
Neural Networks 173 (2024) 106174

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Hebbian dreaming for small datasets
Elena Agliari a, Francesco Alemanno d, Miriam Aquaro a, Adriano Barra d,∗, Fabrizio Durante c,
Ido Kanter b

a Department of Mathematics of Sapienza Università di Roma, Rome, Italy
b Department of Physics of Bar-Ilan University, Ramat Gan, Israel
c Department of Economic Sciences of Università del Salento, Lecce, Italy
d Department of Mathematics and Physics of Università del Salento, Lecce, Italy

A R T I C L E I N F O

Keywords:
Hebbian learning
Sleeping phenomena
Statistical mechanics
Hopfield model

A B S T R A C T

The dreaming Hopfield model constitutes a generalization of the Hebbian paradigm for neural networks, that
is able to perform on-line learning when ‘‘awake’’ and also to account for off-line ‘‘sleeping’’ mechanisms. The
latter have been shown to enhance storing in such a way that, in the long sleep-time limit, this model can
reach the maximal storage capacity achievable by networks equipped with symmetric pairwise interactions.
In this paper, we inspect the minimal amount of information that must be supplied to such a network to
guarantee a successful generalization, and we test it both on random synthetic and on standard structured
datasets (𝑖.𝑒., MNIST, Fashion-MNIST and Olivetti). By comparing these minimal thresholds of information
with those required by the standard (𝑖.𝑒., always ‘‘awake’’) Hopfield model, we prove that the present network
can save up to ∼ 90% of the dataset size, yet preserving the same performance of the standard counterpart. This
suggests that sleep may play a pivotal role in explaining the gap between the large volumes of data required
to train artificial neural networks and the relatively small volumes needed by their biological counterparts.
Further, we prove that the model Cost function (typically used in statistical mechanics) admits a representation
in terms of a standard Loss function (typically used in machine learning) and this allows us to analyze its
emergent computational skills both theoretically and computationally: a quantitative picture of its capabilities
as a function of its control parameters is achieved and consistency between the two approaches is highlighted.

The resulting network is an associative memory for pattern recognition tasks that learns from examples
on-line, generalizes correctly (in suitable regions of its control parameters) and optimizes its storage capacity by
off-line sleeping: such a reduction of the training cost can be inspiring toward sustainable AI and in situations
where data are relatively sparse.
1. Introduction

The investigations led in this paper are guided by a central question
in Machine Learning: why do artificial neural networks require many
more training examples than biological neural networks do in order to
form their own representations and thus correctly generalize? Given
the significant footprint of extensive AI training (Hao, 2019; Strubell,
Ganesh, & McCallum, 2019), this theoretical question has also practical
implications: understanding how to design networks and algorithms
that consume less and less, still preserving performances, is a nowadays
priority. Further, beyond this ethic challenge, there can be a number of
real scenarios where large datasets are not available at all, hence the
need for neural networks that can be trained by minimal amounts of
information.

∗ Corresponding author.
E-mail addresses: agliari@mat.uniroma1.it (E. Agliari), adriano.barra@unisalento.it (A. Barra).

Here, we approach this issue by tools pertaining to the statistical-
mechanics of neural networks (Agliari, Barra, Sollich, & Zdeborova, 2020;
Amit, 1992; Carleo et al., 2019; Coolen, Kühn, & Sollich, 2005; Engel
& Van den Broeck, 2001; Kirkpatrick, Gelatt, & Vecchia, 1983; Marino,
Parisi, & Ricci-Tersenghi, 2016; Seung, Sompolinsky, & Tishby, 1992)
and looking for inspiration in the mechanisms that make biological
neural networks particularly effective (Andrillon, Pressnitzer, Leger, &
Kouider, 2018; Crick & Mitchinson, 1983; Diekelmann & Born, 2010;
Maquet, 2001; McGaugh, 2000; Paton, Belova, Morrison, & Salzman,
2006). This way, we are able to show that, by implementing ‘‘sleeping’’
mechanisms (Agliari, Alemanno, Barra, & Fachechi, 2019; Fachechi,
Agliari, & Barra, 2019; Fachechi, Barra, Agliari, & Alemanno, 2022) (a
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Fig. 1. In this scheme we outline the standard Hopfield model (panel 𝑎), the two extensions corresponding to, respectively, the so-called dreaming Hopfield model (panel 𝑏) and
the supervised Hopfield model (panel 𝑐), as well as the LaD model under investigation (panel 𝑑) that stems from merging the last two. In each case, we report the expression for
the interaction strength 𝐽𝑖𝑗 between the generic neurons 𝑖 and 𝑗, which basically defines the model, along with the main results in terms of phase diagram. Specifically, for the
standard Hopfield model, the phase diagram is drawn in the space (𝛼, 𝑇 ) of the tuneable parameters, being 𝛼 the network load and 𝑇 the degree of noise: below (above) the
transition line the network is (not) able to retrieve; for its extensions an additional control parameter is introduced: respectively, the sleeping time 𝑡 and the dataset entropy 𝜌,
thus, retaining the plane (𝛼, 𝑇 ), several transition lines are drawn corresponding to different choices of the additional parameter. Notice that, by increasing 𝑡, the retrieval phase
is broadened and, by increasing 𝜌, the retrieval phase shrinks. Finally, for the model under investigation, the control parameters are four and, accordingly, the phase diagram
accounts for the ability of the system to retrieve as (𝛼, 𝑇 , 𝑡, 𝜌) are tuned.
biological essential function) also in artificial neural networks, the min-
imal size of the training set that guarantees a secure learning diminishes
up to ∼ 90%, with consequent huge computational savings. This result
is obtained by merging two extensions of the Hopfield paradigm (see
𝑒.𝑔., Amit, Gutfreund, and Sompolinsky (1985), Coolen et al. (2005)
and several variations on theme (Kermiche, 2020; Kobayashi, 2013;
Pu, Yi, & Zhou, 2017; Tanaka et al., 2020)) that have been recently
developed (see Fig. 1):

In the first extension, named dreaming Hopfield model, the standard
Hebbian coupling among neurons is revised to mimic consolidation
(of pure memories) and remotion (of spurious mixtures) mechanisms
occurring during sleep (Agliari, Acquaro, Alemanno, & Fachechi, 2023;
Agliari et al., 2019; Fachechi et al., 2019, 2022). More specifically,
we introduce a scalar parameter 𝑡, interpreted as ‘‘sleep time’’, which
tunes the effective correlation between the patterns to be retrieved:
the resulting network is able to store patterns on-line and optimize
their memory allocation during off-line rearrangement of synapses
(𝑖.𝑒. weights), in such a way that the number of storable patterns shifts
from 0.14 pattern per neurons (standard Hopfield) to 1 pattern per
neuron (the theoretical upper bound for symmetric networks (Amit,
1992)).

The second extension, named supervised Hopfield model, revises the
Hebbian scenario in order to work with noisy versions of patterns
(referred to as examples) instead of the original patterns (referred to
as archetypes) (Agliari, Alemanno, Barra, & De Marzo, 2002; Alemanno
et al., 2023; Fontanari, 1990): in this setting the focus is on the
network ability to generalize the experienced information, namely on
the ability to infer the archetypes out of the supplied examples rather
than on the ability to store. Thus, a machine-learning framework is
recovered: while the original Hopfield model stores definite patterns of
information, in machine learning we typically have datasets for training
the network and making it able to infer the patterns of information
2

encoded in the datasets.
Here, by merging these extensions we obtain an outperforming
model, referred to as ‘‘Learning and Dreaming’’ (LaD) network, that is
able to form its own representation of the sampled reality, perfectly
reconstructing the archetypes if the supplied information is enough –
where enough is made explicit in terms of the quality and the size of the
supplied dataset – and that can ‘‘take some rest’’ to better re-organize
the storage of what has been learnt during its awake activities.

As a sideline note, we stress that the statistical–mechanical analysis
accomplished here allows us to obtain phase diagrams, namely plots
in the space of the control parameters where different operational
modes of the network under study are represented as regions split by
computational phase transitions (see Fig. 1) much as like the different
phases of water are split in ice, liquid and vapor by physical phase
transitions in its phase diagram. Remarkably, this knowledge can drive
the data scientists to design suitable settings a priori.

The paper is structured into a main text, where we report the major
computational and analytical findings and an extensive Supplementary
Material (SM) where we collect all the technical details and long
mathematical proofs.

2. The learning and dreaming neural network

Before presenting the LaD model and the observables useful to as-
sess its performance, it is convenient to introduce the synthetic dataset
that shall be considered in our analytical investigation.

We define 𝐾 binary patterns, each of length 𝑁 and denoted as
𝝃𝜇 ∈ {−1,+1}𝑁 for 𝜇 = 1,… , 𝐾, whose entries are drawn i.i.d. from
a Rademacher distribution, 𝑖.𝑒.,

P(𝜉𝜇𝑖 = 𝑥) = 1
2
(𝛿(𝑥 − 1) + 𝛿(𝑥 + 1)) , (1)

for any 𝑖 = 1,… , 𝑁 and any 𝜇 = 1,… , 𝐾. These patterns play as
archetypes and, for each of them, we generate 𝑀 corrupted examples,
obtained by flipping randomly the archetype pixels, that is, the 𝑖th entry
of the 𝑎th example related to the 𝜇th archetype is denoted as 𝜂𝜇,𝑎 and
𝑖
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is defined as 𝜂𝜇,𝑎𝑖 = 𝜉𝜇𝑖 𝜒
𝜇,𝑎
𝑖 , being 𝜒𝜇,𝑎𝑖 ∈ {−1, 1} a Bernoullian random

ariable parameterized by 𝑟 ∈ (0, 1], 𝑖.𝑒.,

(𝜒𝜇,𝑎𝑖 = 𝑥) =
( 1 + 𝑟

2
𝛿(𝑥 − 1) + 1 − 𝑟

2
𝛿(𝑥 + 1)

)

, (2)

for any 𝑖 ∈ (1,… , 𝑁), 𝜇 ∈ (1,… , 𝐾), and 𝑎 = (1,… ,𝑀). Note that the
average of 𝜒𝜇,𝑎𝑖 is 𝑟 and the latter tunes the quality of the dataset: if
𝑟 = 1, each example coincides with the related archetype, whereas, if
𝑟 → 0, each example gets, on average (over 𝜒), orthogonal to the related
archetype.

The dataset parameters 𝑀 and 𝑟 can be properly combined into
𝜌 ∶= (1 − 𝑟2)∕(𝑀𝑟2) that, with a slight abuse of language, shall be
referred to as dataset entropy. In fact, intuitively, for 𝑀 ≫ 1, we can
approximate the mean of the examples belonging to the 𝜇th class as

1
𝑀

𝑀
∑

𝑎=1
𝜉𝜇𝑖 𝜒

𝜇,𝑎
𝑖 ∼

√

𝛤𝑋 with 𝑋 ∼  (0, 1), (3)

where 𝛤 ∶= 𝑟2 + 1
𝑀 (1 − 𝑟2); the Shannon differential entropy  of the

variable
√

𝛤𝑋 is

(
√

𝛤𝑋) = ln(
√

2𝜋𝛤 ) + 1
2
= 1

2
ln
[

2𝜋𝑟2 (1 + 𝜌)
]

+ 1
2
, (4)

o be compared with the differential entropy of a perfect dataset,
orresponding to setting 𝑀 → +∞ or 𝑟 → 1 in such a way that 𝜌 → 0,
hat reads as

lim
→0

(
√

𝛤𝑋) = 1
2
ln(2𝜋𝑟2) + 1

2
. (5)

hen, by evaluating the difference between these expressions we get

 = 1
2
log (1 + 𝜌) (6)

hich is a measure of network’s ignorance on archetypes given the
vailable datasets. Thus, when 𝑟 → 0, 𝛥 remains finite only if 𝑀
rows at a rate 1

𝑟2
, while if 𝑟 → 0 and 𝑀 grows at a faster rate or

f 𝑟 = 1, then 𝛥 is vanishing.1 An alternative discussion on the role of
, via Hoeffding’s inequality, is provided in Section 1 of the SM.

Let us now turn to the network, that is made of 𝑁 nodes, fully-
onnected; each node represents a neuron whose state is binary and
enoted by 𝜎𝑖 for 𝑖 = 1,… , 𝑁 . Then, we introduce an energy function (or
ost function, or Hamiltonian) that maps any neural configuration 𝝈 =
𝜎1,… , 𝜎𝑁 ) ∈ {−1,+1}𝑁 onto a real number, intuitively representing
ome ‘‘cost’’ associated with that configuration and which is given by

efinition 1. The Cost function of the LaD model is

𝑁,𝑀,𝐾 (𝝈|𝜼, 𝑡) = − 1
2𝑁

𝑁,𝑁
∑

𝑖,𝑗=1
𝐽𝑖𝑗 (𝜼, 𝑡) 𝜎𝑖𝜎𝑗 (7)

here the synaptic matrix 𝑱 is symmetric (𝑖.𝑒., 𝐽𝑖𝑗 = 𝐽𝑗𝑖) with entries

𝑖𝑗 (𝜼, 𝑡) =
1

𝛤𝑀2

𝑀,𝑀
∑

𝑎,𝑏=1

𝐾,𝐾
∑

𝜇,𝜈=1
𝜂𝜇,𝑎𝑖

( 1 + 𝑡
1 + 𝑡

)

𝜇𝜈
𝜂𝜈,𝑏𝑗 , (8)

𝑡 ∈ R+ is the sleeping time, and  is the correlation matrix with entries

𝜇𝜈 (𝜼) ∶=
1
𝑁

1
𝛤

𝑁
∑

𝑖=1

(

1
𝑀

𝑀
∑

𝑎=1
𝜂𝜇,𝑎𝑖

)(

1
𝑀

𝑀
∑

𝑏=1
𝜂𝜈,𝑏𝑖

)

. (9)

The standard Hopfield model (see 𝑒.𝑔., Amit et al. (1985), Coolen
t al. (2005)) is recovered when 𝑟 = 1 (𝑖.𝑒., archetypes and examples

1 The monotonic relation highlighted for 𝛥 and 𝜌, that allows us to refer
o 𝜌 as the dataset entropy, was proved for structureless datasets defined
ccording to Eqs. (1)–(2) and, in the analytical investigations carried on for
his dataset, it turns out to be a key control parameter. In principle, the same
uantities can be evaluated also for structured datasets, although the relation
3

6) would not hold in general.
do coincide and are generically referred to as patterns) and 𝑡 = 0
(𝑖.𝑒., sleeping mechanisms are not at work). The supervised Hopfield
model (Alemanno et al., 2023), where the Hebbian learning is built
over examples instead of archetypes, is recovered for 𝑡 = 0. The
dreaming Hopfield model (Agliari et al., 2019; Fachechi et al., 2019),
where archetypes are available and the correlation matrix was built
over archetypes, corresponds to 𝑟 = 1 and 𝑡 finite. We can also recover
Kohonen’s decorrelation rule (see 𝑒.𝑔., Kanter and Sompolinsky (1987),
Kohonen (1984), Personnaz, Guyon, and Dreyfus (1985)) meant to
diagonalize patterns (and therefore reduce their interference so to
improve the network capacity), by setting 𝑟 = 1 and 𝑡 → ∞2: it is
instructive to inspect these limits as reported in Fig. 1.

Remark 1. The interaction matrix (8) can be looked at as the result of
the following evolution rule
{

𝑑𝑱
𝑑𝑡 = 𝑱−𝑱 2

1+𝑡
𝐽𝑖𝑗 (0) =

1
𝛤𝑀2

∑𝑀,𝑀
𝑎,𝑏=1

∑𝐾
𝜇=1 𝜂

𝜇,𝑎
𝑖 𝜂𝜇,𝑏𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁

(10)

where the synaptic time scale is meant to be much larger than that char-
acterizing neuronal dynamics (consistently with the fact that synaptic
plasticity is a relatively slow process, see 𝑒.𝑔. Amit (1992)). In the
previous equation, the evolution of the coupling matrix results from the
interplay of consolidation and remotion mechanisms (corresponding
to the positive and negative contribution in the evolution equation,
respectively) that are inspired by analogous mechanisms occurring in
mammal’s brain during sleep. For this reason, the resulting model is
referred to as ‘‘dreaming Hopfield model’’ and 𝑡 as the ‘‘sleeping time’’.
The underlying presence of consolidation and remotion effects also
appears neatly by looking at the solution of (10), that is, by looking
directly at (8), where, as the sleeping time increases, the numerator
in the kernel

(

1+𝑡
1+𝑡

)

𝜇𝜈
plays a role in consolidating retrieval states,

while the denominator tends to remove spurious memories: we refer
to the original papers (Agliari et al., 2019; Fachechi et al., 2019) (and
references therein) for an in-depth explanation of this system and its
relation with actual sleeping and dreaming mechanisms in mammals.

The introduction of the Cost function (7) can be justified on different
grounds (see 𝑒.𝑔., Amit (1992), Coolen et al. (2005) and Section 2 in
the SM for a derivation based on the maximum entropy statistical infer-
ence) and it rules the dynamics of the neural configuration as described
in Algorithm 1. Under this dynamics the system eventually reaches a
stationary state characterized by the Boltzmann–Gibbs measure

(𝝈|𝜼, 𝑡) =
exp[−𝛽𝑁,𝑀,𝐾 (𝝈|𝜼, 𝑡)]

𝑁,𝑀,𝐾 (𝛽|𝜼, 𝑡)
, (11)

where 𝑁,𝑀,𝐾 (𝛽|𝜼, 𝑡) is a normalization factor, also called partition
function and defined as

𝑁,𝑀,𝐾 (𝛽|𝜼, 𝑡) =
2𝑁
∑

{𝜎}
𝑒−𝛽𝑁,𝑀,𝐾 (𝝈|𝜼,𝑡) (12)

here 𝛽 ∶= 1∕𝑇 ∈ R+ tunes the degree of stochasticity (or thermal
oise) in the network: for 𝛽 → 0 (infinite noise limit) the Boltzmann–
ibbs measure becomes uniformly distributed over the neural config-
rations, while in the opposite limit 𝛽 → ∞ (zero fast noise) the
robability distribution peaks at the cost-function minima.

The neural network described so far can be used for reconstruction
asks: being 𝝈(0) the initial configuration corresponding to some per-
urbed version of, 𝑒.𝑔., 𝝃𝜇 , we say that the system is able to reconstruct
he archetype if the neural dynamics reaches a stationary state 𝝈∗ = 𝝃𝜇

2 In the present case, as archetypes are unavailable to the network, the
atrix  is built over examples, however, in the regime of large number of

xamples 𝑀 ≫ 1, we have 1
𝑀

∑𝑀
𝑎=1 𝜒

𝜇,𝑎
𝑖 𝜉𝜇𝑖 ≈ 𝑟𝜉𝜇𝑖 , where we approximated

1
𝑀

∑𝑀
𝑎=1 𝜒

𝜇,𝑎
𝑖 with the mean of 𝜒𝜇,𝑎𝑖 , thus, in this limit, the kernel ( 1+𝑡

1+𝑡
) is

effectively decorrelating the archetypes.
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Algorithm 1 Sequential dynamic
Input : Couplings 𝑱 ∈ R𝑁×𝑁 , input 𝝈(0) ∈ {−1, 1}𝑁 , number of

ynamic steps 𝑁𝑠, noise 𝑇
Output : Final neuronal configuration 𝝈∗

1: Remove the diagonal terms from 𝑱
2: Set 𝑖 = 0
3: repeat
4: sample a random integer 𝑛 uniformly in the set {1, 2,… , 𝑁}
5: sample a random variable 𝜁 from the distribution 1

2 (1 − tanh2 𝜁 )
6: update the 𝑛th spin 𝜎𝑛 according to 𝜎𝑛 = sign(

∑𝑁
𝑗=1 𝐽𝑛𝑗𝜎𝑗 + 𝑇 𝜁 )

7: 𝑖 = 𝑖 + 1
8: until 𝑖 = 𝑁𝑠

Table 1
Operative implementations of the Mattis overlap.

Observable Description

𝑚𝜇 Mattis overlap: standard definition with respect to the
archetype (see eq. (13))

�̂�𝜇 Mattis overlap: empirical estimate over the examples
(see eq. (14))

𝑚∗
𝜇 Mattis overlap: numerical evaluation (see algorithm

(2))
�̄�𝜇 Mattis overlap: analytical estimate (see eq. (19))

(or, at least, 𝝈∗ ≈ 𝝃𝜇 , with some tolerance threshold); the symmetric
onfiguration 𝝈∗ = −𝝃𝜇 is also retained as a retrieval. The Mattis
verlap, defined as (Amit et al., 1985; Coolen et al., 2005)

𝜇(𝝈) ∶=
1
𝑁

𝑁
∑

𝑖=1
𝜉𝜇𝑖 𝜎𝑖, (13)

quantifies how close a neural configuration 𝝈 is to a given archetype
𝝃𝜇 . However, it should be recalled that the system is not aware of
the archetypes, in fact, its cost function (7) and, in particular, the
weights appearing therein, are built over the set of examples. One could
therefore define an empirical Mattis overlap, referred to an empirical
estimate �̂�𝜇 of the 𝜇th archetype, as

�̂�𝜇(𝝈) ∶=
1
𝑁

𝑁
∑

𝑖=1
𝜉𝜇𝑖 𝜎𝑖 ∶=

1
𝑁

𝑁
∑

𝑖=1

( 1
𝑀

𝑀
∑

𝑎=1
𝜂𝜇,𝑎𝑖

)

𝜎𝑖, (14)

n such a way that 𝑁,𝐾,𝑀 (𝝈|𝜼, 𝑡) = −𝑁∕𝛤
∑

𝜇,𝜈 �̂�𝜇(
1+𝑡
1+𝑡 )𝜇𝜈�̂�𝜈 .

The definition of the weights 𝑱 given in (8) can then be interpreted
s a learning rule, the set of examples {𝜼𝜇,𝑎}𝜇=1,…,𝐾

𝑎=1,…,𝑀 as a training set,
and the sample of initial configurations 𝝈(0) as a test set (these can
be taken as corrupted versions of the archetypes, not belonging to the
training set). Thus, we can look for the conditions under which the
training underlying this network is sufficient to ensure the task accom-
plishment, by introducing a Loss function that measures to what extent
the task is accomplished. Since we want the network to reconstruct
the archetypes +𝝃𝜇 , or their symmetric copies −𝝃𝜇 , a natural 𝐿2 Loss
function is

𝜇± = 1
2𝑁

‖

‖

𝝃𝜇 ± 𝝈∗
‖

‖

2 = 1
2𝑁

‖𝝃𝜇‖2 + 1
2
± 𝑚∗

𝜇 , (15)

for all 𝜇 ∈ (1,… , 𝐾). In this expression the dependence on the weight
arrangement and, therefore, on the training dataset is implicit in 𝝈∗:
this can be seen theoretically – the 𝝈∗’s are drawn from (11) – or
numerically – the 𝝈∗’s result from the dynamics in Algorithm 1. Now,
it is convenient to rotate the archetypes into �̃�𝜇 =

∑

𝜈

(

√

1+𝑡
1+𝑡

)

𝜇𝜈
𝝃𝜈 ,

whence the related Mattis overlap �̃�∗
𝜇 = 1

𝑁
∑

𝑖 𝜉
𝜇
𝑖 𝜎

∗
𝑖 , and the related loss

̃𝜇 = 1 ‖

‖�̃�𝜇 ± 𝝈∗‖
‖

2
= 1 ‖

‖�̃�𝜇‖‖
2
+ 1 ± �̃�∗ , 𝜇 = 1,… , 𝐾, (16)
4

± 2𝑁 ‖ ‖ 2𝑁 ‖ ‖ 2 𝜇
follow. Remarkably, this rotation does not affect learning – since
sign(�̃�𝜇) = sign(𝝃𝜇), the optimal configuration (in the domain {−1, 1}𝑁 )
emains 𝝈∗ = ±𝝃𝜇 – but it results particularly convenient because it
ighlights a direct relation between the Loss function (typically used in
machine-learning framework) and the Cost function 𝑁,𝐾,𝑀=1(𝝈|𝝃, 𝑡)

valuated at the archetypes (typically used in a pattern-retrieval frame-
ork) as

𝑁,𝐾,𝑀=1(𝝈|𝝃, 𝑡) = − 1
2𝑁

𝑁
∑

𝑖,𝑗=1

𝐾,𝐾
∑

𝜇,𝜈=1
𝜉𝜇𝑖 𝜉

𝜈
𝑗

( 1 + 𝑡
1 + 𝑡

)

𝜇𝜈
𝜎𝑖𝜎𝑗 =

= − 1
2𝑁

𝑁
∑

𝑖,𝑗=1

𝐾
∑

𝜇=1
𝜉𝜇𝑖 𝜉

𝜇
𝑗 𝜎𝑖𝜎𝑗 = const(𝑡) + 𝑁

2

𝐾
∑

𝜇=1
̃𝜇+̃

𝜇
−,

(17)

with const(𝑡) = −𝑁
8
∑𝐾
𝜇=1(

1
𝑁 ‖�̃�𝜇‖2+1)2. For both ̃𝜇± and 𝑁,𝐾,𝑀=1(𝝈|𝝃, 𝑡)

he extremization is reached when the Mattis overlap 𝑚𝜇 is maximal.
eplacing 𝝃𝜇 in (16) and (17) with its empirical estimate �̂�𝜇 we
ecover 𝑁,𝐾,𝑀 (𝝈|𝜼, 𝑡). In the large dataset scenario 𝑀 ≫ 1, the
mpirical estimate �̂�𝜇 over examples belonging to the 𝜇th class can
e approximated as �̂�𝜇 ≈ 𝑟𝝃𝜇 , thus, both 𝜇± and its empirical version
̂𝜇
± = 1

2𝑁
‖

‖

‖

�̂�𝜇±𝝈∗‖
‖

‖

2
are minimal when 𝑚𝜇 = 1. Further, one could notice

that, being strongly related and fully consistent with the mean-squared-
error (MSE), the Mattis overlap can also be related to other measures of
performance like the peak signal-to-noise ratio (PSR), being PSNR ∶=

20 log10

(

2
√

MSE

)

(Horé & Ziou, 2010). We refer to Section 3 in the SM
for further details on the mapping between Cost and Loss functions.

To summarize, the conditions yielding to a large Mattis overlap en-
sure retrieval as well as learning, and, in this setting, these are just two
faces of the same medal. With this framework in mind, in the following
we investigate the LaD model from two different perspectives: first we
inspect for the minimal dataset-size 𝑀𝑐 which permits correct retrieval,
checking whether and, if so, to what extent, sleeping mechanisms are
helpful in reducing this minimal size; next, we look for phase diagrams
which overall summarize the network performance versus its control
parameters. Before proceeding it is also worth recalling that, in the
remaining of this paper, we will settle on the so-called high-load regime,
identified by a number of archetypes scaling linearly with the number
of neurons, 𝑖.𝑒., 𝐾 = 𝛼𝑁 , with 𝛼 ∈ R+.

3. Numerical results

For the structureless dataset introduced in Section 2, analytical
investigations are feasible in the limit 𝑁 → ∞ and the related details
are collected in Section 4. Here we focus on the Mattis overlap (see
Table 1 for its various operative implementations) to explore how
the dataset size 𝑀 impacts on LaD’s capabilities (subsect. 3.1) and to
outline a phase diagram (sub Section 3.2). Numerical experiments on
benchmark datasets are also performed to check the robustness of our
theoretical results when relaxing the structureless hypothesis.

3.1. Dataset saving

We first look at the behavior of the Mattis overlap 𝑚𝜇 versus the
number 𝑀 of examples per archetype, at zero noise 𝑇 = 0. As shown
in Fig. 2 (where analytical results obtained in the 𝑁 → ∞ limit are
compared with results obtained from simulations at finite size), this
grows monotonically and there exists a threshold 𝑀𝑐 beyond which
̄ 𝜇 starts raising from zero; the detachment from zero is steeper and
steeper as the size 𝑁 is increased and it is discontinuous in the 𝑁 → ∞
limit (and, in general, 𝑀𝑐 depends on the dataset quality 𝑟, the network
size 𝑁 , the load 𝛼 and the sleeping time 𝑡). This behavior makes clear
the reward of the sleeping mechanism: the training-set size ensuring
a satisfactory retrieval decreases exponentially with 𝑡 and the effect is

even more significant when the load is larger.
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Fig. 2. Expectation of the Mattis overlap (�̄�𝜇 analytical and 𝑚∗
𝜇 numerical) with respect to the Boltzmann–Gibbs distribution (11) (upper panels) and its numerical derivative

∶= 𝑑𝑚𝜇∕𝑑𝑀 (lower panels), versus the logarithm of the dataset size 𝑀 , in the limit 𝛽 → +∞, for different values of the sleeping time 𝑡 (shown in different colors) and of the
oad 𝛼 (shown in different panels), keeping the quality of the dataset fixed at 𝑟 = 0.5. Analytical predictions (solid lines) obtained for infinite network size are compared with
omputational simulations (dashed lines) obtained at finite size: the arrows in the first panel highlight the thresholds 𝑀𝑐 , numerical vs analytical, for 𝑡 = 1 as an example. In the
imulations, for any value of 𝑡 considered, we also varied the network size (from brighter to darker nuances, 𝑁2𝛼 ranges in [5, 10, 80]×104), to highlight a finite-size scaling; further,
he neuronal evolution is sequential, as specified in Algorithm 1, and the initial configuration is chosen as 𝝈(0) = 𝝃𝜇 , for consistency with the analytical picture (however, we
hecked that results are only slightly quantitatively affected if the initial configuration is just close to the archetype, that is, if a small fraction of pixels are flipped, see Section 4).
he vertical, dotted lines correspond to the theoretical estimate of 𝑀𝑐 ; in the upper (lower) panels the curves exhibit a flex (peak) that, as 𝑁 grows, gets closer and closer to 𝑀𝑐 .
p
d

In order to quantify this dataset saving, we introduce the quantity

(𝛼, 𝑟, 𝑡) ∶=
(

1 −
𝑀𝑐 (𝛼, 𝑟, 𝑡)
𝑀max(𝛼, 𝑟)

)

(18)

here 𝑀max(𝛼, 𝑟) = max
𝑡∈R+

{𝑀𝑐 (𝛼, 𝑟, 𝑡)}. Then, if 𝑀𝑐 displays poor vari-
bility with respect to 𝑡, 𝑆 will be close to 0; vice versa, if there exist
alues of 𝑡 able to significantly reduce 𝑀𝑐 , 𝑆 will be close to 1. The
omputational estimate of this quantity is obtained by initializing the
ystem in a configuration 𝝈(0) = 𝝃𝜇 , then, by letting the system evolve
s explained in Algorithm 1, we evaluate 𝑚∗

𝜇 , for different choices of
, 𝛼, and 𝑀 , finally, we determine the lowest value of 𝑀 leading to
∗
𝜇 > 0. The procedure is also reported in Algorithm 2. The results
btained in this way are shown in Fig. 3, where, again, we get a good
greement between analytical and numerical outcomes.3 In particular,
e notice that 𝑆 grows monotonically with 𝑡 and saturates to a value

hat increases with the dataset quality 𝑟 and decreases with the load 𝛼.
pecifically, when 𝛼 = 0.1 and 𝑟 = 0.5 (𝑖.𝑒., 1∕4 of the archetype pixels
re flipped on average) 𝑆 can reach values even larger than 0.9. In
ther words, when setting 𝑡 without any strategy, the minimum number
𝑐 of examples needed for letting the system retrieve can be, in the
orst case, 𝑀max, while, by setting 𝑡 properly large, this number can be
factor 10 smaller, that is, by wisely setting 𝑡 the system can generalize

rom examples even by relying on a relatively small dataset.
We check the robustness of these results on structured datasets,

uch as MNIST (Deng, 2012), Fashion-MNIST (Xiao, Rasul, & Vollgraf,
017), and Olivetti (Phillips & O’Toole, 2014). In these cases, a data

3 The analytical results show the existence of a threshold 𝑀𝑐 above which
�̄�𝜇 discontinuously detaches from zero. This abrupt phenomenon occurs in
the thermodynamic limit 𝑁 → ∞, while, in simulations run at finite size,
the magnetization increases continuously from zero. Consequently, in the
numerical experiments, we choose a threshold 𝑚× ∼ 1 − 1∕(𝑁) on the
5

magnetization to estimate the critical value 𝑀𝑐 : see Algorithm 2. b
Algorithm 2 Algorithm for assessing the dataset saving
Input : Archetypes matrix 𝝃 ∈ {−1,+1}𝑁×𝐾 , threshold for successful

retrieval 𝑚×, vector of sleeping-time values 𝑇vett .
Output : Saving corresponding to the input sleeping-time values

1: for 𝑡 in 𝑇vett do
2: 1

𝐾
∑𝐾
𝜇=1 𝑚

∗
𝜇 = 0,𝑀𝑐 = 0

3: while 1
𝐾
∑𝐾
𝜇=1 𝑚

∗
𝜇 ≤ 𝑚× do

4: 𝑀𝑐 =𝑀𝑐 + 1
5: sample the examples matrix 𝜼 ∈ {−1,+1}𝑁×𝐾×𝑀

6: evaluate the coupling matrix 𝐽𝑖𝑗 (𝜼, 𝑡) =
1

𝛤𝑀2
∑𝑀,𝑀
𝑎,𝑏=1

∑𝐾,𝐾
𝜇,𝜈=1 𝜂

𝜇,𝑎
𝑖

(

1+𝑡
1+𝑡

)

𝜇𝜈
𝜂𝜈,𝑏𝑗

7: for 𝜇 in (1, ..., 𝐾) do
8: update the neural configuration 𝝈(0) = 𝝃𝜇 by Algorithm 1
until convergence to 𝝈∗

9: evaluate the Mattis overlap 𝑚∗
𝜇 =

∑𝑁
𝑖=1 𝜎

∗
𝑖 𝜉

𝜇
𝑖 ∕𝑁

10: compute 1
𝐾
∑𝐾
𝜇=1 𝑚

∗
𝜇

11: Calculate 𝑀max = max𝑡𝑀𝑐 (𝑡)
12: Compute the saving 𝑆(𝑡) = (1 −𝑀𝑐 (𝑡)∕𝑀max) × 100

pre-processing is in order, as they are originally provided in a gray-
scale format, in fact, we binarized the dataset by exploiting Otsu’s
method4 (Otsu, 1979). Next, we identified the archetypes according to
the nature of the dataset itself: for MNIST and Fashion-MNIST datasets,
where there are 10 categories, the chosen archetypes are the averages

4 Briefly, Otsu’s algorithm returns an intensity threshold that separates
ixels of the image into two groups. This threshold is image-dependent and it is
etermined by minimizing the intra-group intensity variance, or equivalently,
y maximizing the inter-group variance.



Neural Networks 173 (2024) 106174E. Agliari et al.

a

o

o
a
p
t
t
t

f
s
a
r
i
w
s
s
a
d

Fig. 3. Dataset saving 𝑆 versus the logarithm of the sleeping time 𝑡 for the random dataset. Analytical predictions (solid lines) and computational simulations (squares) are
compared for different choices of 𝛼 (shown in different panels), for different choices of 𝑟 (as explained by the common legend) and for 𝛽 → ∞. Theoretical results are obtained by
solving the equations reported in Section 4 (see Corollary 1 and Secs. V-VI in the SM) and determining 𝑀𝑐 as the smallest value of 𝑀 such that |�̄�| > 0, while numerical results
re obtained by applying Algorithm 2, with a network size 𝑁 = 200.
Fig. 4. Saving on the number of examples needed to reconstruct the MNIST, the Fashion-MNIST, and the Olivetti datasets, as a function of the logarithm of the sleeping time,
for 𝛽 → ∞. The parameters for these datasets are 𝑁 = 784, 𝐾 = 10, 𝛼 = 0.013 for the MNIST and Fashion-MNIST, and 𝑁 = 4096, 𝐾 = 10, 𝛼 = 0.01 for the Olivetti dataset. Different
choices for the threshold 𝑚× to assess the retrieval performance are considered as explained in the legends. The smallest values of 𝑡 depicted here correspond to the smallest values
f 𝑡 which allow the network to reach an overlap larger than 𝑚×.
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f the items within the same class, so we have a total of 𝐾 = 10
rchetypes; for the Olivetti dataset, which consists of 400 photos of 40
eople (10 photos for each person), we extract 𝐾 = 40 archetypes by
aking the average of the ten photos related to the same person. The
raining set consists of 𝑀 randomly sampled examples from each of
he 𝐾 classes.

The first tranche of experiments is meant to obtain an estimate
or 𝑆 and, in analogy with the structureless case, we initialize the
ystem in a configuration 𝝈(0) = 𝝃𝜇 . Next, we let the system evolve
s explained in Algorithm 1 and we evaluate 𝑚∗

𝜇 ; the procedure is
epeated for 𝜇 = 1,… , 𝐾 and results are averaged. Then, as explained
n Algorithm 2, we compare this average with a threshold 𝑚× and check
hether it is larger (success) or smaller (failure) than 𝑚×. Unlike the

tructureless case, where, following analytical results, we expected a
teep growth of 𝑚∗

𝜇 from zero, here we anticipate a smooth behavior
nd we therefore consider several choices of 𝑚×, that is, we consider
ifferent performance thresholds. The critical dataset-size 𝑀𝑐 (𝑚×, 𝑡)

is then determined as the lowest number of examples that yields a
successful generalization. The saving 𝑆 can finally be evaluated by
exploiting equation (18) and results are shown in Fig. 4. Overall these
plots show that, by introducing suitably stylized sleeping mechanisms
in artificial neural networks, we can retain the same performances of
the ‘‘restless’’ counterparts, and save up to one order of magnitude in
the required training set.

In the second tranche of experiments, in order to understand how
many examples we need to ensure a good reconstruction performance,
in Fig. 5 we show the Mattis overlap achieved by the system as a
function of the number of examples 𝑀 per archetype supplied to the
network (upper panels); in particular, we start from a configuration
𝝈(0) = 𝜼𝜇 obtained by flipping 15% of the pixels of the 𝜇th archetype
6

r

and let the system evolve as explained in Algorithm 1, then we evaluate
the retrieval quality 𝑚∗

𝜇 in terms of the overlap between the archetypes
and the final configuration reached by the system. The snapshot of
the reconstructed archetypes for different values of 𝑡 are also provided
(lower panels). By exploiting these results, we can choose the values of
𝑡 that yield a good enough performance, in terms of retrieval quality as
assessed by 𝑚𝜇 , while saving on the number 𝑀 of examples, see Fig. 6.

.2. Phase diagrams

In the previous subsection we showed that the system performance
an depend qualitatively (success versus failure) on the parameter
etting. While we focused on the role of 𝑀 for practical reasons, similar
utcomes also emerge as the load 𝛼 or the noise 𝑇 = 𝛽−1 are tuned. For
nstance, as well-known for the Hopfield model (see 𝑒.𝑔., Amit et al.
1985), Coolen et al. (2005)), whenever the degree of stochasticity 𝑇
ffecting the neuron dynamics gets too large, the neurons are likely to
e randomly oriented and the system gets useless for reconstruction
asks; similarly, there exists a critical value 𝛼𝑐 (depending on 𝑇 ) such
hat, beyond that value, the system is no longer able to retrieve and
∗
𝜇 ≈ 0 for any 𝜇 (this region is also referred as ‘‘glassy’’ and there

tationary states correspond to mixtures between different archetypes,
signature of the fact that the stored archetypes are too many and

nterference between them starts to be impairing). This information can
e conveniently summarized in a phase diagram, whose knowledge,
s emphasized in Section 1, allows the user to set the network in the
esired operational regime a priori, hence avoiding energy consumption
or preliminary assessments. A glance at the Hopfield phase diagram
see Fig. 1, panel 𝑎) or Fig. 7, top-left panel, blue line) immediately
eveals that it is not possible to use that network for retrieving when
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Fig. 5. Upper panels: Average Mattis overlap versus the number of examples 𝑀 available for each archetype in the case of MNIST (left), Fashion-MNIST (center) and Olivetti
(right) datasets. For each dataset, we initialize the system in a corrupted version of the 𝜇th archetype, obtained by flipping 15% of the pixels (𝑖.𝑒., for 𝑟 = 0.7), we run Algorithm 1
and evaluate 𝑚∗

𝜇 . This procedure is repeated for 𝜇 = 1,… , 𝐾 (where 𝐾 = 10 or 𝐾 = 40, according to the dataset) and we finally report its average along with a confidence interval
(corresponding to one standard deviation) as a function of 𝑀 . Lower panels: Outcomes 𝝈∗ of the reconstruction process obtained by setting 𝑀 equal to the value indicated by
the vertical line in the upper panels, and for the values of 𝑡 given in the corresponding legends.
Fig. 6. Typical evolutions of the neural configurations and of the related Mattis overlaps, obtained by running Algorithm 1 for systems built over the MNIST (left), Fashion-MNIST
(center) and Olivetti (right) datasets. For each dataset, we focus on two distinct cases, denoted as 𝑎 and 𝑏: in case 𝑎, the parameter 𝑡 is chosen equal to the minimum value
shown in the legend of Fig. 5, whereas 𝑀 is equal to the value indicated by the vertical line in Fig. 5; in case 𝑏, the parameter 𝑡 is chosen equal to the maximum value shown
in the legend of Fig. 5, whereas 𝑀 is the 70% of the value chosen for case 𝑎. To be more explicit, for the MNIST dataset (𝐾 = 10) we have: 𝑀 = 60, 𝑡 = 0.01 in case 𝑎, and
𝑀 = 42, 𝑡 = 500.0 in case 𝑏; for the Fashion-MNIST dataset (𝐾 = 10) we have: 𝑀 = 60, 𝑡 = 5.0 in case 𝑎, and 𝑀 = 42, 𝑡 = 50.0 in case 𝑏; for the Olivetti dataset (𝐾 = 40) we have:
𝑀 = 6, 𝑡 = 5.0 in case 𝑎, and 𝑀 = 4, 𝑡 = 150.0 in case 𝑏. The result of the dynamics is shown from two complementary perspectives: in the upper panels we show a few snapshots
of the neural configurations captured at different iteration times 𝑛, while in the lower panels we show the archetype overlap 𝑚𝜇 as a function of the number of iterations 𝑛 and
the instants corresponding to the snapshots above are highlighted by bullets. Overall, we notice that the reconstruction quality is significantly better in case 𝑏, although the dataset
size is smaller.
𝛼 > 𝛼𝑐 ≈ 0.138 as, beyond that threshold, the network escapes
the retrieval region and enters a ‘‘glassy’’ region (𝑖.𝑒. the so-called
blackout regime (Amit et al., 1985)) where computational capabilities
are lost (Coolen et al., 2005). This means that, if we have a Hopfield
network made of, say, 𝑁 = 1000 neurons, it is pointless to make it
handle, say, 𝐾 = 500 (random) patterns, as this would imply a value of
𝛼 = 0.5 ≫ 𝛼𝑐 and we know in advance that the network would surely
fail with this load (much as like we avoid drinking water under the
freezing temperature).

In the statistical mechanics framework, phase diagrams can be
obtained analytically in the limit of large system-size 𝑁 → ∞, where
transitions are associated to singularities in the free-energy function;
here, for the theory to be consistent, we also need to handle the model
in the regime of large dataset-size 𝑀 ≫ 1, but retaining 𝜌 finite (see
Section 4 for a detailed explanation). The control-parameter hyperspace
for the LaD model is therefore given by (𝛼, 𝛽, 𝑡, 𝜌) ∈ (0, 1] × [0,∞)3. As
in the classical Hopfield model, while these parameters are tuned, we
outline regions where the system performs qualitatively different. In
particular, we focus on the transition between the so-called retrieval
region – where the expected Mattis overlap is relatively close to 1 – and
the blackout region – where the expected Mattis overlap is vanishing.
In Figs. 7 and 8 we provide this transition line or, more precisely, its
projections in, respectively, the (𝛼, 𝛽) and (𝛼, 𝜌) planes for various values
of 𝑡. Remarkably, by increasing the sleeping time, the retrieval region
7

(that is the lower region on the left) gets wider and wider and the
maximum load supported by the network increases accordingly. How-
ever, by increasing the entropy in the dataset, performances decrease
and, in particular, the critical storage diminishes monotonously as 𝜌
increases, resulting in 𝛼𝑐 (𝜌 = 0.00, 𝑡 → ∞, 𝛽 → ∞) = 1.00 (that is the
upper bound for the storage capacity for symmetric networks), 𝛼𝑐 (𝜌 =
0.05, 𝑡→ ∞, 𝛽 → ∞) ≈ 0.70 and 𝛼𝑐 (𝜌 = 0.10, 𝑡→ ∞, 𝛽 → ∞) ≈ 0.58.

To summarize, in the LaD model, the critical load 𝛼𝑐 depends not
only on the noise 𝛽 but also on the dataset entropy 𝜌 and on the sleeping
time 𝑡; the former, as expected, is detrimental for tasks of reconstruction
based on examples, while the latter turns out to be extremely beneficial.

4. Analytical results

In order to find the retrieval region in the phase diagram we need
an analytical description of the computational phase transitions and,
as anticipated, the theory shall be developed in the limit 𝑁 → ∞,
which is also mathematically convenient as it allows us to neglect
finite-size fluctuations. More precisely, we assume that the observables
used to assess the overall state of the system (also referred to as
‘‘order parameters’’ and reported in Table 2, last four lines), in the
limit 𝑁 → ∞, are no longer fluctuating and self-average around
their expectation values (𝑖.𝑒., the ‘‘replica symmetry’’ approximation in
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Fig. 7. Phase diagrams in the (𝛼, 𝑇 = 𝛽−1) plane for different values of the sleeping time 𝑡 (depicted in different colors as coded in the legend) and for different values of the dataset
ntropy 𝜌 (depicted in different panels as reported by titles). Specifically, we increase the entropy in the datasets from 𝜌 = 0 (the full information is available, since examples and
rchetypes coincide and there is no learning but solely storing), to 𝜌 = 0.05, 𝜌 = 0.10, and finally 𝜌 = 0.15. For a given choice of 𝜌 and 𝑡, the retrieval region, where the network

can retrieve archetypes, corresponds to the region underneath the related curve, the latter separates the retrieval region from the blackout scenario (glassy phase) and represents
a computational phase transition. For 𝜌 ≠ 0 the transition line develops a cuspid when reaching the maximal storage: this is the onset of replica symmetry breaking (that will not
e faced in this paper).
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Fig. 8. Phase diagram in the (𝜌, 𝛼) plane, in the zero fast-noise limit 𝛽 → ∞, for
ifferent values of the sleeping time 𝑡 (shown in different colors as coded in the legend).
or a given choice of 𝑡, the bottom-left region is the retrieval region, corresponding to
alues of 𝛼 and 𝜌 allowing the network to correctly learn and recognize the archetypes:
s the sleeping time increases, this region gets wider and wider.

tatistical mechanics), that shall be indicated by a bar. Thus, denoting
ith (𝑥) the distribution of an arbitrary observable 𝑥, we have

lim
𝑁→∞

(𝑥) = 𝛿(𝑥 − �̄�). (19)

The key quantity for our inspection is the quenched free-energy
efined as

𝑁,𝑀,𝐾 (𝛽, 𝑡) ∶=
1
𝑁

E log𝑁,𝑀,𝐾 (𝛽|𝜼, 𝑡) (20)

where E ∶= E𝜒E𝜉 denotes the average over the realization of the
archetypes and of the examples, namely the average with respect to
(1) and (2); in the 𝑁 → ∞ limit, recalling 𝛼 ∶= lim𝑁→∞

𝐾
𝑁 ,

(𝛼, 𝛽, 𝑡, 𝜌) ∶= lim 1 E log (𝛽|𝜼, 𝑡). (21)
8

𝑁→∞ 𝑁 𝑁,𝑀,𝐾 L
Table 2
Structural parameters, control parameters and macroscopic observables of the LaD
model and of the dataset.

Parameter Description

𝑁 Neurons in the network
𝐾 Archetypes to handle
𝑀 Examples per archetype
𝑟 Noise in the dataset
𝛼 = lim𝑁→∞ 𝐾∕𝑁 Network’s load
𝑇 = 𝛽−1 Noise in the network
𝑡 Sleeping time
𝜌 = (1 − 𝑟2)∕𝑀𝑟2 Dataset’s entropy
𝑚 = 1

𝑁

∑𝑁
𝑖 𝜉

1
𝑖 𝜎𝑖 Mattis overlap for the archetype

𝑚𝜂 =
1

𝑟(1+𝜌)𝑁𝑀

∑𝑀,𝑁
𝑎,𝑖=1 𝜉

1
𝑖 𝜒

1,𝑎
𝑖 𝜎𝑖 Mean Mattis overlap over the examples

𝑞12 =
1
𝑁

∑𝑁
𝑖 𝑘

(1)
𝑖 𝑘

(2)
𝑖 Spin glass order parameter I

𝑝12 =
1
𝐾

∑𝐾
𝜇>1 𝑧

(1)
𝜇 𝑧

(2)
𝜇 Spin glass order parameter II

It can be proven (see Section 5 in the SM for further details) that, in the
large but finite dataset scenario 𝑀 ≫ 1 and in the thermodynamic limit
𝑁 → ∞, the quenched free-energy depends on the parameters 𝑀 and 𝑟
nly through5 𝜌, thus we will write (𝛼, 𝛽, 𝑡, 𝜌) ∶= lim𝑁→∞ 𝑁,𝑀,𝐾 (𝛽, 𝑡).

The goal now is to obtain an explicit expression for (𝛼, 𝛽, 𝑡, 𝜌),
hence, by a straightforward derivation, we can reach a set of self-

onsistent equations for the order parameters; these equations are
ddressable numerically and their solution allows us to check where, in
he hyperspace (𝛼, 𝛽, 𝑡, 𝜌), �̄� is non-vanishing (𝑖.𝑒. the network works).
ereafter we briefly report the main results, while the underlying

echnical details can be found in the SM (see Secs. IV-V).

5 More intuitively, it is sufficient to observe that the Hamiltonian of the
aD model for 𝑀 ≫ 1 depends on the dataset characteristics only through 𝜌.
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Remark 2. By relying upon Gaussian integration,6 the partition
function 𝑁,𝑀,𝐾 (𝛽|𝜼, 𝑡) defined in (12) can be recast into an integral
representation as

𝑁,𝑀,𝐾 (𝛽|𝜼, 𝑡) =
∑

{𝜎}
∫

𝐾
∏

𝜇=1

(

𝑑𝑧𝜇
√

2𝜋

)

∫

𝑁
∏

𝑖=1

(

𝑑𝜙𝑖
√

2𝜋

)

⋅

⋅ exp

(

−1
2

𝑁
∑

𝑖=1
𝜙2
𝑖 −

1
2

1
1 + 𝑡

𝐾
∑

𝜇=1
𝑧2𝜇 +

√

𝛽
𝛤𝑁

1
𝑀

𝐾,𝑀,𝑁
∑

𝜇,𝑎,𝑖=1
𝜉𝜇𝑖 𝜒

𝜇,𝑎
𝑖 𝑧𝜇𝑘𝑖

)

, (22)

being 𝑘𝑖 the multi-spin defined as

𝑘𝑖 ∶= 𝜎𝑖 + 𝑖
√

𝑡
𝛽(1 + 𝑡)

𝜙𝑖. (23)

In order to report the main Theorem, we have to introduce three
urther order parameters, a quantifier of the retrieval of the examples
hat is 𝑚𝜂 ∶= 1

𝑟(1+𝜌)
1

𝑁𝑀
∑𝑀,𝑁
𝑎,𝑖=1 𝜉

1
𝑖 𝜒

1,𝑎
𝑖 𝜎𝑖 = 1

𝑟(1+𝜌) �̂�1(𝝈) (proportional to
the mean overlap between the neural configuration and the examples
related to 𝝃1) and two order parameters typical of the statistical me-
chanics of disordered systems (Coolen et al., 2005; Mézard, Parisi,
& Virasoro, 1985), namely the overlap 𝑞12 ∶= 1

𝑁
∑𝑁
𝑖=1 𝑘

(1)
𝑖 𝑘

(2)
𝑖 (that

uantifies the glassiness of the landscape of the binary neurons) and
he overlap 𝑝12 ∶= 1

𝐾
∑𝐾
𝜇>1 𝑧

(1)
𝜇 𝑧

(2)
𝜇 (that accounts for the glassiness of

the Gaussian variables 𝑧𝜇 appearing in the integral representation of
he partition function, see Remark 2).

Given this preamble we can finally state the next

heorem 1. In the infinite volume limit 𝑁 → ∞ and large but finite
ataset scenario (𝑀 ≫ 1), the free energy of the LaD model (𝛼, 𝛽, 𝑡, 𝜌)
s given by the following expression (to be extremized w.r.t. the order
arameters):

(𝛼, 𝛽, 𝑡, 𝜌) = 𝛼
2
log(1 + 𝑡) −

𝛽
2�̄�

(1 + 𝑡)
�̄�2
𝜂

(�̄� + 𝑡)
(1 + 𝜌) +

+𝛼
2

{

𝛽𝑞(1 + 𝑡)
1 − (1 + 𝑡)𝛽(�̄� − 𝑞)

− log
[

1 − (1 + 𝑡)𝛽(�̄� − 𝑞)
]

}

+E𝜓 log cosh
⎡

⎢

⎢

⎣

1
�̄�

√

𝛼𝛽�̄� +
( 𝛽�̄�𝜂

�̄�
1 + 𝑡
�̄� + 𝑡

)2

𝜌𝜓 +
𝛽�̄�𝜂
�̄�

1 + 𝑡
�̄� + 𝑡

⎤

⎥

⎥

⎦

+

−
𝛼�̄�
2�̄�

𝑡
(1 + 𝑡)

− 1
2
𝛽(�̄� − 1) 1 + 𝑡

𝑡
�̄� +

+1
2
�̄�𝛽𝛼(𝑞 − �̄�) −

𝛽
2
(1 − �̄�)
�̄�

1 + 𝑡
𝑡

+ log 2
√

�̄�
.

here the operator E𝜓 is given by

𝜓𝑔(𝜓) =
1

√

2𝜋 ∫R
exp

(

−
𝜓2

2

)

𝑔(𝜓), (24)

and we posed �̄� ∶= 1+ 𝛼 𝑡
(1+𝑡) (𝑃 − �̄�), with �̄�𝜂 , 𝑞, �̄�, �̄�, 𝑃 being, respectively,

the expectations of the example Mattis magnetization 𝑚𝜂 , of the overlap 𝑞12,
of the overlap 𝑝12 and of their diagonal versions 𝑞11 and 𝑝11.

Proof. The proof is based on the application of Guerra’s interpolation
scheme, as detailed in Section 4 of the SM. □

Corollary 1. The expectation values of the archetype and example Mattis-
magnetizations in the thermodynamic limit (𝑁 → ∞) and large dataset
scenario (𝑀 ≫ 1) fulfill the following self-consistent equations

�̄�𝜂 = E𝜓 tanh
[ 1
�̄�

√

𝛼𝛽�̄� +
( 𝛽�̄�𝜂

�̄�
1 + 𝑡
�̄� + 𝑡

)2

𝜌𝜓 + (25)

𝛽�̄�𝜂
�̄�

1 + 𝑡
�̄� + 𝑡

]

,

6 To be sharp, it is enough to apply the Hubbard–Stratonovich transforma-
ion on the partition function defined in Eq. (12)
9

̄ 𝜂(1 + 𝜌) = �̄� + (1 − 𝑞) 1 + 𝑡
�̄� + 𝑡

𝛽�̄�𝜂
𝜌
�̄�
, (26)

the other order parameters �̄�, �̄�, 𝑞, �̄�, 𝑞 fulfill the following set of coupled
quations

̄ = 1 + 𝛼𝑡
1 − (1 + 𝑡)𝛽(�̄� − 𝑞)

,

�̄� =
(1 + 𝑡)2𝛽𝑞

[1 − (1 + 𝑡)𝛽(�̄� − 𝑞)]2
,

�̄�2�̄� = 1 − 1
𝛽
𝑡�̄�
1 + 𝑡

− 𝑡�̄�2
𝜂(1 + 𝜌)

2�̄� + 𝑡
(�̄� + 𝑡)2

+

+
𝛼�̄�
𝛽

𝑡2

(1 + 𝑡)2
− (1 − 𝑞) 2𝑡

�̄�(1 + 𝑡)
𝛼�̄�,

�̄�2(�̄� − 𝑞) = 1 − 𝑞 − 1
𝛽

𝑡�̄�
(1 + 𝑡)

,

̂ ∶= E𝜓 tanh2
[ 1
�̄�

√

𝛼𝛽�̄� +
( 𝛽�̄�𝜂

�̄�
1 + 𝑡
�̄� + 𝑡

)2

𝜌𝜓 +

+
𝛽�̄�𝜂
�̄�

1 + 𝑡
�̄� + 𝑡

]

.

Proof. The proof works by extremizing (𝛼, 𝛽, 𝑡, 𝜌) w.r.t. the order
parameters, namely by imposing ▽(𝛼, 𝛽, 𝑡, 𝜌)|

|�̄�𝜂 ,�̄�,𝑞,�̄�,�̄�
= 0 and by

direct evaluation of the derivatives as detailed in Section 5 of the
SM. □

By solving numerically the equations provided in Corollary 1, we
can construct the phase diagrams for the LaD neural network and
the main interest lies in depicting the retrieval region within these
diagrams (as already provided, see Figs. 7 and 8): therein, the system
– initialized in configurations corresponding to any example 𝜼1 or
nearby configurations – spontaneously relaxes to configurations equal
to or close to 𝝃1; the initialization corresponds to the system input and
the final, equilibrium state corresponds to the system reconstruction.
Otherwise stated, this region corresponds to control parameters that
yield solutions for the self-consistent equations such that �̄� ∼ 1.
Notably, the knowledge of the phase diagram for machine retrieval
allows us to inspect also the thresholds 𝑀𝑐 (𝑟) for machine learning
as – by setting the control parameters within that region – we known
that, if the network has been previously supplied with enough examples
𝑀𝑐 (𝑟) (such that learning has been properly accomplished), then, once
inputted with a partial or corrupted information, it will be able to
reconstruct the complete, exact information. We already get acquainted
with these thresholds for learning (and, thus, for retrieval) as we have
shown them in Fig. 2 in the first part of the manuscript.

5. Conclusions

We close this manuscript with a couple of remarks that stem from
the reported research, then outlooks follow.

On the benefits of ‘‘sleeping’’ in machine learning and machine retrieval:
Implementing (suitably stylized) sleeping mechanisms within artificial
neural networks allows for sensible dataset-size reduction still preserv-
ing a successful learning. In particular, in the random scenario (where
calculations are tractable) we proved that we can save up to 90% of
the training set, retaining the same performance of ‘‘restless’’ networks.
These results were confirmed by computational investigations also
for several structured datasets: this suggests that these bio-inspired
sleeping mechanisms can be pivotal for a Sustainable AI and mandatory
when solely small datasets are available for training.

As a side note, this contributes to explain a long-standing question
about the need of a large number of examples by machine learning
algorithms before generalization can take place, in contrast with biolog-
ical neural-networks which require by far fewer experiences (Ghirlanda
& Enquist, 2003; Ross & Kennedy, 1990; Wang, Yao, Kwok, & Ni, 2020;
Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018): we sleep a (1)

time of our life.
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On the equivalence between Cost and Loss functions: At least in these
simple shallow networks, it is now clear that their Cost functions (the
starting point to handle them analytically via statistical mechanics) are
deeply related to the corresponding Loss functions (the starting point to
handle them computationally in Machine Learning). In particular, be-
yond possible wider and deeper interpretations, the two terms actually
coincide in the present scenario and, when optimizing these functions
w.r.t. the weights, the machine accomplishes learning while, when
optimizing w.r.t. the neurons, it accomplishes pattern reconstruction.
By this perspective, not only Cost and Loss functions look as two
faces of the same medal, but also learning and retrieval appear as two
particular aspects of the broader phenomenon of cognition.

As for outlooks, we stress that, at present, there are two major
(and related) limitations of the theory developed here, namely, 𝑖. it
works with structureless patterns and such that in a retrieval state
the mean fraction of spiking neurons is forced to one half, and 𝑖𝑖. the
whole statistical–mechanical framework relies on the assumption of
replica symmetry. As for the former, the existence of other kinds of
Hebbian algorithms that work particularly well for correlated stimuli,
such as standard covariance learning rule and its variants (Minai,
1997; Stanton & Sejnowski, 1989) highlights a path to generalize the
present theory to account for more complex datasets. However, as
discussed by Amit, Gutfreund and Sompolinsky (Amit, Gutfreund, &
Sompolinsky, 1987) for the standard Hopfield model, while simple
correlations can be easily addressable (and this would allow dropping
the constraint on the fraction of spiking neurons), for general structured
scenarios there is still a long way to go within the statistical–mechanical
approach (Mézard, 2023). As for the latter, in its current form, the
dreaming algorithm affects all memories equally as a consequence of
the replica-symmetry assumption we use to make analytical progresses,
while solely the most-recently acquired ones are expected to undergo
consolidation (the formation of long term memory should be more
realistic, see 𝑒.𝑔. Atkinson and Shiffrin (1968), Shiffrin and Atkin-
son (1969), Squire and Alvarez (1995)); several research groups are
working on a broken-replica statistical–mechanical theory for neural
networks (see 𝑒.𝑔., Albanese et al. (2022), Baldassi et al. (2020, 2021))
and, once it will be ready, it should be possible to improve these
biologically inspired mechanisms.
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