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Abstract

Beta regression is a flexible tool in modelling proportions and rates, but scarcely
applied in actuarial field. In this paper, we propose its application in the context
of policyholder behaviour and particularly to model surrenders and withdrawals.
Surrender implies the expiration of the contract and denotes the payment of the
surrender value, that is contractually defined. Withdrawal does not imply the ter-
mination of the contract and denotes the payment of a cash amount, left to the
discretion of the policyholder, within the limits of the surrender value.
Moreover, the Actuarial Standard of Practice 52 states that, for surrender and
withdrawal estimation, the actuary should take into account several risk factors
that could influence the phenomenon. To this aim, we introduce a Two-Part Beta
regression model, where the first part consists in the estimate of the number of
surrenders and withdrawals by means of a Multinomial regression, as an exten-
sion of the Logistic regression model frequently used in the empirical literature
just to estimate surrender.
Then, considering the uncertainty on the amount withdrawn, we express it as a
proportion of surrender value; in this way, it assumes values continuously in the
interval (0,1) and it is compliant with a Beta distribution. Therefore, in the second
part, we propose the adoption of a Beta regression approach to model the propor-
tion withdrawn of the surrender value.
Our final goal is to apply our model on a real life insurance portfolio providing
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the estimates of the number of surrenders and withdrawals as well as the corre-
sponding cash amount for each risk class considered.

Keywords: Beta regression, Lapse, Multinomial regression, Policyholder
behaviour, Surrender, Withdrawal.

1. Introduction

The interest in the analysis of the policyholder behaviour in the actuarial and
risk management fields has dramatically increased over the last decade. Among
the main reasons, there is the need to raise the accuracy of actuarial models both
for regulatory purposes and for the greater awareness in the underwriting and man-
agement phases of insurance products.
Among others, traditional regression methods are commonly used by practition-
ers when the behaviour of the response variable is described as a function of other
exogenous variables. Regression models adopted in actuarial life and non-life
applications are Generalized Linear Models (see De Jong and Heller [2008]) or
their extensions as Generalized Additive models, Hierarchical Generalized Linear
Model, to mention the most used; one of the main motivations of such an exten-
sive application is that the distribution of the response variable is a member of
the exponential family, usually suitable for describing numbers or amounts linked
to insurance events. However, it is interesting to highlight that in actuarial appli-
cations data may also be collected in the form of fractions, rates or proportions,
continuously assuming value in the interval (0,1). By means of example, one can
refer to the portion withdrawn of the net cash value in a life insurance or pension
plan, or the portion of loss or damage related to the property’s value in a personal
property coverage. In such cases, exponential distributions are not suitable for
modelling the data and the assumption of a Beta distribution of the response vari-
able is more appropriate.
To this aim, in the following paper, we introduce a methodological framework
in the assessment of the likelihood that a policyholder will exercise the surren-
der and/or the withdrawal contractual options in a life insurance product looking
at both frequency and severity associated with these events. The term surren-
der (or full withdrawal) means that policyholder voluntarily lapses his/her policy
and early terminates the insurance contract to access to the cash surrender value.
Moreover, many products (e.g. Unit Linked, Whole Life Variable Annuities, Uni-
versal life) allow the policyholder to take withdrawals (in some countries called
partial surrender) from his/her policy. A withdrawal reduces, but does not set to
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zero, the face amount of the contract and the surrender value as well. However, it
is noteworthy that withdrawals do not involve an early termination of the contract
and imply that only a portion of the cash value is depleted from the total cash
value; therefore, the withdrawal amount can be measured as a proportion of the
cash value being included in the interval (0,1).
The simultaneous existence of a surrender option and a withdrawal option in a life
insurance contract significantly affects the estimate of a contract’s future cash flow
and, as far as we know, has never been discussed until now. An under/overestimate
of the number of surrenders that early terminate the contract as well as of the
amount surrendered or withdrawn may cause several effects: a change in the in-
surer’s best estimate liabilities, an impact on the asset-liability strategy, a loss of
future profits or the increase of losses in case of high financial guarantees.
The pricing of surrender options is mostly based on the assumption of a full ra-
tional behaviour of the policyholder, who optimally acts to maximize the terminal
value of the policy and the use of financial mathematics techniques (see Bacinello
[2003], Bacinello [2005]).

However, as real evidence contradicts rational behaviour, empirical research on
the lapsation investigates irrational behaviour looking for the factors that influence
the surrender behaviour of life insurance policyholder. The relationship between
lapses and economic environment or insurance policy characteristics is generally
performed by means of statistical approaches such as Generalized Linear Model
(Haberman and Renshaw [1996], Kim [2005], Cerchiara [2009], Eling and
Kiesenbauer [2014], Baione et al. [2021]), Classification tree (Milhaud et al.
[2010]), and more recently Machine Learning (Aleandri [2018]). All the men-
tioned papers concern the estimate of the occurrence or not of surrenders but no
one discusses about withdrawals simultaneously or alone, neither on the corre-
sponding withdrawal amount.
In order to investigate a general framework for the estimation of surrender and
withdrawal rates and the severity of the cash value withdrawn, we consider a
two-part model (Duan et al. [1983]) to decompose the expected benefits be-
tween surrenders and withdrawals. Two-part models in actuarial sciences are of-
ten used for non-life premium rate-making or claims reserving and are usually
called frequency-severity models. To this aim, we consider two multivariate re-
gression models. The first one is a Multinomial regression (henceforth also MR)
model used to estimate the probability of surrender or withdrawal; a basic theory
of Multinomial model is described in Venables and Ripley [2003]. Hence, if a
withdrawal event occurs, we use Beta regression (hereafter also BR) (see Cribari-
Neto and Ferrari [2004]) to model the fraction of the face amount withdrawn.
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BR defines a multivariate model, where the response variable ranges from 0 to 1,
hence it is suitable to our aim.

In the current literature, BR has been applied in multiple fields of knowledge
(e.g. medicine, economics, biology) but not in the life insurance.
The rest of the paper is organized as follows. Section 2 introduces the basic theory
of BR. Section 3 describes the two-stage approach and how BR approach can be
used for the estimate of withdrawal in order to get a full calculation of insurance
benefit due to surrenders and withdrawals. Section 4 shows an application on a
real life insurance portfolio and illustrates the results. Finally, Section 5 discusses
the main findings and concludes.

2. An introduction to Beta regression

The Beta distribution has become more popular in recent years in modeling
data bounded within open interval (0,1), and is suitable to model rates and pro-
portions therefore it is widely used in several fields of application.
Let Y ∼ Be(a,b) be a Beta distributed random variable (henceforth r.v.) and its
density function is given by:

π(y;a,b) =
Γ(a+b)

Γ(a) ·Γ(b)
· ya−1 · (1− y)b−1 , 0 < y < 1 (2.1)

where a > 0, b > 0 and Γ is the Gamma function.
The mean and variance of Y are, respectively,

E(Y ) =
a

(a+b)
, Var(Y ) =

a ·b
(a+b)2 · (a+b+1)

(2.2)

However, for regression purposes it is typically more useful to model the mean of
the response. To such aim a different parametrisation for the Beta density is used.
Let µ = a/(a+ b) and ϕ = (a+ b), i.e. a = µ ·ϕ and b = (1− µ) ·ϕ. It follows
from Eq. (2.2) that

E(Y ) = µ, Var(Y ) =
V (µ)
1+ϕ

(2.3)

where V (µ) = µ(1− µ) is the variance function. Eq. (2.3) provides the meaning
of µ and ϕ as the mean and precision parameter respectively. As can be seen, for
larger values of ϕ the variance of Y is smaller. The density in the new parametriza-
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tion is:

π(y;µ,ϕ) =
Γ(ϕ)

Γ(µ ·ϕ) ·Γ((1−µ) ·ϕ)
· yµ·ϕ−1(1− y)(1−µ)·ϕ−1, 0 < y < 1, (2.4)

where 0 < µ < 1 and ϕ > 0.
Beta regression techniques have been introduced by Cribari-Neto and Ferrari
[2004] and can be considered as an extension of the Generalized Linear Model
theory when the continuous dependent variables can be assumed as Beta dis-
tributed.
Simple approaches to model continuous proportions like the transformation of
the response and the adoption of linear regression models have drawbacks: pa-
rameters cannot be easily interpreted in terms of the original response and, when
measures of proportions typically display asymmetry, inference based on the nor-
mality assumption can be misleading.
Hence, BR enables to define the statistical relationship between the conditional
mean of Y and a row vector of independent covariates, xi = (xi1, . . . ,xim). Let
(xi,yi) be a member of a set of observations (i = 1, . . . ,n) where yi is a ran-
dom sample from Y , the dependent variable of regression equation, and xi =
(xi1, . . . ,xim) is the row-vector introduced above (covariates). The conditional
mean for the i-th insured is given by:

µi = E(Y |xi) = E(Y (i)) = g−1(xi ·β), (2.5)

where β is the column-vector of regression coefficients and g is the link function
introduced in GLM theory by Nelder and McCullagh [1989]. In some cases, the
choice of the link function g is bounded with the features of statistical procedures.
There are several possible link functions g in a Beta regression context. For in-
stance, one can use the Logit, the Probit or the Complementary Log-Log link
function among others. A review of these link functions is proposed in Nelder
and McCullagh [1989], and in Atkinson [1985].
An estimate of β, by means of (2.5), is obtained by maximizing the following Beta
log-likelihood function based on the yi sample and :

`B(β,x,ϕ) =
n

∑
i=1

log(Γ(ϕ))− log(Γ(µiϕ))− log(Γ((1−µi)ϕ))

+(µiϕ−1) log(yi)+ [(1−µi)ϕ−1] log(1− yi)

(2.6)
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Cribari-Neto and Ferrari [2004] provide closed-form expressions for the score
function, for Fisher’s information matrix and its inverse.

Moreover, tests of hypotheses on the regression parameters (e.g. Wald test,
likelihood test etc.) can be performed using approximations from the asymptotic
normality of the maximum likelihood estimator.

3. A two-part Beta regression approach for the estimate of the policyholder
behaviour in case of surrender and withdrawal.

Considering that many actuarial problems involve the assessment of propor-
tions and/or rates, we show how the BR can be used as a flexible and efficient tool
into a specific insurance problem.
In the following, we show how the BR can be applied in a two-part model for
the estimate of the total cash flow due to lapses, when the contracts includes a
surrender and a withdrawal option.

3.1. A basic approach for surrender and withdrawal rates estimates
Letting s being the surrender probability per unit time (month, year, etc.), ac-

tuarial literature and practice provide several procedures of estimate. A common
practice is to calculate surrender rates by policy count as the ratio between "Num-
ber of Contracts surrendered" and "Number of Contracts Exposed to Surrender".
However, number of contracts completely lacks volume information, i.e. contracts
with a small and high amount of exposure (e.g. premium, reserve, sum insured)
are identically considered. As an alternative, face amount is considered when
surrender rates are computed as the ratio between "Face Amount at Surrender"
and "Face Amount Exposed to Surrender". Thus, the surrender value will reflect
contract size increasing the accuracy in the cash flows modelling. However, an
under/overestimate of the number of surrenders that early terminate the contract,
could be observed.
Furthermore, if withdrawals are admissible, it is relevant to consider the probabil-
ity of withdrawal in a unit of time, w. However, it is noteworthy that withdrawals
do not involve an early termination of the contract and imply that only a portion
of the cash value is depleted from the total cash value.
Moreover, in case of surrender, the uncertainty relates only to the probability of
occurrence, whereas in case of withdrawal further uncertainty is introduced by
the reduction of the total cash value. The latter can be defined as a percentage
of decrement of the face amount exposed to surrender conditioned to withdrawal
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events in a unit of time (hereafter referred to as "withdrawn percentage"). The
withdrawn percentage is continuous and included between 0 and 1.
Let B be the r.v. benefits due to surrenders and withdrawals per unit of time of a
policy with one unit face amount (henceforth Total Cash Flow). We will assume
in the following that in a unit of time (month, year, etc,) a single surrender or
withdrawal event can occur. Following Ospina and Ferrari [2010], the r.v. B is a
mixture between a Bernoulli distribution and a Beta distribution. Specifically, we
assume that the cumulative distribution function (hereafter cdf) of the r.v. B is:

FB (b;s,w,µ,ϕ) = (1−w) ·Ber
(

b;
s

1−w

)
+w ·BETA(b;µ,ϕ) (3.1)

where Ber
(
·; s

1−w

)
represents the cdf of a Bernoulli r.v. with parameter s

1−w and
BETA(b;µ,ϕ) is the Beta cdf, whose density function is defined by Eq. (2.4).
Therefore, B has a zero-and-one-inflated beta distribution (i.e B∼BEINF (s,w,µ,ϕ))
with parameters s, w, µ and ϕ if its density function with respect to the measure
generated by the mixture is given by:

fB (b;s,w,µ,ϕ) =


1− s−w if b = 0
s if b = 1
w ·π(b;µ,ϕ) if 0 < b < 1

(3.2)

It is worth noting, that Prob(B = 0) = 1− s−w and Prob(B = 1) = s; hence, the
expected value of this r.v. B is:

E [B] = s+w ·µ. (3.3)

Note that E [B] is the weighted average of the expected value of the Bernoulli
distribution with parameter s

1−w and the expected value µ of the Beta distribution
(see Eq. (2.3)) with weights 1−w and w respectively.

3.2. The regression models for surrenders and withdrawals estimates
The basic probabilistic framework introduced above, represents a very simple

example of one of the most relevant actuarial assumptions for life insurance poli-
cies. In particular, such assumption belongs to the broader class of policyholder
behavior risk that commonly refers to uncertainty with regards to policyholder
premium payment patterns, premium persistency, surrenders, lapses, partial with-
drawals, among others (American Academy of Actuaries [2019]). These poli-
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cyholder behavior assumptions can vary due to policyholder characteristics. The
Actuarial Standard of Practice 52 (ASOP 52 [2018]) states that "in setting partial
withdrawal and surrender assumptions, the actuary should consider the insured’s
age and gender, the policy duration, the existence of policy loans, and scheduled
changes in premium and benefit amounts".
Therefore, considering that a real portfolio of policies is characterized by a rel-
evant number of risk factors, a very large number of homogenous risk classes
may be identified. In such cases, an individual estimation approach for each ho-
mogeneous risk class is not feasible and an estimation method, that uses all the
information available in a single model, is more appropriate.
To this aim, academic literature has largely debated on the use of the multivariate
regression method and, in particular, Logistic regression for lapse/surrender rates
estimation (Haberman and Renshaw [1996], Kim [2005], Cerchiara [2009], El-
ing and Kiesenbauer [2014]). However, such models are only finalized in the
estimate of the surrender probability, but they do not deal with the estimate of
withdrawal rates and the related amount.
Our goal is to broaden the estimation model, so as to identify the expected value
of B given a portfolio containing a number n of policies and a set m of covariates.
To this aim, for each policy i= 1, . . . ,n, we need to estimate the probabilities s and
w and the expected withdrawn percentage µ, conditioned to the vector of indepen-
dent covariates xi = (xi1, . . . ,xim). To face such estimation problem introduced in
Eq. (3.3), we propose the following two-part regression approach:

• First, we focused on the estimation of the probability that the i-th insured
withdraws wi or surrenders si, by means of a Multinomial regression model
(Venables and Ripley [2003]).

MR is a classification method that generalizes binomial regression to mul-
ticlass problems, i.e. with more than two possible discrete outcomes. It
is used to predict the probabilities of J different possible outcomes of a
categorically distributed dependent variable Z, given a set of independent
variables xi, as follows:

Prob [Z = j|xi] = h−1
j (xi,Γ), j = 1, . . . ,J and i = 1, . . . ,n (3.4)

where Γ is a matrix of regression coefficients and h j is a link function that
should be selected so that the probabilities lie between 0 and 1 and sum over
j to one. Different functional forms of h j lead to multinomial ordered probit
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or logit model.

Since the multinomial conditional density for one observation of Z is:

fZ (xi,Γ,z1, · · · ,zJ) =
J

∏
j=1

h−1
j (xi,Γ)

z j (3.5)

where the generic z j is equal to 1 if Z = j and 0 otherwise,

the maximum likelihood estimate of the regression coefficients Γ are esti-
mated by maximizing the following log-likelihood function:

`Z(x,Γ,z1, . . . ,zJ) =
n

∑
i=1

J

∑
j=1

zi, j log
[
h−1

j (xi,Γ)
]

(3.6)

• Second we need to model the fraction of the face amount withdrawn. To
this aim, as in case of withdrawal B assumes values within open interval
(0,1), it should be considered as the response variable Y of a BR model as
described in the previous Section 2.
The BR model identifies, for each insured, the conditional expectation of
the withdrawn percentage µi, by means of Eq. (2.5).

It is worth noting that the estimates of si, wi, µi and ϕ allow an estimate of
the conditional density fBi (b;si,wi,µi,ϕ). Then, it is quite simple to perform a
simulation model in order to get not only a point estimate, but also an interval
estimate of the r.v. involved in our problem.

4. An application on a life insurance portfolio

In this section, we present an application of the proposed methodology to a
real insurer database. The data set consists on seriatim data of single-premium
whole life participating policies with zero interest rate, no minimum-guarantee
and no surrender charge, from an Italian life insurance company between years
2009 and 2017.
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4.1. Dataset analysis
In order to investigate the different behaviour of policyholders respect to the

surrender/withdrawal events, the data set contains seriatim information on policies
but limited to the following risk factors: Policy Duration (PD), Gender (G), Pol-
icyholder Underwriting Age (UA) and Mathematical Reserve (Res). It is worth
noting that these characteristics are in line with the request of the Actuarial Stan-
dard of Practice No. 52 (ASOP 52 [2018]). Descriptive statistics of the portfolio
for quantitative covariates are exhibited in Table 5.1. The average insurance con-

Table 4.1: Descriptive Statistics of the dataset

Policy Duration Policyholder Underwriting Math. Reserve Surrender Withdrawal
(in years) Age (in years) (in kC) (in kC) (in kC)

Mean 7.88 52.68 3.85 3.49 1.45
Median 7.00 53.00 2.13 2.07 0.62
Mode 3.00 63.00 1.22 1.50 0.50
St. Dev. 4.10 16.87 7.04 4.83 2.60
Coeff. of variation 52.02% 32.02% 182.81% 138.30% 179.71%
Kurtosis -0.55 -0.94 348.83 60.49 55.47
Skewness 0.69 -0.03 13.93 6.04 6.01
Min 3.00 6.00 0.01 0.05 0.01
0.05 Quantile 3.00 25.00 0.31 0.31 0.10
0.95 Quantile 16.00 87.00 11.30 10.64 5.01
Max 21.00 94.00 277.18 84.87 46.00

tract is held by a 52.68 years old policyholder with 7.88 years duration and a
mathematical reserve of 3.85 thousand euros. The UA distribution is sufficiently
symmetric and lightly platykurtic while the PD is right skewed with a mode in 3.
On the contrary, the distribution of the mathematical reserve shows a very large
positive skewness and kurtosis suggesting highly asymmetric and right skewed
distribution as appreciable by the values assumed by the median (2.13), the mean
(3.85), the 0.95 quantile (11.30) and the maximum value (277.18). Moreover,
our dataset contains surrenders and withdrawals for policies with policy duration
greater than 2 years, as the contract conditions do not allow to lapse during the
first two years, while the maximum observed policy duration is 21 years.
In Table 5.2, a statistical summary of the dataset is reported. In the following ta-
bles and figures, UA and Res are grouped in bins just for sake of representation.
We have selected the bins of the same size using groups of ten for UA and a thou-
sand for Res. The latter considers a last class for values over ten thousand euro,
corresponding to values over the 0.92 observed quantile. Policy duration is an
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integer variable, then all the levels are reported (from 3 to 21). It is worth noting
that, with the exception of G, all the covariates are considered as numerical in the
following regression models.

The surrender rates calculated per policy count are basically greater than the
ones calculated per face amount, with the exception of Res, where there is a sub-
stantial alignment. The latter outcome is not unexpected, as contracts are grouped
into more homogeneous classes per economic exposure; hence, as stated in Sec-
tion 3.1, this condition implies a reduction of the differences between the two
estimation methods.
The observed surrender rate by policy count is equal to 11.00%(15,469/140,579),
whereas by face amount is 9.99%(54,052/541,195), with a difference of 1.01%.
By comparing the surrender rates on each level of the variables, it is possible to
observe that there are cases where this difference increases: by the way of exam-
ple in case of level 4 of variable PD (the second most relevant level in terms of
policy count and the third in terms of face amount) the surrender rate by policy
count is equal to 15.13%, whereas by face amount is 12.75%, with a difference
of 2.38%. This difference is attributable to a non-homogeneous portfolio per eco-
nomic exposure, indeed if all the policies had the same face amount the surrender
rates per policy and per face amount would be the same. To solve this issue, in
setting surrender assumption an actuary should consider economic exposures (e.g.
benefit amounts) among others features (ASOP 52 [2018]).
In this sense, it is useful to consider an economic exposure measure like mathe-
matical reserve as covariate for the frequency component (MR).
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The Gender analysis shows that males have a greater propensity to surrender
(11.68%) than females (10.36%).
The withdrawal rate calculated per policy count (4.70%) is greater than the one
calculated per face amount (1.77%). This is confirmed for each variables’ level.
It is worth noting that for Res, even though the contracts are grouped into more
homogeneous risk classes, the estimates are not similar. This finding is not sur-
prising because, as stated in Section 3.1, withdrawals introduce a component of
uncertainty identified by the Beta component in Eq. (3.1).

Furthermore, the last column in Table 5.2 illustrates the withdrawn percent-
age and put in evidence different policyholder behaviour towards the withdrawal
event. Considering that, the policies have not surrender charge, the withdrawn
percentage is obtained considering the mathematical reserve of the withdrawn
policies as denominator. As expected, policies with a lower (higher) face amount
show a higher (lower) withdrawn percentage. A similar decreasing trend is shown
by UA, that may be due to a lower exposure for younger individuals or to a greater
demand for cash values at a young age. Whereas, we observe an increasing trend
of the withdrawn percentage as PD increases. These different trends, observed for
withdrawn percentage, suggest the need to deepen a multivariate analysis. To this
aim BR represents a suitable model to perform this analysis.
In the following, our goal is the estimation of the elements in Eq. (3.3), through
the two-part process. To perform statistical analysis, we split the dataset into a
training and testing samples. The training sample is used to fit a predictive model,
and its performance is evaluated on the test subset. The training set is randomly
selected and consists of 75% of initial database.

4.2. Multinomial Logistic regression for surrender and withdrawal rates
The Multinomial Logistic regression provides the estimation of wi, si condi-

tioned to the vector of independent covariates xi = (xi1, . . . ,xim).
Then, considering a logit function for h, by Eq. (??) it holds:

wi =
e
(

γ
(w)
0 +∑

δ
k=1 γ

(w)
PD,k(PDi)

k+γ
(w)
Gi

(Gi)+∑
δ
k=1 γ

(w)
UA,k(UAi)

k+∑
δ
k=1 γ

(w)
Res,k(Resi)

k
)

1+∑ j e
(

γ
( j)
0 +∑

δ
k=1 γ

( j)
PD,k(PDi)

k+γ
( j)
Gi

(Gi)+∑
δ
k=1 γ

( j)
UA,k(UAi)

k+∑
δ
k=1 γ

( j)
Res,k(Resi)

k
) , (4.1)
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si =
e
(

γ
(s)
0 +∑

δ
k=1 γ

(s)
PD,k(PDi)

k+γ
(s)
Gi
(Gi)+∑

δ
k=1 γ

(s)
UA,k(UAi)

k+∑
δ
k=1 γ

(s)
Res,k(Resi)

k
)

1+∑ j e
(

γ
( j)
0 +∑

δ
k=1 γ

( j)
PD,k(PDi)

k+γ
( j)
Gi

(Gi)+∑
δ
k=1 γ

( j)
UA,k(UAi)

k+∑
δ
k=1 γ

( j)
Res,k(Resi)

k
) , (4.2)

where γ( j)
. ∈ Γ, are the Multinomial Logistic regression coefficients for event

j = {w,s} and δ the degree of polynomial used for the numerical variables (i.e.
PD, Res and UA). In this example, to avoid over parametrization, we set δ =
3. The base levels for the categorical variable G is "Female". The coefficients’
estimates are reported in Table 5.3.

Table 4.3: Results of the estimation using Multinomial Logistic regression model

Coefficient Estimate p-value

Acronym Symbol Withdrawal Surrender Withdrawal Surrender

Base γ0 -2.09E+00 -6.93E-01 < 10−6 < 10−6

G γG=M -5.28E-02 1.35E-01 < 10−6 < 10−6

PD γPD,1 -1.24E-01 2.80E-02 < 10−6 < 10−6

PD γPD,2 9.86E-03 -2.95E-02 < 10−6 < 10−6

PD γPD,3 -3.21E-04 1.37E-03 < 10−6 < 10−6

UA γUA,1 -2.21E-03 -4.92E-02 < 10−6 < 10−6

UA γUA,2 -1.93E-04 1.28E-03 < 10−6 < 10−6

UA γUA,3 1.18E-06 -9.26E-06 < 10−6 < 10−6

Res γRes,1 5.65E-02 -8.89E-02 < 10−6 < 10−6

Res γRes,2 -7.05E-04 2.98E-03 < 10−6 < 10−6

Res γRes,3 1.95E-06 -2.53E-05 < 10−6 < 10−6

As one can see all the coefficients are highly significant, hence all selected fac-
tors give a relevant contribution to the explanation of the policyholder behaviour
respect to withdrawals and surrenders occurrence.

As mentioned above, in order to evaluate the models, a validation dataset rep-
resenting 25% of the global data is served to verify the prediction quality of the
models. To assess the classification accuracy in the multinomial regression model,
we adopt the Receiver Operating Characteristic (ROC) curve, typically used in bi-
nary classification, and we use the area under the curve (AUC) as validation mea-
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sure. AUC ranges in value from 0 to 1, where a value of 0 indicates a perfectly
inaccurate test and a value of 1 reflects a perfectly accurate test. However, con-
sidering that we deal with a multi-class dataset (i.e. "Withdrawal", "Surrender",
"Other"), it is necessary to extend ROC curve and AUC to face with multiple
classes classifications problem. Moreover, the dataset is imbalanced with most
of the data falling in "Other" (84.3%) and the remaining between "Surrender"
(11.00%) and "Withdrawal" (4.70%). One can draw a ROC curve by considering
each element of the indicator matrix as a binary prediction (micro-averaging), in
such a case. Micro-averaging treats the entire set of data as an aggregate result,
in order to convert multiclass prediction into binary prediction and compute the
metric average. This measure is recommended in multi-class classification setup
where class levels are imbalanced. In Figure 5.1, the ROC curve is plotted with
True Positive Rate (TPR) against the False Positive Rate (FPR), where TPR is on
the y-axis and FPR is on the x-axis. AUC measures the entire two-dimensional
area underneath the entire ROC curve and is equal to 91.47% showing high clas-
sification accuracy.

Figure 4.1: Micro-average Receiver Operating Characteristic curve (ROC)

In Table 5.4, for sake of simplicity, we show the calculus of the number of
surrenders and withdrawals for UA classes.
It is worth noting that the estimates are very close to the observed values, indeed
the differences are in the range (−1.69%,2.61%) for surrenders and (−2.58%,5.95%)
for withdrawals. As one can see, considering the total number of surrenders and
withdrawals, the error is negligible (0.22%) for surrenders and (1.18%) for with-
drawals.
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Table 4.4: Total Surrender and Withdrawal events for Policyholder Underwriting Age

UA
Surrender Withdrawal

Observed Fitted ∆% Observed Fitted ∆%

< 30 291 291 0.04% 195 190 -2.58%
[30,40) 498 498 0.04% 268 284 5.95%
[40,50) 708 713 0.77% 322 330 2.47%
[50,60) 754 750 -0.55% 300 295 -1.67%
[60,70) 796 817 2.61% 289 281 2.69%
≥ 70 815 801 -1.69% 262 275 5.04%

Total 3,862 3,871 0.22% 1,636 1,655 1.18%

In Figure 5.2 a comparison between observed and fitted number of surrenders
and withdrawals, for each covariate is reported.
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4.3. Beta regression for expected withdrawn percentage estimate
The BR provides the estimation of the expected withdrawn percentage condi-

tioned to the vector of independent covariates xi = (xi1, . . . ,xim), (see Eq. (2.5)).
To avoid confusion, for BR we use the same risk factors as used for the Multi-
nomial Logistic regression model. For the link function g, we test functions sug-
gested in Cribari-Neto and Ferrari [2004] and we select the one that generates the
greatest log-likelihood value as reported in Table 5.5 As can be seen, the Comple-

Table 4.5: Link function selection for BR: log-likelihood values

g `B(µi,ϕ)

Logit 7,182
Probit 7,176

Complementary log-log 7,226
Log-log 7,133

mentary log-log shows the highest log-likelihood. Thus, we define the BR model
by the following equation:

µi = 1− e−e(β0+∑
δ
k=1 βPD,k(PDi)

k
+βGi(Gi)+∑

δ
k=1 βUA,k(UAi)

k
+∑

δ
k=1 βRes,k(Resi)

k) (4.3)

The maximum likelihood estimates of all the coefficients β and precision pa-
rameter ϕ are reported in Table 5.6, as well as the p-value for asymptotic Wald
test. It is worth noting that all the parameters are significant.

In Table 5.7, for sake of simplicity, we show the calculus of the cash flow es-
timates for withdrawals grouped for UA classes.
It is worth noting that the estimates are very close to the observed values, indeed
the differences are in the range (−2.51%,6.31%). As one can see, considering
the total cash flow amount the error is negligible (2.83%).

In Figure 5.3, a comparison between observed (triangles) and fitted (dotted
line) withdrawal amounts for each risk factor is reported, where the exposure is
the percentage of number of policies for each covariate.
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Table 4.6: Coefficients estimates of the Beta regression

Acronym Symbol Estimate p-value

Base β0 -6.83E-01 1.14E-05
G βG=M 8.37E-02 < 10−6

PD βPD,1 -1.30E-01 < 10−6

PD βPD,2 2.22E-02 < 10−6

PD βPD,3 -7.66E-04 < 10−6

UA βUA,1 1.51E-02 8.70E-02
UA βUA,2 -4.34E-04 9.34E-03
UA βUA,3 2.52E-06 1.23E-02
RES βRes,1 -1.59E-02 < 10−6

RES βRes,2 1.61E-04 < 10−6

RES βRes,3 -4.52E-07 < 10−6

Precision ϕ 2.88E-02 < 10−6

Table 4.7: Withdrawal amount in kefor Policyholder Underwriting Age estimated

UA Observed Fitted ∆%

<30 134.17 131.55 -1.95%
[30,40) 251.41 257.12 2.27%
[40,50) 458.90 480.71 4.75%
[50,60) 528.07 514.82 -2.51%
[60,70) 475.91 505.94 6.31%
≥ 70 583.20 610.44 4.67%

Total 2,431.66 2,500.58 2.83%
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In order to measure the estimation accuracy, we introduce the goodness-of-fit
(GoF) measure called Nash-Sutcliffe Efficiency (NSE). The latter is a normalized
statistic that determines the relative magnitude of the residual variance compared
to the measured data variance. Given a dependent variable y and its estimate ŷ,
NSE can be defined as: NSE = 1− ∑(y−ŷ)2

∑(y−E(y))2 .
The NSE can be interpreted as test statistic for the accuracy of model predictions.
The NSE ranges from −∞ to 1: if NSE = 1, there is a perfect match of the mod-
eled to the observed data; if NSE = 0, the model predictions are as accurate as
the mean of the observed data, if −∞ < NSE < 0, the observed mean is a better
predictor than the model. It means that 0 is a critical value to accept or reject
the model. We obtain on the test set an NSE of 22.38%, which is compliant with
acceptance.

Finally, to test the goodness of fit, we also introduce a variant of the graphical
half-normal plot method. Following Atkinson [1985], when the distribution of
residuals is not known, half-normal plots with simulated envelopes are a helpful
diagnostic tool. The main idea is to enhance the usual half-normal plot by adding
a simulated envelope, which can be used to decide whether the observed residuals
are consistent with the fitted model. Half-normal plots with a simulated envelope
can be produced as follows:

• fit the model and generate a simulated sample of I independent observations
using the fitted model, as if it were the true model;

• fit the model to the generated sample, and compute the ordered absolute
values of the residuals;

• repeat steps (1) and (2) π times;

• consider the I sets of the π order statistics; for each set compute its average,
minimum and maximum values;

• plot these values and the ordered residuals of the original sample against the
half-normal scores φ−1 ((i+ I−1/8)/(2I +1/2))

The minimum and maximum values of the ψ order statistics yield the enve-
lope. Atkinson suggests to use ψ= 19, so that the probability that a given absolute
residual will fall beyond the upper band provided by envelope is approximately
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equal to 1/20 = 5%. Observations corresponding to absolute residuals outside the
limits provided by the simulated envelope are worthy of further investigation. Ad-
ditionally, if a considerable proportion of points falls outside the envelope, then
one has evidence against the adequacy of the fitted model. Figure 5.4 shows the
simulated half-normal plot that states evidence in favour of the model accuracy.
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Figure 4.4: Half-Normal plot

4.4. Final results
Once estimated the surrender and withdrawal rates and the expected percent-

age withdrawn for each i-th insured, i.e. si, wi, µi, i= 1, . . . ,n, it is easy to compute
the expected Total Cash Flow by means of (3.3). Figure 5.5 shows the compari-
son between Total Cash Flow observed (triangles) and fitted (dotted line), for each
rating factor.
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Finally, in Table 5.8, for sake of simplicity we show the calculus of the Total
Cash Flow estimates grouped by UA classes.
It is worth noting that the estimates are very close to the observed values, indeed

Table 4.8: Total Cash Flow for Policyholder Underwriting Age

UA
Total Cash Flow in ke

∆%
Observed Fitted

< 30 599.22 586.64 -2.10%
[30,40) 1,295.75 1,345.89 3.87%
[40,50) 2,420.02 2,634.54 8.86%
[50,60) 3,088.92 3,128.23 1.27%
[60,70) 3,809.79 3,820.36 0.28%
≥ 70 4,506.50 4,544.79 0.85%

Total 15,720.20 16,060.49 2.16%

the differences are in the range (−2.10%,8.86%). As one can see, considering
the total cash flow amount the error is negligible (2.16%). Furthermore, we calcu-
late on the test set NSE measure to compare the fitted cash flows to the observed
values getting 8.6%, that is compliant with acceptance.
Lastly, to demonstrate additional benefits deriving from our approach we describe
a simulation model to calculate the probability distribution of the number of sur-
renders, withdrawals as well as the corresponding amounts. It is relevant to ob-
serve that the simulation approach is carried out at policyholder level. Indeed, as
previously stated, the estimates of si, wi, µi and ϕ allow an estimate of the con-
ditional density in Eq. (3.2). This means that we can perform the analysis of the
predictive distribution considering different levels of aggregation, starting from a
single policyholder to the total portfolio.
Let K be the number of iteration and κ be the iteration index. For a generic poli-
cyholder i = 1, . . . ,n, for each iteration κ the simulation is performed as follows:

• generate a random number u(κ)i from a uniform distribution U ∼Uni f (0,1);

• if u(κ)i <wi, a withdrawal events occurs and we sample from a BETA(·;µi,ϕ)

to get a pseudo realization of the withdrawal percentage b̂(κ)i ∈ (0,1);
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• if ui,κ ≥wi to establish if the policyholder surrenders or not we sample from

a Ber
(
·; si

1−wi

)
to get a pseudo realization b̂(κ)i ∈ {0,1}

We apply this simulation method to the test set composed by n = 35,122 and by
setting the number of iterations K = 5,000.
In Figure 5.6 we show the interval estimates of the number of surrenders and
withdrawals, as well as the amount of withdrawals and total cash flows by UA
classes. The black line represents the point estimate of the expected value already
shown in Tables 5.4, 5.7, and 5.8, whereas the areas in dotted lines represents the
confidence interval with an error probability of 10% and 50%, respectively.
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Finally, in Table 5.9 is exposed a statistical summary of the sample distribution
of the r.v. of interest.

Table 4.9: Statistical summary of simulated distributions

No. of surrenders No. of withdrawals
Withdrawals Cash flows

(in ke) (in ke)

Mean 3,872.45 1,655.65 2,501.00 16,064.90
Median 3,873.00 1,655.00 2,496.08 16,070.03
Mode 3,877.00 1,655.00 2,496.00 16,177.00
St. dev 58.47 39.92 96.72 365.67
Coeff. Of Variation 1.51% 2.41% 3.87% 2.28%
Kurtosis 0.09 0.01 0.13 0.02
Skweness 0.03 0.02 0.27 0.07
Min 3,657.00 1,506.00 2,199.80 14,833.85
0.05 Quantile 3,776.00 1,591.00 2,350.98 15,472.39
0.95 Quantile 3,968.00 1,723.00 2,667.90 16,665.13
Max 4,110.00 1,802.00 2,877.64 17,653.01

5. Final comments

This paper deals with an application of a two-part Beta regression in a life
actuarial context. BR is very suitable when practitioners deals with rates and pro-
portions modelling. Although BR is largely discussed by academic literature and
used by practitioners, as far as we know, it has been scarcely used in the actuarial
field.
To this aim, we introduce a two-part model to investigate the effects on the ex-
pected benefits on a contract when surrender and withdrawal options are both
eligible, as in some life insurance contracts or pension funds. In this context the
accuracy in the estimation of number of in force policies as well as the cash flow
amounts is relevant; the latter must take into account the proportion of the cash
value depleted from the total cash value when a withdrawal event occurs. Hence,
it is useful to investigate the behaviour of the policyholders towards their risk fea-
tures.
To this aim, we have suggested to estimate in a first stage the number of surrenders
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and withdrawals by means of a Multinomial Logistic regression; then, in the sec-
ond stage, the percentage of cash amount paid for withdrawals, which is included
between 0 and 1, is modelled by a Beta regression.
Furthermore, based on a real data set, we provide the estimates of the number of
surrenders and withdrawals as well as the corresponding cash values. Our findings
confirm that the policyholder behaviour is affected by policyholder and contract
features, for this kind of events. This is also proved by each statistical test, where
high significance for each risk factor is observed, for both regression models pro-
posed. Moreover, the expected cash flows outcomes show an acceptable goodness
of fit measures.
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