
https://doi.org/10.1177/0282423X241240739

Journal of Official Statistics
2024, Vol. 40(2) 262–282

© The Author(s) 2024
Article reuse guidelines:  

sagepub.com/journals-permissions
DOI: 10.1177/0282423X241240739

journals.sagepub.com/home/jof

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons 
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial 

use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE 
and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Disaggregating Death Rates 
of Age-Groups Using Deep 
Learning Algorithms

Andrea Nigri1 , Susanna Levantesi2,  
and Salvatore Scognamiglio3

Abstract
Reliable estimates of age-specific vital rates are crucial in demographic studies, while ages are, in 
most cases, commonly grouped in bins of five years. Indeed, public health and national systems 
require single age-specific data to achieve accurate social planning. This paper introduces a 
deep learning approach for splitting the abridged death rates, providing a more comprehensive 
perspective on the indirect age-specific vital rates estimation from grouped data. Additionally, we 
contribute to the existing literature by introducing a multi-population (countries and genders) 
approach, providing reliable estimates considering the heterogeneity of longevity dynamics 
over age, years, and across populations. We also contribute to the state of the art in indirect 
estimation by introducing, for the first time, a multi-population indirect estimation leveraging 
subnational data. Our model accurately captures mortality dynamics by age over time and among 
different populations. We prove the model’s ability to estimate reliable predictions of age-specific 
mortality rates by also studying how the hyperparameters’ choice affects the model reliability and 
analyzing the age-specific relative differences between the real and the estimated mortality rates.
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1. Introduction

Monitoring changes and inequality among populations is a prime aim in assessing popu-
lation dynamics and social and public policies. Thus reliable predictions of age-specific 
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vital rates are crucial in demographic studies. Data deficiency usually refers to incom-
plete or misreported information, such as age exaggeration and age heaping in both death 
and population data.

Despite single age-specific data being desirable, ages are commonly grouped in bins 
of five years in most cases. It is the case of demographic data, which is followed by a 
broad or open-ended age class for older ages. Several methods have been proposed for 
the disaggregation problem of historical data and data from developing countries that 
lack functional systems of vital registration (Liu et  al. 2011; McNeil et  al. 1977; 
Schmertmann 2012; Smith et  al. 2004). Using countries from the Human Fertility 
Database (HFD), Liu et al. (2011) derived age-specific fertility rates from abridged data 
comparing ten different methods. The authors concluded that the modified Beers method 
(Beers 1945) provided the best fit. Similarly, Schmertmann (2012) using schedules 
observed in the HFD and the US Census International Database (IDB) proposed a cali-
brated spline (CS) as a more accurate and flexible alternative to the Beers interpolation 
method that requires more computation.

Among mortality modeling, the main approaches aimed at ungrouping histograms or 
abridged life tables were based on parametric assumptions for the underlying distribution 
(Hsieh 1991; Kostaki 1991; Kostaki and Panousis 2001), also for fitting a non-paramet-
ric density to binned data are generally used histosplines (Boneva et al. 1971), kernel 
density estimators (Blower and Kelsall 2002) and local likelihood. One of the most 
prominent frameworks has been proposed by Rizzi et al. (2015) who developed a versa-
tile method for ungrouping histograms based on the composite link model with a penalty 
added to ensure the smoothness of the target distribution. Estimates are obtained by 
maximizing a penalized likelihood. Further, Rizzi et al. (2016) identify and compare the 
performance of five non-parametric methods for ungrouping count data, two spline inter-
polation methods, two kernel density estimators, and the penalized composite link model 
introduced by Rizzi et al. (2015). They found that the latter model outperforms the other 
four when data are grouped in wide age classes, or classes are open-ended.

Nevertheless, Rizzi’s model relies on a parametric framework, specifically the Poisson 
distribution, which assumes a certain regularity in demographic distributions. However, 
as observed in real-world scenarios, demographic patterns often deviate from parametric 
assumptions, exhibiting complexities such as asymmetries or bimodal trends. 
Additionally, working with subpopulations with a limited number of deaths, as often 
encountered in demographic studies, can further jeopardize the precision of estimates 
due to probabilistic assumptions.

It is worth pointing out that, Rizzi’s method, akin to other ungrouping approaches, is 
centered around estimating individual populations. Notably, no prior study has proposed 
a multi-population approach encompassing both gender and country variations. 
Attempting such estimations independently for each population might not ensure accu-
rate results. Indeed, estimations often require harmonization, comparability, and coher-
ence among countries and gender. Working on a single-gender population, the models 
above do not guarantee the latter properties, jeopardizing the comparability across time 
and among countries. Thus relying on coarsely grouped data may hamper precise data 
analysis. In contrast to the present literature, our proposed methodology not only 
addresses these limitations but also introduces improvements. Therefore, in this paper, 
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we introduce a multi-population (countries and genders) approach for splitting the 
abridged demographic rates, providing a more comprehensive perspective on the age-
specific vital rates estimation from grouped data. The model leverages deep learning 
algorithms based on deep neural networks (DNN) to uncover age-specific vital rates. It 
is worth pointing out that the ungrouping methods discussed above (for example, Beers 
1945; Rizzi et al. 2015; Schmertmann 2012), besides working on a single population, 
obtain the ungrouped estimates as a latent realization of an underlying process, in most 
cases also using smoothing interpolations. Therefore, it does not require supervised 
learning, and thus, the Train versus Test splitting, as in a deep learning approach, is 
unnecessary. In light of that, due to the different methodological frameworks, the com-
parison with existing literature would be inadequate since any comparison against the 
proposed model would be unreliable.

Deep learning has shown promising results in many applications enhancing a general 
interest in this methodology to solve complex problems, make predictions, extract infor-
mation from data, and provide reliable estimates.

The choice of employing deep learning, over traditional machine learning methods 
such as regression trees, random forest, or XGBoost algorithms is supported by various 
factors stemming from the abilities of deep learning architectures to capture intricate 
relationships and patterns in complex datasets, to handle non-linear relationships within 
the data. Furthermore, we can mention end-to-end learning, eliminating the need for 
manual feature engineering and preprocessing steps, capacity for representation learning 
(as the model can automatically discern relevant features), and finally, handling high-
dimensional data. For a comprehensive treatment of these concepts, the reader can refer 
to Bengio et al. (2000).

While the advantages of deep learning are significant, it’s essential to note that the 
choice between deep learning and traditional methods depends on factors such as the 
nature of the data, the complexity of the problem, and the availability of computational 
resources. Where intricate patterns in large and complex datasets need to be uncovered, 
deep learning often proves superior. Indeed, throughout the literature on non-traditional 
methods in mortality modeling, the literature on machine learning (ML) and deep learn-
ing (DL) is well-distinct.

Contributions of deep learning in longevity have been proposed in order to forecast 
demographic time series using recurrent neural networks (Levantesi et al. 2022; Nigri 
et al. 2021), and also in the field of actuarial science to predict death rates (see, e.g., Nigri 
et al. 2019; Perla et al. 2021; Richman and Wüthrich 2021; Scognamiglio 2022). The 
literature devoted to the longevity model for indirect estimation is based on the deep 
learning model. Indeed, more recently, Nigri et  al. (2022d) formalized a deep neural 
networks approach to indirectly derive age-specific mortality from observed or predicted 
life expectancy by leveraging deep learning algorithms akin to demography’s indirect 
estimation techniques.

We contribute to the discussion on the ability of deep learning to provide reliable 
predictions by using it to ungroup mortality data for multiple populations. More specifi-
cally, we build up a DNN model to estimate the multi-population age-specific death rates 
from grouped death rates in five-year age classes, except for the oldest age class (100–
110), which is wider. We assess the model prediction performance on the out-of-sample 
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data through traditional error measures, Root Mean Square Error and Mean Absolute 
Error. These measures allow for detecting the aggregate prediction ability of the model.

We take a significant stride in advancing the indirect estimation literature by extend-
ing the proposed method to the sub-national level. In a context where all indirect meth-
ods have traditionally been designed for national-level applications, a multi-population 
(at the regional level) indirect model signifies noteworthy progress. This is particularly 
significant because subnational data may be subject to stochastic variation in vital event 
numbers owing to the smaller population size, thus putting the indirect model to the hard 
test. The proposed model shows remarkable results in terms of accuracy and ability to 
capture longevity dynamics even at the subnational level.

The proposed model represents an advance in mortality modeling, offering the advan-
tage of an indirect and complementary way to approximate age-specific death rates. It 
can be valuable in contexts where population-level mortality studies are hindered by 
financial or time constraints for national registries that do not support the open data 
system.

The remainder of the paper is structured as follows. Section 2 introduces the funda-
mentals of neural networks. Section 3 describes the specific framework of the neural 
network model for ungrouping mortality data. Section 4 presents the implementation of 
the neural network model and its structural reliability. Section 5 provides the results of 
the numerical experiment. Finally, Section 6 concludes the paper.

2. Neural Networks

Neural networks (NN) are high-dimensional and non-linear regression models that have 
achieved notable results in several fields such as computer vision and natural language 
processing. They consist of interconnected computational units, called neurons in the 
NN jargon, arranged on different layers that learn from data using training algorithms. 
The weights connect the units on the layers, and the connection configuration defines 
different kinds of NN. This section formally introduces the Fully-Connected Network 
(FCN) and the Embedding Network (EN) layers which have been used in this research.

Let x R∈
q
0  be the input vector; a FCN layer with q1∈N  units is a vectorial function 

that maps x  to a q1 -dimensional real-valued space:
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where φ : R R→  is the activation function, wj,0
(1)  indicates the bias/intercept (subscript 0 

does not refer to a node in the previous layer but indicates that wj ,0
(1)  does not depend on 

x), and wj i,
(1) ∈R  represent the weights. In matrix form, the output z (x)(1)  of the FCN 

layer can be written as:

z w W(1)
0
(1) (1)(x) = + x .φ ( )

Shallow neural networks present a single hidden layer and directly use the features for 
computing the quantity of interest y Y∈ . In the case of  ⊆ R , the output of shallow 
NN reads:

y w o o= , ( ) ,0
( ) ( ) (1)φ + 〈 〉( )ω z x

where w o o q

0
( ) ( ) 1∈ ∈R, w R  and 〈⋅ ⋅〉,  denotes the scalar product in R

q
1 . The upper index 

( )o  of w o
0
( )  and w( )o  emphasizes that these weights are related to the output layer. If the 

network is deep, the vector z x(1) ( )  is used as input in the next layer for computing new 
features and so for the following layers. Let h∈N  be the number of hidden layers (depth 
of network), and qk ∈N , for 1 ≤ k ≤ h, be a sequence of integers that indicates the 
dimension of each FCN layer (widths of layers). A deep FCN can be described as 
follows:
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is the composition operator. In the case of deep NN, the output layer uses the features 
extracted by the last hidden layer z x( :1) ( )h  instead of those z x(1) ( ) . The depth of the 
network h is a hyperparameter that should be suitably chosen. Indeed, a too deep NN 
would lead to overfitting, producing a model unable to generalize to new data points. One 
remedy is the application of regularization methods such as dropout. It is a stochastic 
technique that ignores some randomly chosen units during the network fitting. This is 
generally achieved by multiplying the output of the different layers by independent reali-
zations of a Bernoulli random variable with parameter p∈[0,1] . Mathematically, the 
introduction of the dropout in the k-th FCN layer induces the following structure:
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where * denotes the element-wise product and r( )k  is a vector of independent Bernoulli 
random variables, each of which has a probability p of being 1. This mechanism leads to 
the value of some elements being reset to zero. FCN layers are useful tools for processing 
numerical data, however, sometimes, information is available as categorical variables. In 
the statistical literature, the standard procedures for dealing with categorical variables 
are the one-hot and dummy encoding. Nevertheless, these coding schemes produce high-
dimensional sparse vectors, which often leads to computational issues when there are 
many categorical features, or one of them presents many levels. Embedding is an innova-
tive technique to analyze categorical variables. They appear for the first time in the 
Natural Language Processing context (see Bengio et  al. 2000), but recently, they are 
becoming very popular in the mortality literature (Perla et  al. 2021; Richman and 
Wüthrich 2021; Scognamiglio 2022).

An Embedding Network (EN) Layer maps the levels of a categorical variable into a 
low-dimensional real-valued space. The dimensionality of the new space q ∈N  repre-
sents a hyperparameter chosen by the modelers. The levels of the categorical variable are 
mapped into a real-valued R

q -dimensional space, and the coordinates of the level are 
parameters to learn during the training process (Guo and Berkhahn 2016). The distance 
of the levels in the new learned space reflects the similarity of levels concerning the 
target variable: similar levels will have a small euclidean distance, whereas very differ-

ent categories will have a large one. Formally, let 


= , , ,1 2l l ln{ }  be the set of catego-

ries of the qualitative variable and n  be its cardinality. An embedding layer is a 
mapping

zL : . → R
q

The number of embedding parameters to learn during the network calibration is n q  .
The elements of the matrices W k( )  and of the bias vectors w0

( ) , = 1, ,k k h  of the 
FCN, and the coordinates of the levels in the new embedding space zl l l( ),∀ ∈  must 
be appropriately calibrated. Denoting by θ  the vector containing all the network param-
eters, one could argue the training process consists of an unconstrained optimization 
problem where chosen a suitable loss function L( )θ ; its minimum is sought. The NN 
training is generally carried out using the Gradient Descent algorithm or one of its exten-
sions, where the updating of the weights is based on the gradient of the loss function 
L( )θ . The weights are iteratively adjusted to decrease the error of the network outputs 
with respect to some reference values. Let θ ( )t  be the vector of parameters at time t , the 
updating rule can be written as follows:

θ θ η θ( 1) ( )= ( )t t L+ + ∇

where η ∈[0,1]  is the learning rate, θ (0)  is the initial vector. We remark that the com-
plexity of the training grows with the number of layers and units per layer in the network 
architecture.
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3. The NN Model for Ungrouping Mortality Data

Let X = , , ,1 2x x x ω{ }  be the set of individual ages, T = , , ,1 2t t tn{ }  the set of the cal-
endar years, and I  the set of populations considered. In particular, we consider a set of 
populations which differ among them for the region and the gender such that 
I G R Male, Female R= =× { }×  (where R  denotes the set of regions). The death rate at 
age x , at time t  for the population i r g= ( , )  is defined as:

m D Ex t r g x t r g x t r g, , , , , , , , ,= / ,

where Dx t r g, , ,  is the death count, and Ex t r g, , ,  is the number of exposure-to-risk. 
Sometimes the death rates are available for age-groups rather than for single ages. Let 
 = , , ,1 2c c cL{ }  be the set of contiguous age-groups with Lω . The death rate at 

the class c  at time t  in the population i r g= ( , )  is defined as:
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ν : X C→  is a surjective function which assigns to each age x∈  an age-group c , 

ν ( ) , , ,1 2x c c cL∈{ }  and ν ν
( )

1:= , = 1, ,
c
j

jc j L− { }( )   denote the set of ages belonging 
of the j -th age-group. For a given population i r g= ( , )  and a given calendar year t , the 
problem consists of ungrouping the age-specific death rates { }, , ,mx t r g x∈  from the death 
rates of the age-groups { },mr g ∈  in log scale.

We argue that the single-age death rate { }, , ,mx t r g  in log scale can be modeled as a 
function that depends on some inputs: the age x , region r , the gender g , the time t , 
and the death rate in log scale of the age-group ν ( )x  to which x  belongs. In other words, 
we assume the existence of the function:

f : , , , , , .( ), , , , , ,X R G T R R× →× × × → ( )( ) ( )x r g t m mx t r g x t r glog logν

f  is unknown and potentially complex. In this framework, we employ deep NNs to find 

and approximation f  since they are known as universal function approximators (Hornik 
et al. 1989). The proposed NN model consists of some EN and FCN layers. First, the EN 
layers are used for processing the categorical variables and extracting from them the 
optimal numerical features with respect to the quantity of interest. In particular, we apply 
EN layers to the variable related to age, region, and gender. Second, the features extracted 
from the EN layers are concatenated with the numerical inputs (calendar year and related 
age-group death rate) and introduced through the FCNs to determine the single-age death 
rate. Let q q qX R G, , ∈N  be the hyper-parameter values defining the size of three embed-
ding layers. They map r∈R , g∈G , and x∈X  into real-valued vectors:
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zR ( )r  is the vector of the regional-specific features, zG ( )g  is gender-specific, while 
zX ( )x  is the vector of the age-specific features. We also define the complete vector of 
features concatenating the embedding weights and the numerical inputs:
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z x t r g, , ,( )  is further processed with a three FCN layers of size q q1 2
3, ,1( )∈N . Since 

we are interested in modeling the single-age death rates, we design an architecture where 
the last layer of the network (output layer) has a size equal to 1 q3 = 1( ) . To avoid over-
fitting, we introduce dropout among the FCN layers. In notation, the mechanism of the 
network can be formalized as:
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where p p1 2, [0,1]∈ , and w w w0
(1)

0
(2)

0
(3) (1) (2) (3), , , , ,w W W  are the weights.

The weight matrices and bias vectors of the FCN layers and the parameters of the 
embedding layers need to be appropriately calibrated. These parameters are iteratively 
adjusted via the BP algorithm to minimize a specific loss function. Following the prac-
tice adopted in the mortality literature (Hainaut 2018; Perla et al. 2021; Richman and 
Wüthrich 2021), we fit our model using the Mean Squared Error (MSE) (Hainaut 2018; 
Perla et al. 2021; Richman and Wüthrich 2021). In such a case, the training of the net-
work requires the minimization of the loss:
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L m m
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where θ,  denotes the NN parameters. The choice of the most appropriate loss function 
is also related to the modeling purpose. Indeed, if the object is to directly model death 
probabilities, an appropriate loss function could be the negative log-likelihood under the 
assumption of a binomial distribution of deaths. 

4. Implementation

Let log m x t r g
t t

t
s

ν ( ), , ,
=
0

( ){ } , for t ts0 < , be the country-specific observed grouped death 

rates in log scale. Then, each series is split into a train-validation set and a test set, where 
the first is used for fitting the model’s parameters, while the second is used to test the 
model’s prediction and calculate the error.

The best DNN setting during the training phase is used to obtain predictions in the test 
phase.

Hence, let tτ , with t t ts0 < <τ , be the calendar year corresponding to the last realiza-
tion in the train-validation set. The values of log m x t r gν ( ), , ,( )  over the period ( , )0t tτ , 
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Thereby, denoting f nn
  as a composition of functions defined based on the NN architec-

ture, the model can be described by:
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where log mx t r g
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t
s



, , ,
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 are the death rates in log scale in single year age-group, in the 

test set obtained by f nn
 , that involves the NN weights θ  estimated during the network 

training.

4.1. Parameters and Structural Reliability Analysis of DNN

Deep learning modeling often outperforms statistical methods, especially for prediction 
tasks, approximating even the most complex functional structure. To achieve this result, 
it is necessary to identify the optimal NN setting (i.e., the number of hidden layers, 
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neurons, and parameters); generally, it is obtained by performing a fine-tuning phase. 
Nevertheless, NN is a model subject to different uncertainty sources that might affect the 
learning phase (Richman 2021), and the effect of hyperparameters’ choice on model reli-
ability is still an open question, often underrated.

The fine-tuning aims to choose a reliable DNN architecture, considering, for example, 
the number of hidden layers, and activation functions. The most suitable structure 
depends on the data type and is generally selected according to the validation error mini-
mization. The outcome prediction sensitivity for different training setups is a common 
issue in deep learning. Despite the variability in the input data being considered in all 
inferential methods, when it comes to deep learning, one should also view the source of 
variability that originates from the optimization procedure.

We seek to justify our structural choice by examining the reliability of the Deep 
Neural Network (DNN) in response to changes in training conditions. Our focus is on 
understanding how predictions may vary each time the network is trained using different 
configurations and network architectures.

In the following sub-sections, we analyze a large space of combinations, moving to a 
proper subspace, using the changes highlighted in the table. We test and explore different 
options as we motivate the final setting choice, whose outcomes will be discussed in the 
results section. To summarize the performance of the methods and to evaluate their accu-
racy, we report the MAE and RMSE on the test sets given by:

MAE

RMSE

:
| | | |

,

:

, , , , , ,| log log |

log

m mx t r g x t r g
tx

( ) − ( )
⋅

∈∈ ∑∑ 

TX

X T

mm mx t r g x t r g
tx , , , , , ,

2

| | | |

.( ) − ( )





⋅
∈∈ ∑∑ log 

TX

X T

We carry out these experiments, comparing all possible combinations through the 
MAE and RMSE of the predictions averaged over the study countries. The main network 
architecture applies the dropout set to 10%. Here, we test whether the dropout tool within 
the intermediate network might provide better results. Tables 1 and 2 show that the adop-
tion of dropout gains better performances in the architecture composed of one layer and 
Relu function, but when we use two and three layers, the dropout technique seems to 
drop the number of neurons drastically, increasing the error. The tables show that the best 
DNN framework is one with two layers using the Sigmoid activation function, which 
outperforms the other tested with better learning performance.

5. Numerical Experiments

We consider historical mortality data collected by the Human Mortality Database (HMD 
2018) for all available countries and both genders. Aiming to assess the multi-population 
model robustness and consistency toward the historical data, we carry out an out-of-
sample test. The splitting choice is influenced not merely by a rigid 70 to 30% split but 
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Table 1.  Reliability Analysis of the DNN on Male Populations.

Layer Error Relu Sigmoid Softmax

Drop-out No Drop-out Drop-out No Drop-out Drop-out No Drop-out

1 MAE 0.09 0.10 0.11 0.10 0.16 0.11
RMSE 0.15 0.16 0.17 0.16 0.23 0.18

2 MAE 0.10 0.09 0.09 0.08 0.15 0.11
RMSE 0.16 0.15 0.15 0.14 0.21 0.18

3 MAE 0.14 0.10 0.10 0.09 2.32 2.33
RMSE 0.19 0.16 0.16 0.16 2.69 2.69

The values in bold refer to the best performances.

Table 2.  Reliability Analysis of the DNN on Female Populations.

Layer Error Relu Sigmoid Softmax

Drop-out No Drop-out Drop-out No Drop-out Drop-out No Drop-out

1 MAE 0.11 0.12 0.12 0.12 0.14 0.13
RMSE 0.18 0.19 0.19 0.19 0.21 0.21

2 MAE 0.13 0.11 0.10 0.10 0.16 0.13
RMSE 0.20 0.18 0.17 0.17 0.23 0.20

3 MAE 0.15 0.11 0.11 0.11 2.54 2.55
RMSE 0.21 0.18 0.18 0.18 2.90 2.91

The values in bold refer to the best performances.

rather by the temporal progression of mortality trends, consequently, opting for a train-
ing-validation phase spanning thirty years (1970–2000), allocating the remaining years 
(2001–2015) for the model test. Specifically, the time frame 1970 to 2000 is used as a 
train-validation set, and the years 2001 to 2015 are used for model test. The train-valida-
tion set is, in turn, split into training and validation sets according to the 80 to 20% split-
ting rule, that is, 1970 to 1994 and 1995 to 2000.

We validate the DNN model performance using illustrative applications. These exam-
ples are dedicated to investigating whether the approaches can capture (a) regular and 
irregular trends over time and (b) dynamics of age-specific mortality improvements. The 
analysis includes numerical and graphical representations of the goodness of fit.

To assess the models’ accuracy, we calculate the Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) on the out-of-sample period, which in the present anal-
ysis corresponds to a 2001 to 2015 time window.

Figure 1 depicts the MAE and RMSE for countries over the time window we studied 
for females and males, respectively, considering the best DNN architecture. For the sake 
of completeness, we have included several plots (Figures 5, 6, 7) in the Supplemental 
Material (SM), depicting the RMSE related to the different populations for the tested 
architectures.
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Overall, our DNN model provides remarkable accuracy. The USA is the country 
that presents the lowest MAE and RMSE values for both genders. Considering 
males, Germany’s total population (DEUTNP), France’s (both total [FRATNP] and 
civilian population [FRACNP]), and the UK’s total population (GBR_NP) follow. 
For females, Russia follows. Finally, Iceland shows the highest MAE and RMSE 
for both genders. On average, both the error measures are higher for female popu-
lations (MAE = 0.10 and RMSE = 0.17) compared to male populations (MAE = 0.08 
and RMSE = 0.14).

Figures 2 and 3, show age-specific death rates (in log scale) for females and males in 
the HMD in the years 2001 and 2014. The observed mortality profile is shown with dots 
and estimated ungrouped values from the models using the training period from 1970 to 
2000, corresponding to the red line. Some countries, such as “UKR,” do not display data 
for the year 2014 due to its unavailability in the temporal series provided by HMD.

Overall, the proposed model captures the general pattern of mortality, with a decreas-
ing trend from birth to around age fifteen and increasing linearly from around age thirty. 
Indeed, the DNN model adequately captures the mortality patterns, even if a few coun-
tries fail to accurately capture the sharp decrease from infancy.

Estimating death rates is not an easy task, even more using indirect methods. Indeed 
capturing longevity dynamics can be challenging due to irregularity and peculiar behav-
iors that populations may play.

In the last decades, developed countries have seen an important mortality decline at 
all ages, involving a remarkable improvement in life expectancy, without evidence of 
deceleration. Therefore, it is important to investigate the age-specific differences between 
the real and the estimated mortality data according to specific phases of longevity evolu-
tion namely regularities, improvements, and stagnation, that can be represented by Japan, 
Italy, and the USA respectively. Specifically, Italian life expectancy exhibits a long-run 
transition with considerably upward shifts, converging to longevity records (Nigri et al. 
2021a, 2022b, 2022c). This result has been achieved by a mix of a relatively healthy 
lifestyle and an efficient health system. In recent years, among longevous populations, 
Japan exhibits the most relevant regularities in leading the maximum human life expec-
tancy at birth after a long period of low longevity. These peculiar dynamics make esti-
mating Japan’s mortality not straightforward. Even estimating the US mortality is a 
challenging task. After the first decade of the new millennium, the rise in US life expec-
tancy stalled. Scholars bring evidence of a stagnating decline in cardiovascular disease 
mortality (Mehta et al. 2020).

In doing so, as a further tool for model assessment, we provide plots (Figures 1 and 2 

in the SM), that show estimated versus observed values log logm mx t r g x t r g, , , , , ,, ( )  for all 

countries, for male and female, to visualize the similarity between the actual and recon-
structed death rates. Looking at our results, we underline that our findings can be very 
insightful in the demographic scenarios, being capable of adequately capturing the afore-
mentioned dynamics over ages and years, in the context of longevity improvements (the 
case of Italy), longevity regularities (the case of Japan), and longevity stagnation (the 
case of USA).
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5.1. Subnational Modeling

The development of indirect methods has been implemented to work at the national 
level. However, there is a considerable need and demand for subnational estimation, for 
example, the official statistics at the subnational level are essential for planning by local 
governments and the private sector and for health and social science research on subna-
tional variation and inequality.

In this section, we extend the proposed method to the sub-national level. This task 
represents a crucial step to test and validate our model further since the subnational con-
text is different from the national one. Indeed, some subnational areas can have popula-
tions so small that stochastic variation in numbers of vital events, usually ignored in 
population modeling, can have a significant impact on that area’s population estimation, 
thus potentially affecting data quality.

The data for evaluating our proposed method comes from ISTAT, the Italian National 
Institute of Statistics, which serves as the authoritative source for official statistical infor-
mation in Italy, encompassing diverse subjects, including mortality. The data, accessible 
through http://dati.istat.it/, comprises mortality statistics categorized by year, age, and 
region. Leveraging this dataset, we obtain a dataset spanning eighteen regions from 1974 
to 2016, thereby facilitating comprehensive analyses. The model training procedure 
adhered to the methodology elucidated in Section 4, systematically exploring various 
network configurations and discerning optimal performance. The dataset’s temporal and 
age-related granularity enabled the creation of a training-validation time frame (1974–
2003), with the subsequent years (2004–2016) for model testing. The train-validation set 
is, in turn, split into training and validation sets according to the 80 to 20% splitting rule 
Tables 3 and 4 reveal that the best DNN configuration refers to the one with three layers, 
devoid of dropout, and employs a Rectified Linear Unit (ReLu) activation function. It is 
conceivable that, when operating at the subnational level, an additional layer may 
enhance precision in estimation, particularly when dealing with datasets characterized by 
heightened stochasticity.

Figures 4 and 5 illustrate age-specific death rates (in logarithmic scale) for females 
and males across Italian regions in the years 2004 and 2016. The depicted mortality pro-
file utilizes points for observed values and lines for estimated ungrouped values derived 
from models trained and validated during the 1974 to 2003 period.

It is imperative to emphasize that, although the model employs data from eighteen 
regions for training, the results exhibit sixteen regions due to the unavailability of data 
for the omitted regions during the years considered in the test set.

The deep neural network model adeptly captures mortality patterns, even at a subre-
gional level, where data exhibit heightened stochasticity and diminished quality. Through 
this analysis, we substantiate the model’s capacity not only for delivering high accuracy 
but also for demonstrating a remarkable degree of flexibility, accommodating both 
national and subnational data, as well as data of varying quality levels.

We can speculate that by working on subpopulations, the network requires an addi-
tional layer to achieve greater accuracy in estimation, particularly when dealing with 
data characterized by higher stochasticity. This aspect was not necessary for the model 
estimated on the HMD, where the additional layer, and therefore a more complicated 

http://dati.istat.it/, comprises mortality statistics categorized by year, age, and region. Leveraging this dataset, we obtain a dataset spanning eighteen regions from 1974 to 2016, thereby facilitating comprehensive analyses. The model training procedure adhered to the methodology elucidated in paragraph 4, systematically exploring various network configurations and discerning optimal performance. The dataset
http://dati.istat.it/, comprises mortality statistics categorized by year, age, and region. Leveraging this dataset, we obtain a dataset spanning eighteen regions from 1974 to 2016, thereby facilitating comprehensive analyses. The model training procedure adhered to the methodology elucidated in paragraph 4, systematically exploring various network configurations and discerning optimal performance. The dataset
http://dati.istat.it/, comprises mortality statistics categorized by year, age, and region. Leveraging this dataset, we obtain a dataset spanning eighteen regions from 1974 to 2016, thereby facilitating comprehensive analyses. The model training procedure adhered to the methodology elucidated in paragraph 4, systematically exploring various network configurations and discerning optimal performance. The dataset
http://dati.istat.it/, comprises mortality statistics categorized by year, age, and region. Leveraging this dataset, we obtain a dataset spanning eighteen regions from 1974 to 2016, thereby facilitating comprehensive analyses. The model training procedure adhered to the methodology elucidated in paragraph 4, systematically exploring various network configurations and discerning optimal performance. The dataset
http://dati.istat.it/, comprises mortality statistics categorized by year, age, and region. Leveraging this dataset, we obtain a dataset spanning eighteen regions from 1974 to 2016, thereby facilitating comprehensive analyses. The model training procedure adhered to the methodology elucidated in paragraph 4, systematically exploring various network configurations and discerning optimal performance. The dataset
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Table 3.  Reliability Analysis of the DNN on Male Subnational Populations.

Layer Error Relu Sigmoid Softmax

Drop-out No Drop-out Drop-out No Drop-out Drop-out No Drop-out

1 MAE 0.08 0.11 0.21 0.08 0.20 0.219
RMSE 0.11 0.16 0.33 0.14 0.29 0.304

2 MAE 0.09 0.09 0.14 0.08 0.16 0.548
RMSE 0.13 0.14 0.19 0.13 0.21 0.79

3 MAE 0.13 0.07 0.10 0.08 2.18 2.177
RMSE 0.16 0.11 0.14 0.13 2.51 2.51

The values in bold refer to the best performances.

Table 4.  Reliability Analysis of the DNN on Female Subnational Populations.

Layer Error Relu Sigmoid Softmax

Drop-out No Drop-out Drop-out No Drop-out Drop-out No Drop-out

1 MAE 0.09 0.13 0.21 0.10 0.18 0.205
RMSE 0.13 0.19 0.31 0.16 0.26 0.30

2 MAE 0.11 0.10 0.13 0.10 0.145 0.771
RMSE 0.15 0.15 0.19 0.16 0.213 0.99

3 MAE 0.13 0.08 0.11 0.10 2.37 2.366
RMSE 0.17 0.12 0.16 0.16 2.72 2.72

The values in bold refer to the best performances.

model, did not bring any benefit to the estimation. Also in this case, we provide in the 
Supplemental Material scatter plots log logm mx t r g x t r g, , , , , ,, ( )  for all regions (Figures 3, 
and 4 in SM) to visualize the similarity between the actual and reconstructed death rates.

6. Conclusions

This paper contributes to the current literature on the demographic methods for ungroup-
ing vital rates leveraging deep learning, which has provided reliable estimates in many 
fields of application. We propose a DNN model in a multi-population framework to 
ungroup death rates from rates gathered in five-year age-groups. This method represents 
an advance in mortality modeling as it may be used to estimate vital rates for single ages 
in regions or populations where present information is lacking. We investigate the ability 
of our model to provide reliable predictions of age-specific death rates by also studying 
how the hyperparameters’ choice affects the model’s reliability. We measure the accu-
racy of our method by analyzing the age-specific relative differences between the real 
and the estimated death rates. The results of the numerical experiments show the high 
accuracy of the proposed model, which captures the dynamics of mortality by age over 
time and between different populations. Indeed, mortality modeling is challenging due to 
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its dynamic; thus one of the main tasks is to grasp the heterogeneity of mortality in dif-
ferent regions.

We also contribute to the state of the art in indirect estimation by introducing a multi-
population indirect estimation leveraging subnational data. The proposed model yields 
impressive results, even when using a lower-quality data source.

Through our model, we can offer a comprehensive picture of specific mortality 
levels, providing reliable results that might be exploited by public health and national 
systems, aiming to obtain granular information on mortality profiles for more accurate 
social planning.
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