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7 Abstract

8 This paper shows how tunable dampers can help control the instant centre of rotation of a 2D rigid body and 
9 its polode in planar motion, which in turn implies that the inertia tensor can also be controlled. For 

10 mechanisms equipped with some elasticity the results show that damping can also control their natural 
11 frequencies. The foundation of a general theory to control the polode is presented, exploring the chance of 
12 an optimal control formulation of the problem via a variational control principle, approached by the LQR 
13 (Linear Quadratic Regulator) method, after a suitable linearization. Application to automotive suspension 
14 linkages is presented that demonstrates the control of the instant roll centre and axis and consequently its 
15 instant roll vibration frequency to optimize the response, when excited by lateral inertia forces.

16 Keywords: semi-active damping, control, vibrations, polodes, instant centre, automotive

17 Introduction

18 Mechatronics in modern engineering is a powerful technology that enables achieving performances that 
19 purely mechanical devices cannot obtain. The field of automotive engineering is one of the branches that 
20 employs this technology at any level. Interestingly, mechatronics helps in making revolutions in traditional 
21 mechanical devices with ancient origin and for which the use of electronics, optics, electro-mechanical and 
22 control engineering produces an extraordinary injection of novelty [1,2]. It is clear, for example, how the 
23 mechatronic technology is progressively permeating both suspension and tire technologies, improving 
24 fundamental but old mechanical components [3-5]. For example, suspension devices in many cases employ 
25 tunable dampers that control internal dissipation effects by active and semi-active control technology, 
26 evidencing an increasing technical and scientific interest in this area. 

27 Nowadays, damping represents the main object of semi-active controllers, since can be easily controlled 
28 through sophisticated damping devices, which permit to change the damping coefficient of the viscous fluid 
29 by modifying its rheological properties through voltage control [6-14]. Depending on the working principle, 
30 such smart actuators are classified as Magneto-Rheological (MR) dampers, if the change in fluid 
31 characteristics is based on the variation of the magnetic field within the damper, and Electro-Rheological 
32 (ER) ones, if the rheology depends on the applied electric field. Since they guarantee very fast responses 
33 and a large range for the eligible dissipative force, their usage has become a standard in semi-active control 
34 applications. 

35 In general, the semi-active control of the impedance parameters of a system, i.e. stiffness and damping, by 
36 tunable actuators has been largely explored in many different fields such as in civil engineering for seismic 
37 protection of buildings [15], in robotics for trajectory-tracking problems [16,17], in acoustics to reduce the 
38 elastic vibrations and acoustic noise [18]. Nevertheless, its fundamental expression falls in the vehicle 
39 context [19-30] by equipping the suspension architectures with tunable-stiffness and/or tunable-damping 
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40 actuators to improve the vehicle performances and mitigate its oscillatory motion depending on the working 
41 scenarios.

42 This paper belongs to the semi-active control field, but it is devoted to show how dampers can be used for 
43 both the kinematic guidance of a rigid mechanism, for path and motion generation purposes and to indirectly 
44 modify the inertial properties of a rigid body system, by modifying its polodes and, in turn, its natural 
45 frequencies. 

46 This investigation differs from previous works. Jensen [31] proposed a polode synthesis method where the 
47 concepts of centrodes and polodes are used to synthesize planar mechanisms for path generation and motion 
48 generation purposes. Fu et al. [32] established a synthesis procedure to construct a spherical four-bar linkage 
49 by analysing the polodes and their derivatives, in a way that the motion of the coupler matches a given 
50 spherical motion up to a certain order. Jimenez et al. [33] proposed a general method for the optimum 
51 kinematic synthesis of multibody systems, where the design parameters are provided as output of a 
52 minimization problem of an objective function with respect to some geometric and functional constraints. 
53 Russel et al. [34] presented an instant screw axis approach for the precision point synthesis of a RRSS 
54 motion generator, by specifying a set of successive points to the instantaneous screw axis. Bai et al. [35] 
55 described a synthesis method for constructing minimally invasive robot mechanisms characterized by two 
56 or multiple remote centres of motion. Wang et al. [36] defined a new approach for the rigid body guidance 
57 where the adaptive curve fitting method is applied for the optimum synthesis of spherical four-bar linkages. 
58 Finally, Cera et al. [37] developed a path-constrained points synthesis method for the kinematic synthesis 
59 of higher-order path generator mechanisms, by prescribing higher-order curvature features.

60 While these studies are focused on investigating different ways to synthesize mechanisms for kinematic 
61 guidance tasks, the present research, in a similar fashion, offers a method to kinematically emulate reference 
62 mechanisms by changing the kinematics of the constraints through a suitable tuning of the corresponding 
63 damping coefficients. Moreover, the aim is to describe a general theory that shows how damping can affect 
64 the inertia parameters of a mechanical system. In fact, we show how the kinematic and inertial characteristics 
65 of a rigid body depend on the viscosity coefficients of the dampers included in a system of restraining 
66 linkages and, consequently, how the dampers control its instantaneous natural frequencies. 

67 The use of dissipation to control the inertia properties of a body is new and is of practical interest. In fact, 
68 technically, the inertia tensor is difficult to be directly controlled by variable masses in a rigid body system, 
69 while its indirect control can be achieved through the usage of semi-active dampers that can be tuned in 
70 real-time simply by modulating electrical currents within the actuators.

71 This idea is illustrated in a simple form in section 2, starting from an elemental example in which the 
72 different settings of two tunable dampers can modify the instant centre of rotation of the body and, as a 
73 consequence, its natural frequency. Moreover, by taking advantage of the Hamilton’s variational principle 
74 together with the Lagrangian multipliers method [38], the proposed approach unveils a general relationship 
75 between the dampers tuning and the inertia effects.

76 In section 3, the control of the instant centre of a moving body in planar motion is investigated, suggesting 
77 how its moment of inertia can be strongly influenced by the action of the dampers. 

78 Once the equations of motion of the system are determined, and the equivalent damping is found, the 
79 problem of optimal control is attacked in the context of OCT (Optimal Control Theory) [39-44]. Through a 
80 suitable linearization of the problem, the LQR control method is applied, and the results are very 
81 encouraging. 

82 Finally, in section 4, the technique illustrated in sections 2 and 3 is applied to the control of the motion of a 
83 more complex system, the suspensions of a car. In this case, it is shown how the combined effect of the 
84 kinematic control of the car body through the dampers modifies its roll moment of inertia and, as an effect, 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4538702

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



3

85 its oscillation frequencies, with benefits in the roll response under harmonic excitation. In fact, a particular 
86 linkages arrangement, defined as multi-damper suspension system, is employed to progressively modify the 
87 suspension kinematics and its instant roll centre position and, finally, the instant roll frequency of the car. 
88 Suitably implemented, the present control method permits the car body to better react to the lateral inertia 
89 forces, invariably born when the car is turning, especially along sequential wild left-right steering 
90 maneuvers.

91 2.  Control of inertial properties and natural frequencies of the body by tunable dampers

92 The general idea presented here is varying the inertial characteristics of a body through the semi-active 
93 control [15-30] of its inertia tensor, based on the real-time variation of the damping coefficients [6-14] that 
94 characterize the constraints of the system. As a consequence, the natural frequencies of the system change 
95 too.

96 2.1. Fixed polode and equivalent inertia tensor of a rigid body

97 The position 𝒙𝐼𝐶 of the instant centre of rotation 𝐼𝐶 of a rigid body simply is:

98 𝒙𝐼𝐶 = 𝒙𝐺 + 
𝝎 𝑥 𝒗𝐺

|𝝎|2  (1)

99 where 𝝎 is the angular velocity vector of the body. The parametric curve 𝒙𝐼𝐶(𝑡) when varying 𝑡 is the fixed 
100 polode [38]. 

101 To show the change of the inertial characteristics of the body, the equivalent inertia tensor 𝑱𝑒𝑞 is computed, 
102 the components of which are in the frame with origin 𝐼𝐶, and axes oriented as the fixed reference frame.

103 The Huygens-Steiner theorem states:

104 𝑱𝑒𝑞 = 𝑹𝑱′𝐺𝑹𝑇 + 𝑱𝐻𝑆 (2)

105 where 𝑱′𝐺 is the inertia tensor of the body with respect to its mobile reference frame centred in 𝐺, 𝑹 is the 
106 rotation matrix between mobile and fixed reference frames, 𝑱𝐻𝑆 = 𝑚|𝒙𝐼𝐶 ― 𝒙𝐺|2, i.e. it depends on the body 
107 mass and the squared distance between 𝐺 and 𝐼𝐶. Therefore, the proposed method indirectly controls 𝑱𝑒𝑞, 
108 by controlling the fixed polode of the body.

109 Finally, the change and control of the natural frequencies is a consequence of controlling 𝑱𝑒𝑞.

110 2.2. An elemental example

111 To show in the simplest way the concept investigated here, consider a planar mechanism restraining a square 
112 rigid body B of dimension 2l, as represented in Fig. 1, characterized by the presence of two springs, with 
113 stiffness k, a rigid link, and a pair of telescopic links, both equipped with tunable dampers, whose 
114 characteristic damping coefficients are 𝑐1 and 𝑐2. 
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115

116 Fig. 1. Planar mechanism.

117
118 Fig. 2. Migration of the instant centre of rotation due to change in damping coefficients settings.

119 A simple kinematic analysis shows 2 d.o.f. for a general regulation of the parameters 𝑐1 and 𝑐2. If 𝑠1 and 𝑠2 
120 represent the axial displacements along the directions 𝒏1 and 𝒏2 of the links axes, the corresponding 
121 intensity of the axial forces can be modelled simply as 𝑐1𝑠1 and 𝑐2𝑠2, respectively, assuming viscous 
122 velocity-proportional actions (note that more complicated constitutive relationships can be adopted, without 
123 significant modifications of the proposed approach).

124 One could set, for example, 𝑐1 very large (leaving 𝑐2 small enough) so that the corresponding sliding guide 
125 becomes axially rigid. An analogous condition is obtained for 𝑐2 large and 𝑐1 small. In both cases (①: 𝑐1

126 → + ∞, 𝑐2 < +∞ or ②: 𝑐1 < +∞, 𝑐2→ + ∞) the 2 d.o.f. system collapses into a single d.o.f. mechanism. 
127 This leads to a change of the overall kinematics of the body, and remarkably to the change of the position 
128 of its instant centre of rotation 𝐼𝐶, as it can be observed in Fig. 2.

129 This simple example demonstrates how the settings of both 𝑐1 and 𝑐2 can affect the inertial characteristics 
130 of the body causing the migration of its instant centre position from 𝐼𝐶1 to 𝐼𝐶2, consequently making its 
131 inertia moment dependent on the two damping coefficients. How viscosity can affect the body inertia and 
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132 how this effect is useful for the rigid body motion control is the main novelty investigated in this paper 
133 compared with the existing literature [15-30,31-37]. This inertia modification produces a change in the body 
134 natural frequencies as illustrated below.

135 In fact, if the damping coefficients of the linkages are set as in case ①, the instant centre of rotation collapses 
136 to 𝐼𝐶1 and, in this configuration, the body shows a single d.o.f. represented by the rotation 𝜃1 about that 
137 point (see Fig. 2). In this circumstance, the Lagrangian function of the system is:

138 𝐿 = 1
2𝐽1

𝑏𝜃1
2 ― 1

2𝑘(2𝑙𝜃1)2  (3)

139 with 𝐽1
𝑏 = 𝐽𝐺 +2𝑚𝑙2 the equivalent moment of inertia of the body with respect to 𝐼𝐶1, where 𝐽𝐺 = 2

3𝑚𝑙2 is the 
140 moment of inertia of the body with respect to 𝐺 and 𝑚 the body mass.

141 From Eq. (3) it is easy to derive the equation of motion of the system:

142 𝐽1
𝑏𝜃1 +4𝑘𝑙2𝜃1 = 0  (4)

143 and its natural frequency:

144 𝜔(1)
𝑛 = 4𝑙2𝑘

𝐽1
𝑏

= 4𝑙2𝑘
𝐽𝐺 + 2𝑚𝑙2 = 3𝑘

2𝑚
 (5)

145 If the damping coefficients are set as in case ②, the instant centre of rotation migrates to 𝐼𝐶2 (which in this 
146 case coincides with 𝐺, i.e. the centre of the square) and, in this configuration, the only available d.o.f. is 
147 described by the rotation 𝜃2 about this point (see Fig. 2).

148 Therefore, the system now behaves according to the new dynamic equation:

149 𝐽𝑠𝑞𝜃2 +2𝑘𝑙2𝜃2 = 0  (6)

150 with natural frequency:

151 𝜔(2)
𝑛 = 2𝑙2𝑘

𝐽𝐺
= 3𝑘

𝑚
(7)

152 Thus, the comparison between the two determined natural frequencies in Eq. (5) and Eq. (7) shows clearly 
153 how the setting of the dampers can affect the resonance response of the analysed system.

154 This effect can be investigated in general for arbitrarily complex systems in the next section.

155 2.3. General method

156 The general method relies on the use of a set of Lagrangian variables that include 6 components for the rigid 
157 body motion in 3D (only 3 components in 2D), and a number N of axial sliding variables 𝑠𝑗 (j = 1, …, N), 
158 associated to an equal number of telescopic linkages. For example, the Lagrangian variables in Fig. 3 are 
159 chosen as 𝑥𝐺, 𝑦𝐺, 𝑧𝐺, 𝜑, 𝜃, 𝜓, 𝑠1, …, 𝑠𝑁, the first three are associated with the gravity centre position 𝐺, the 
160 second set of three with the body rotation and the last N are the auxiliary variables introduced to represent 
161 the axial displacements of the links. Since the total number of variables is higher than the 6 strictly necessary 
162 variables to describe the rigid body motion, constraints among the selected variables must be introduced:

163 𝒗𝑃𝑗 ∙ 𝒏𝑗 ― 𝑠𝑗 = 0     𝑗 = 1,…,𝑁 (8)

164
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165

166 Fig. 3. General 3D rigid body constrained with telescopic links and springs.

167 where 𝒏𝑗 is the axial direction of the j-th telescopic linkage and 𝒗𝑃𝑗 is the velocity of the point 𝑃𝑗 (see Fig. 
168 3) provided by the fundamental formula of kinematics as:

169 𝒗𝑃𝑗 = 𝒗𝐺 +𝜴𝒙𝐺𝑃𝑗  (9)

170 with 𝜴 the skew-symmetric matrix of the body angular velocities and 𝒙𝐺𝑃𝑗 the vector from 𝐺 to 𝑃𝑗.

171 In the case of Fig. 1, the mechanism is two-dimensional, so the Lagrangian variables are 𝑥𝐺, 𝑦𝐺, 𝜑, 𝑠1, 𝑠2. 
172 These 5 variables are constrained by 3 equations, and 𝒗𝑃1 and 𝒗𝑃2 depend on 𝑥𝐺, 𝑦𝐺, 𝜑 and their derivatives 
173 through the fundamental formula of kinematics in Eq. (7). More precisely, the constraint equations are:

174 {𝒗𝑃1 ∙ 𝒏1 ― 𝑠1 = 0
𝒗𝑃2 ∙ 𝒏2 ― 𝑠2 = 0

𝒗𝐴 ∙ 𝒏𝐴 = 0
 (10)                                                            

175 where the last equation imposes that the velocity of the point of the body connected with the rigid linkage 
176 is orthogonal to its longitudinal axis. In the general case of 3D, the set of constraint equations between the 
177 total set of Lagrangian variables 𝑥𝐺, 𝑦𝐺, 𝑧𝐺, 𝜑, 𝜃, 𝜓, 𝑠1, …, 𝑠𝑁 can be written in the form:

178 𝑎𝑗(𝒒,𝒒) ― 𝑠𝑗 = 0     𝑗 = 1,…,𝑁 (11)

179 where 𝑎𝑗(𝒒,𝒒) =  𝒗𝑃𝑗 ∙ 𝒏𝑗 with 𝒒,𝒒 the vectors of the Lagrangian variables and their derivatives associated 
180 with the 6 body d.o.f. In particular, 𝒒 can be partitioned as follows:

181 𝒒 = [𝒒(𝐺)

―
𝒒(𝑅)] = [

𝑥𝐺
𝑦𝐺
𝑧𝐺
―
𝜑
𝜃
𝜓

]  (12)
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182 to separate the translational d.o.f. from the rotational ones.

183 Considering the presence of possible external forces acting on the body and also elastic potential forces, an 
184 elegant way to approach the system dynamics is the application of the Hamilton’s variational principle 
185 together with the Lagrangian multipliers method [38].

186 The Hamiltonian functional is defined through an integral over a generic observation time 𝑇, as:

187 𝐻 =  ∫𝑇
0 {𝐾(𝒒,𝒒) ― 𝑈(𝒒) + ∑𝑁

𝑗=1 𝜆𝑗[𝑎𝑗(𝒒,𝒒) ― 𝑠𝑗]} 𝑑𝑡  (13)

188 where 𝐻 depends on the kinetic energy of the system 𝐾, on its potential energy 𝑈 and on the constraint 
189 relationships in Eq. (11) through the introduction of the Lagrangian multipliers 𝜆𝑗. Moreover, the virtual 
190 work of the non-conservative external forces is: 

191 𝛿𝑊𝑛 =  ∑6
𝑖=1 𝑄𝑖𝛿𝑞𝑖 ― ∑𝑁

𝑗=1 𝑐𝑗𝑠𝑗𝛿𝑠𝑗 (14)

192 where 𝑄𝑖 are the Lagrangian components of the external forces acting on the virtual displacements 𝛿𝑞𝑖 and 𝑐𝑗

193 𝑠𝑗 the virtual works done by the viscous forces on the virtual displacements 𝛿𝑠𝑗.

194 The Hamilton’s principle states:

195 𝛿𝐻 + ∫𝑇
0 𝛿𝑊𝑛 𝑑𝑡 = 0 (15)

196 𝛿∫𝑇
0 {𝐾(𝒒,𝒒) ― 𝑈(𝒒) + ∑𝑁

𝑗=1 𝜆𝑗[𝑎𝑗(𝒒,𝒒) ― 𝑠𝑗]}𝑑𝑡 + ∫𝑇
0 𝛿𝑊𝑛 𝑑𝑡 = 0 (16)

197 ∫𝑇
0 {∑6

𝑖=1 [(∂𝐾
∂𝑞𝑖

― ∂𝑈
∂𝑞𝑖

)𝛿𝑞𝑖 + ∂𝐾
∂𝑞𝑖

𝛿𝑞𝑖] + ∑𝑁
𝑗=1 𝛿𝜆𝑗[𝑎𝑗 ― 𝑠𝑗] + ∑𝑁

𝑗=1 𝜆𝑗[∑6
𝑖=1 (∂𝑎𝑗

∂𝑞𝑖
𝛿𝑞𝑖 + ∂𝑎𝑗

∂𝑞𝑖
𝛿𝑞𝑖)] ― ∑𝑁

𝑗=1 𝜆𝑗𝛿𝑠𝑗 + ∑6
𝑖=1 𝑄𝑖𝛿𝑞𝑖 ― ∑𝑁

𝑗=1 𝑐𝑗𝑠𝑗𝛿𝑠𝑗  } 𝑑𝑡 = 0
198 (17)

199 Taking advantage of the integration by parts, neglecting the boundary conditions, grouping the terms 
200 associated respectively with the 3 independent perturbations 𝛿𝑞𝑖, 𝛿𝑠𝑗, 𝛿𝜆𝑗, the following three sets of 
201 equations hold:

202
∂𝐾
∂𝑞𝑖

―
∂𝑈
∂𝑞𝑖

― 𝑑
𝑑𝑡

∂𝐾
∂𝑞𝑖

+ ∑𝑁
𝑗=1 𝜆𝑗

∂𝑎𝑗

∂𝑞𝑖
― ∑𝑁

𝑗=1 𝜆𝑗
∂𝑎𝑗

∂𝑞𝑖
― ∑𝑁

𝑗=1 𝜆𝑗[∑𝑁
𝑟=1 ( ∂2𝑎𝑗

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟 + ∂2𝑎𝑗

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟)] + 𝑄𝑖 = 0     𝑖 = 1,…,6

203  (18)
204
205 𝜆𝑗 ― 𝑐𝑗𝑠𝑗 = 0     𝑗 = 1,…,𝑁  (19)
206
207 𝑎𝑗(𝒒,𝒒) ― 𝑠𝑗 = 0     𝑗 = 1,…,𝑁  (20)

208 By considering both Eq. (19) and Eq. (20), a simple relationship between 𝜆𝑗 and 𝑐𝑗 emerges:

209 𝜆𝑗 = 𝑐𝑗𝑠𝑗 = 𝑐𝑗𝑎𝑗 (21)

210 The coefficients 𝑐𝑗 are functions of time, as well as the 𝑎𝑗’s, since they depend on the Lagrangian variables. 
211 Eq. (18)-(21) shows the way the control vector 𝒄 = [𝑐𝑗] appears in the equation of motion. Our goal is to 
212 control the motion of the body through 𝒄. The form of these equations show the problem is highly nonlinear, 
213 and difficult to solve in general. For this reason, it is solved recurring to a time-by-time linearization to 
214 apply an algorithm of control that is robust, the Linear Quadratic Regulator (LQR) [45]. This approach is 
215 used in the next sections.
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216 A first question emerges: how do the coefficients 𝑐𝑗 affect the inertial properties of the body, i.e., how do 
217 the controllable terms 𝑐𝑗 appear into the inertial terms?

218 The only terms in Eq. (18) associated with the inertial properties of the system are those containing 𝒒, i.e.:

219 ― 𝑑
𝑑𝑡

∂𝐾
∂𝑞𝑖

(𝒒,𝒒) ― ∑𝑁
𝑗=1 𝜆𝑗[∑6

𝑟=1 ( ∂2𝑎𝑗

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟)] (22)

220 that, in fact, is:

221 ∑6
𝑟=1 ( ∂2𝐾

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟 + ∂2𝐾

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟) ― ∑𝑁

𝑗=1 𝜆𝑗[∑6
𝑟=1 ( ∂2𝑎𝑗

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟)] (23)

222 However, since the terms 𝑎𝑗 are linear in the Lagrangian velocity components, it can be demonstrated that:

223 ∂2𝑎𝑗

∂𝑞𝑖∂𝑞𝑟
= 0  (24)

224 Therefore, the inertial effects remain with the terms ∑6
𝑟=1 ( ∂2𝐾

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟).

225 Now, by considering the expression for the velocity of the point 𝑃𝑗 in Eq. (9):

226 𝜴 = 𝑹(𝒒(𝑅),𝒒(𝑅))𝑹𝑇(𝒒(𝑅))  (25)

227 𝒗𝐺 = 𝒒(𝐺)  (26)

228 and:

229 𝒗𝑃𝑗 = 𝒒(𝐺) + 𝑴𝑗(𝒒)𝒒(𝑅) (27)

230 with:

231 𝑴𝑗(𝒒)𝒒(𝑅) = 𝑹(𝒒(𝑅),𝒒(𝑅))𝑹𝑇(𝒒(𝑅))𝒙𝐺𝑃𝑗  (28)

232 By substituting the expression in Eq. (27) into Eq. (11), it holds:

233 𝒒(𝐺) ⋅ 𝒏𝑗(𝒒) + 𝑴𝑗(𝒒)𝒒(𝑅) ⋅ 𝒏𝑗(𝒒) = 𝑠𝑗 (29)

234 𝒒(𝐺) ⋅ 𝒏𝑗(𝒒) + 𝑴𝑇
𝑗 (𝒒)𝒏𝑗(𝒒) ⋅ 𝒒(𝑅) = 𝑠𝑗 (30)

235 that written in a more compact form is:

236 [𝒏𝑇
𝑗 (𝒒) 𝒏𝑇

𝑗 (𝒒)𝑴𝑗(𝒒)]𝒒 = 𝒘𝑇
𝑗 (𝒒)𝒒 = 𝑠𝑗    𝑗 = 1,…,𝑁   (31)

237 Derivation of Eq. (31) with respect to time yields:

238 [∂𝒘𝑇
𝑗

∂𝒒
𝒒]𝒒 + 𝒘𝑇

𝑗 (𝒒)𝒒 = 𝑠𝑗     𝑗 = 1,…,𝑁 (32)

239 By deriving with respect to time the expression for 𝑠𝑗 from Eq. (19) and then by substituting it into the 
240 previous equation, one obtains:

241 𝒘𝑇
𝑗 𝒒 =

1
𝑐𝑗

[𝜆𝑗 ― 𝑠𝑗𝑐𝑗] ― [∂𝒘𝑇
𝑗

∂𝒒
𝒒]𝒒     𝑗 = 1,…,𝑁     (33)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4538702

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



9

242 For example, in the particular case of N = 6, i.e. if the number of tunable dampers equals the number of 
243 degrees of freedom of the rigid body, Eq. (31) can provide the direct expression for 𝒒 in terms of the damping 

244 coefficients: 𝒒 = 𝑾(𝒒)𝒔, hence, by considering Eq. (21), 𝒒 = 𝑾(𝒒)𝑪―𝟏𝝀 and 𝒒 =
∂

∂𝒒𝑾(𝒒)𝒒 𝑪―𝟏 𝝀 + 𝑾

245 (𝒒)𝑪 ―𝟏𝝀 + 𝑾(𝒒) 𝑪―𝟏 𝝀, with 𝑪 = 𝑑𝑖𝑎𝑔(𝑐𝑗).

246 This implies that the inertial terms in the equation of motion, that are represented by ∑6
𝑟=1 ( ∂2𝐾

∂𝑞𝑖∂𝑞𝑟
𝑞𝑟), are 

247 affected by the tunable dampers through the control variables 𝑐𝑗. In fact, from Eq. (33), the implicit 
248 relationship between 𝒒 and 𝑐𝑗 emerges. As clarified by the simple examples in the introductory part of this 
249 section, the change of the inertial properties also affects the natural frequencies of the system.

250 After demonstrating that the inertia is affected by the setting of the dampers through the 𝑐𝑗, a second question 
251 is related to the control of 𝒒 through the vector 𝒄. The equations of motion are nonlinear since through Eq. 
252 (33) the control variables 𝑐𝑗 are multiplied by the state auxiliary variables 𝑠𝑗. Reduction of the previous 
253 problem to a linearized form is useful and proceeds as shown below in combination with the OCT technique 
254 [39-44].

255 2.4. An optimal control algorithm

256 OCT uses a key performance index (KPI) or functional 𝐽∗. It is defined through an integral over a prescribed 

257 observation time 𝑇. 𝐽∗ depends on the system response 𝒙 = [𝒒,𝒒]𝑇, on the adopted control 𝒖 (that coincides 

258 with 𝒄), and, in general, on the external uncontrolled force 𝒚:

259 𝐽∗ = ∫𝑇
0 {|𝒙 ― 𝒙𝑟|2 + |𝒖 ― 𝒖𝑟|2}𝑑𝑡 (34)

260 where 𝒖𝑟 is the control required to guarantee that the state vector reaches the reference value 𝒙𝑟. The 
261 statement of the control problem can be formulated as [39,40]:

262 𝑚𝑖𝑛 (𝒙,𝒖)     𝐽∗ = ∫𝑇
0 𝐿(𝒙,𝒖,𝒚)𝑑𝑡 (35)

263 where 𝐿 is called the Lagrangian function or penalty function and 𝑈 is the admissible set of values for the 
264 control solution 𝒖. Furthermore, 𝒖 ϵ 𝑈 and 𝐽∗ is subject to the differential dynamic system equations 
265 constraint:

266 {𝒙 ― 𝒇(𝒙,𝒖,𝒚) = 𝟎
𝒙(0) = 𝒙0

(36)

267

268 In case the system dynamics is linear, i.e. 𝒇 = 𝑨𝒙 + 𝑩𝒖 + 𝒚, the LQR method can be applied [45], and the 
269 solution of the optimization problem leads to the subsequent control vector:

270 𝒖 = 𝑹―1𝑩𝑇[𝑺[𝒙 ― 𝒙𝑟] + 𝒑] + 𝒖𝑟  (37)

271 where 𝑺 and 𝒑 are determined by the Riccati’s equation and the complementary equation, respectively, as:

272 {𝑺 + 𝑨𝑇𝑺 + 𝑺𝑨 ― 𝑺𝑩𝑹―1𝑩𝑇𝑺 + 𝑸 = 𝟎
𝒑 + 𝑨𝑇𝒑 ― 𝑺𝑩𝑹―1𝑩𝑇𝒑 + 𝑺𝒚 = 𝟎  (38)

273 with boundary conditions:
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274 {𝑺(𝑇) = 𝟎
𝒑(𝑇) = 𝟎  (39)

275 The linearization process can be systematically applied as the configuration of the system modifies when 
276 time is spent (see Appendix), and each sequential linearization is considered valid along the small-time 
277 interval during which the configuration does not modify sensibly. Along this time interval, since the 
278 differential problem is linear, natural frequencies can be considered as the eigenvalues associated with the 
279 given configuration about which the problem is linearized. Under this point of view, the inertia of the system 
280 and its instantaneous natural frequencies change through the control of the damping coefficients.

281 3.  LQR control of the instant centre and the body inertia by four/eight sliding couplers

282

283 Fig. 4. 4-actuators mechanical system.

284

285 Fig. 5. 8-actuators mechanical system.
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286
287 Fig. 6. Reference mechanism.

288

289 Fig. 7. External applied force.

290 The LQR algorithm is here applied to the control of the instant centre of rotation 𝐼𝐶 of a planar rigid body, 
291 i.e. of its fixed polode, and consequently of its inertia tensor.

292 The system model consists of a rigid rectangular body constrained through four or eight sliding linkages 
293 equipped with controllable dampers, as shown in Fig. 4 and 5, respectively.

294 Two cases are considered. The first, in Fig. 4, shows the 4-actuators system, while the second, in Fig. 5, the 
295 8-actuators system, and the LQR method finds the optimal damping coefficients 𝑢𝑖 to let the body 
296 kinematically emulate a reference mechanism, such as the pendulum system in Fig. 6. 

297 It consists of a rigid body of mass 𝑚 = 1 kg and dimensions 𝑎 = 0.75 m, 𝑏 = 0.5 m, which is hinged through 
298 a rigid pendulum of length 𝑙 = 0.5 m to a point 𝑃. If the body is considered rigidly linked to the pendulum 
299 in its centre of gravity 𝐺, it undergoes a pure rotation around 𝑃.
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300

301 Fig. 8. Trajectory emulation of the 4-actuators system.

302

303 Fig. 9. Comparison between the optimal damping coefficients of the 4-actuators system (4D) and of the 8-actuators 
304 system (8D) for the same four actuators.

305 Therefore, the controller task is to guarantee that 𝐺 remains over a circumference of given radius and centre 
306 𝑃 (see Fig. 6), that means the fixed polode of the body motion is imposed. In fact, in this particular scenario, 
307 the instant centre of rotation of the body must collapse exactly to point 𝑃.

308 The requirement on the instant centre of rotation determines an indirect modification of the inertial 
309 characteristics of the body, i.e., of its moment of inertia with respect to the fixed frame.

310 Being 𝑥𝐺, 𝑦𝐺, 𝜙 the Lagrangian variables necessary to describe the rigid body motion (see Fig. 4 and 5), one 
311 could set the subsequent target state vector for the control problem, provided as laws of motion from the 
312 reference system:

313 𝒙𝑟 = [𝑥𝐺𝑟 𝑥𝐺𝑟 𝑦𝐺𝑟     𝑦𝐺𝑟 𝜙𝑟 𝜙𝑟]𝑇 (40)
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314

315 Fig. 10. Optimal damping coefficients of the four added actuators of the 8-actuators system.

316

317 Fig. 11. Comparison between the solutions for the 4-actuators (4D) and 8-actuators (8D) systems and the target 
318 quantities provided by the reference mechanism.

319 where all the components are known functions of time, computed over an observation period 𝑇 = 5 s.

320 To induce a motion in the system, an external force is applied with constant magnitude at the centre of mass 
321 and directed towards the origin, as shown in Fig. 7 (any other choice is plausible, but without changing the 
322 strategy of the proposed method).

323 At each linearization step (see Appendix), the optimal damping vector 𝒖 obtained by the LQR algorithm 
324 assumes the form:

325 𝒖 = 𝑹―1𝑩𝑇[𝑺[𝒙 ― 𝒙𝑟] + 𝒑] ― 𝜣(𝒙𝑟)+[𝜱(𝒙𝑟) + 𝒚 ― 𝒙𝑟]  (41)

326 The tracking of body rotation and its angular velocity poses a challenge for the control problem.
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327

328 Fig. 12. Comparison between the trajectories of 𝐺 for the 4-actuators (4D) and 8-actuators (8D) systems with the target 
329 trajectory provided by the reference mechanism.

330

331 Fig. 13. Coordinates of the instant centre of rotation 𝐼𝐶 for the controlled solutions with respect to the corresponding 
332 targets provided by the reference mechanism.

333 Fig. 8 shows the controlled trajectory of 𝐺 obtained by the control method described in Section 2 and in the 
334 Appendix for the 4-actuators system. The actual trajectory (violet solid line), as expected, does not exactly 
335 overlap with the desired target (black dashed line). One can expect that additional actuators can improve the 
336 quality of the solution. Indeed, in the next figures, the comparison between the 4-actuators system and the 
337 8-actuators one is presented.

338 By observing the comparison of the optimal damping coefficients in Fig. 9, obtained through Eq. (41), one 
339 can notice how the 8-actuators system shows smoother solutions with reduced chattering, that indeed seems 
340 to characterize the case of the 4-actuators system.
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341

342 Fig. 14. Equivalent inertia tensor components of the controlled solutions with respect to the corresponding targets 
343 provided by the reference mechanism.

344 Fig. 11 and 12 shows the comparisons between the target quantities and the optimal solutions found by the 
345 controller. The 8-actuators configuration provides more accurate results by guaranteeing lower instabilities 
346 and better matching with the targets, with respect to the system equipped with 4 actuators only.

347 The coordinates of the corresponding 𝐼𝐶, which define the fixed polode associated with these solutions and 
348 computed through Eq. (1), are shown in Fig. 13. These quantities are compared with the target values, which 
349 coincide with the coordinates of point 𝑃 of the reference mechanism, i.e. the reference fixed polode (see 
350 Fig. 4).

351 The ability of the controller in tracking the polodes has its counterpart in controlling the inertial 
352 characteristics of the body. The better the polode tracking, the better the equivalent inertia tensor 𝑱𝑒𝑞 
353 tracking, as it can be deduced by Fig. 14. This shows the non-zero components of the tensor, computed by 
354 Eq. (2), with 𝐽21𝑒𝑞 = 𝐽12𝑒𝑞 and 𝐽13𝑒𝑞 = 𝐽23𝑒𝑞 = 𝐽31𝑒𝑞 = 𝐽32𝑒𝑞 = 0, since the body performs a planar motion. 

355 Again, it is clear how the 8-actuators system is better in emulating the inertial properties of the reference 
356 system.

357 4.  Automotive suspension system for instant roll centre control

358 The system illustrated in Fig. 15 is a double-arm suspension, which is a classic setup in automotive 
359 applications. The positions of the pivots of the linkages and their characteristic inclinations determine the 
360 position of the roll centre 𝑅𝐶, which lies under the road plane. The instant centre position determines many 
361 important characteristics of the roll response of the car, together with some effects related to the interaction 
362 between yaw and roll motion (partly depending on the inclination of the roll axis with respect to the road 
363 plane).

364 An actively controlled suspension drives the position of the roll centre, depending on the operating 
365 conditions the car is approaching. This effect can be obtained by varying actively the positions of the pivots 
366 of the suspension system, but it is technically difficult, expensive, and not robust. 
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367

368 Fig.15. Classic double-arm suspension system with identification of the roll centre 𝑅𝐶.

369

370 Fig. 16. Schematic of the multi-damper suspension for driving of the roll centre from 𝑅𝐶1 to 𝑅𝐶2.

371 The alternative solution proposed here is that of equipping the system with a suspension mechanism of the 
372 type shown in Fig. 16, defined as multi-damper suspension architecture. For each wheel, a double upper 
373 arm pivots each arm about two distinct points, by a pair of dampers that control the sliding couplers. 

374 Fig. 16 emphasizes the driving of the roll centre: if 𝑐1→ + ∞ and 𝑐2 = 0 the roll centre is 𝑅𝐶1; if 𝑐1 = 0 and 
375 𝑐2→ + ∞ then the roll centre migrates to 𝑅𝐶2. The fine tuning of the four upper arms enables the system to 
376 move the roll centre within an entire region (as it will be clear later), adapting its position to kinematic 
377 constraints that can be defined and tracked by using the technique described in the previous sections of this 
378 paper.  

379 The migration of the roll centre position helps in the indirect control of the inertia characteristics of the 
380 body, and consequently of its instant natural roll frequency. Indeed, such a particular suspension mechanism 
381 can be used to reduce the roll angle of a vehicle when cornering, and simultaneously reduce vertical jerking 
382 in straight motion over a rough road. 
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383 To show the benefits coming from equipping a vehicle with multi-damper suspensions, a specific case will 
384 be analysed: a vehicle body excited at its centre of mass by a harmonic lateral force at its roll resonant 
385 frequency, a prototype case including maneuvers of lateral shaking of the car body induced by rough left-
386 right steering sequences. 

387 4.1. A half-car model 

388 The vehicle body of the car is modelled as a half-car planar mechanism. The Lagrangian formulation is used 
389 to derive the car dynamics  when the double-arm suspension system and  the multi-damper architecture are 
390 employed. In particular, an analogous mathematical procedure and dimensioning to those described in 
391 [46,47] will be considered.

392 4.1.1. Dynamics of the vehicle equipped with double-arm suspensions

393

394 Fig. 17. Vehicle equipped with classic double-arm suspensions.

395 The vehicle equipped with the Double-Arm Suspension Systems (DASS) is represented in Fig. 17. It 
396 consists of a rigid body of mass 𝑀𝑉 (with centre of mass 𝐺) which is linked to the two tire-wheel assemblies, 
397 each of mass 𝑚𝑇 (with centres of mass 𝐶𝐿, 𝐶𝑅), through four rigid links (in transparent grey between points 
398 𝑀𝐿 ― 𝑁𝐿, 𝑀𝑅 ― 𝑁𝑅, 𝑂𝐿 ― 𝑃𝐿, 𝑂𝑅 ― 𝑃𝑅) two telescopic linkages (in red between points 𝐵𝐿 ― 𝑃𝐿, 𝐵𝑅 ― 𝑃𝑅) 
399 characterized by controllable damping coefficients 𝑢𝐿,𝑢𝑅 and posed within two springs (in blue) with 
400 constant values 𝑘𝑆. In particular, the tire-wheel assemblies are considered as hinged to the frame in 
401 correspondence of the tires contact points 𝑊𝐿, 𝑊𝑅.

402 The vehicle system is characterized by the subsequent set of 5 Lagrangian variables 𝒒 = [𝑥𝐺  𝑦𝐺  𝜙  𝜒  𝜓]𝑇, 
403 where the first 3 components describe, respectively, the planar displacements of the body car centre of mass 
404 𝐺 and the vehicle rotation about this point, while the last two components describe the lateral rotation of the 
405 tire-wheel assemblies with respect to the hinges (points 𝑊𝐿, 𝑊𝑅 in Fig. 17).
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406 Because of the presence of the four rigid links, the following four constraint equations must hold:

407 {𝛤1 = |𝒙𝑀𝐿 ― 𝒙𝑁𝐿
|2 ― 𝑙2

𝑀𝑁𝐿 = 0
𝛤2 = |𝒙𝑀𝑅 ― 𝒙𝑁𝑅

|2 ― 𝑙2
𝑀𝑁𝑅 = 0

𝛤3 = |𝒙𝑂𝐿 ― 𝒙𝑃𝐿
|2 ― 𝑙2

𝑂𝑃𝐿 = 0
𝛤4 = |𝒙𝑂𝑅 ― 𝒙𝑃𝑅

|2 ― 𝑙2
𝑂𝑃𝑅 = 0

(42)

408 where 𝑙𝑀𝑁𝐿,𝑙𝑀𝑁𝑅,𝑙𝑂𝑃𝐿,𝑙𝑂𝑃𝑅 are the lengths of the four rigid links and the coordinates of the points of the vehicle 
409 and of the tire-wheel assemblies are:

410 𝒙𝑀𝐿 = 𝒙𝐺 + 𝑹𝑉𝒙𝑀𝐿 (43)

411 𝒙𝑀𝑅 = 𝒙𝐺 + 𝑹𝑉𝒙𝑀𝑅 (44)

412 𝒙𝑂𝐿 = 𝒙𝐺 + 𝑹𝑉𝒙𝑂𝐿 (45)

413 𝒙𝑂𝑅 = 𝒙𝐺 + 𝑹𝑉𝒙𝑂𝑅 (46)

414 𝒙𝑁𝐿 = 𝒙𝑊𝐿 + 𝑹𝑇𝐿𝒙𝑁𝐿 (47)

415 𝒙𝑁𝑅 = 𝒙𝑊𝑅 + 𝑹𝑇𝑅𝒙𝑁𝑅 (48)

416 𝒙𝑃𝐿 = 𝒙𝑊𝐿 + 𝑹𝑇𝐿𝒙𝑃𝐿 (49)

417 with: 𝒙𝐺 = [𝑥𝐺 𝑦𝐺]𝑇; 𝒙𝑀𝐿, 𝒙𝑀𝑅, 𝒙𝑂𝐿, 𝒙𝑂𝑅 the position vectors of the vehicle points in the vehicle mobile 
418 reference frame centred in 𝐺; 𝒙𝑁𝐿, 𝒙𝑁𝑅, 𝒙𝑃𝐿, 𝒙𝑃𝑅 the position vectors of the tires points in the tire-wheel 
419 assemblies mobile reference frames centred, respectively, in the two contact points 𝑊𝐿 and 𝑊𝑅, of 
420 coordinates 𝒙𝑊𝐿,𝒙𝑊𝑅 with respect to the fixed reference frame. 𝑹𝑉 is the rotation matrix between the fixed 
421 and mobile body car frame and 𝑹𝑇𝐿, 𝑹𝑇𝑅 are the rotation matrices between the fixed and mobile frames of 
422 the left and right tires, i.e.:

423 𝑹𝑉 = [𝑐𝑜𝑠(𝜙) ―𝑠𝑖𝑛(𝜙)
𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙) ] (50)

424 𝑹𝑇𝐿 = [𝑐𝑜𝑠(𝜒) ―𝑠𝑖𝑛(𝜒)
𝑠𝑖𝑛(𝜒) 𝑐𝑜𝑠(𝜒) ] (51)

425 𝑹𝑇𝑅 = [𝑐𝑜𝑠(𝜓) ―𝑠𝑖𝑛(𝜓)
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) ] (52)

426 Therefore, the system shows a single d.o.f. This means its dynamics can be derived as function of a unique 
427 independent variable by expressing the others as functions of this one. However, since the constraint 
428 relationships in Eq. (42) are nonlinear, it would be difficult to obtain such dependence. 

429 To simplify the problem, one could consider a linearization at the first order of the j-th constraint equation 
430 with respect to a generic time instant 𝑡𝑖, as:
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431 ∇𝒒𝛤𝑗|𝑡𝑖 ⋅ [𝒒 ― 𝒒𝑡𝑖
] + 𝛤𝑗|𝑡𝑖 = 0     𝑗 = 1,…, 4 (53)

432 where ∇𝒒𝛤𝑗 is the gradient vector of 𝛤𝑗 with respect to the Lagrangian variables vector 𝒒.

433 Such linearized expressions represent a system of four algebraic equations in 𝑞𝑖. Thus, it is possible to obtain 
434 the expression of the dependent Lagrangian variables as functions of 𝜙 (which is chosen to be the 
435 independent variable), as:

436 𝑥𝐺 = 𝑥𝐺(
∂𝛤𝑗

∂𝒒 |𝑡𝑖,𝛤𝑗|𝑡𝑖,𝜙) (54)

437 𝑦𝐺 = 𝑦𝐺(
∂𝛤𝑗

∂𝒒 |𝑡𝑖,𝛤𝑗|𝑡𝑖,𝜙) (55)

438 𝜒 = 𝜒(
∂𝛤𝑗

∂𝒒 |𝑡𝑖,𝛤𝑗|𝑡𝑖,𝜙) (56)

439 𝜓 = 𝜓(
∂𝛤𝑗

∂𝒒 |𝑡𝑖,𝛤𝑗|𝑡𝑖,𝜙) (57)

440 The Lagrangian formulation is then considered to produce the equation of motion of the vehicle system, 
441 which can be written as:

442
𝑑
𝑑𝑡(∂𝐾

∂𝑞𝑖
) ―

∂𝐾
∂𝑞𝑖

+
∂𝐷
∂𝑞𝑖

+
∂𝑈
∂𝑞𝑖

=
𝛿𝑊
𝛿𝑞𝑖

      𝑖 = 1, …,𝑛 (58)

443 where, in this case, 𝑛 = 1 since the system possesses 1 d.o.f.

444 Being 𝐾, 𝐷, 𝑈, respectively, the kinetic energy, the potential dissipative energy, the potential elastic energy 
445 of the system, and 𝛿𝑊 the virtual work done by the external forces, they are expressed as:

446 𝐾 = 1
2𝑀𝑉(𝑥2

𝐺 + 𝑦2
𝐺) + 1

2𝐽𝑉𝐺𝜙2 + 1
2𝐽𝑇𝑊𝐿

𝜒2 + 1
2𝐽𝑇𝑊𝑅

𝜓2 (59)

447 𝐷 = 1
2𝑢1𝑣2

𝑃𝐵𝐿 + 1
2𝑢2𝑣2

𝑃𝐵𝑅 (60)

448 𝑈 = 1
2𝑘𝑠𝛥𝑙2

𝑃𝐵𝐿 + 1
2𝑘𝑠𝛥𝑙2

𝑃𝐵𝑅 (61)

449 𝛿𝑊 = (𝑭𝑐𝑉 + 𝑭𝑔𝑉
)•𝛿𝒙𝐺 + 𝑭𝑔𝑇𝐿

•𝛿𝒙𝐶𝐿 + 𝑭𝑔𝑇𝑅
•𝛿𝒙𝐶𝑅 (62)

450 with 𝐽𝑉𝐺 be the moment of inertia of the vehicle body with respect to its centre of mass, 𝐽𝑇𝑊𝐿
, 𝐽𝑇𝑊𝑅

 be the 

451 moments of inertia of the two tire-wheel assemblies with respect to the corresponding contact points, that, 
452 by the Huygens-Steiner theorem, are:

453 𝐽𝑇𝑊𝐿
= 𝐽𝑇𝐶𝐿

+ 𝑚𝑇𝑟2
𝑇 = 𝐽𝑇𝑊𝑅

= 𝐽𝑇𝐶𝑅
+ 𝑚𝑇𝑟2

𝑇 (63)

454 and 𝐽𝑇𝐶𝐿
, 𝐽𝑇𝐶𝑅

 are the moments of inertia of the tire-wheel assemblies with respect to their centres of mass. 

455 Moreover, it holds:

456 𝛥𝑙𝑃𝐵𝐿 = 𝑙𝑃𝐵𝐿0
― 𝑙𝑃𝐵𝐿 (64)

457 𝛥𝑙𝑃𝐵𝑅 = 𝑙𝑃𝐵𝑅0
― 𝑙𝑃𝐵𝑅 (65)
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458 𝑙𝑃𝐵𝐿 = |𝒙𝐵𝐿 ― 𝒙𝑃𝐿| (66)

459 𝑙𝑃𝐵𝑅 = |𝒙𝐵𝑅 ― 𝒙𝑃𝑅| (67)

460 𝑣𝑃𝐵𝐿 = 𝛥𝑙𝑃𝐵𝐿 (68)

461 𝑣𝑃𝐵𝑅 = 𝛥𝑙𝑃𝐵𝑅 (69)

462 𝒙𝐵𝐿 = 𝒙𝐺 + 𝑹𝑉𝒙𝐵𝐿 (70)

463 𝒙𝐵𝑅 = 𝒙𝐺 + 𝑹𝑉𝒙𝐵𝑅 (71)

464 𝒙𝑃𝐿 = 𝒙𝑊𝐿 + 𝑹𝑇𝐿𝒙𝑃𝐿 (72)

465 𝒙𝑃𝑅 = 𝒙𝑊𝑅 + 𝑹𝑇𝑅𝒙𝑃𝑅 (73)

466 In particular: 𝑙𝑃𝐵𝐿0
,𝑙𝑃𝐵𝑅0

 describe the initial distances between points 𝑃𝐿 ― 𝐵𝐿, 𝑃𝑅 ― 𝐵𝑅; 𝒙𝐵𝐿, 𝒙𝐵𝑅, 𝒙𝑃𝐿, 𝒙𝑃𝑅 

467 are the position vectors of the points in the mobile reference frames of the body vehicle and the tire-wheel 
468 assemblies; 𝑭𝑐𝑉 = [𝐹(𝑡) 0]𝑇, 𝑭𝑔𝑉 = [0 ― 𝑀𝑉𝑔]𝑇, 𝑭𝑔𝑇𝐿

= 𝑭𝑔𝑇𝑅
= [0 ― 𝑚𝑇𝑔]𝑇 are, respectively, the lateral 

469 harmonic force acting on the centre of mass of the body car and the gravity force vectors acting on 𝐺 and 
470 on the centres of mass 𝐶𝑡𝐿,𝐶𝑡𝑅 of the two tires. Furthermore, 𝛿𝒙𝐺, 𝛿𝒙𝐶𝐿, 𝛿𝒙𝐶𝑅 represent the virtual 
471 displacements of the corresponding points, that can be defined as:

472 𝛿𝒙𝐺 = [𝛿𝑥𝐺 𝛿𝑦𝐺]𝑇 (74)

473 𝛿𝒙𝐶𝐿 = 𝜴𝑇𝐿𝑹𝑇𝐿𝒙𝐶𝐿 (75)

474 𝛿𝒙𝐶𝑅 = 𝜴𝑇𝑅𝑹𝑇𝑅𝒙𝐶𝑅 (76)

475 with:

476 𝜴𝑇𝐿 = [ 0 ―𝛿𝜒
𝛿𝜒 0 ] (77)

477 𝜴𝑇𝑅 = [ 0 ―𝛿𝜓
𝛿𝜓 0 ] (78)

478 Since the dependent variables 𝑥𝐺, 𝑦𝐺, 𝜒, 𝜓 can be expressed in terms of 𝜙, their time derivatives can be 

479 computed simply by deriving with respect to time the relationships in Eq. (54)-(57): 𝑥𝐺 =
∂𝑥𝐺

∂𝜙 𝜙, 𝑦𝐺 =
∂𝑦𝐺

∂𝜙 𝜙, 

480 𝜒 =
∂𝜒
∂𝜙𝜙, 𝜓 = ∂𝜓

∂𝜙𝜙. And the same kind of relationships can be produced between the virtual displacements 

481 of the dependent variables and 𝛿𝜙, as: 𝛿𝑥𝐺 =
∂𝑥𝐺

∂𝜙 𝛿𝜙, 𝛿𝑦𝐺 =
∂𝑦𝐺

∂𝜙 𝛿𝜙, 𝛿𝜒 =
∂𝜒
∂𝜙𝛿𝜙, 𝛿𝜓 = ∂𝜓

∂𝜙𝛿𝜙.

482 Finally, one can substitute the previous expressions into Eq. (59)-(62) and then into Eq. (58) to obtain the 
483 dynamics of the vehicle equipped with the double-arm suspensions, which can be written as:

484 𝐽𝜙𝜙 = 𝑄𝜙 ―
∂𝐷
∂𝜙 ―

∂𝑈
∂𝜙 (79)

485 where 𝑄𝜙 is the Lagrangian component of the external forces associated with the independent variable 𝜙, 

486 and 𝐽𝜙 is the resulting inertia term coming from 𝑑
𝑑𝑡(∂𝐾

∂𝜙
).
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487 The Eq. (79) can then be attacked by the iterative LQR scheme (see Appendix).

488 4.1.2. Dynamics of the vehicle equipped with multi-damper suspensions

489 To derive the vehicle dynamics in case the vehicle is equipped with the Multi-Damper Supension Systems 
490 (MDSS) one can follow the same procedure prieviously outlined with some modifications.

491
492 Fig. 18. Vehicle equipped with multi-damper suspensions.

493 In this situation, the system shows, in general, 3 d.o.f. By observing Fig. 18, the points of attachement of 
494 the suspensions to the vehicle are the same seen for the DASS, except for the definition of the new vehicle 
495 points 𝑄𝐿, 𝑄𝑅. They are necessary to introduce the two new Upper Tunable Dampers (UTDs) between points 
496 𝑄𝐿 ― 𝑁𝐿 and 𝑄𝑅 ― 𝑁𝑅, of controllable damping coefficients 𝑢𝐿2, 𝑢𝑅2, respectively.

497 Now there are only two rigid links, and so only two of the original four constraint equations hold: 𝛤3 and 
498 𝛤4 in Eq. (42). Indeed, the old upper rigid links (between points 𝑀𝐿 ― 𝑁𝐿 and 𝑀𝑅 ― 𝑁𝑅) have been replaced 
499 with two Lower Tunable Dampers (LTDss) of controllable damping coefficients 𝑢𝐿1, 𝑢𝑅1, respectively. The 
500 position of the springs is the same as for the DASS case, but they are not coupled with the dampers, as 
501 before.

502 The Lagrangian variables 𝑥𝐺,𝑦𝐺,𝜙 are chosen now as the independent variables, while 𝜒,𝜓 remain the 
503 dependent ones, that can be expressed with analagous functions to those produced in Eq. (56), (57). 

504 By defining with 𝐾,𝐷,𝑈,𝑊 the kinetic, potential dissipative, potential elastic energies and the virtual work 
505 done by the external forces for this architecture, the system dynamics passes through the Lagrangian 
506 approach in Eq. (58), as before, with 𝑛 = 3 and 𝒒 = [𝑥𝐺 𝑦𝐺 𝜙]𝑇.

507 The main difference is in the definition of the new potential dissipative energy, which now is:

508 𝐷 = 1
2𝑢𝐿1𝑣

2
𝑀𝑁𝐿 + 1

2𝑢𝑅1𝑣
2
𝑀𝑁𝑅 + 1

2𝑢𝑅2𝑣
2
𝑄𝑁𝑅 + 1

2𝑢𝐿2𝑣
2
𝑄𝑁𝐿 (80)
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509 and, by following the same process seen for the DASS situation, the dynamics of the vehicle equipped with 
510 MDSS becomes:

511 {𝑚𝑥𝐺𝑥𝐺 = 𝑄𝑥𝐺 ― ∂𝐷
∂𝑥𝐺

― ∂𝑈
∂𝑥𝐺

𝑚𝑦𝐺𝑦𝐺 = 𝑄𝑦𝐺 ― ∂𝐷
∂𝑦𝐺

― ∂𝑈
∂𝑦𝐺

𝐽𝜙𝜙 = 𝑄𝜙 ― ∂𝐷
∂𝜙

― ∂𝑈
∂𝜙

(81)

512 where 𝑚𝑥𝐺, 𝑚𝑦𝐺,𝐽𝜙 are resulting inertia terms coming from 𝑑
𝑑𝑡( ∂𝐾

∂𝑥𝐺
), 𝑑

𝑑𝑡( ∂𝐾
∂𝑦𝐺

), 𝑑
𝑑𝑡(∂𝐾

∂𝜙). 

513 In reality, the number of d.o.f. of a vehicle system equipped with multi-damper suspensions depends on the 
514 particular setting of the UTDs and LTDs. In fact, for an arbitrary setting of both UTDs and LTDs, the system 
515 shows the 3 d.o.f., and so the dynamics is the one just described. But, in case of very large value of damping 
516 coefficients imposed for UTDs or LTDs (𝑐 ≃ [107, 108] N s m-1) the corresponding links behave as rigid 
517 connectors, causing the number of d.o.f. to collapse to only one. If this happens for the UTDs, the roll centre 
518 coincides with 𝑅𝐶2 (see Fig. 18) if this happens for the LTDs, the MDSS emulates the DASS and, in this 
519 case, its roll centre coincides with 𝑅𝐶1), which in fact represents the kinematic roll centre of the standard 
520 double-arm suspension system (compare Fig. 18 and Fig. 17).  

521 Again, the system in Eq. (81) can be easily attacked by the iterative LQR scheme (see Appendix).

522 4.2. Control of the vehicle roll response in roll resonant conditions

523 Two cases are considered when using the MDSS: (i) the LTDs are settled to a constant very large damping 
524 value and the UTDs are indeed tunable, which means only the UTDs are controlled (this solution will be 
525 labelled as 𝑀𝐷𝑆𝑆2𝐷); (ii) both the LTDs and the UTDs are tunable (this solution will be labelled as 𝑀𝐷𝑆𝑆4𝐷

526 ). Both of these solutions are compared with the purely passive DASS arrangement in the absence of control, 
527 where the damping coefficients are set both to 𝑐0 (this solution will be labelled as free) and the solution 
528 obtained by applying the control scheme even in the DASS case (this solution will be labelled as 𝐷𝐴𝑆𝑆). 

529 For the DASS and MDSS cases, the state vectors are respectively defined as:

530 𝒙𝐷𝐴𝑆𝑆 = [𝜙 𝜙]𝑇 (82)

531 𝒙𝑀𝐷𝑆𝑆 = [𝑥𝐺 𝑦𝐺 𝜙 𝑥𝐺 𝑦𝐺 𝜙]𝑇 (83)

532 Depending if the vehicle is equipped with the DASS or the MDSS, the objective function provided to the 
533 iterative LQR scheme has to be different too. 

534 Since the controller has to reduce the roll oscillation of the vehicle, the target state vectors can be defined, 
535 respectively, as:

536 𝒙𝑟𝐷𝐴𝑆𝑆 = [0 0]𝑇 (84)

537 𝒙𝑟𝑀𝐷𝑆𝑆 = [𝑥𝐺 𝑦𝐺 0 𝑥𝐺 𝑦𝐺 0]𝑇 (85)

538 Nevertheless, in the MDSS case, one could improve the objective function by providing a further 
539 information to the controller, that is related to the error between the current 𝑅𝐶 position and its target 
540 position. Indeed, one could consider as target for this point the current position of the vehicle centre of mass, 
541 to try to reduce the available arm for the external excitation, and so to mitigate the roll angle and angular 
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542 velocity. This additional condition is imposed in an indirect form, i.e. by transforming the target requirement 
543 on the position of 𝑅𝐶 as a target requirement on the velocity vector of 𝐺. 

544 Therefore, if the target roll centre 𝑅𝐶𝑟 = 𝐺, it means the target velocity vector for the centre of mass must 
545 be:

546 𝒗𝐺𝑟 = 𝜴(𝒙𝐺 ― 𝒙𝑅𝐶𝑟
) = [0 0]𝑇 (86)

547 with: 

548 𝜴 = [0 ― 𝜙
𝜙 0 ] (87)

549 and so, the expression of the target state vector for the MDSS (both 𝑀𝐷𝑆𝑆2𝐷 and 𝑀𝐷𝑆𝑆4𝐷) architecture can 
550 be updated to be:

551 𝒙𝑟𝑀𝐷𝑆𝑆 = [𝑥𝐺 𝑦𝐺 0 0 0 0]𝑇 (88)

552 The controllable damping vector will assume the subsequent forms depending on the examined situation:

553 𝒖𝐷𝐴𝑆𝑆 = 𝑹―1𝑩𝑇[𝑺[𝒙 ― 𝒙𝑟𝐷𝐴𝑆𝑆] + 𝒑] ― 𝜣(𝒙𝑟𝐷𝐴𝑆𝑆
)+[𝜱(𝒙𝑟𝐷𝐴𝑆𝑆

) + 𝒅] (89)

554 𝒖𝑀𝐷𝑆𝑆 = 𝑹―1𝑩𝑇[𝑺[𝒙 ― 𝒙𝑟𝑀𝐷𝑆𝑆] + 𝒑] ― 𝜣(𝒙𝑟𝑀𝐷𝑆𝑆
)+[𝜱(𝒙𝑟𝑀𝐷𝑆𝑆

) + 𝒅 ― 𝒙𝑟𝑀𝐷𝑆𝑆] (90)

555 with [1, 50] kN s m1 as the admissable set for the damping coefficients values. 

556 4.2.1. Simulation results

557 To perform the simulations the following dimensioning has been adopted [46,47]: 𝑀𝑉 = 878.76 kg, 𝐽𝑉𝐺

558 = 247 kg m2, 𝑚𝑇 = 42.27 kg, 𝑟𝑇 = 0.35 m, 𝐽𝑇𝐶𝐿
= 𝐽𝑇𝐶𝑅

= 1.86 kg m2, 𝑘𝑆 = 38404 N m-1. The starting 

559 position vector of the points of the vehicle and tire-wheel assemblies, given in the fixed reference frame, 
560 are: 𝒙𝐺0 = [0 0.718]𝑇, 𝒙𝑀𝐿0

= [ ―0.43 0.718]𝑇, 𝒙𝑂𝐿0
= [ ―0.365 0.26]𝑇, 𝒙𝑄𝐿0

= [ ―0.75 0.8]𝑇, 𝒙𝑁𝐿0
=

561 [ ―0.787 0.5]𝑇, 𝒙𝑃𝐿0
= [ ―0.787 0.25]𝑇, 𝒙𝐶𝐿0

= [ ―0.91 0.35]𝑇, 𝒙𝑊𝐿0
= [ ―0.91 0]𝑇, 𝒙𝑀𝑅0

= [0.43 0.718]𝑇, 

562 𝒙𝑂𝑅0
= [0.365 0.26]𝑇, 𝒙𝑄𝑅0

= [0.75 0.8]𝑇, 𝒙𝑁𝑅0
= [0.787 0.5]𝑇, 𝒙𝑃𝑅0

= [0.787 0.25]𝑇, 𝒙𝐶𝑅0
= [0.91 0.35]𝑇, 

563 𝒙𝑊𝑅0
= [0.91 0]𝑇.

564
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565
566 Fig. 19. Optimal damping coefficients for the controlled 𝐷𝐴𝑆𝑆 case.

567

568 Fig. 20. Optimal damping coefficients for the controlled 𝑀𝐷𝑆𝑆2𝐷 case.

569 The selected parameters, together with a starting value for the damping coefficients equal to 𝑐0 = 3593 N s 
570 m-1, produce, for the vehicle equipped with the DASS (or with the MDSS when the damping coefficients of 
571 the LTDs are set to very large values), a dampened roll resonant frequency 𝑓𝑟𝑜𝑙𝑙

𝑛 ≃ 1 Hz, close to the standard 
572 one for real vehicles.

573 The observation time is 𝑇 = 15 s and, in this case, a timing for the controller action is imposed as [5, 15] s 
574 to better appreciate the comparison between the uncontrolled and controlled responses for the different 
575 scenarios. Furthermore, the exciting lateral force is chosen as 𝐹 = 2𝑠𝑖𝑛(2𝜋𝑓𝑟𝑜𝑙𝑙

𝑛 𝑡) kN (see Fig. 17).

576
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577
578 Fig. 21. Optimal damping coefficients for the controlled 𝑀𝐷𝑆𝑆4𝐷 case.

579
580 Fig. 22. Comparison between the free and controlled 𝐷𝐴𝑆𝑆, 𝑀𝐷𝑆𝑆2𝐷,𝑀𝐷𝑆𝑆4𝐷 vehicle solutions.

581 Fig. 19, Fig. 20 and Fig. 21 represent the optimal damping values for the controlled 𝐷𝐴𝑆𝑆 solution and the 
582 𝑀𝐷𝑆𝑆2𝐷,𝑀𝐷𝑆𝑆4𝐷 schemes, respectively.

583 In short, all the control laws alternate between the two saturation extremes for the tunable dampers. It is also 
584 clear how the damping laws for the 𝑀𝐷𝑆𝑆4𝐷 are characterized by a more complicated pattern with respect 
585 to those corresponding to the 𝐷𝐴𝑆𝑆 and 𝑀𝐷𝑆𝑆2𝐷. 

586 In Fig. 22 and Fig. 23, the comparison between the solutions for the vehicle and the tires, for all the four 
587 scenarios, is portrayed. While the free solution shows the expected resonant behavior, all the controlled 
588 solutions appear to dampen efficiently the system response.
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589
590 Fig. 23. Comparison between the free and controlled 𝐷𝐴𝑆𝑆, 𝑀𝐷𝑆𝑆2𝐷,𝑀𝐷𝑆𝑆4𝐷 wheels solutions.

591
592 Fig. 24. Comparison between the kinematic roll centre 𝑅𝐶 and the dynamic roll centre 𝑅𝐶𝐷 for the free and 
593 controlled 𝐷𝐴𝑆𝑆 solutions.

594 Among them, the 𝑀𝐷𝑆𝑆2𝐷 and 𝑀𝐷𝑆𝑆4𝐷 stand out for the best results. If one focuses the attention on the 
595 roll angle and angular velocity quantities (see Fig. 22), the 𝑀𝐷𝑆𝑆4𝐷 performs even better, confirming the 
596 benefits coming from the controllability of the overall 𝑀𝐷𝑆𝑆 arrangement.

597 It is interesting to observe Fig. 24, Fig. 25 and Fig. 26.

598 Fig. 24 shows the behaviour of the dynamic roll centre 𝑅𝐶𝐷 for the free and controlled 𝐷𝐴𝑆𝑆 arrangements, 
599 computed through Eq. (1), compared with the kinematic roll centre position 𝑅𝐶 which coincides with the 
600 original roll centre position in Fig. 17. It appears how the 𝑅𝐶𝐷 is constrained to move along a curvilinear 
601 segment.
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602
603 Fig. 25. Comparison between the kinematic roll centres 𝑅𝐶1, 𝑅𝐶2 and the dynamic roll centre 𝑅𝐶𝐷 for the 
604 𝑀𝐷𝑆𝑆2𝐷 controlled solution.

605
606 Fig. 26. Comparison between the kinematic roll centres 𝑅𝐶1, 𝑅𝐶2 and the dynamic roll centre 𝑅𝐶𝐷 for the 
607 𝑀𝐷𝑆𝑆4𝐷 controlled solution.

608 In the 𝑀𝐷𝑆𝑆2𝐷 scheme (see Fig. 25), the dynamic roll centre 𝑅𝐶𝐷 spends most of the time close to the 
609 kinematic roll centre 𝑅𝐶 (defined by the DASS architecture), however it does not remain confined on the 
610 curvilinear path: in some instants, it moves away from it.

611 In the 𝑀𝐷𝑆𝑆4𝐷 scheme (see Fig. 26), 𝑅𝐶𝐷 moves along a completely different and more complex pattern, 
612 produced by two new opposite conical branches with higher slope, and spending time even far from the two 
613 kinematic roll centres 𝑅𝐶1 and 𝑅𝐶2 (already observed in Fig. 18). In particular, left subplot of Fig. 26 shows 
614 a close up in the vicinity of the vehicle, of the roll center positions, , while on the right plot, the overall 
615 behavior is displayed. In this case 𝑅𝐶𝐷 reaches positions very far from the vehicle body.

616
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617
618 Fig. 27. Comparison between the equivalent inertia tensor element 𝐽33𝑒𝑞 for the free and controlled 
619 𝐷𝐴𝑆𝑆, 𝑀𝐷𝑆𝑆2𝐷,𝑀𝐷𝑆𝑆4𝐷 systems.

620 These effects are confirmed by examining the value of the roll (polar) moment of inertia of the vehicle, 
621 represented by the element 𝐽33𝑒𝑞 of the equivalent inertia tensor of the car body, and evaluated through Eq. 
622 (2). It is interesting to see how such quantity behaves differently from the roll moment of inertia obtained 
623 for the free solution, which is evaluated with respect to the kinematic roll centre of the 𝐷𝐴𝑆𝑆 arrangement 
624 𝑅𝐶, as shown in Fig. 17. 

625 While the inertia value for the free solution maintains a harmonic behavior around the middle value of about 
626 2300 kg m2 (a little bit greater than the kinematic reference value of about 2000 kg m2), even after the 
627 intervention of the controller (see Fig. 27), the 𝐽33𝑒𝑞 of the controlled 𝐷𝐴𝑆𝑆 and 𝑀𝐷𝑆𝑆2𝐷 solutions is moved 
628 towards it. Thus, for these two cases, the control action has the effect of reducing the roll oscillation by 
629 reducing the roll moment of inertia. 

630 On the other hand, the 𝐽33𝑒𝑞 of the 𝑀𝐷𝑆𝑆4𝐷 solution shows very large values (see Fig. 27), that, of course, 
631 reflect the behavior of the corresponding 𝑅𝐶𝐷, observed in Fig. 26. Therefore, for this arrangement, the 
632 control action causes an increase in the roll resistance of the body.

633 In all the cases, the roll moment of inertia follows specific periodic patterns (that reflect those coming from 
634 the damping control laws in Fig. 19, Fig. 20 and Fig. 21). If one inspects such patterns, they show a 
635 characteristic frequency of about 2 Hz, which is twice the roll resonant frequency of the original system and 
636 twice the exciting frequency. 

637 This means the damping control move away the frequency response from the resonant conditions, originally 
638 at 1 Hz, with the effect of mitigating the roll amplitude. The response at frequencies other than those 
639 contained in the exciting force is a typical effect of nonlinear vibrational systems, and one of the most 
640 common is the doubling of the exciting frequency. In fact, it is clear the described damping control acts in 
641 a very nonlinear way, as emphasized by the analytical investigation of subsection 2.3, and the LQR 
642 linearization is valid only in a local approximation, where the system configuration does not change 
643 significantly with time. 
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644 Finally, because of the polodes control, the roll inertia is changing, and with it the roll instant frequency, in 
645 the context of a highly nonlinear process. 

646 5.  Conclusions

647 This paper investigates the possibility to control the kinematic characteristics of a body through the use of 
648 tunable dampers. The explored configurations include sliding couplers, each with a tunable damper, 
649 controlled by an Optimal Control Theory algorithm. The instant centre of rotation of the rigid body, i.e. its 
650 polode, is controlled by the damping of the sliders. As a remarkable effect, the inertia tensor of the body 
651 and instant natural frequencies change too. 

652 The proposed theory shows the general form the problem takes by considering a generic 3D rigid body 
653 constrained through springs and telescopic linkages equipped with tunable dampers, where the control 
654 vector is the set of the tunable damping coefficients. Since the problem is  highly nonlinear, Linear Quadratic 
655 Regulator is employed to determine the best instant tuning of the dampers. 

656 A detailed application to the automotive suspension system is presented: the roll centre and axis of the car 
657 are semi-actively controlled by a set of four dampers, which provides a better mitigation of the system 
658 response in respect to a standard double-arm suspension architecture. The multi-damper suspension clearly 
659 shows the chance of reducing the roll angle of a vehicle body under roll resonant condition.
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662 Appendix

663 The linearization procedure to derive the LQR control law is here defined.

664 The compact form of the system dynamics is represented by the following nonlinear differential equation, 
665 affine in the control term 𝒖 as:

666 𝒙 = 𝒇(𝒙,𝒖,𝒚) = 𝜱(𝒙) + 𝜣(𝒙)𝒖 + 𝒚 (A.1)

667 The control statement consists in the minimization of the functional 𝐽∗ with respect to the three a priori 
668 independent variables 𝒙, 𝒖, 𝝀 over an observation time 𝑇, i.e.:

669 min (𝒙, 𝒖, 𝝀)     𝐽∗ = ∫𝑇
0 {𝐿(𝒙,𝒖,𝒙𝑟,𝒖𝑟) + 𝝀𝑇[𝒙 ― 𝒇(𝒙,𝒖,𝒚)]} 𝑑𝑡 (A.2)

670 with 𝒖 ϵ 𝑈 and by considering the initial condition on the system dynamics 𝒙(0) = 𝒙0.

671 Since the linearization process passes through the LQR method, this means that the penalty function is  𝐿
672 (𝒙,𝒖,𝒙𝑟,𝒖𝑟) = 1

2[𝒙 ― 𝒙𝑟]𝑇𝑸[𝒙 ― 𝒙𝑟] + 1
2
[𝒖 ― 𝒖𝑟]𝑇𝑹[𝒖 ― 𝒖𝑟], with 𝑸,𝑹 be the cost matrices on the errors on 

673 the state and control vectors, respectively. Thus, following the general approach [45], the iterative LQR 
674 control scheme in presence of target reference values imposed on both the state and control vectors, 
675 respectively defined with 𝒙𝑟, 𝒖𝑟, proceeds as follows.

676 The first requirement is that, once the system reached the target state, its dynamics must be 𝒙𝑟 (that in case 
677 of constant target is simply 0). Therefore, both 𝒙𝑟, 𝒖𝑟 must satisfy the following condition:
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678 𝒙𝑟 = 𝜱(𝒙𝑟) + 𝜣(𝒙𝑟)𝒖𝑟 + 𝒚 (A.3)

679 and so, the control vector at the target state must be:

680 𝒖𝑟 = ― 𝜣(𝒙𝑟)+[𝜱(𝒙𝑟) + 𝒚 ― 𝒙𝑟] (A.4)

681 where the apex ‘+’ represents the pseudo-inverse of the matrix 𝜣(𝒙𝑟).

682 With the introduction of the target, the functional 𝐽∗ can be rewritten as:

683 𝐽∗ = ∫𝑇
0 {1

2
[𝒙 ― 𝒙𝑟]𝑇𝑸[𝒙 ― 𝒙𝑟] + 1

2
[𝒖 ― 𝒖𝑟]𝑇𝑹[𝒖 ― 𝒖𝑟] + 𝝀𝑇[𝒙 ― 𝒇(𝒙,𝒖,𝒚)]}𝑑𝑡 (A.5)

684 To systematically apply the LQR algorithm, the second member in Eq. (A.1) is linearized with respect to 
685 variables 𝒙,𝒖 around the generic time instant 𝑡𝑖 as follows:

686 𝜱(𝒙) ≃ 𝜱(𝒙𝑡𝑖
) + ∇𝒙𝜱(𝒙)|𝑡𝑖[𝒙 ― 𝒙𝑡𝑖] (A.6)

687 𝜣(𝒙)𝒖 ≃ 𝜣(𝒙𝑡𝑖
)𝒖𝑡𝑖 + ∇𝒙[𝜣(𝒙)𝒖]|𝑡𝑖[𝒙 ― 𝒙𝑡𝑖] + ∇𝒖[𝜣(𝒙)𝒖]|𝑡𝑖[𝒖 ― 𝒖𝑡𝑖] =

688 = ∇𝒙[𝜣(𝒙)𝒖]|𝑡𝑖[𝒙 ― 𝒙𝑡𝑖] + 𝜣(𝒙𝑡𝑖
)𝒖 (A.7)

689 where ∇𝒃𝒂 is the gradient of quantity 𝒂 with respect to quantity 𝒃. By substituting now the expressions in 
690 Eq. (A.6), (A.7) in Eq. (A.5) and by considering the subsequent change of coordinates 𝒙 = 𝒙 ― 𝒙𝑟 , 𝒖 = 𝒖 ―
691 𝒖𝑟, the i-esimal functional 𝐽∗

𝑖  can be defined as:

692 𝐽∗
𝑖 = ∫𝑡𝑖+𝛥𝑡

𝑡𝑖
{1

2
𝒙𝑇𝑸𝒙 + 1

2
𝒖𝑇𝑹𝒖 + 𝝀𝑇[𝒙 ― [𝜱(𝒙𝑡𝑖

) + 𝑨[𝒙 + 𝒙𝑟 ― 𝒙𝑡𝑖
] + 𝑩[𝒖 + 𝒖𝑟] + 𝒚]]}𝑑𝑡 (A.8)

693 with:

694 𝑨 = ∇𝒙+𝒙𝑟𝜱(𝒙 + 𝒙𝑟)|𝑡𝑖 + ∇𝒙+𝒙𝑟[𝜣(𝒙 + 𝒙𝑟)[𝒖 + 𝒖𝑟]]|𝑡𝑖
(A.9)

695 𝑩 = 𝜣(𝒙𝑡𝑖) (A.10)

696 By performing perturbations of 𝐽∗
𝑖  with respect to the three variables 𝒙,𝒖, 𝝀, it holds:

697 { 
𝛿𝒙:   𝑸𝒙 ― 𝑨𝑇𝝀 ― 𝝀 = 𝟎
𝛿𝒖:   𝑹𝒖 ― 𝑩𝑇𝝀 = 𝟎
𝛿𝝀:    𝒙 ― [𝜱(𝒙𝑖) + 𝑨[𝒙 + 𝒙𝑟 ― 𝒙𝑖] + 𝑩[𝒖 + 𝒖𝑟] + 𝒚] = 𝟎

(A.11)

698 By introducing the Riccati Matrix 𝑺 and the complementary term 𝒑, one could express 𝝀 as a function of 
699 the modified state 𝒙 as:

700 𝝀(𝒙,𝑡) = 𝑺(𝑡)𝒙 + 𝒑(𝑡) (A.12)

701 By substituting expression in Eq. (A.12) into the second equation in Eq. (A.11), it holds:

702 𝒖(𝒙,𝑡) = 𝑹―1𝑩𝑇[𝑺(𝑡)𝒙 + 𝒑(𝑡)]  (A.13)

703 Now, by introducing the new expressions for 𝝀, 𝒖 in Eq. (A.12), (A.13) into the first and third equations of 
704 Eq. (A.11), after some mathematics, the control problem assumes the form:
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705 {𝑺 + 𝑨𝑇𝑺 + 𝑺𝑨 ― 𝑺𝑩𝑹―1𝑩𝑇𝑺 + 𝑸 = 𝟎
𝒑 + 𝑨𝑇𝒑 ― 𝑺𝑩𝑹―1𝑩𝑇𝒑 ― 𝑺𝒚 = 𝟎 (A.14)

706 with boundary conditions:

707 {𝑺(𝑇) = 𝟎
𝒑(𝑇) = 𝟎 (A.15)

708 and:

709 𝒚 = 𝜱(𝒙𝑡𝑖
) + 𝑨[𝒙𝑟 ― 𝒙𝑡𝑖

] + 𝑩𝒖𝑟 + 𝒚 (A.16)

710 Therefore, the i-esimal optimal control feedback solution 𝒖 in the original coordinates is:

711 𝒖 = 𝒖 + 𝒖𝑟 = 𝑹―1𝑩𝑇[𝑺(𝑡)[𝒙 ― 𝒙𝑟] + 𝒑(𝑡)] ― 𝜣(𝒙𝑟)+[𝜱(𝒙𝑟) + 𝒚 ― 𝒙𝑟] (A.17)
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