

A·(Q,P). ��
Notice that if X is an affine scheme then we can choose N = {∗}. Therefore A·-modules

reduce to the category of DG-modules over �(X ,OX ), and Lemma 3.14 states that cofibrant
DG-modules are degreewise projective. In the general case, the liftings {hiγ : Qi

γ → P i
γ }γ∈N

satisfy the commutativity relations induced by the nerve for any fixed i ∈ Z.

3.1 A·-Modules as Sheaves Over the Nerve

Our next goal is to give a “sheaf theoretic” description of A·-modules. To this aim, we define
a topology τN on the nerve N as follows: V ∈ τN if and only if the condition

α ∈ V , α ≤ β ⇒ β ∈ V
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is satisfied. This is called the Alexandroff topology, since (N , τN ) becomes an Alexandroff
topological space, see [1]. For every fixed α ∈ N the set Vα = {γ ∈ N | α ≤ γ } ⊆ N
is open, and the collection {Vα}α∈N ⊆ τN is a basis for the topology. Then consider the
category Sh(N ) of sheaves of complexes over N , where moreover on every Vα it is given a
structure of DG-module over Aα compatible with the restriction maps. Now, there is a pair
of functors

S : Mod(A·) → Sh(N ) � : Sh(N ) → Mod(A·)

defined by

S(F)(V ) = lim
γ∈V Fγ and �(G)α = G(Vα)

for every F ∈ Mod(A·), every G ∈ Sh(N ), every α ∈ N and every V ∈ τN . Notice that

S(F)(V ) =
⎧
⎨

⎩
{sγ } ∈

∏

γ∈V
Fγ

∣∣∣ fγ1γ2(sγ1 ⊗ 1) = sγ2 for every γ1 ≤ γ2

⎫
⎬

⎭

and that S(F)(Vα) = Fα . for every α ∈ N . In particular, � ◦ S = IdMod(A·). Given
G ∈ ShX (N ) we have a natural map

G(V )
∼=−→ lim

γ∈V G(Vγ ) = S(�(G))(V )

for every V ∈ τN , which is an isomorphism because G is a sheaf and
⋃

γ∈V Vγ = V .
Therefore the functors S : Mod(A·) � Sh(N ) : � are equivalences of categories. A similar
result can be found in [6, Proposition 6.6].

Recall that a sheaf G of OX -modules is flasque if the restriction map G(U ) → G(V ) is
surjective for every inclusion V → U between open subsets of X .

Definition 3.15 An A·-module F ∈ Mod(A·) is called flasque if the associated sheaf S(F)

is so.

3.2 Inverse and Direct Image for A·-Modules: j∗V � jV,∗

For any fixed open V ∈ τN , denote by jV : V ↪→ N the natural inclusion; the aim of this
subsection is to introduce two functors j∗V and jV ,∗, which we defined the “inverse image”
and “direct image” functors because of the equivalence described in Sect. 3.1.

First define UV = ⋃
γ∈V Uγ ⊆ X ; recall that for every α ∈ N we denoted Vα = {γ ∈

N | γ ≥ α}, so that in particular UVα = Uα ⊆ X . Then the “inverse image” and “direct
image” functors are defined by

j∗V : Mod(A·) → Mod(UV )

{Fγ }γ∈N �→ {Fγ }γ∈V
and

jV ,∗ : Mod(UV ) → Mod(A·)

{Gα}α∈V �→
{
lim
V∩Vα

G
}

α∈N
respectively. More explicitly:

( jV ,∗ G)α =
⎧
⎨

⎩

lim
γ∈V∩Vα

Gγ if Uα ∩UV 	= ∅
0 otherwise
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where the limit is taken in DGMod(Aα), and the Aα-module structure is induced via Aα →
Aγ on each Gγ . Given α ≤ β in N such that Uβ ∩UV 	= ∅, the limit induces a natural map

( jV ,∗ G)α = lim
γ∈V∩Vα

Gγ −→ lim
γ∈V∩Vβ

Gγ = ( jV ,∗ G)β

between DG-modules over Aα . Since the Aα structure on lim
V∩Vβ

Gγ is given by Aα → Aβ , by

adjunction the above map corresponds to a morphism

( jV ,∗ G)α ⊗Aα Aβ → ( jV ,∗ G)β

between DG-modules over Aβ . Notice that in particular if α ∈ V then ( jV ,∗ G)α = Gα .

Remark 3.16 For every open subset jV : V ↪→ N , there is an adjunction j∗V � jV ,∗. In fact
j∗V jV ,∗ is the identity onMod(UV ), and givenF ∈ Mod(A·) the unitη : IdMod(A·) → jV ,∗ j∗V
is defined by

ηF =
⎧
⎨

⎩

Fα → lim
γ∈V∩Vα

Fγ = ( jV ,∗ j∗VF)α if UV ∩Uα 	= ∅
Fα → 0 otherwise

so that the unit-counit equations reduces to η jV ,∗G = Id jV ,∗G for every G ∈ Mod(UV ).

Remark 3.17 The adjoint pair of Remark 3.16 is not necessarily a Quillen pair; in particular,
the restriction j∗VF of a cofibrant A·-moduleF ∈ Mod(A·)may not be cofibrant. The crucial
point is that the functor

lim
V∩Vα

: DGMod(Aα)V∩Vα → DGMod(Aα)

is right adjoint to the constant diagram, which does not preserve cofibrations in general.
Nevertheless, if we choose V = Vα = {γ ∈ N | α ≤ γ } for some α then the adjunction
j∗Vα

� jVα,∗ is in fact a Quillen pair. To prove the claim, notice that for every α ∈ N such
that UVα

∩Uα 	= ∅ we have Vα ∩ Vα = Vα∪α . Hence the constant functor

DGMod(Aα) → DGMod(Aα)Vα∪α

preserves cofibrations and trivial cofibrations; in fact for everyβ ∈ N the set {γ ∈ N | α∪α ≤
γ < β} is connected. It follows that the functor limVα∪α

preserves fibrations and trivial
fibrations, so that jVα,∗ : Mod(UVα

) → Mod(A·) is a right Quillen functor as required. In
particular, given a cofibrant A·-module F ∈ Mod(A·), its restriction j∗Vα

F to Vα is cofibrant
in Mod(Uα).

Remark 3.18 Notice that in Remark 3.16 the differentials do not play any role, so that we
have binatural isomorphisms

HomA·,V
(
j∗VQ,G) ∼= HomA·

(Q, jV ,∗ G
)

Hom∗
A·,V

(
j∗VQ,G) ∼= Hom∗

A·
(Q, jV ,∗ G

)

for every Q ∈ Mod(A·) and every G ∈ Mod(Uα). To avoid possible confusion we
denoted morphisms in Mod(UV ) by HomA·,V (−,−), and ∗-morphisms in Mod∗(UV ) by
Hom∗

A·,V (−,−).
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Lemma 3.19 Fix an open subset jV : V ↪→ N . Let Q,G ∈ Mod(A·) and assume Q to be
cofibrant. Denote by ηG : G → jV ,∗ j∗VG the unit map of the adjunction given by Remark 3.16.
If ηG is degreewise surjective, then the induced morphism

Hom∗
A·(Q,G)

ηG−→ Hom∗
A·
(Q, jV ,∗ j∗VG

) = Hom∗
A·,V ( j∗VQ, j∗VG)

is degreewise surjective.

Proof We prove that the map Hom0
A·(Q,G)

ηG−→ Hom0
A·,V

(Q, ϒV∗ ϒ∗
VG
)
is surjective,

the same argument works for other degrees. We need to show that every {ϕγ }γ∈N ∈
Hom0

A·
(Q, jV ,∗ j∗VG

)
factors through the unit map ηG . Recall that since Q is cofibrant then

Qp is projective (see Lemma 3.14) for every p ∈ Z, so that there exists the dotted morphism

G p

ηG

Qp ( jV ,∗ j∗VG)p

whence the statement. ��

Lemma 3.19 can be restated in terms of flasque A·-modules, see Definition 3.15. For every
pair of A·-modules Q,G ∈ Mod(A·) it is defined an A·-module Hom∗

A·(Q,G) ∈ Mod(A·)
as follows

(1) Hom∗
A·(Q,G)α = Hom∗

A·,Vα

(
j∗Vα

Q, j∗Vα
G
)

= Hom∗
A·

(
Q, jVα,∗ j∗Vα

G
)
for every α ∈

N ,
(2)

Hom∗
A·(Q,G)α ⊗Aα Aβ → Hom∗

A·(Q,G)β

{ϕγ }γ≥α ⊗ x �→ {x · ϕγ }γ≥β

for every α ≤ β in N .

Proposition 3.20 Let Q,G ∈ Mod(A·) with Q cofibrant and G flasque. Then the A·-module
Hom∗

A·(Q,G) ∈ Mod(A·) is flasque.

Proof IfG is flasque then for every open subset jV : V ↪→ N the unitmapηG : G → jV ,∗ j∗VG
described in Remark 3.16 is surjective. The statement follows by Lemma 3.19. ��

4 Extended Lower-Shriek Functor

This section is devoted to thewell posedness of a certain functor thatwe shall call the extended
lower-shriek.

Definition 4.1 Define the poset LN as

(1) LN = {(β, γ ) ∈ N × N | β ≤ γ },
(2) (β, γ ) ≤ (δ, η) if and only if β ≤ δ and η ≤ γ in N .
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In particular, condition (2) of Definition 4.1 implies that for every β ≤ δ ≤ η ≤ γ the
diagram

(β, γ ) (δ, γ )

(β, η) (δ, η)

commutes in LN . We shall call a morphism (β, γ ) → (δ, γ ) an horizontal morphism, and
similarly we call morphisms of the form (β, γ ) → (β, η) vertical morphisms.

Remark 4.2 More generally, for every small category C we can consider the category LC

whose objects are maps in C and whose morphisms are commutative diagrams:

β γ

⇐⇒

(β → γ )

∈MorLC

δ η (δ → η)

If C is a direct Reedy category, then LC is an inverse Reedy category with degree function

deg(β → γ ) = deg(γ ) − deg(β) ≥ 0.

For every α ≤ β in N denote by

iβ : Uβ

iαβ−→ Uα
iα−→ X

the natural inclusions. Since the scheme is separated, then Uα is affine for every α ∈ N .
Hence the datum of an A·-module F ∈ Mod(A·) is equivalent to Fα ∈ DGMod(OUα ) for
every α ∈ N and morphisms

fαβ : iαβ ∗Fα = Fα|Uβ → Fβ, α ≤ β.

Now, we fix the A·-module F and define the following functors

F∗ : LN → DGMod(OX ) F! : LN → DGMod(OX )

(β, γ ) �→ iγ ∗i
β
γ

∗Fβ = iγ ∗Fβ |Uγ (β, γ ) �→ iγ !i
β
γ

∗Fβ = iγ !(Fβ |Uγ ) .

If (β, γ ) → (δ, η) then Uγ ⊂ Uη ⊂ Uδ ⊂ Uβ , so that it is given the map fβδ : Fβ |Uδ →
Fδ which in turn induces the morphism F!(β, γ ) → F!(δ, η) defined by the composition

iγ !(Fβ |Uγ )
iγ !( fβδ |Uγ )−−−−−−→ iγ !Fδ|Uγ → iη !Fδ|Uη .

Similarly, the morphisms F∗(β, γ ) → F∗(δ, η) is given by the composition

iγ ∗(Fβ |Uγ )
iγ ∗( fβδ |Uγ )−−−−−−−→ iγ ∗Fδ|Uγ → iη∗Fδ |Uη

.

Definition 4.3 In the above notation, the extended lower-shriek functor ϒ! is defined as

ϒ! : Mod(A·) → DGMod(OX )

F �→ colim
LN

F! .

Proposition 4.4 The functors ϒ! : Mod(A·) � DGMod(OX ) : ϒ∗ form an adjoint pair.
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Proof We need to show that there exists a bi-natural bijection of sets

HomDGMod(OX )(ϒ!F,G) ∼= HomA·(F, ϒ∗G)

for every F ∈ Mod(A·) and every G ∈ DGMod(OX ). By the universal property of the
colimit, the data of a morphism ϕ ∈ HomDGMod(OX )(ϒ!F,G) is equivalent to the following
chain of one-to-one correspondences

ϕ ←→ {
iγ !
(Fβ |Uγ

)→ G}
(β,γ )∈LN

←→ {(Fβ |Uγ

)→ G|Uγ

}
(β,γ )∈LN

(∗)←→
(∗)←→ {Fβ(Uβ) ⊗Aβ Aγ → G(Uγ )

}
(β,γ )∈LN

(∗∗)←→ {Fγ (Uγ ) → G(Uγ )}γ∈N ∈
HomA·(F, ϒ∗G)

where:

• (∗) is a bijection since the morphisms of sheaves are all determined by localizations of
the module Fβ ⊗Aβ Aγ ,

• (∗∗) is a bijection since for every (β, γ ) ∈ LN we have a commutative diagram

Fβ(Uβ) ⊗Aβ Aγ

fβγ Fγ (Uγ )

G(Uγ )

where the morphisms fβγ are given by the A·-module F .

��
Recall that an object F ∈ DGMod(OX ) is called a flasque complex if it is degreewise

flasque, see [23].

Theorem 4.5 [23, Theorem 5.2] Let X be a separated finite-dimensional Noetherian scheme.
Then the category DGMod(OX ) is endowed with the flat model structure, where the weak
equivalences are the quasi-isomorphisms, and fibrations are epimorphisms with flasque ker-
nel.

Remark 4.6 [17, Exercise II.1.6] Let ϕ : F → G be an epimorphism of sheaves of OX -
modules with flasque kernel over a separated Noetherian scheme X . Then ϕV : F(V ) →
G(V ) is surjective for every open subset V ⊆ X .

Theorem 4.7 The adjoint functors

ϒ! : Mod(A·) � DGMod(OX ) : ϒ∗

form a Quillen pair with respect to the model structure of Theorem 3.9 onMod(A·), and the
flat model structure on DGMod(OX ).

Proof The adjointness follows from Proposition 4.4, and the right adjoint ϒ∗ preserves
fibrations by Remark 4.6. In order to prove that the functor ϒ∗ preserves trivial fibrations it
is sufficient to observe that the complex of sections �(V , ker( f )) is acyclic for every open
V ⊆ X and for any epimorphism with flasque kernel f : F → G in DGMod(OX ); this
immediately follows from [23, Lemma 4.1]. ��
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Notice that the proof of Theorem 4.7 relies on [23, Lemma 4.1], which applies because
we assumed the scheme X to be Noetherian and finite-dimensional. As a consequence of
Theorem 4.7, we obtain the existence of the total derived functors

Lϒ! : Ho(Mod(A·)) � Ho(DGMod(OX )) : Rϒ∗ .

5 From A·-Modules to Derived Categories

The first goal of this section is to show that the total left derived functor of the extended lower-
shriek introduced in the Sect. 4 maps (classes of) quasi-coherent A·-modules in (classes of)
complexes of quasi-coherent sheaves, see Theorem 5.4. Hence there will be induced functors

Lϒ! : Ho(QCoh(A·)) � Dqc(X) : Rϒ
∗

.

Our main result shows that the above functors are in fact equivalences of triangulated cate-
gories, see Theorem 5.7. To this aim, we shall first prove that

Lϒ![F] = [ϒ!F] for every [F] ∈ Ho(QCoh(A·))
Rϒ

∗[G] = [ϒ∗G] for every [G] ∈ Dqc(X) .

As usual, X is a fixed separated finite-dimensional Noetherian scheme over K ; moreover
N denotes the nerve of a fixed affine open covering {Uh}h∈H . Recall that by Definition 3.12,
an A·-module F ∈ Mod(A·) is called quasi-coherent if the morphism

fαβ : Fα ⊗Aα Aβ → Fβ

is a weak equivalence (i.e. a quasi-isomorphism) in DGMod(Aβ) for every α ≤ β in N .
We need an easy preliminary result.

Lemma 5.1 Let N be a small direct category and let R be a ring. Consider the category
DGMod(R) of complexes of R-modules. Given a functor F : N → DGMod(R) there exists
a natural isomorphism of R-modules H j

(
colimβ∈N Fβ

) ∼= colimβ∈N (H j (Fβ)) for every
j ∈ Z.

Proof Consider the exact sequence 0 → Z j Fβ → F j
β

d j
β−→ Z j+1Fβ → H j+1Fβ → 0, for

every β ∈ N and every j ∈ Z. Now observe that the functor colimN is exact, being direct
on a category of modules. In particular,

colim
β∈N Z j Fβ

∼= ker

{
colim
β∈N d j

β

}
= Z j

(
colim
β∈N Fβ

)
,

and the thesis easily follows. ��

Proposition 5.2 Let F ∈ QCoh(A·) be a quasi-coherent A·-module. Then for every α ∈ N
there exists a quasi-isomorphism F̃α → (ϒ!F)|Uα in DGMod(OUα ).

Proof We show that the natural morphism

ϕ : F̃α →
(

colim
(β,γ )∈LN

iγ !(F̃β |Uγ )

) ∣∣∣
Uα

= (ϒ!F)|Uα
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is a quasi-isomorphism by showing that the induced morphism ϕx is so at each stalk, x ∈ Uα .
Consider the following chain of equalities
(
(ϒ!F)|Uα

)
x = colim

(β,γ )∈LN

(
iγ !(F̃β |Uγ )

)
x

= colim{(β,γ )∈LN | x∈Uγ }
(F̃β |Uγ

)
x

= colim
β∈N

(
F̃β

)
x

where the last equality holds since for every β ≤ γ1 ≤ γ2 the vertical morphism induced

on the stalk
(
F̃β |Uγ1

)

x
→
(
F̃β |Uγ2

)

x
is an isomorphism, being x ∈ Uγ2 ⊆ Uγ1 . Now

take j ∈ Z and notice that N is connected, whenever β1 ≤ β2 the natural morphism
H j (F̃β1)x → H j (F̃β2)x is an isomorphism by hypothesis; hence

H j (ϕx ) : H j (F̃α)x
∼=−→ colim

β∈N H j (F̃β)x ∼= [Lemma 5.1] ∼= H j
(
colim
β∈N (F̃β)

)

x

and the statement follows. ��
Notice that there are inclusion functors

Ho(QCoh(A·)) → Ho(Mod(A·)) and Dqc(X) → Ho(DGMod(OX )) .

Our goal is now to show that the total left derived functor Lϒ! : Ho(Mod(A·)) →
Ho(DGMod(OX )) maps Ho(QCoh(A·)) to Dqc(X).

Remark 5.3 Let Dqc (OX ) be the derived category of cochain complexes of arbitrary OX -
modules over X , with quasi-coherent cohomology. Then the natural functor Dqc(X) →
Dqc (OX ) is an equivalence of categories, see [5].

Theorem 5.4 The functor Lϒ! : Ho(Mod(A·)) → Ho(DGMod(OX )) maps (classes of)
quasi-coherent A·-modules to (classes of) complexes of quasi-coherent sheaves.

Proof The statement immediately follows by Proposition 5.2 and Remark 5.3. ��
The functor ϒ∗ obviously maps quasi-coherent sheaves to quasi-coherent A·-modules.

Therefore by Theorem 5.4 the restricted functors

Lϒ! : Ho(QCoh(A·)) � Dqc(X) : Rϒ∗

are well-defined.

5.1 The Equivalence Ho(QCoh(A·)) � Dqc(X)

The aim of this subsection is to show that the adjoint pair

Lϒ ! : Ho(QCoh(A·)) � Dqc(X) : Rϒ
∗

introduced in the section above is in fact an equivalence of triangulated categories.
Explicit models for the (unique) DG-enhancement of Dqc(X) already exist, e.g. the cat-

egory of complexes of injectives. For a survey concerning this topic we refer to [8, 25]. As
we shall see, cofibrant A·-modules provide another explicit DG-enhancement for Dqc(X),
see Corollary 5.8.

Remark 5.5 The functor ϒ∗ : DGMod(OX ) → Mod(A·) maps quasi-isomorphisms
between (complexes of) quasi-coherent sheaves toweak equivalences betweenquasi-coherent
A·-modules. This easily follows recalling that cohomology commutes with direct col-
imits (hence with stalks), see Lemma 5.1. In particular, Rϒ

∗[F] = [ϒ∗(F)] for every
[F] ∈ Dqc(X).
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Lemma 5.6 Let ϕ : F → G be a morphism in QCoh(A·). Then ϕ is a weak equivalence if
and only if ϒ!(ϕ) is a weak equivalence in DGMod(OX ).

Proof For any α ∈ N consider the commutative diagram

F̃α ϒ!(F)|Uα

G̃α ϒ!(G)|Uα

where the horizontal arrows are quasi-isomorphisms in DGMod(OUα ) by Proposition 5.2.
Observe that Fα → Gα is a quasi-isomorphism in DGMod(Aα) if and only if F̃α → G̃α is
so on each stalk in Uα . Then the statement follows by the 2 out of 3 property. ��

Notice that Lemma 5.6 implies that Lϒ ![G] = [ϒ!G] for every [G] ∈ Ho(QCoh(A·)).
Hence it is convenient to simply denote by

ϒ! : Ho(QCoh(A·)) � Dqc(X) : ϒ∗

the functors Lϒ ! and Rϒ
∗
.

Theorem 5.7 The functors ϒ! : Ho(QCoh(A·)) � Dqc(X) : ϒ∗ are equivalences of trian-
gulated categories.

Proof In order to avoid possible confusion, throughout all the proofwe shall keep the notation
Lϒ ! and Rϒ

∗
to denote the functors in the statement.

First recall that the triangulated structure is preserved because the functors come from a
Quillen adjunction. Hence we only need to prove that the natural morphisms

Lϒ ! ◦ Rϒ
∗[F] → [F] and [G] → Rϒ

∗ ◦ Lϒ ![G]
are isomorphisms for every [F] ∈ Dqc(X) and every [G] ∈ Ho(Mod(A·)).

(1) First observe thatLϒ !◦Rϒ
∗[F] = [ϒ!ϒ∗(F)]byRemark5.5 andLemma5.6.Moreover,

since
(
ϒ!ϒ∗(F)

)
x = colim

(β,γ )∈LN
(iγ !(F |Uγ ))x = colim{(β,γ )∈LN | x∈Uγ }(iγ !(F |Uγ ))x

= colim
β∈I (F |Uβ )x = Fx

for every x ∈ X , then the natural map ϒ!ϒ∗(F) → F is an isomorphism.
(2) The second natural isomorphism follows by Lemma 5.6 and Proposition 5.2.

��
Theorem 5.7 partially appears in [7, Proposition 2.28], where it is proven that ϒ∗ is an

equivalence on its image.
Define the DG-category QCoh∗(A·)c whose objects are cofibrant quasi-coherent A·-

modules, and whose morphisms are ∗-morphisms, see Definition 3.3. Notice that

Z0 (QCoh∗(A·)c
) = QCoh(A·)c .

Moreover, every weak equivalence F → G in Mod(A·) between cofibrant A·-modules is in
fact an isomorphism up to homotopy; i.e. H0 (QCoh∗(A·)c) � Ho (QCoh(A·)c).
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Corollary 5.8 The DG-category QCoh∗(A·)c is a DG-enhancement for the unbounded
derived category Dqc(X).

Proof There are equivalences of triangulated categories

H0 (QCoh∗(A·)c
) � Ho

(
QCoh(A·)c

) � Ho (QCoh(A·)) � Dqc(X),

where the last one follows by Theorem 5.7. ��

6 Derived Endomorphisms of Quasi-coherent Sheaves

Throughout this section we shall consider a fixed finite-dimensional Noetherian separated
scheme X over a field K , together with a quasi-coherent sheaf F on it. Also, we fix an open
affine covering {Uh}h∈H , denoting by N its nerve.

The first main goal of this section is to give different constructions of the derived endomor-
phisms REnd(F). The interest in this object arises in several areas of Algebraic Geometry;
for instance it carries a DG-Lie structure controlling infinitesimal deformations of F as we
shall see in Sect. 7.

Recall that REnd(F) is represented (up to quasi-isomorphisms) by the complex
Hom∗

OX
(F, I), for any injective resolution F → I. Notice that Hom∗

OX
(F, I) =

HomOX (F, I), up to a sign on the differential.

6.1 REnd(F) via A·-Modules

The aim of this subsection is to prove that given a cofibrant replacement ε : Q → ϒ∗F in
Mod(A·), then the derived endomorphisms of F are represented by End∗

A·(Q).
For notational convenience we shall also denote by ε the induced map ϒ!Q → ϒ!ϒ∗F =

F .

Proposition 6.1 LetF be a quasi-coherent sheaf on X, and consider a cofibrant replacement
ε : Q → ϒ∗F in Mod(A·). Then the induced map

Hom∗
OX

(ϒ!Q,J )
−◦ε←−− Hom∗

OX
(F,J )

is a quasi-isomorphism for any bounded below complex of injectives J .

Proof Since J is degreewise injective we have a short exact sequence

0 → Hom∗
OX

(F,J ) → Hom∗
OX

(ϒ!Q,J ) → Hom∗
OX

(H,J ) → 0

where H = ker(ε) is acyclic. By standard arguments it is easy to show that any map from
an acyclic complex to a bounded below complex of injectives is homotopic to zero, see e.g.
[14, III.5.24]. Hence the complex Hom∗

OX
(H,J ) is acyclic and the statement follows. ��

Proposition 6.2 Let F be a quasi-coherent sheaf on X, let ϕ : F → I be an injective reso-
lution, and consider a cofibrant replacement ε : Q → ϒ∗F in Mod(A·). Then the maps

Hom∗
A·(Q,Q)

ε◦−−−→ Hom∗
A·(Q, ϒ∗F)

ϕ◦−−−→ Hom∗
A·(Q, ϒ∗I)

are quasi-isomorphisms.
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Proof We shall prove that the functor Hom∗
A·(Q,−) : Mod(A·) → DGMod(Z) maps weak

equivalences to quasi-isomorphisms, being Q cofibrant. Since every object in Mod(A·) is
fibrant, by Ken Brown’s Lemma it is sufficient to show that Hom∗

A·(Q,−) maps trivial
fibrations to quasi-isomorphisms. To this aim, take a trivial fibration f : G → H in Mod(A·).
Then we have a short exact sequence

0 → Hom∗
A·(Q, ker( f )) → Hom∗

A·(Q,G)
f ◦−−−→ Hom∗

A·(Q,H) → 0 ;
where the surjectivity comes from Lemma 3.14.

To conclude we need to show that Hom∗
A·(Q, ker( f )) is acyclic. Notice that every cocycle

[h] ∈ Zn
(
Hom∗

A·(Q, ker( f ))
)
is given by a map h : Q → ker( f )[n] of A·-modules. Now,

factor the weak equivalence 0 → ker( f ) as

0
ι−→ cocone

(
Idker( f )[n]

) π−→ ker( f )[n]
and observe that ι is a weak equivalence and π is a trivial fibration. Hence the square of solid
arrows

0
ι

cocone
(
Idker( f )[n]

)

π

Q
h

h

ker( f )[n]

admits the dotted lifting h : Q → cocone
(
Idker( f )[n]

)
, which in turn implies that h is homo-

topic to zero, i.e. [h] = [0] ∈ Hn
(
Hom∗

A·(Q, ker( f ))
)
. ��

Remark 6.3 The same argument given in the proof of Proposition 6.2 leads to quasi-
isomorphisms

Hom∗
A·(Q,Q)α

ε◦−−−→ Hom∗
A·(Q, ϒ∗F)α

ϕ◦−−−→ Hom∗
A·(Q, ϒ∗I)α

for every α ∈ N .

Theorem 6.4 Let F be a quasi-coherent sheaf on X, and let ε : Q → ϒ∗F be a cofibrant
replacement in Mod(A·). Then REnd(F) is represented by End∗

A·(Q).

Proof First notice that Hom∗
A·(Q, ϒ∗I) ∼= Hom∗

OX
(ϒ!Q, I), the proof being the same as

Proposition 4.4. Now the statement follows by Propositions 6.2 and 6.1. ��
Remark 6.5 Notice that the above proofs easily extend to the general case of a complex
of sheaves F∗ ∈ DGMod(OX ), so that the issue is to construct a cofibrant replacement
ε : Q → ϒ∗F∗.

6.1.1 Concrete Computations via A·-Modules

The approach via A·-modules seems to be fruitful in some geometric situations, see e.g. [3,
Section 3] and [4, Section 5]. We shall now construct the cofibrant pseudo-module providing
a description of the DG-Lie representative of derived endomorphisms of a complex of locally
free sheaves.
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Consider any bounded above complex of locally free sheaves F∗ on X . For each α ∈ N ,
consider the abstract oriented simplicial complex �α: the faces are given by non-empty
subsets of α. The homology of its associated chain complex C∗(�α) is non-trivial only in
degree 0: H0 (C∗(�α)) = Z. Let us now describe the cofibrant A·-moduleQ. We begin with
the dual cochain complex

Ck(�α) = C−k(�α) ∂k = ∂−k .

Then define

Qα = C∗(�α) ⊗Z F∗(Uα) ,

whose cohomology gives back the desired complex: H∗ (Qα) ∼= F∗(Uα). Notice that the
projection C∗(�α) → H0 (C∗(�α)) induces a map Qα → F∗(Uα). These data commute
with each other (for any α ≤ β ∈ N ); therefore we have constructed a morphism ε : Q →
ϒ∗F in the category of A·-modules. It is not difficult to check that Q is cofibrant, see [3,
Section 3.2] for details. Now from Theorem 6.4 and Remark 6.5 we obtain that the DG-Lie
algebra Hom∗

A·(Q,Q) represents the derived endomorphisms of the complex F∗.
Notice that in order to compute cohomology, i.e. Ext∗(F∗,F∗), it can be useful to deal

with the complex Hom∗
A·(Q, ϒ∗F∗) instead of Hom∗

A·(Q,Q).

6.2 REnd(F) via Thom–Whitney Totalization

The aim of this subsection is to prove that given a cofibrant replacement Q → ϒ∗F in
Mod(A·), then the derived endomorphisms of F are represented by the Thom–Whitney
totalization of a certain semicosimplicial DG-Lie algebra described in terms of Q, see Defi-
nition 6.6.

We begin by recalling the following construction. Let {Uj } j∈J be an affine open covering
for a finite-dimensional Noetherian separated scheme X . Define

N n = {( j0, . . . , jn) ∈ Jn |Uj0 ∩ · · · ∩Ujn 	= ∅}
for any n ∈ N. The ordered nerve of {Uj } is the disjoint union N = ∐

n≥0
I n . Notice that

there exists a map

N → N , α = ( j0, . . . , jn) �→ α = { j0, . . . , jn}
where N is the nerve of {Uj }.

Consider Q ∈ Mod(A·), and for every n ∈ N define

Ln =
∏

α∈Nn

Hom∗
A·(Q,Q)α

where the product is taken in the category of DG-vector spaces. Notice that Ln is a DG-Lie
algebra since every Hom∗

A·(Q,Q)α ⊆ ∏

γ≥α

Hom∗
Aγ

(Qγ ,Qγ ) inherits a DG-Lie structure,

where the bracket is the (graded) commutator. Moreover, for every monotone map f : [n] →
[m] it is induced a map

h f : Nm → N n , α = (a0, . . . , am) �→ h f (α) = (a f (0), . . . , a f (n))

satisfying h f (α) ≤ α for every α ∈ N . This in turn gives a map

f∗ =
{
fβ

}

β∈Nm
: Ln → Lm defined by fβ

(
{ϕα}α∈N n

)
= πh f (β)β

(
ϕh f (β)

)
∈ Ln ,
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where πh f (β)β : Hom∗
A·(Q,Q)h f (β) → Hom∗

A·(Q,Q)β is the natural projection.

Definition 6.6 For every n ∈ N and every 0 ≤ k ≤ n + 1, define δk : [n] → [n + 1] as

δk(p) =
{
p if p < k

p + 1 if p ≥ k

Then the maps δk∗ induce the semicosimplicial DG-Lie algebra

L : L0 L1 L1 · · ·
Similarly we now introduce three semicosimplicial complexes. Let Q → ϒ∗F be a

cofibrant replacement for ϒ∗F in Mod(A·) and consider an injective resolution F → I,
then define

BQF : BQF
0 = ∏

α∈N 0

Hom∗
A·(Q, ϒ∗F)α BQF

1

= ∏

α∈N 1

Hom∗
A·(Q, ϒ∗F)α · · ·

BQI : BQI
0 = ∏

α∈N 0

Hom∗
A·(Q, ϒ∗I)α BQI

1

= ∏

α∈N 1

Hom∗
A·(Q, ϒ∗I)α · · ·

BFI : BFI
0 = ∏

α∈N 0

Hom∗
OX

(iα!(F |Uα ), I) BFI
1

= ∏

α∈N 1

Hom∗
OX

(iα!(F |Uα ), I) · · ·

where we denoted by iα : Uα → X the natural inclusion. Notice that the maps defined in
Propositions 6.1 and in Proposition 6.2 induce semicosimplicial morphisms

L → BQF → BQI ← BFI .

Recall that for a semicosimplicial DG-vector space V the Thom–Whitney–Sullivan total-
ization is the DG-vector space defined by

Tot(V ) =
⎧
⎨

⎩
(xn) ∈

∏

n≥0

�n ⊗ Vn
∣∣∣ (δ∗

k ⊗ Id)xn = (Id⊗δk)xn−1 for every 0 ≤ k ≤ n

⎫
⎬

⎭

where �n = K [t0,...,tn ,dt0,...,dtn ]
(
∑

ti−1,
∑

dti )
is the graded algebra of polynomial differential forms on

the n-simplex. Moreover, to every semicosimplicial DG-vector space V is associated the
complex
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C(V ) =
⊕

p∈N

∏

n∈N
Vn[−n]p =

⊕

p∈N

∏

n∈N
V p−n
n

which is quasi-isomorphic to the totalization via the Whitney integration map
∫ : Tot(V ) →

C(V ), see [38]. Given a map of DG-vector spaces g : W → V0 satisfying δ0g = δ1g, it
is induced a morphism ĝ : W → Tot(V ) defined by ĝ(w) = (1 ⊗ g(w), 1 ⊗ δ0g(w), 1 ⊗
δ20 g(w), . . . ). Using the semicosimplicial identities it is straightforward to prove that the
composition

∫ ◦g is in fact the composition of g with the natural inclusion V0 → C(V ). In
this way it is induced a natural map

Hom∗
A·(Q,Q) → Tot(L)

which respects the DG-Lie structure.
The aimof this subsection is to prove thatHom∗

A·(Q,Q) → Tot(L) is a quasi-isomorphism
of DG-associative algebras. Actually we shall prove much more: there exists a commutative
diagram

Hom∗
A·(Q,Q) Hom∗

A·(Q, ϒ∗F) Hom∗
A·(Q, ϒ∗I) Hom∗

OX
(F, I)

ξ

Tot(L)

∫

Tot(BQF )

∫

Tot(BQI)

∫

Tot(BFI)

∫

C(L) C(BQF ) C(BQI) C(BFI) .

(6.1)
where all maps are quasi-isomorphisms.

Lemma 6.7 The vertical map Hom∗
OX

(F, I)
ξ−→ Tot(BFI) appearing in diagram (6.1) is a

quasi-isomorphism.

Proof As already noticed above the Whitney integration map
∫ : Tot(BFI) → C(BFI)

is a quasi-isomorphism. Therefore, in order to prove the statement it is sufficient to show
that the composition

∫ ◦ξ is an isomorphism in cohomology. To this aim we introduce two
double complexes

Ai j =
{
Homi

OX
(F, I) if j = 0

0 otherwise
Bi j =

∏

α∈N j

Homi
OUα

(F |Uα , I|Uα

)

defined for i, j ≥ 0. Restrictions give a map of double complexes {Ai j → Bi j }i, j≥0, which
in turn corresponds to a morphism between the associated complexes

f : A· =
⊕

n∈N
Homn

OX
(F, I) → B· =

⊕

n∈N

n⊕

i=0

Bn−i,i .

Now, consider the following complete and exhaustive filtrations

F p A· =
⊕

i≥p

Homi
OX

(F, I) , F pB· =
⊕

i≥p

⊕

j≥0

Bi, j , p ∈ N
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together with the induced morphism

f̂ p : F p A·

F p+1A· = Hom p
OX

(F, I) −→
⊕

j≥0

∏

α∈N j

Hom p
OUα

(F |Uα , I|Uα

) = F pB·

F p+1B· .

Observe that for every p ∈ N the map f̂ p is a quasi-isomorphism; in fact by the degreewise
injectivity of I it follows that the restriction map

Hom p
OX

(F, I) → Hom p
OX

(i!F, I) = Hom p
OX |U (F |V , I|V )

is surjective for every open subset i : V → X , therefore the sequence

0 → Hom p
OX

(F, I) →
∏

α∈N 0

Hom p
OUα

(F |Uα , I|Uα

)→
∏

β∈N 1

Hom p
OUβ

(F |Uβ , I|Uβ

)→ · · ·

is exact because flasque sheaves are acyclic. It follows that the map f : A· → B· is a quasi-
isomorphism.

To conclude the proof it is sufficient to observe that f is indeed the composition
∫ ◦ξ .

Clearly A· = Hom∗
OX

(F, I); moreover

B· =
⊕

n∈N

n⊕

i=0

Bn−i,i =
⊕

n∈N

n⊕

i=0

∏

α∈N i

Homn−i
OUα

(F |Uα , I|Uα

)

=
⊕

n∈N

n∏

i=0

Homn−i
OUα

⎛

⎝
⊕

α∈N i

iα!(F |Uα ), I
⎞

⎠

so that B· = C(BFI). Now, the map
∫ ◦ξ is the same as the composition

Hom∗
OX

(F, I) →
∏

α∈N0

Hom∗
OUα

(F |Uα , I|Uα

)→ C(BFI)

which is precisely f as claimed. ��

Theorem 6.8 All the maps appearing in diagram (6.1) are quasi-isomorphisms.

Proof The maps in the first row have been discussed in Propositions 6.1 and 6.3. Now, recall
that to prove that the map between complexes associated to semicosimplicial DG-vector
spaces is a quasi-isomorphisms, it is sufficient to prove that it is induced by a semicosimplicial
quasi-isomorphism between them. By Remark 6.3 and by Proposition 6.1 there are quasi-
isomorphisms

Hom∗
A· (Q,Q)α

ε◦−
Hom∗

A· (Q, ϒ∗F)α
ϕ◦−

Hom∗
A· (Q, ϒ∗I)α

∼=

Hom∗
OUα

(ϒ!Q,I) Hom∗
OUα

(F |Uα ,I|Uα

)−◦ε

for every α ∈ N , which in turn induce semicosimplicial quasi-isomorphisms

L → BQF → BQI ← BFI .
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Therefore the maps in the bottom row are all quasi-isomorphisms. Moreover, since for every
DG-vector space V the map

∫ : Tot(V ) → C(V ) is a quasi-isomorphism, by the 2 out of 3
property also the maps in the middle row are quasi-isomorphisms.

To conclude the proof recall that the map ξ : Hom∗
OX

(F, I) → Tot(BFI) is a quasi-
isomorphism by Lemma 6.7. Hence the statement follows again by the 2 out of 3 property.

��
Corollary 6.9 Let F be a quasi-coherent sheaf on X, and let ε : Q → ϒ∗F be a cofibrant
replacement in Mod(A·). Denote by L the semicosimplicial DG-Lie algebra introduced in
Definition 6.6. Then REnd(F) is represented by Tot(L).

Proof Immediate consequence of Theorems 6.4 and 6.8 ��
Remark 6.10 Another consequence of Theorem 6.8 is the existence of a quasi-isomorphism
of differential graded Lie algebras Hom∗

A·(Q,Q) → Tot(L). This implies that the associated
deformations functors defined through Maurer–Cartan elements modulo gauge equivalence
are isomorphic:

DefHom∗
A· (Q,Q)

∼= DefTot(L)

see [29, Corollary 5.52].

6.3 REnd(F) in Presence of a Locally Free Resolution

Let E → F be a locally free resolution for a quasi-coherent sheaf F over X . Recall that if X
is smooth projective such a resolution always exists, but we keep working in full generality
only assuming X to be a finite-dimensional separated Noetherian scheme over K . Moreover
we choose an affine open cover {Uh}h∈H for X such that the restriction E|Uα is a complex of
free sheaves for every α ∈ N . Notice that:

(1) ϒ∗E ∈ Mod(A·) is quasi-coherent,
(2) (ϒ∗E)α is cofibrant in DGMod(Aα) for every α ∈ N ,
(3) ϒ∗E is not necessarily cofibrant in Mod(A·).

Lemma 6.11 Let E → F be a locally free resolution, and consider a cofibrant replacement
Q π−→ ϒ∗E in Mod(A·). Fix α ∈ N ; then all the maps in the commutative square

Hom∗
A·(Q, ϒ∗F)α Hom∗

A·(ϒ
∗E, ϒ∗F)α

Hom∗
Aα

(Qα, (ϒ∗F)α) Hom∗
Aα

((ϒ∗E)α, (ϒ∗F)α)

are quasi-isomorphisms, where the vertical arrows are the natural projections.

Proof First notice that the vertical arrow on the right is clearly an isomorphism. Moreover,
the bottom arrow is a quasi-isomorphism because it is induced by the map Qα → (ϒ∗E)α ,
which is a weak equivalence between cofibrant objects in DGMod(Aα). By the 2 out of 3
axiom it is then sufficient to prove that the projection

π : Hom∗
A·(Q, ϒ∗F)α → Hom∗

Aα
(Qα, (ϒ∗F)α)
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is a quasi-isomorphism. We begin by showing the surjectivity in cohomology. To this aim,

take ϕα ∈ Z0
(
Hom∗

Aα
(Qα, (ϒ∗F)α)

)
= HomAα (Qα, (ϒ∗F)α). By induction, fix β ∈ N

such that α < β and suppose we have already constructed maps ϕγ ∈ HomAγ (Qγ , (ϒ∗F)γ )

for every

γ ∈ Rαβ = {γ ∈ N | α ≤ γ < β}
satisfying the necessary commutativity relations. In order to define ϕβ ∈ HomAβ (Qβ,

(ϒ∗F)β) first notice that the map

colim
γ∈Rαβ

(Qγ ⊗Aγ Aβ) → Qβ

is a cofibration in DGMod(Aβ) by Remark 3.17. Notice thatQ is a quasi-coherent A·-module
by Remark 3.13, so that the map

{Qγ ⊗Aγ Aβ → Qβ

}
γ∈Rαβ

is a Reedyweak equivalence.Moreover, the diagram
{Qγ ⊗Aγ Aβ

}
γ∈Rαβ

is Reedy cofibrant

by Remark 3.17, and
{Qβ

}
γ∈Rαβ

is Reedy cofibrant since Rαβ is connected. It follows that
the map

colim
γ∈Rαβ

(Qγ ⊗Aγ Aβ) → colim
γ∈Rαβ

Qβ
∼= Qβ

is aweak equivalence since the leftQuillen functor colim : DGMod(Aβ)Rαβ → DGMod(Aβ)

preserves weak equivalences between Reedy cofibrant objects by Ken Brown’s Lemma.
Hence the diagram

colim
γ∈Rαβ

(Qγ ⊗Aγ Aβ)

CW

(ϒ∗F)β

Qβ

ϕβ

admits the required dotted lifting. This proves that π is surjective in cohomology in degree
0. For the general case it is sufficient to observe that

Zn (Hom∗
Aα

(Qα, (ϒ∗F)α)
) ∼= Z0 (Hom∗

Aα
(Qα, (ϒ∗F)α[n])) .

We are left with the proof of the injectivity of π in cohomology. To this aim, take {ϕγ }γ≥α

in HomA·(Q, ϒ∗F)α and suppose that ϕα : Qα → (ϒ∗F)α is homotopic to the zero map;

i.e. π({ϕγ }) = 0 in H0
(
Hom∗

Aα
(Qα, (ϒ∗F)α)

)
. This is equivalent to say that the diagram

of solid arrows

cone
(
Id(ϒ∗F)α [−1]

)

pα

Qα ϕα

hα

(ϒ∗F)α

admits the dotted lifting hα . Recall that

cone
(
Id(ϒ∗F)α [−1]

) = (ϒ∗F)α ⊕ (ϒ∗F)α[−1]
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as graded Aα-modules, and pα is the projection on the first summand. In order to prove that
{ϕγ } is exact we proceed by induction: fix β ∈ N such that α < β and suppose that the
homotopy hα has been lifted to hγ : Qγ → cone

(
Id(ϒ∗F)γ [−1]

)
for every γ ∈ Rαβ = {γ ∈

N | α ≤ γ < β}. We need to prove the existence of the dotted lifting in the diagram below

colim
γ∈Rαβ

cone
(
Id(ϒ∗F)γ [−1]

)

colim
γ∈Rαβ

Qγ ⊗Aγ Aβ

ĥ

ϕ̂
(ϒ∗F)β cone

(
Id(ϒ∗F)β [−1]

)

pβ

Qβ

hβ

ϕβ
(ϒ∗F)β

where ĥ is induced by {hγ }γ∈Rαβ and ϕ̂ is induced by {ϕγ }γ∈Rαβ . Notice that pβ is surjective
(hence a fibration), and colim

γ∈Rαβ

Qγ ⊗Aγ Aβ → Qβ is a trivial cofibration as proved above;

therefore the statement follows by the lifting property. ��
Remark 6.12 Even if F does not admit a locally free resolution, we can consider a cofibrant
replacement Q → ϒ∗F in Mod(A·): the same argument of Lemma 6.11 shows that the
projection

Hom∗
A·(Q, ϒ∗F)α → Hom∗

Aα
(Qα, (ϒ∗F)α)

is a quasi-isomorphism.

Remark 6.13 In the proof of Lemma 6.11, the fact that ϒ∗F is concentrated in degree 0 does
not play any role. Therefore for everyα ∈ N the same argument leads to a quasi-isomorphism

− ◦ π : Hom∗
A·(ϒ

∗E, ϒ∗E)α → Hom∗
A·(Q, ϒ∗E)α

where π : Q → ϒ∗E is a cofibrant replacement in Mod(A·).

Given a locally free resolution E → F on X , we consider the associated Čech semicosim-
plicial DG-Lie algebra

h : ∏

α∈N 0

Hom∗
OUα

(E|Uα , E|Uα )
∏

β∈N 1

Hom∗
OUβ

(E|Uβ , E|Uβ ) · · ·

which will give us another model for derived endomorphisms of F .

Theorem 6.14 Let F be a quasi-coherent sheaf on X, and let E → F be a locally free
resolution. Denote by h the Čech semicosimplicial DG-Lie algebra as above. Then REnd(F)

is represented by Tot(h).

Proof Take a cofibrant replacementQ → ϒ∗E in Mod(A·) and fix α ∈ N . By Lemma 6.11
there exists a quasi-isomorphism

Hom∗
A·(Q, ϒ∗F)α ← Hom∗

A·(ϒ
∗E, ϒ∗F)α ∼= Hom∗

Aα

(
(ϒ∗E)α, (ϒ∗F)α

)

∼= Hom∗
OUα

(E|Uα ,F |Uα ) .
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Moreover the map Hom∗
OUα

(E|Uα , E|Uα ) → Hom∗
OUα

(E|Uα ,F |Uα ) is a quasi-isomorphism,
being E|Uα a complex of free sheaves. Therefore we obtain a quasi-isomorphism

Hom∗
OUα

(E|Uα , E|Uα ) → Hom∗
A·(Q, ϒ∗F)α

which extends to a semicosimplicial quasi-isomorphism h → BQF , so that the induced map
Tot(h) → Tot(BQF ) is a quasi-isomorphism. The statement follows by Theorem 6.8 and
Corollary 6.9. ��

Theorem 6.13 essentially states that Hk (Tot(h)) = ExtkOX
(F,F) for every k ∈ N.

For future purposes, we are now interested in a stronger result, namely that Tot(h), Tot(L)

and End∗
A·(Q) are quasi-isomorphic as DG-Lie algebras, so that in particular the associated

deformation functors DefTot(h), DefTot(L) and DefHom∗
A· (Q) will be isomorphic to each other.

Recall that it has been already proven in Sect. 6.2 that DefTot(L)
∼= DefHom∗

A· (Q).

Lemma 6.15 Let E → F be a locally free resolution, and consider a cofibrant replacement
Q π−→ ϒ∗E in Mod(A·). Fix α ∈ N and define the DG-Lie algebra

Mα = {( f , g) ∈ Hom∗
A·(Q,Q)α × Hom∗

A·(ϒ
∗E, ϒ∗E)α | π ◦ f = g ◦ π

}
.

Then there exists a commutative square

Mα

p2

p1

Hom∗
A·(ϒ

∗E, ϒ∗E)α

−◦π

Hom∗
A·(Q,Q)α

π◦− Hom∗
A·(Q, ϒ∗E)α

where every map is a quasi-isomorphism.

Proof First notice that the map

π ◦ −: Hom∗
A·(Q,Q)α → Hom∗

A·(Q, ϒ∗E)α

is a quasi-isomorphism beingQ cofibrant in Mod(A·), see Remark 3.17. Moreover, the map

− ◦ π : Hom∗
A·(ϒ

∗E, ϒ∗E)α → Hom∗
A·(Q, ϒ∗E)α

is a quasi-isomorphism by Remark 6.13. By the functoriality of cohomology, to prove the
statement it is sufficient to show that the projection p1 is a quasi-isomorphism. To this aim,
first observe that Q is cofibrant and π is surjective, so that the map p1 is surjective by
Lemma 3.14. Moreover, the complex ker(p1) = Hom∗

A·(Q, ker(π))α is acyclic, being Q
cofibrant and ker(π) acyclic. The statement follows. ��
Theorem 6.16 Let E → F be a locally free resolution, and consider a cofibrant replacement
Q π−→ ϒ∗E in Mod(A·). Let L be the semicosimplicial DG-Lie algebra associated to Q
as in Definition 6.6. Then Tot(L) and Tot(h) are quasi-isomorphic as DG-Lie algebras.
In particular, the associated deformation functors DefTot(L) and DefTot(h) are naturally
isomorphic.

Proof It is sufficient to observe that by Lemma 6.15 there exists quasi-isomorphisms

Hom∗
A·(Q,Q)α ← Mα → Hom∗

A·(ϒ
∗E, ϒ∗E)α
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of DG-Lie algebras inducing quasi-isomorphisms of semicosimplicial DG-Lie algebras. To
conclude the proof recall that theWhitney integration maps lift quasi-isomorphisms between
complexes associated to semicosimplicial DG-Lie algebras to quasi-isomorphisms between
their totalizations. ��

7 Infinitesimal Deformations of Quasi-coherent Sheaves

It is well known that infinitesimal deformations of a coherent sheaf on a smooth projective
variety are related to Ext∗(F,F), see e.g. [11]. Using results of Sect. 6, our aim is now to
prove that the DG-Lie algebras End∗

A·(Q) = Hom∗
A·(Q,Q) and Tot(L) control infinitesimal

deformations of a quasi-coherent sheaf F over a finite-dimensional Noetherian separated
scheme X . Here Q → ϒ∗F is any cofibrant replacement in Mod(A·).

For the reader convenience, we briefly recall the definition of the deformation functor
associated to infinitesimal deformations of F . A deformation of F over A ∈ ArtK is a
morphism π : FA → F of sheaves ofOX ⊗ A-modules over X ×Spec(A), withFA flat over
A, such that the reducedmapFA⊗AK → F is an isomorphism.We say that twodeformations
FA andF ′

A are isomorphic if there exists an isomorphism of sheaves ϕ : FA → F ′
A such that

π ′ ◦ϕ = π . The functor of infinitesimal deformations of F up to isomorphism is denoted by
DefF : ArtK → Set.

The main result of this section will be the existence of natural isomorphisms

DefF ∼= DefTot(L)
∼= DefEnd∗

A· (Q) .

We shall give different proofs. First recall that by Remark 6.10 there exists a natural isomor-
phism DefEnd∗

A· (Q) → DefTot(L). In Sect. 7.1 we will use a powerful result of [11], which
will lead us to a natural isomorphism DefF ∼= DefTot(L). In Sect. 7.2 we will give an explicit
natural isomorphism DefEnd∗

A· (Q) → DefF .

7.1 Deformations via Descent of Deligne Groupoid

We begin by recalling the construction of the functors Z1
g, H1

g : ArtK → Set for any given
semicosimplicial DG-Lie algebra

g : g0
∂0,1

∂1,1

g1

∂0,2

∂1,2

∂2,2

· · · .

For every A ∈ ArtK define Z1
g(A) ⊆ (g10 ⊕ g01) ⊗ mA to be the subset of elements (l,m) ∈

(g10 ⊕ g01) ⊗ mA satisfying
⎧
⎪⎨

⎪⎩

dl + 1
2 [l, l] = 0

∂1,1l = em ∗ ∂0,1l

∂0,2m • (−∂1,2m) • ∂2,2m = dn + [∂2,2∂0,1l, n] for some n ∈ g−1
2 ⊗ mA

where ∗ denotes the gauge action and • denotes the Baker–Campbell–Hausdorff prod-
uct; i.e. x • y = log(exey). There is an equivalence relation on Z1

g(A): two elements
(l0,m0), (l1,m1) ∈ Z1

g(A) are equivalent if and only if there exist a ∈ g00 ⊗ mA and

b ∈ g−1
1 ⊗ mA such that
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{
ea ∗ l0 = l1
−m0 • (−∂1,1a) • ∂0,1a = db + [∂0,1l0, b] .

We shall denote by ∼ the equivalent relation defined above; the functor of Artin rings

H1
g : ArtK → Set is defined as H1

g(A) = Z1
g(A)

�∼ for every A ∈ ArtK . This functor
extends the one defined in [12] for semicosimplicial Lie algebras. It was proven in [11] that
there exists a commutative diagram of functors

DGLA�
H≥0

H1·

Tot(·)
DGLA

Def ·

SetArtK

whereDGLA�
H≥0 is the category of semicosimplicialDG-LieK -algebraswhose cohomology

is concentrated non-negative degrees, DGLA is the category of DG-Lie K -algebras, and
SetArtK is the category of functors ArtK → Set. Moreover, the functor Def · : DGLA →
SetArtK is defined by Maurer–Cartan solution modulo gauge equivalence.

Our strategy is now clear: we first need to show that the semicosimplicial DG-Lie
algebra L defined in Definition 6.6 has cohomology concentrated in positive degrees, i.e.
L ∈ DGLA�

H≥0 , then we conclude by showing that DefF ∼= H1
L.

Lemma 7.1 Let F be a quasi-coherent sheaf on X, and take a cofibrant replacement
Q → ϒ∗F inMod(A·). Then the associated semicosimplicial DG-Lie algebra L defined in
Definition 6.6 belongs to DGLA�

H≥0 .

Proof Fix α ∈ N ; we need to show that Hom∗
A·(Q,Q)α is acyclic in negative degrees.

Consider the composition

Hom∗
A·(Q,Q)α → Hom∗

A·(Q, ϒ∗F)α → Hom∗
Aα

(Qα,F(Uα))

where the first map is a quasi-isomorphism by Proposition 6.2, and the secondmap is a quasi-
isomorphism by Remark 6.12. Now consider a projective resolution P · → F(Uα), which in
particular is a cofibrant replacement in DGMod(Aα), see e.g. [22, Lemma 2.3.6]. Therefore
there exists a quasi-isomorphism q : Qα → P · lifting Qα → F(Uα). By Ken Brown’s
Lemma, the functor Hom∗

Aα
(−,F(Uα)) maps weak equivalences between cofibrant objects

to quasi-isomorphisms, so that the induced map

Hom∗
Aα

(
P ·,F(Uα)

) −◦q−−→ Hom∗
Aα

(Qα,F(Uα))

is a quasi-isomorphism. Now the statement follows since the complex Hom∗
Aα

(P ·,F(Uα))

does not have non-zero n-cocycles for n < 0. ��
Fix α ∈ N and A ∈ ArtK ; a Maurer–Cartan element {lβ}β≥α ∈ Hom1

A·(Q,Q)α ⊗ mA

defines complexes (Qβ ⊗A, dQβ +lβ) for everyβ ≥ α, hence deformations of the sheafF |Uβ

by taking the sheaf associated to the 0-th cohomology. In fact, the condition (dQβ + lβ)2 = 0

is equivalent to require dL0 lβ + 1
2 [lβ, lβ ] = 0, while the flatness follows from [36, Theorem

A.31] since every cofibrant complex is degreewise projective, see e.g. [22, Lemma 2.3.6].
Notice that for every α ≤ β ≤ γ we have a quasi-isomorphism

(Qβ ⊗ A, dQβ + lβ) ⊗(Aβ⊗A) (Aγ ⊗ A) → (Qγ ⊗ A, dQγ + lγ )
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so that the induced map between deformations

H0(Qβ ⊗ A, dQβ + lβ) ⊗(Aβ⊗A) (Aγ ⊗ A)
∼=

H0(Qγ ⊗ A, dQγ + lγ )

F(Uβ)

is an isomorphism. This means that a Maurer–Cartan element lα = {lβ}β≥α ∈
Hom1

A·(Q,Q)α ⊗ mA is essentially a deformation of the sheaf F |Uα .

Now consider a Maurer–Cartan element l = {lα}α∈N0 ∈ ∏

α∈N0

Hom1
A·(Q,Q)α ⊗ mA,

so that each lα is a Maurer–Cartan element in Hom1
A·(Q,Q)α ⊗ mA. In order to glue the

deformations associated to each lα , we need to require the existence of an isomorphism

(Qβ ⊗ A, dQβ + lαβ ) ⊗(Aβ⊗A) (Aγ ⊗ A)
f−→ (Qβ ⊗ A, dQβ + lα

′
β ) ⊗(Aβ⊗A) (Aγ ⊗ A)

lifting the identity for every α, α′ ∈ N0 and every β ∈ N such that α, α′ ≤ β. Since f

lifts the identity on Qβ , then f = em
(α,α′)
β for some m(α,α′)

β ∈ Hom0
A·(Qβ,Qβ) ⊗ mA. The

commutativity with the differential is equivalent to the relation dQβ + lαβ = em
(α,α′)
β (dQβ +

lα
′

β )e−m(α,α′)
β , i.e. lα

′
β = em

(α,α′)
β ∗ lαβ . Therefore for every (α, α′) ∈ N 1 all these isomorphisms

are collected by the element (α, α′) ∈ Hom0
A·(Q,Q)α∪α′ ⊗ mA.

Observe that in order to satisfy the cocycle condition on the 0-th cohomology, we
need to require that for every (α, α′, α′′) ∈ N 2 there exists an element n(α,α′,α′′) ∈
Hom−1

A· (Q,Q)α∪α′∪α′′ such that

m(α′,α′′)
γ • (−m(α,α′′)

γ ) • m(α,α′)
γ =

[
d + lα

′
γ , n(α,α′,α′′)

γ

]

for every γ ≥ (α, α′, α′′).
Summing up all the above discussion, we have a natural transformation defined for every

A ∈ ArtK by

ϕA : H1
L(A) −→ DefF (A) ,

(
{lα}α∈N0 , {m(α,α′)}(α,α′)∈N 1

)
�→ (FA → F)

whereFA is the sheaf obtained gluing together the deformations associated to each lα through

the isomorphisms em
(α,α′)

.

Proposition 7.2 The natural transformation ϕ : DefF → H1
L defined above is a natural

isomorphism.

Proof For simplicity we assume the replacement Q to belong to Mod≤0(A·), i.e. Qα is
concentrated in non-positive degrees for every α ∈ N . Notice that by Remark 3.11 such
a replacement always exists, and our assumption is not restrictive since for every pair of
cofibrant replacementsQ → ϒ∗F ← Q′ the DG-Lie algebras End∗

A·(Q) and End∗
A·(Q′) are

quasi-isomorphic.
In order to prove the claim, fix A ∈ ArtK and take an isomorphism between deformations

f :FA andF ′
A, associated to

(
{lα}α∈N0 , {m(α,α′)}(α,α′)∈N 1

)
and
(
{λα}α∈N0 , {μ(α,α′)}(α,α′)∈N 1

)
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respectively. For every α ∈ N0 and every β ≥ α, the restriction of f to each Uα lifts to iso-
morphisms

(Qβ ⊗ A, dQβ + lαβ ) → (Qβ ⊗ A, dQβ + λα
β)

that reduce to the identity modulo the maximal ideal mA. Therefore all these isomorphisms
are of the form ea

α
β for some {aα} ∈ ∏

α∈N0

Hom0
A·(Q,Q)α ⊗ mA. Again, the commutativity

with the differentials is equivalent to the relations

ea
α
β ∗ lαβ = λα

β , for every β ≥ α .

We are only left with the proof that ϕA is surjective for every A ∈ ArtK . To this aim, take
a deformation FA → F in DefF and fix α ∈ N0. Notice that for every β ≥ α in N the
map Qβ → F(Uβ) lifts to surjective quasi-isomorphisms (Qβ ⊗ A, d + lαβ ) → FA(Uβ) of

DG-modules over Aβ ⊗ A, for some lα ∈ Hom1
A·(Q,Q)α ⊗mA. The gluing data correspond

to elements m(α,α′) ∈ Hom0
A·(Q,Q)α∪α′ ⊗ mA for every (α, α′) ∈ N 1; moreover, for every

β ≥ α ∪ α′ each isomorphism em
(α,α′)
β lifts the identity in the 0-th cohomology, and liftings

are unique up to homotopy. ��
The argument used in Proposition 7.2 is similar to the Kodaira-Spencer approach to

deformations of a locally free sheaf E of OX -modules on a complex manifold, [24], and
in fact closely follows the one given in [11] to show that deformations of a quasi-coherent
sheaf F are controlled by the sheaf of DG-Lie algebras End∗(E) for any given locally free
resolution E → F . The main advantage of our approach relies on the fact that we do not
assume the existence of such a resolution.

Theorem 7.3 Let X be a finite dimensional Noetherian separated scheme over K , and let F
be a quasi-coherent sheaf on it. Fix a cofibrant replacement Q → ϒ∗F . Then there exists a
natural isomorphism DefTot(L) −→ DefF , where L is the semicosimplicial DG-Lie algebra
associated to Q, see Definition 6.6.

Hence by Remark 6.10we have natural isomorphismsDefEnd∗
A· (Q)

∼= DefTot(L)
∼= DefF .

Proof It has been already observed in Remark 6.10 that DefEnd∗
A· (Q)

∼= DefTot(L). Therefore,

by Lemma 7.1 and [11, Theorem 7.6], it is sufficient to prove that DefF = H1
L. The statement

now follows by Proposition 7.2. ��
In particular, byCorollary 6.9we recover thewell-known fact that T 1 DefF = Ext1(F,F)

and obstructions are contained in Ext2(F,F).

7.2 Deformations via A·-Modules

In this subsection we present another proof of Theorem 7.3 without using semicosimplicial
techniques.

Theorem 7.4 Let X be a finite dimensional Noetherian separated scheme over K , and let F
be a quasi-coherent sheaf on it. Fix a cofibrant replacement Q → ϒ∗F . Then there exists a
natural isomorphism DefEnd∗

A· (Q) −→ DefF .
Hence by Remark 6.10we have natural isomorphismsDefTot(L)

∼= DefEnd∗
A· (Q)

∼= DefF .
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Proof For simplicity we assume the replacement Q to belong to Mod≤0(A·), i.e. Qα is
concentrated in non-positive degrees for every α ∈ N . Notice that by Remark 3.11 such
a replacement always exists, and our assumption is not restrictive since for every pair of
cofibrant replacements Q → ϒ∗F ← Q′ the DG-Lie algebras End∗

A·(Q) and End∗
A·(Q′)

are quasi-isomorphic, hence inducing isomorphic deformation functors DefEnd∗
A· (Q)

∼=
DefEnd∗

A· (Q′).
Our first goal is to explicitly define a natural transformation ϕ : DefEnd∗

A· (Q) −→ DefF .

To every object η = {ηα}α∈N ∈ MC
(
Hom∗

A·(Q,Q) ⊗ A
)
there are associated (local)

deformations

H0(Qα ⊗ A, dQα + ηα) → F(Uα) , α ∈ N
where each H0(Qα ⊗ A, dQα +ηα) is A-flat by [36, TheoremA.31]. Here theMaurer–Cartan
equation is equivalent to the condition (dQα +ηα)2 = 0. Moreover, for every α ≤ β the map

H0(Qα ⊗ A, dQα + ηα) ⊗(Aα⊗A) (Aβ ⊗ A) → H0(Qβ ⊗ A, dQβ + ηβ)

is an isomorphism becauseQ is quasi-coherent in Mod(A·) by Remark 3.13. Now, for every
α ≤ β ≤ γ there is a commutative diagram

Qα ⊗Aα Aγ
qαβ⊗IdAγ

qαγ

Qβ ⊗Aβ Aγ qβγ
Qγ

inducing the cocycle conditions on the deformations {H0(Qα⊗A, dQα+ηα) → F(Uα)}α∈N .
Hence they glue together in a global deformation Fη

A → F , with FA flat over Spec(A).
Define the natural transformation ϕ : DefEnd∗

A· (Q) −→ DefF as ϕA : η �→ (Fη
A → F) on

every A ∈ ArtK . In order to show that ϕ is well-defined, take two Maurer–Cartan elements
η, ξ ∈ Hom1

A·(Q,Q) ⊗ mA and suppose that there exists an element a = {aα}α∈N ∈
Hom0

A·(Q,Q) ⊗mA such that ea ∗ η = ξ . The last condition is equivalent to require that the
maps in the square

(Qα ⊗ A, dQα
+ ηα) ⊗(Aα⊗A) (Aβ ⊗ A)

eaα ⊗Id(Aβ⊗A)

(Qα ⊗ A, dQα
+ ξα) ⊗(Aα⊗A) (Aβ ⊗ A)

(Qβ ⊗ A, dQβ
+ ηβ)

eβ
(Qβ ⊗ A, dQβ

+ ξβ)

commute with differentials for every α ≤ β in N . Therefore the associated deformations
Fη

A → F and Fξ
A → F are isomorphic.

We are left with the proof that ϕ is a natural isomorphism. Fix A ∈ ArtK and take an
isomorphism between deformations f : Fη

A and Fξ
A, associated to η = {ηα}α∈N and ξ =

{ξα}α∈N respectively. For every α ≤ β, the restriction of f to eachUα lifts to isomorphisms

(Qα ⊗ A, dQα + ηα) → (Qα ⊗ A, dQα + ξα)

that reduce to the identitymodulo themaximal idealmA. Therefore all these isomorphisms are
of the form eaα for some a = {aα}α∈N ∈ Hom0

A·(Q,Q)⊗mA. As above, the commutativity
with the differentials is equivalent to the relations ea ∗ η = ξ , so that ϕA is injective.
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In order to show that ϕ is surjective, fix A ∈ ArtK and take a deformation FA → F
in DefF . Notice that for every α in N the map Qα → F(Uα) lifts to surjective quasi-
isomorphisms (Qα ⊗ A, d + ηα) → FA(Uα) of DG-modules over Aα ⊗ A, for some ηα ∈
Hom1

A·(Q,Q) ⊗ mA. ��

In particular, by Theorem 6.4we recover thewell-known fact that T 1 DefF = Ext1(F,F)

and obstructions are contained in Ext2(F,F).
If the sheaf F admits a locally free resolution E → F then there exists a natural isomor-

phism of deformation functors DefTot(h)
∼= DefF by Theorems 6.16 and 7.4.
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