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heating (December 2021, January, and February 2022) 
and non-heating seasons (June, July, and August 2021) 
on the territory of the Republic of Croatia. Ground 
stations of the National Network for Continuous Air 
Quality Monitoring were used as a starting point and 
as ground truth data. Raw hourly data were matched to 
remote sensing data, and seasonal models were trained 
at the national and regional scale using machine learn-
ing. The proposed approach uses a random forest algo-
rithm with a percentage split of 70% and gives moder-
ate to high accuracy regarding the temporal frame of 
the data. The mapping gives us visual insight between 
the ground and remote sensing data and shows the 
seasonal variations of PM2.5 and PM10. The results 
showed that the proposed approach and models could 
efficiently estimate air quality.

Keywords  Air quality · Google Earth Engine · 
Prediction model · Remote sensing · Sentinel-5P

Introduction

Air pollution is a significant threat to modern society, and 
it has been shown that it negatively affects both, the peo-
ple’s health (Ghorani-Azam et al., 2016; Lave & Seskin, 
2013; Shahriyari et  al., 2022) and the environment  
(Saurabh Sonwani & Vandana Maurya, 2019; Stevens 
et al., 2020). Particulate matter (PM) with an effective aer-
odynamic diameter smaller than 2.5 and 10 μm (PM2.5 and 
PM10) have gained specific attention among air pollutants, 
and their effects on human health and ecosystems have 
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become important research topics in recent years (Bodor 
et al., 2022; Faraji Ghasemi et al., 2020; Leão et al., 2022;  
Yunesian et al., 2019; Zoran et al., 2020).

High levels of PM10 have been associated with 
increased hospital admissions for lung and heart dis-
ease. In contrast, PM2.5 has a greater negative impact on 
human health than PM10 because it penetrates deeper 
into the respiratory system. Prediction of atmospheric 
composition aids significantly in air quality manage-
ment; however, predicting air quality remains a challenge 
due to the processes’ complexity and the strong coupling 
across many parameters, which affects modeling perfor-
mance (Biancofiore et al., 2017). Overall, the composi-
tion and concentration of all components in PM of all 
size fractions vary. This variability is most likely caused 
by natural and environmental factors such as human or 
natural sources, temperature and seasonal changes, and 
geographical location (Polichetti et al., 2009).

In Croatia, the National Network for Continuous Air 
Quality Monitoring uses ground stations to monitor 
atmospheric concentrations of PM2.5 and PM10 
throughout the country. However, as noted by Li et  al. 
(2020), ground station measurements are only applicable 
in local areas and cannot provide a broad perspective. 
Recently, several remote sensing-based methods have 
been developed for this issue. Estimating ambient PM2.5 
and PM10 concentrations using observations from remote 
sensing satellites have been the subject of various studies 
to date (Lin et al., 2015; Zhang & Li, 2015; Chen et al., 
2018a, b; Sun et  al., 2019; Li et  al., 2021). Scientists 
have also used high-resolution remote sensing imagery 
from Unmanned Aerial Vehicles (UAV) for computer 
simulation and comparison with real measurements 
(Cichowicz & Dobrzański, 2022), 3D investigation of air 
quality (Samad et al., 2022), pollutants detection (De Fazio 
et  al., 2022), etc. However, the mentioned studies have 
been conducted over small study areas. For vast areas, the 
use of Sentinel-5P mission TROPOMI data to estimate 
PM2.5 and PM10 concentrations has been implemented 
by a few studies lately (Ahmed et  al., 2022; Han et  al., 
2022; Li et al., 2022; Son et al., 2022; Wang et al., 2021). 
Sentinel-5P TROPOMI was launched on October 13, 
2017, as the first Copernicus mission with the main 
objective of monitoring air pollutants in the atmosphere. It 
is the most recent global satellite mission in monitoring air 
quality and daily measures concentrations of ozone (O3), 
methane (CH4), formaldehyde (HCHO), carbon monoxide 
(CO), nitrogen oxide (NO2), sulphur dioxide (SO2), and 
aerosol—provided as an aerosol index (AI).

Wang et  al. (2021) used Sentinel-5P and GEOS 
Forward Processing datasets (GEOS-FP) to develop a 
new approach for the daily estimation of full-coverage 
5 km (0.05°) ambient concentrations of PM2.5 and PM10  
over China. The estimation function is obtained by fus-
ing the multisource (Sentinel-5P TROPOMI, GEOS 
Forward Processing, and ground-based stations) data 
via ensemble machine learning methods, such as the 
light gradient boosting machine. On the other hand, 
Han et  al. (2022) did an interpolation-based fusion of 
Sentinel-5P TROPOMI, elevation, and regulatory grade 
ground station data for producing spatially continuous 
maps of PM2.5 concentrations over Thailand using dif-
ferent machine learning algorithms and comparing their 
accuracy. Furthermore, in their study, Son et al. (2022) 
proposed a deep learning-based surface PM2.5 estima-
tion method using the attentive interpretable tabular 
learning neural network (TabNet) with five Sentinel-
5P TROPOMI products (NO2, SO2, O3, CO, HCHO) 
over Thailand. They have tested the capability to esti-
mate PM2.5 without aerosol optical property, which was  
used more traditionally. Moreover, they highlighted 
CO as the most influential chemical component and 
related it to the seasonal burning in southeast Asia. In 
contrast to traditional studies, Li et al. (2022) proposed 
a knowledge-informed neural network model for joint 
estimation of PM2.5 and O3 over China, in which sat-
ellite observations, reanalysis data, and ground station 
measurements are used. Their conclusion was that the 
joint estimation model achieves performance compa-
rable to that of the separate estimation model but with 
higher efficiency. Ahmed et  al. (2022) developed a  
convolutional neural network (CNN) model which uses 
Sentinel-5P TROPOMI data of seven different pollut-
ants (AI, CH4, CO, HCHO, NO2, O3, SO2), as auxiliary  
variables to estimate daily average concentrations of 
PM2.5 in various cities in Pakistan from May 2019 to  
April 2020.

This research follows a new approach developed by 
Mamić et  al. (2022) for accurately estimating atmos-
pheric concentrations of PM2.5 and PM10 using Sentinel-
5P and other open-source remote sensing data from the 
Google Earth Engine (GEE) platform, a geospatial pro-
cessing platform created to store and analyze enormous 
data sets for analysis and decision making. As noted 
by Gorelick et al. (2017), GEE’s data catalog contains 
a repository of publicly available geospatial datasets, 
including observations from various satellite and aerial 
imaging systems in optical and non-optical wavelengths, 
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environmental variables, weather and climate forecasts 
and hindcasts, land cover, topographic, and socioeco-
nomic datasets. All of this data is pre-processed into a 
ready-to-use, but the information-preserving format 
allows efficient access and removes numerous obstacles 
associated with data management. In this study, machine 
learning methods have been used to create models that 
can effectively determine air quality. Machine learning 
approaches have been recognized as useful and accurate 
in developing spatially explicit models. Random forest 
was employed in this study, as one of the most com-
monly used algorithms when it comes to estimating 
PM2.5 and PM10 at both, national (Chen et  al., 2018a, 
b; Stafoggia et al., 2019; Shao et al., 2020; Zhao et al., 
2020) and regional (Huang et  al., 2018; Yang et  al., 
2020) level.

Furthermore, several studies (Cichowicz et  al., 
2017; Xiao et  al., 2015) have shown significant dif-
ferences in the dispersion of atmospheric air pollution 
between heating and non-heating seasons. Accord-
ingly, the main purpose of this study is to develop 
models that can be efficiently used to estimate the 
PM2.5 and PM10 in the Republic of Croatia for non-
heating (June, July, and August 2021) and heating 
(December 2021, January, and February 2022) sea-
son at a national and regional scale. The motivation 
to develop regional-scale models lies in the vari-
ability mentioned above of PM. Therefore, regional 
models will try to tackle the questions of composition 
and concentration of PM2.5 and PM10 between differ-
ent climatic and geographical features. The perfor-
mance of developed models is evaluated using the 
metrics of the mean absolute error (MAE), the root 
mean squared error (RMSE), and the Pearson correla-
tion coefficient (r). In addition, in situ and estimated 
PM2.5 seasonal values were compared to those avail-
able by Copernicus Atmosphere Monitoring Service 
(CAMS) on the national level.

The research objectives can be divided into two 
main sections: (i) developing PM2.5 and PM10 models 
for non-heating and heating season on a national scale 
and (ii) developing PM2.5 and PM10 models for non-
heating and heating season on a regional scale.

The structure of this paper is as follows. The sec-
ond section introduces the study area, describes the 
used materials, and provides an overview of the meth-
odology. The third section reveals the results of this 
research, followed by a discussion. In the final sec-
tion, conclusions are provided.

Materials and methods

Study area

The Republic of Croatia has been chosen as the study 
area for this research (Fig. 1). Concerns about air pol-
lution in Croatia increased rapidly last year after the 
Institute for Health Metrics and Evaluation (IHME) 
announced that Croatia ranks fifth in the European 
Union (EU) in terms of deaths caused by polluted air, 
putting the country at the bottom of the EU in terms 
of air quality (Index, 2021).

The Republic of Croatia is a country in South-
east Europe, covering 56,594 km2, and its capital 
is Zagreb. Croatia is primarily a lowland country. 
The lowlands (terrain below 200  m absolute alti-
tude) represent 53.4% of Croatia’s territory, the 
hills (200 to 500  m absolute altitude) account for 
25.6%, and the mountains and mountainous areas 
(above 500  m absolute altitude) account for 21.0%. 
The horseshoe shape reflects the importance of the 
continental and coastal regions, which are primar-
ily linked by the karst mountain region (Hrvatska  
enciklopedija, 2021).

Biogeographical boundaries were gathered from 
the Emerald Network countries and EU member 
states. These were combined to create a map of bio-
geographical areas independent of political borders 
and cover all of Europe. The layer of biogeographi-
cal regions for all of Europe is available through 
the European Environment Agency (EEA, 2016). 
Accordingly, Croatia has three different biogeograph-
ical regions: Alpine, Continental, and Mediterranean.

The Alpine region of Croatia has a relatively 
cold and harsh climate, high altitudes, and a com-
plex topography of the Dinaric Alps. With less than 
10,000 residents, Ogulin and Gospić are the two larg-
est towns in this region, the least inhabited in all of 
Croatia.

The Continental region of Croatia has a rela-
tively flat landscape and a climate of strong contrasts 
between cold winters and hot summers. The Panno-
nian plain mainly influences it. The most populated 
cities in this region are Zagreb, Osijek, Slavonski 
Brod, Karlovac, and Varaždin.

The climate of Croatia’s Mediterranean region is 
known for having hot, dry summers and humid, and 
chilly winters. However, it can also be notoriously 
unpredictable, with sudden rainstorms or bursts of 
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strong winds occurring at different times of the year. 
The Adriatic Sea greatly influences it. Split, Rijeka, 
Zadar, and Pula are the largest cities in this region.

Materials

Since the composition of PM2.5 and PM10 varies on 
multiple geographical and meteorological factors,  
we use multiple remote sensing data freely available  

on the GEE platform in this study. On the other  
hand, in  situ data from the Croatian National Net-
work for Continuous Air Quality monitoring stations  
will be used for validation as ground truth data.

In situ data

The ground stations in this study measure PM2.5 and 
PM10 automatically every hour in μg/m3 units. The 

Fig. 1   Map of the Republic of Croatia with biogeographical regions and ground stations of the Croatian National Network for Con-
tinuous Air Quality Monitoring
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collected data are freely available on the official  
website of the Croatian National Network for Con-
tinuous Air Quality Monitoring (ISZZ, 2022). First,  
the PM2.5 and PM10 raw hourly data were down-
loaded for all available stations for non-heating  
(June, July, and August 2021) and heating (Decem-
ber 2021 and January and February 2022) seasons  
in Croatia.

In Fig. 1, it is noticeable that the ground air qual-
ity monitoring stations are quite uniformly distrib-
uted at the national level. However, a closer look into 
their regional spatial distribution reveals an insuffi-
cient number of ground stations in the Alpine region, 
where data from just two stations were available for 
modeling, the non-heating season. On the other hand, 
only one station is available to model the Alpine 
region’s heating season. That being said, the lack of 
stations would significantly disrupt the stability and 
the validity of the models; therefore, their creation 
for the Alpine region was abandoned. Regarding the 
Continental region, ground stations are evenly dis-
tributed throughout the region, and data from eight 
stations were used for PM2.5 estimation in the non-
heating season and from 11 for PM10. In the heating 
season, nine stations were available for PM2.5 and 14 
for PM10. The irregular shape of the Croatian Medi-
terranean region makes it geographically challenging 
for modeling. In addition, there is a lack of ground 
stations in the central and southern parts of the 
region, especially on islands.

Nonetheless, data from 10 stations were available 
for PM2.5 estimation in both seasons. For PM10, 16 
stations were available in the non-heating and 17 in 
the heating season. Despite everything, it was decided 
to develop PM2.5 and PM10 models for the Mediterra-
nean region. On the national scale, due to some miss-
ing or invalid in situ data in the observed time range, 
data from 20 ground stations were used to estimate 
PM2.5 for both seasons, and for PM10, 30 stations were 
used for non-heating and 32 for the heating season.

Remote sensing data

The main data used to estimate this research’s PM2.5 
and PM10 values is pre-processed L3 Sentinel-5P TRO-
POMI data of AI, CO, HCHO, NO2, O3, and SO2. On 
the other hand, meteorological data used in this study 
is from the National Oceanic and Atmospheric Admin-
istration (NOAA) which provides a dataset consisting 
of selected model outputs as gridded forecast variables 
through its Global Forecast System (GFS), which is 
updated four times daily (every 6 h). GFS data used are 
land surface temperature 2 m above the ground in °C 
(LST), specific humidity 2  m above ground in kg/kg 
(kilogram of water per kilogram of air) (HUM), and U 
and V component of wind 10 m above ground in m/s 
(U-WIND and V-WIND). Geographical data on eleva-
tion (DEM) used in this study is from NASA’s Shuttle 
Radar Topography Mission (SRTM), and slope data 
was derived from it. Moreover, soil pH data at ground 

Table 1   Remote sensing 
data from GEE used in this 
study (Mamić et al., 2022)

Parameter Description Source Unit Temporal 
resolution

Spatial resolution

AI Aerosol index TROPOMI / daily 1113.2 m
CO Carbon monoxide TROPOMI mol/m2 daily 1113.2 m
HCHO Formaldehyde TROPOMI mol/m2 daily 1113.2 m
NO2 Nitrogen dioxide TROPOMI mol/m2 daily 1113.2 m
O3 Ozone TROPOMI mol/m2 daily 1113.2 m
SO2 Sulphur dioxide TROPOMI mol/m2 daily 1113.2 m
LST Land surface temperature NOAA °C 6 h 27 890 m
HUM Specific humidity NOAA kg/kg 6 h 27 890 m
U-WIND Eastward wind NOAA m/s 6 h 27 890 m
V-WIND Northward wind NOAA m/s 6 h 27 890 m
DEM Elevation NASA SRTM m / 30 m
SLOPE Slope NASA SRTM ° / 30 m
SOIL_pH Soil pH Hengl, 2018 pH*10 / 250 m
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level was retrieved from the map made by Hengl in 
2018 available on GEE. Besides, information on all 
used datasets from GEE is given in Table 1.

Methodology

The approach to estimate PM2.5 and PM10 from mul-
tiple remote sensing data used in this study is shown 
in Fig.  2. All data collected were pre-processed for 
missing or invalid data before being matched spa-
tially and temporally. The next step was to create 
new parameters from the main and auxiliary data to 
improve the stability of future models. Finally, all 
data were imported into Weka software for the attrib-
ute selection process and modeling by random forest 

algorithm. Furthermore, accuracy assessment was 
done using r, MAE, and RMSE. Besides, GIS soft-
ware was used to create spatial distribution maps of 
estimated PM2.5 and PM10.

Data pre‑processing

Since the different spatial resolutions within the used 
datasets, only the pixel of the exact location of each 
ground station was extracted using the vector layer of 
ground stations imported in GEE. Regarding TRO-
POMI data, SO2 was missing for the winter months 
(December 2021 and January and February 2022), so 
it was excluded from heating season models. Further-
more, there are also some missing CO, HCHO, and 
NO2 data for the winter months due to the greater 

Fig. 2   The flowchart of the 
approach to estimate PM2.5 
and PM10 followed by this 
study
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amount of cloudy days. Moreover, before July 2021, 
there was reported an error in the system for measur-
ing AI so AI data from June 2021 was excluded from 
modeling, too. On the other hand, there were some 
missing and invalid (negative) in  situ data, so those 
rows were removed from the dataset. Also, too high 
or too low ground measurements which differed too 
much from the rest of the dataset were deleted.

Data matching

Variables were matched spatially concerning each 
ground station’s location and temporally regard-
ing each dataset’s temporal resolution. The Croatian 
National Network for Continuous Air Quality Moni-
toring Automatic ground stations measure atmos-
pheric PM2.5 and PM10 every hour. On the other 
hand, TROPOMI captures daily images above Croatia 
between 10:00 AM and 1:00 PM CET. On that basis, 
TROPOMI data was matched with the in situ data of 
the exact hour. Furthermore, NOAA’s meteorologi-
cal data are updated every 6 h (12:00 AM, 6:00 AM, 
12:00 PM, and 6:00 PM) and were matched to the rest 
of the dataset based on the data for 12:00 PM. Geo-
graphical variables are temporally independent, so 
they were matched based only on location.

Covariates

The original parameters of Table  1 were expanded 
with the new ones (Table 2) based on the similarities 
they share to improve the models’ stability and to find 
out the composition and therefore possible sources of 
PM2.5 and PM10 in the observed period and between 
different biogeographical regions.

Modeling PM2.5 and PM10

This study employed a random forest algorithm to 
estimate PM2.5 and PM10 values from multiple remote 
sensing data. The random forest algorithm was first 
proposed by Breiman (2001), and since that, it has 
been extremely successful as a general-purpose clas-
sification and regression method. The method, which 
combines several randomized decision trees and aver-
ages their predictions, has shown excellent perfor-
mance in settings with a large number of variables 
compared to the number of observations. Further-
more, it is versatile enough to be applied to large-scale 

problems, adaptable to a variety of ad hoc learning 
tasks, and returns information on each variable impor-
tance (Biau & Scornet, 2016).

For the analyses, we used Weka (Waikato Envi-
ronment for Knowledge Analysis), open-source 
software—first for the process of attribute selection  
and finally, for classification by random forest algo-
rithm. Weka is a large collection of Java class librar-
ies that implement a wide range of state-of-the-art 
machine learning and data mining algorithms (Witten  
et al., 1999). However, as mentioned above, prior to 
modeling, it was necessary to choose only the best 
parameters for each model. For that purpose, the 
Weka Classifier Subset Evaluator tool was used for 
the random forest algorithm with a percentage split 
of 70 to find the most important variables. Starting 
with the best-performing parameter, the Classifier 
Subset Evaluator progressively adds parameters to 
the model, one at a time, in order of their ranking. At 

Table 2   Covariates created from remote sensing data (Mamić 
et al., 2022)

a (U-WIND + V-WIND)/2
b (((U-WIND + V-WIND)/2) + HUM + LST)/3
c (AI + CO + HCHO + NO2 + O3 + SO2)/6

No Parameter

1 (NO2 + SO2)/(NO2-SO2)
2 NO2/SO2

3 HCHO/CO
4 (CO + HCHO)/CO-HCHO)
5 O3/(NO2 + SO2 + CO)
6 AI*(NO2/SO2)
7 O3/(NO2/SO2)
8 O3/((NO2 + SO2)/(NO2-SO2))
9 SQRT(1/(NO2 + SO2 + O3))
10 (AI + HUM)/(AI-HUM)
11 (AI + DEM)/(AI-DEM)
12 (CO + NO2)/CO-NO2)
13 (CO + O3)/(CO-O3)
14 WINDa

15 WHTb

16 (WHT + AI)/(WHT-AI)
17 (WHT + O3)/(WHT-O3)
18 (CO + SO2)/(CO-SO2)
19 S5c

20 (S5 + WHT)/(S5-WHT)
21 (S5 + WIND)/(S5-WIND)
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each step, the accuracy of the classifier is measured 
on the test set using only the current subset of param-
eters. This process continues until the accuracy no 
longer improves. The Classifier Subset Evaluator is a  
useful way to reduce the dimensionality of the data 
while maintaining or even improving classification 
performance. By selecting only the most informative 
parameters, the method can improve the efficiency of 
machine learning algorithms and reduce overfitting. 
All remaining attributes were removed once the best 
had been identified, and then, a random forest clas-
sifier was used with data split into training and test-
ing portions of 70% and 30%, respectively. Once the 
model was developed, it was saved, and all models in 
this study were trained separately by the same pro-
cedure described above. It is important to note that 
each model should use at least one parameter directly 
related to air pollution. The total number of instances 
and parameters to build each model is shown in 
Table 3.

Accuracy assessment

The accuracy of the machine learning models may 
be validated using various metrics. However, the 
mean absolute error (MAE) and the root mean 
squared error (RMSE) are commonly used as evalu-
ation metrics when estimating air pollutants (Hu 
et al., 2017; Larkin et al., 2017; Ayturan et al., 2018; 
Rybarczyk & Zalakeviciute, 2018; Van Roode et al., 
2019; Masih, 2019).

MAE refers to the mean of the absolute error val-
ues of each prediction for all instances of the test 
dataset. The prediction error represents the difference 
between that case’s actual and predicted value. MAE 
treats all individual differences with equal weight.

The other metric used in this study is RMSE, as a 
standard way to measure the error of a model in pre-
dicting quantitative data. It’s the square root of the 
average of squared differences between predicted and 
actual values.

In given equations ŷ
1
, ŷ

2
,… , ŷn represent predicted 

values, y
1
, y

2
,… , yn are actual values, and n is the 

number of instances.

Results and discussions

Used variables

As said earlier, the composition of PM2.5 and PM10 
varies due to the various climatic and geographical 
features. Also, between non-heating and heating sea-
sons. Therefore, including multiple parameters in their 

(1)MAE =

√
∑n

i=1

|yi − ŷi|
n

(2)RMSE =

√
∑n

i=1

(yi − ŷi)
2

n

Table 3   Number of 
instances and parameters 
used to create each model

Model Pollutant Number of 
instances

Number of 
parameters

Continental: non-heating season PM2.5 274 11
Continental: non-heating season PM10 379 6
Mediterranean: non-heating season PM2.5 281 10
Mediterranean: non-heating season PM10 397 8
Continental: heating season PM2.5 322 10
Continental: heating season PM10 479 7
Mediterranean: heating season PM2.5 355 7
Mediterranean: heating season PM10 617 12
Croatia: non-heating season PM2.5 602 10
Croatia: non-heating season PM10 823 8
Croatia: heating season PM2.5 690 10
Croatia: heating season PM10 1109 10



Environ Monit Assess (2023) 195:644	

1 3

Page 9 of 22  644

Vol.: (0123456789)

estimation is crucial to improve the models’ stability 
and accuracy and discover the composition of specified 
air pollutants and their possible sources. The selected 
parameters used to develop models and estimate PM2.5 
and PM10 seasonal values on the national and regional 
scale of Croatia are shown in Tables 4, 5, and 6.

Looking at the attributes used to develop seasonal 
models of PM2.5 and PM10 for the Continental region 
of Croatia, it can be noticed that models use from six 
to 11 parameters. Furthermore, it is also noticeable 
how the PM2.5 models use more parameters than the 
PM10 models. Both PM2.5 models share four parame-
ters: DEM, (CO + HCHO)/(CO-HCHO), WIND, and 
(WHT + O3)/(WHT-O3), while PM10 models share 
LST, SOIL_pH, and SLOPE parameters.

When looking at the attributes used to build sea-
sonal models of PM2.5 and PM10 for Croatia’s Mediter-
ranean region, it is noticeable that all models use from 
seven to 12 parameters, similar to those of the Conti-
nental region. Both PM2.5 models have three param-
eters in common: U-WIND, DEM, and (WHT + AI)/
(WHT-AI), whereas PM10 models have five: CO, NO2, 
V-WIND, SLOPE, and (AI + DEM)/(AI + DEM) (AI-
DEM). Since the Mediterranean region of Croatia is 
known for having strong winds, all four models incor-
porate at least one wind component parameter.

All national models used a similar number of 
attributes (8 to 10). For both PM2.5 models, CO, LST, 
U-WIND, and SLOPE parameters are used. On the 
other hand, both PM10 models share following param-
eters: NO2, SOIL_pH, DEM, SLOPE (AI + HUM)/
(AI-HUM), and (WHT + AI)/(WHT-AI). Moreover, 
in all four models, the SLOPE parameter is used.

As previously noted, several studies to date have 
employed TROPOMI data to estimate atmospheric 
PM2.5 and PM10 concentrations. Therefore, to estimate 
PM2.5 and PM10 over China Wang et al. (2021) used 
numerous parameters (30) from multiple sources, such 
as TROPOMI (SO2, NO2, and O3), GEOS-FP (black 
carbon, organic carbon, nitrate, SO4, dust, ammo-
nium, sea salt, humidity, air temperature, U-WIND, 
V-WIND, total precipitable water vapor, Pbl top 
pressure, surface pressure, planetary boundary layer 
height, air density at surface, surface velocity scale, 
and evaporation from turbulence), MODIS (NDVI, 
fractions of forest, savanna, grassland, cropland, 
urban, and arid land), Open Street Map (road density), 
and GPW (population density). Feature importance 
analysis done by Wang et  al. (2021) showed that for 
PM2.5 estimation five the most significant variables 
are NO2, U-WIND, V-WIND, SO2, and Pbl top pres-
sure. On the other hand, their analysis showed that for 

Table 4   Parameters used to develop PM2.5 and PM10 seasonal models in the Continental region of Croatia

a (((U-WIND + V-WIND)/2) + HUM + LST)/3

Pollutant Season Parameters

PM2.5 Non-heating NO2, LST, HUM, DEM, NO2/SO2, (CO + HCHO)/CO-HCHO), AI*(NO2/SO2), O3/
((NO2 + SO2)/(NO2-SO2)), (CO + NO2)/CO-NO2), WIND, (WHTa + O3)/(WHT-O3)

PM2.5 Heating AI, CO, O3, V-WIND, SOIL_pH, DEM, (CO + HCHO)/(CO-HCHO), WIND, (WHT + AI)/
(WHT-AI), (WHT + O3)/(WHT-O3)

PM10 Non-heating LST, SOIL_pH, SLOPE, (CO + HCHO)/(CO-HCHO), AI*(NO2/SO2), (WHT + O3)/(WHT-O3)
PM10 Heating AI, LST, HUM, SOIL_pH, SLOPE, (AI + HUM)/(AI-HUM), (AI + DEM)/(AI-DEM)

Table 5   Parameters used to develop PM2.5 and PM10 seasonal models in the Mediterranean region of Croatia

a (((U-WIND + V-WIND)/2) + HUM + LST)/3

Pollutant Season Parameters

PM2.5 Non-heating SO2, HUM, U-WIND, SOIL_pH, DEM, SLOPE, SQRT(1/(NO2 + SO2 + O3)), 
(CO + NO2)/CO-NO2), (CO + O3)/(CO-O3), (WHTa + AI)/(WHT-AI)

PM2.5 Heating NO2, O3, U-WIND, V-WIND, DEM, (WHT + AI)/(WHT-AI), (WHT + O3)/(WHT-O3)
PM10 Non-heating CO, NO2, V-WIND, SLOPE, SQRT(1/(NO2 + SO2 + O3),

(AI + DEM)/(AI-DEM), WIND, (CO + SO2)/(CO-SO2)
PM10 Heating AI, CO, NO2, HUM, U-WIND, V-WIND, DEM, SLOPE, (AI + HUM)/(AI-HUM), 

(AI + DEM)/(AI-DEM), WHT, (WHT + O3)/(WHT-O3)
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PM10 estimation five of the most significant variables 
are NO2, U-WIND, V-WIND, dust, and SO2. When 
it comes to the study by Han et al. (2022) who were 
estimating PM2.5 ambient concentrations for Thai-
land, they used only TROPOMI (AI, CO, HCHO, 
SO2, NO2, and O3) and NASA SRTM elevation data 
(DEM), and their feature importance analysis showed 
NO2 and SO2 as the most unsignificant param-
eters with both long-term (1  month) and short-term 
(10 days) dataset. On the other hand, CO and AI were 
chosen as the most significant parameters regard-
ing both datasets. A study done by Son et al. (2022) 
also focused on estimating the PM2.5 concentrations in 
Thailand by combining multiple datasets: TROPOMI 
(CO, HCHO, SO2, NO2, and O3), ERA5 (temperature 
– T, dew-point temperature – Td, total evaporation, 
surface pressure, precipitation, U-WIND, V-WIND), 
ETOPO1 (DEM), and GlobCover (22 types of differ-
ent land cover). Moreover, they approximated relative 
humidity and wind speed using Eqs. (3) and (4).

Another study regarding PM2.5 estimation using 
TROPOMI data was done by Li et  al. (2022) as a 
joint estimation of PM2.5 and O3 over China, and they 
used TROPOMI (HCHO and NO2), ERA5 (U-WIND, 
V-WIND, temperature, evaporation, total precipita-
tion, surface pressure, surface, and top net solar radia-
tion), CAMS (NO2, HCHO, NO, PM2.5, and O3). As 
opposed to other mentioned studies, Ahmed et  al. 
(2022) used only TROPOMI data (AI, CH4, CO, 

(3)relhumidity = 100 ∗
e

17.625∗Td

243.04∗Td

e
17.625∗T

243.04∗T

(4)windspeed =

√
U −WIND2 + V −WIND2

HCHO, NO2, O3, SO2) to estimate average concentra-
tions of PM2.5 in various cities in Pakistan.

Spatial distribution maps

Detecting PM2.5 and PM10 hotspots is essential in find-
ing possible sources of air pollution. Therefore, based 
on the developed models and in situ data, using Arc-
GIS Pro 2.8.3 software and minimum curvature spline 
technique the interpolation maps of PM2.5 and PM10 
were made on the national and regional scale of Croa-
tia for both, non-heating and heating season (Figs. 3, 
4, 5, 6, 7, and 8) to show the spatial distribution of 
the observed pollutants. The ground stations used for 
modeling are indicated as point data on the maps.

It is assumed that during the heating season, pol-
lution will be higher. Furthermore, based on the geo-
graphical features of the Continental region, such as a 
relatively flat landscape and a climate of strong con-
trasts, it is assumed that it will be more polluted than 
the rest of the country.

The prediction maps are nearly identical to those cre-
ated using in situ data. For the Continental region, the 
assumption that the heating season is more polluted was 
correct for PM2.5, but for PM10, the situation remained 
almost constant across seasons. On the other hand, for 
the non-heating season, PM2.5 pollution is low, with 
some mild hotspots visible in the southeast part of the 
region, whereas for the heating season, pollution is high 
and focused on the region’s west side. When it comes  
to PM10, in both seasons, pollution is highest in the far 
east of the region, with one hotspot around the urban 
area of the city of Osijek. There are two other notice-
able hotspots in the central part of the region around the 
urban area of the city of Zagreb and the town of Kutina.

Table 6   Parameters used to develop PM2.5 and PM10 seasonal models in Croatia

a (((U-WIND + V-WIND)/2) + HUM + LST)/3

Pollutant Season Parameters

PM2.5 Non-heating CO, HCHO, LST, U-WIND, V-WIND, SOIL_pH, DEM, SLOPE, AI*(NO2/SO2), SQRT(1/
(NO2 + SO2 + O3))

PM2.5 Heating CO, O3, HUM, LST, U-WIND, SLOPE, HCHO/CO,
(CO + NO2)/(CO-NO2), (CO + O3)/(CO-O3), WHTa

PM10 Non-heating NO2, SOIL_pH, DEM, SLOPE, (NO2 + SO2)/(NO2-SO2), AI*(NO2/SO2), (AI + HUM)/(AI-HUM), 
(WHT + AI)/(WHT-AI)

PM10 Heating HCHO, NO2, HUM, U-WIND, V-WIND, SOIL_pH, DEM, SLOPE, (AI + HUM)/(AI-HUM), (WHT + AI)/
(WHT-AI)
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The assumption that the heating season is more 
polluted in the Mediterranean region was incorrect; 
again, predicted values appear to be slightly lower 
than actual ones and slightly underestimate them. 
Moreover, in the Mediterranean region, pollution is 
generally low. A single-polluted coastal area in the 
northern part is likely influenced by the urban area 
of the city of Rijeka, which is located directly above 
it. For both pollutants, there is a decrease during the 
heating season.

The interpolation maps on a national scale give us 
visual insight between the ground and remote sens-
ing data and show the seasonal variations of PM2.5 
and PM10 across the whole country. Prediction maps 
are nearly identical to those created using in-situ 
data. All conclusions drawn from regional maps are 
noticeable here. The Continental region stands out 
as the most polluted, with already mentioned hot-
spots located mostly in urban areas, and several stud-
ies (Fenger, 1999; Gulia et  al., 2015; Kaplan et  al.,  

Fig. 3   Interpolated PM2.5 concentrations for the Continental region of Croatia: A non-heating season from in situ data, B non-heating 
season from remote sensing data, C heating season from in situ data, and D heating season from remote sensing data
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2019) suggest that cities and high population densi-
ties are causes of air pollution. The low pollution in  
Alpine and Mediterranean regions supports other 
studies that talk about the impact of altitude (Kaplan 
& Avdan, 2020; Mamić, 2021; Ning et al., 2018) and 
sea (Rosenfeld et  al., 2002) on air quality. Further-
more, seasonal changes in PM2.5 were also noticed 

in studies by Wang et al. (2021) and Li et al. (2022)  
who connected them with heating emissions and vari-
ous meteorological conditions. Moreover, Wang et al. 
(2021) linked large PM10 emissions with sand storms 
and dry weather, which cannot be applicable to our 
study area since neither of these conditions is typical  
for any part of Croatia.

Fig. 4   Interpolated PM10 concentrations for the Continental region of Croatia: A non-heating season from in situ data, B non-heating 
season from remote sensing data, C heating season from in situ data, and D heating season from remote sensing data
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Validation

The PM2.5 and PM10 models on the national and 
regional scale of Croatia for heating and non-heating 
seasons were developed and are shown in Figs. 9, 10 
with their correlation coefficient (r), mean absolute 
error (MAE) and root mean squared error (RMSE).

Fig. 5   Interpolated PM2.5 concentrations for the Mediterranean region of Croatia: A non-heating season from in situ data, B non-
heating season from remote sensing data, C heating season from in situ data, and D heating season from remote sensing data

The Continental region is regarded as the most 
polluted region in Croatia. All developed models 
have a high correlation that does not vary much with 
the seasons, making them highly stable. The accu-
racy of PM2.5 models is higher than that of PM10. On 
the other hand, the Mediterranean region is influ-
enced by the sea and does not have high pollution. 
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All developed models have a high correlation, which 
increases with the heating season. Similarly to mod-
els developed for the Continental region, the accuracy 
of PM2.5 models is higher than that of PM10.

The final objective of this research was to develop 
PM2.5 and PM10 models for the non-heating and heat-
ing season in Croatia using only open-source data from 

the GEE. The PM2.5 models for both seasons show a 
high correlation with r = 0.71 (MAE = 3.23  μg/m3 
and RMSE = 5.27 μg/m3) for non-heating and r = 0.73 
(MAE = 6.30  μg/m3 and RMSE = 8.82  μg/m3) for the 
heating season. PM10 models are a little less accurate, 
but still show moderate – r = 0.59 (MAE = 7.64 μg/m3 
and RMSE = 13.33 μg/m3) for the non-heating season, 

Fig. 6   Interpolated PM10 concentrations for the Mediterranean region of Croatia: A non-heating season from in situ data, B non-
heating season from remote sensing data, C heating season from in situ data, and D heating season from remote sensing data
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to high correlation – r = 0.68 (MAE = 10.23 μg/m3 and 
RMSE = 15.02 μg/m3) for the heating season.

To better understand the developed national mod-
els, we can look at one ground station and its values 
(Fig. 11). This is the most western station located on 
the Istrian peninsula close to the sea and is installed 
on an industrial waste management site. Here we can 

see that the error between the actual and predicted 
values is the smallest for the PM2.5 non-heating sea-
son model and is close to 0 for this station. For this 
station, the error is the highest for the PM2.5 heating 
season model, even though this model has the high-
est accuracy among national models. The difference 
in seasons is clearly visible, where for the heating 

Fig. 7   Interpolated PM2.5 concentrations for Croatia: A non-heating season from in  situ data, B non-heating season from remote 
sensing data, C heating season from in situ data, and D heating season from remote sensing data
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season we have higher values than in non-heating, as 
a justification for the seasonal temporal frame used in 
this research.

All PM2.5 and PM10 models developed in this 
research are shown in Fig. 12, with their r, MAE, and 
RMSE. The r of each developed model is ranked from 
highest (green) to lowest (red). Low MAE and RMSE 
values are represented by red arrows, while yellow 
and blue arrows, respectively, represent medium 
and high values. Therefore, it is clear that all PM2.5 

models have shown better performance compared to 
PM10. Moreover, almost all regional models outper-
formed national ones.

Comparison with CAMS data

The Copernicus Atmosphere Monitoring Service 
(CAMS) provides global and European data related 
to air pollution and health, greenhouse gas emis-
sions, solar energy, and climate forcing. For the 

Fig. 8   Interpolated PM10 concentrations for Croatia: A non-heating season from in  situ data, B non-heating season from remote 
sensing data, C heating season from in situ data, and D heating season from remote sensing data
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period observed by this research, available CAMS 
data is only that of PM2.5 at the spatial resolu-
tion of 44 528  m. The averaged PM2.5 data for the 

non-heating and heating season was collected for 
Croatia by GEE and compared with the in situ data 
and data predicted by developed models (Fig. 13).

Fig. 9   Regional PM2.5 and PM10 prediction models
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For the non-heating season, the CAMS data appear 
higher than most stations’ actual values. On the other 
hand, the situation is the opposite for the heating sea-
son, where the CAMS data are underestimating the 
actual values. The CAMS data appear to be consistent 
throughout all stations and are unable to show sudden 

changes in the observed pollutant, which may be due 
to the lower spatial resolution of the data. All being 
said, CAMS is a valuable source of PM2.5 data. How-
ever, on this scale, the models developed in this study 
proved to be a better solution.

Fig. 10   National PM2.5 and PM10 prediction models for Croatia

Fig. 11   AMP Kaštijun 
ground station with actual 
and predicted data for all 
national models
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Fig. 12   All developed 
PM2.5 and PM10 models

Fig. 13   PM2.5 comparison between CAMS, predicted and in situ data for Croatia: a non-heating season and b heating season
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Conclusions

This study followed a new approach to estimate ambi-
ent concentrations of PM2.5 and PM10 from TRO-
POMI and other open-source remote sensing data 
available on GEE. Therefore, on a non-heating and 
heating seasons time scale, the random forest machine 
learning method was successfully used to create mod-
erate to high precision PM2.5 and PM10 models for the 
Republic of Croatia. The spatial distribution of PM2.5 
concentrations during the heating season revealed sig-
nificant variations in pollution between biogeographi-
cal regions, which motivated us to develop regional 
models as well.

Due to the insufficient number of ground moni-
toring stations in the Alpine region of Croatia, it was 
decided not to develop models for the Alpine region. 
However, the Continental region has sufficient ground 
monitoring stations and is the most polluted region in 
the country. As a result of their high correlation and lit-
tle seasonal variation, all models trained for the Conti-
nental region are quite stable. The accuracy of PM2.5 
models (0.73 < r < 0.74) is higher than that of PM10 
(r = 0.69). All developed models have a high correla-
tion when it comes to the Mediterranean region, which 
is mainly influenced by the sea and strong winds. The 
accuracy of the models increases with the heating sea-
son, although pollution is lower in the heating season. 
The PM2.5 model shows r = 0.73 for the non-heating 
season and r = 0.82 for the heating season. On the other 
hand, the PM10 model has r = 0.67 for non-heating 
seasons and r = 0.73 for heating seasons. Similarly 
to models for the Continental region, the accuracy of 
PM2.5 models is higher than that of PM10.

Developed models for predicting seasonal varia-
tions of PM2.5 and PM10 on the whole territory of the 
Republic of Croatia show moderate to high accuracy. 
In particular, the PM2.5 model for the non-heating sea-
son has r = 0.71 and r = 0.73 for the heating season. 
On the other hand, the PM10 model has r = 0.59 for 
the non-heating, and r = 0.68 for the heating season.

Comparison between in situ, predicted and CAMS 
PM2.5 data have shown how CAMS is consistent, but 
unable to monitor sudden changes in the observed 
pollutant. Therefore, the developed models proved to 
be a better solution for monitoring atmospheric con-
centrations of PM2.5 and PM10 over Croatia.

Most of the models developed slightly underesti-
mate the actual values, making the predicted values 

appear slightly lower. However, even in places with 
low levels of pollution, all models have demonstrated 
a general ability to estimate PM2.5 and PM10 levels. 
Additionally, all models can accurately identify all 
PM2.5 and PM10 hotspots. The approach proposed by 
this study has great potential to be extended to a larger 
scale. However, manual cleaning of the data set can 
be challenging, especially in emergency situations of 
atmospheric pollution; thus, for future studies, we rec-
ommend automatization of the process which seems 
to be a key element of modeling. Also, future studies 
should focus on applying the regional models devel-
oped by this research in other Continental and Medi-
terranean regions in Europe.
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