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A B S T R A C T   

Mast cells (MCs), traditionally viewed as key players in IgE-mediated allergic responses, are increasingly 
recognized for their versatile roles. Situated at critical barrier sites such as the ocular surface, these sentinel cells 
participate in a broad array of physiological and pathological processes. This review presents a comprehensive 
update on the immune pathophysiology of MCs, with a particular focus on the mechanisms underlying innate 
immunity. It highlights their roles at the ocular surface, emphasizing their participation in allergic reactions, 
maintenance of corneal homeostasis, neovascularization, wound healing, and immune responses in corneal 
grafts. The review also explores the potential of MCs as therapeutic targets, given their significant contributions 
to disease pathogenesis and their capacity to modulate immunity. Through a thorough examination of current 
literature, we aim to elucidate the immune pathophysiology and multifaceted roles of MCs in ocular surface 
health and disease, suggesting directions for future research and therapeutic innovation.   

1. Introduction 

Mast cells (MCs) are tissue-resident immune cells mainly distributed 
throughout the connective tissues of the body, particularly close to 
blood and lymphatic vessels (Krystel-Whittemore et al., 2016; Micera 
et al., 2020; Norrby, 2002). Situated at key interfaces with the external 
environment, including the skin, respiratory, gastrointestinal systems, 
and ocular surface, they play a pivotal role in immunological response as 
gatekeepers (Galli and Tsai, 2012; Janssens et al., 2005; Krystel--
Whittemore et al., 2016; Kumar and Sharma, 2010; Metcalfe et al., 1997; 
Rodewald and Feyerabend, 2012; Royer et al., 2015). 

At the ocular surface, MCs are distributed in the peripheral cornea, 
limbus, and conjunctiva and have been typically associated with the 
pathogenesis of allergic keratoconjunctivitis (Leonardi et al., 2008; Liu 
et al., 2015; Micera et al., 2020). Nevertheless, in line with the recent 
findings and progress, they also contribute to non-allergic ocular con-
ditions, including corneal neoangiogenesis, lymphangiogenesis, tissue 
remodeling and graft rejection (Cho et al., 2021; Li et al., 2019; Sahu 
et al., 2018). 

Herein, this review underscores the pivotal role of MCs in immune 

responses and ocular surface, extending beyond their traditional 
involvement in allergic responses. Recognizing the versatile functions of 
MCs highlights their potential as therapeutic targets in immune 
disorders. 

2. Pathophysiology of MCs: a focus on the innate response 

MCs originate from CD34+ myeloid precursors in the bone marrow; 
these progenitor cells enter the bloodstream as mononuclear leukocytes 
devoid of the typical secretory granules, expressing surface markers such 
as CD13, CD33, CD38, CD34, and Kit (Kirshenbaum et al., 1999; M O 
Muench et al., 1994). 

Under the influence of Stem Cell Factor (SCF) and tissue-specific 
chemokines and cytokines, MCs progenitors migrate into peripheral 
tissues where they develop and differentiate into mature MCs (Dahlin 
and Hallgren, 2015; Grootens et al., 2018). SCF, the ligand for the c-kit 
receptor (CD117), is the main survival and developmental factor for MCs 
and is produced by several cell types, including fibroblasts and stromal 
cells (Flanagan and Leder, 1990; Galli et al., 1993; Hu et al., 2007). In 
peripheral tissues, the phenotypic characteristics of MCs are further 

* Corresponding author. Ophthalmology, Campus Bio-Medico University, Rome, 00128, Italy. 
E-mail address: a.dizazzo@policlinicocampus.it (A. Di Zazzo).  

Contents lists available at ScienceDirect 

Experimental Eye Research 

journal homepage: www.elsevier.com/locate/yexer 

https://doi.org/10.1016/j.exer.2024.109982 
Received 15 May 2024; Received in revised form 10 June 2024; Accepted 25 June 2024   

mailto:a.dizazzo@policlinicocampus.it
www.sciencedirect.com/science/journal/00144835
https://www.elsevier.com/locate/yexer
https://doi.org/10.1016/j.exer.2024.109982
https://doi.org/10.1016/j.exer.2024.109982
https://doi.org/10.1016/j.exer.2024.109982
http://crossmark.crossref.org/dialog/?doi=10.1016/j.exer.2024.109982&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Experimental Eye Research 245 (2024) 109982

2

regulated by distinct factors provided by the microenvironment where 
they ultimately reside, such as IL-3, IL-4, and IL-9 (Galli et al., 2005a, 
2005b; Hamaguchi et al., 1987; Marone et al., 2005). 

Fully developed MCs are strategically located throughout the body 
near blood vessels, lymphatics, and mucosal surfaces such as the skin, 
the ocular surface, and the gastrointestinal tract, where they interact 
and react with the external environment; however, their distribution can 
vary with age and sex (Fuda et al., 2023; Galli et al., 2005b, 2005a; 
Metcalfe et al., 1997; Y K., 1989). This strategic localization enables the 
facilitation of systemic reactions to different local triggers, playing a 
pivotal role in coordinating crucial elements of both innate and adaptive 
immunity, alongside various physiological functions. Within the mast 
cell cytoplasm lie 50–200 pre-formed secretory granules, which are 
reservoirs for pro-inflammatory agents such as histamine, heparin, 
TNFα, chymase, tryptase, carboxypeptidase A, bradykinin, nitric oxide, 
cathelicidin, neuropeptide Y (NPY), and more (da Silva et al., 2014; Galli 
et al., 2005a, 2005b; Molderings and Afrin, 2023; Wang et al., 2024). 
Additionally, MCs have the capability to generate and secrete 
lipid-derived mediators like leukotrienes and prostaglandins, as well as 
an array of cytokines, chemokines, and growth factors, including IL-13, 
IL-33, and CXCL8, through de novo synthesis (Boyce, 2003; Galli et al., 
2005b; Gurish and Austen, 2001; Marshall, 2004; Rivera and Gilfillan, 
2006). Remarkably, the number of postulated MCs mediators, which is 
at least 390, is significantly greater than the number of signaling mol-
ecules identified as being synthesized and secreted by other immune 
cells (Molderings and Afrin, 2023). 

MCs in rodents are divided into two primary subtypes based on their 
specific staining characteristics, localization, and granules: mucosal- 
type MCs (MMC) and connective tissue-type MCs (CTMC) (Befus et al., 
1982; Enerbäck, 1966). MMCs are major effector cells in allergic re-
sponses mediated by IgE (Bischoff, 2009; Reber et al., 2017). In contrast, 
CTMCs play an essential role in degrading proteins and peptides, 
significantly contributing to wound healing and tissue remodeling 
(Harvima and Nilsson, 2011). 

Human MCs also exhibit significant heterogeneity and are classified 
based on their serine protease content into three categories: tryptase- 
only MCs (MCT), chymase-only MCs (MCC), and MCs containing both 
tryptase and chymase (MCTC) (Irani and Schwartz, 1994; Welle, 1997). 
MCT cells share similarities with rodent MMCs, while MCTC cells 
resemble rodent CTMCs. However, the distribution of these subtypes in 
human tissues is less distinct compared to rodents, with most human 
tissues containing a mixed population of MC types (Moon et al., 2010; 
Welle, 1997). Moreover, MC phenotypes are not static and can undergo 
trans-differentiation depending on microenvironmental conditions. (Y 
K., 1989) This plasticity underscores the significant role of the sur-
rounding microenvironment, including cytokine exposure and the 
developmental stage of the MCs, in shaping their characteristics (Friend 
et al., 1996; Kanakura et al., 1988; Levi-Schaffer et al., 1986; Otsu et al., 
1987; S S et al., 1986). As a result, the traditional classifications of MCs 
are evolving to reflect their dynamic and versatile nature (Shea-Dono-
hue et al., 2010). 

The adaptability of MCs allows them to form distinct subsets with 
varying functions and mediator profiles, enabling them to serve diverse 
roles (Bienenstock et al., 1983; Galli, 1990; Y K., 1989). 

The most well-known pathway for mast cell degranulation involves 
the interaction between allergen-specific IgE and the FcεRI receptor on 
the mast cell surface (Sibilano et al., 2014; Turner and Kinet, 1999). This 
process is initiated when IgE, produced by mature B cells under the 
influence of CD4+ Th2 cells, binds to antigens, resulting in the 
cross-linking of FcεRI receptors. This interaction triggers the release of 
stored inflammatory mediators, driving the allergic response through 
mechanisms such as vascular dilation and increased expression of 
endothelial adhesion molecules (Amin, 2012; Galli and Tsai, 2012; 
Siraganian, 2003). The involvement of MCs in IgE-mediated allergic 
reactions is often attributed to an exaggerated immune response initially 
developed to combat parasites (Galli and Tsai, 2012). 

Beyond their established role in mediating allergic responses, MCs 
have been recognized for their broader involvement in a variety of 
critical biological processes. Their capacity to produce and discharge an 
array of potent mediators places them at the center of complex immu-
nological activities and physiological processes (Chan et al., 2012; 
Coussens et al., 1999; Galli and Tsai, 2010; Gilfillan and Beaven, 2011; 
Leveson-Gower et al., 2013; Lu et al., 2006). Moreover, MCs have been 
implicated in the development of various pathological conditions, such 
as disorders of the gastrointestinal system, cancer progression, and the 
pathogenesis of metabolic syndromes like diabetes and obesity (Liu 
et al., 2009; Tlsty and Coussens, 2006). 

Their pivotal role includes orchestrating the early phases of inflam-
mation upon infection, alerting nearby innate immune cells such as 
macrophages, neutrophils, dendritic cells, and NK cells to the presence 
of pathogens and producing antimicrobial agents including cathelicidins 
and defensins (Abraham and St. John, 2010; Arifuzzaman et al., 2019; 
Rönnberg et al., 2010; Supajatura et al., 2001). 

The ability to directly recognize and bind to pathogens, including 
bacteria, viruses, and parasites, or their soluble components like lipo-
polysaccharide and peptidoglycan, occurs through direct interaction 
with pathogens via Toll-like receptors (TLRs) or indirectly through the 
complement system (Cook et al., 2004; Malaviya and Abraham, 2001; 
Marshall, 2004). MCs express various TLRs, which enable them to 
recognize pathogen-associated molecular patterns (PAMPs) and respond 
accordingly by releasing cytokines, chemokines, and lipid mediators. 
TLR ligands can enhance the mast cell’s response to antigens, affecting 
cytokine secretion without necessarily inducing degranulation. Acti-
vating MCs simultaneously via IgE and TLR ligands significantly boosts 
cytokine production, although it doesn’t affect IgE-induced degranula-
tion (Suurmond et al., 2015). Furthermore, MCs can amplify the com-
plement system’s effects by generating and activating complement 
proteins such as C3a and C5a through mast cell-derived proteases like 
tryptase and chymase. This interaction enhances inflammatory re-
sponses, positioning MCs as key players in complement-mediated acti-
vation (Fukuoka et al., 2013; Rahkola et al., 2019). Additionally, MCs 
express receptors for complement components like C3a and C5a, which 
facilitates their activation in both paracrine and autocrine manners, 
leading to further mediator release and perpetuation of the immune 
response (Ali, 2010; Kashem et al., 2011; Lohman et al., 2017). The 
expression of complement receptors varies among MCs from different 
tissues, influencing their response to complement proteins and their 
susceptibility to complement-mediated attacks through surface proteins 
such as CD46, CD55, and CD59 (Lubbers et al., 2017). 

The immunomodulatory function of the innate immune cells may be 
mediated through the release of cytokines like TNF-α and IL-1; these 
cytokines aid in the migration and maturation of dendritic cells towards 
local lymph nodes to activate cytotoxic T cells and promote neutrophil 
migration to infection and inflammation sites (Cumberbatch et al., 2000; 
Nakae et al., 2006; Steinman and Inaba, 1999; Zhang et al., 1992). 

MCs regulate T cells function both directly, acting as antigen pre-
senting cells (APC) through the expression of MHC molecules, and 
indirectly, secreting chemotactic factors and regulating the expression 
of adhesion molecules on endothelial cells; MC’s also affect B cells 
function by supporting their proliferation and the immunoglobulin 
synthesis (Gauchat et al., 1993; Mekori and Metcalfe, 1999, 1999, 1999; 
Merluzzi et al., 2010; Nakae et al., 2005; Ott et al., 2003; Shelburne 
et al., 2009). 

The interaction and regulation of MCs with other immune cells 
represent a sophisticated mechanism in which sialic acid-binding 
immunoglobulin-like lectins (Siglecs) are increasingly recognized for 
their significance. Siglecs facilitate a tailored cellular response through 
their ability to detect distinct sialylation patterns, thanks to the variety 
of Siglecs expressed by each cell (Gonzalez-Gil and Schnaar, 2021; 
O’Sullivan et al., 2020). Specifically, MCs are known to express a range 
of Siglecs, including CD22/Siglec-2, CD33/Siglec-3, Siglec- 5, Siglec-6, 
Siglec-7, Siglec-8, Siglec-9, and Siglec-10 (Miralda et al., 2023; Yokoi 
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et al., 2006). Siglecs functions include decreasing the release of mast cell 
mediators, reducing the production of arachidonic acid metabolites, 
diminishing the severity of mast cell-dependent anaphylaxis, curbing 
the proliferation of human mast cell lines in mastocytosis models, alle-
viating mast cell activation and inflammation in experimental models of 
nonallergic airway inflammation, and decreasing mast cell populations 
in models of eosinophilic gastrointestinal disorders (Duan et al., 2019; 
Landolina et al., 2020; Miralda et al., 2023; Mizrahi et al., 2014; Robida 
et al., 2022; Schanin et al., 2021; Yokoi et al., 2008; Youngblood et al., 
2019). 

3. MCs and ocular surface diseases: the forgotten side of the 
innate response 

The ocular surface is a complex and dynamic environment, rich in 
cellular diversity, among which MCs, localized at the peripheral cornea, 
limbus, and conjunctiva, play a significant role (McMenamin et al., 
1996; Micera et al., 2020). 

Investigations into corneal development have delineated two distinct 
phases of mast cell migration that are critical for ocular development. 
Initially, MCs are found to populate both the central and peripheral 
regions of the corneal stroma, spreading throughout the corneal surface. 
In a subsequent phase of migration MCs relocate to the corneal limbus, 
where they form a perivascular network around limbal blood vessels. 
These limbus-resident MCs are characterized by their longevity and 
proliferative capabilities, playing a pivotal role in the promotion of 
neurovascular crosstalk (Liu et al., 2015; Liu and Li, 2021). 

Beyond their involvement in corneal development, MCs situated on 
the ocular surface are increasingly recognized for their critical contri-
butions to ocular health and disease. Notably, they are integral in the 

pathogenesis of allergic keratoconjunctivitis, but their role extends 
beyond this to encompass the maintenance of ocular surface homeo-
stasis, neoangiogenesis, lymphangiogenesis, tissue remodeling, and 
alloimmunity, highlighting their importance in the intricate network of 
ocular immunity and physiology (see Fig. 1) (Chauhan et al., 2011; 
Church and McGill, 2002; Li et al., 2019; Sahu et al., 2018; Xie et al., 
2018). 

3.1. Allergic keratoconjunctivitis 

The eye frequently encounters allergic inflammation due to its direct 
exposure to the external environment and airborne allergens. The un-
derlying mechanism of allergic inflammation primarily involves an IgE- 
mediated hypersensitivity reaction, with conjunctival MCs playing a 
crucial role in the allergic response’s effector phase (Elieh Ali Komi 
et al., 2018; P. Mishra et al., 2011; Villegas and Benitez-Del-castillo, 
2021). 

The sensitization phase in genetically predisposed individuals begins 
with the initial contact with a new allergen. Dendritic cells and other 
antigen-presenting cells (APCs), such as macrophages in the conjunctiva 
and limbus, process and present these allergens. The engagement of 
these APCs with naïve CD4+ T cells in the eye-draining lymph nodes 
prompts the maturation and differentiation of these T cells into Th1 or 
Th2 effector lymphocytes. Th2 cells play a key role in the IgE-mediated 
allergic response by releasing cytokines that stimulate IgE production by 
B cells and promote mast cell proliferation (Irkec and Bozkurt, 2012; 
Schlereth et al., 2012). Upon re-exposure to the allergen, 
allergen-specific IgE binds to the high-affinity IgE receptor (FcεRI) on 
MCs, triggering their degranulation and the release of pro-inflammatory 
mediators, lipid-derived mediators, and cytokines. This results in 

Fig. 1. Illustration of Mast Cell Functions in Ocular Immunity 
1. Innate immune response: essential mechanisms through which mast cells contribute to the innate immune defense, underscoring the role of Toll-Like Receptors, 
chymase and tryptase, in conjunction with the activation of the complement system. The scaffold-like depiction of the complement system illustrates its supportive 
role in bolstering mast cells during the innate inflammatory response. 2. Allergic keratoconjunctivitis: mast cells have a pivotal function in adaptive immunity, 
particularly in the context of allergic reactions. 3. Corneal alloimmunity: mast cells have a pivotal role in corneal transplant graft rejection. 4. Corneal injury and 
tissue remodeling: mast cells have a key role in the process of tissue remodeling post-corneal injury. The process is facilitated by the cooperative action of neutrophils 
and fibroblasts. 5. Neoangiogenesis and lymphangiogenesis: mast cells are essential in the processes of neovascularization and lymphangiogenesis. FB - Fibroblasts, 
FcεRI - High Affinity IgE Receptor, MC - Mast Cell, Ne – Neutrophils, TLR - Toll-Like Receptor. 
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increased tear levels of histamine and tryptase, leading to vasodilation 
and enhanced vascular permeability, marking the acute phase of the 
ocular surface reaction (Ackerman et al., 2016; Dupuis et al., 2020). The 
subsequent late-phase reaction, lasting from 6 to 72 h post-exposure, 
features the release of lipid mediators, pro-inflammatory cytokines, 
chemokines, and macrophage inflammatory protein 1α (MIP-1α, CCL3), 
contributing to the inflammatory process (Cook et al., 2002; Draber 
et al., 2012; Ellmeier et al., 2011). 

Pro-inflammatory cytokines and chemokines further contribute to 
the recruitment and activation of eosinophils, basophils, T cells, neu-
trophils, and macrophages, intensifying the inflammatory response 
within the conjunctival mucosa (Leonardi, 2002; Miyazaki et al., 2008). 
These recruited cells can cause tissue damage through the release of 
cytotoxic substances, including eosinophil cationic protein, eosinophil 
peroxidase, and neutrophil-derived toxic radicals, establishing a 
perpetuating cycle of damage (Leonardi, 2002). 

3.2. Corneal neoangiogenesis and lymphangiogenesis 

Normal human corneas lack both blood and lymphatic vessels; 
indeed, corneal avascularity is fundamental to guaranteeing optimal 
visual acuity (Cursiefen et al., 2003; Foulsham et al., 2018). The unique 
quality of being a completely avascular tissue is called “angiogenic 
privilege” and distinguishes the cornea from most other tissues, which 
rely on blood and lymphatic vessels for sustenance. In the cornea, 
nutrient and oxygen supply is met through glucose diffusion from the 
aqueous humor and oxygen diffusion from the tear film, allowing the 
tissue to remain avascular under normal conditions (Ellenberg et al., 
2010). 

The maintenance of corneal avascularity is the result of a balance 
between pro-angiogenic and anti-angiogenic factors. Disruption of this 
equilibrium, due to pathological conditions, can lead to an excess of 
angiogenic stimulators like VEGF, bFGF, and matrix metalloproteinases, 
coupled with a decrease in angiogenesis inhibitors such as pigment 
epithelium-derived factor, angiostatin, and endostatin, leading to 
vascular proliferation from existing limbal vessels (Abdelfattah et al., 
2016; Ambati et al., 2006; Dawson et al., 1999; Ellenberg et al., 2010; 
Jin et al., 2011). This process undermines corneal clarity through 
chronic inflammation, swelling, scarring, and deposition of intrastromal 
protein and lipid, potentially leading to significant vision reduction or 
blindness (Abdelfattah et al., 2015; Clements and Dana, 2011; Maddula 
et al., 2011). 

As neighboring sentinel cells to blood vessels, MCs play a crucial role 
in various angiogenesis processes: they produce pro-angiogenic agents 
including VEGF, bFGF, TGF-β, TNF-α, and IL-8; facilitate the liberation 
of pro-angiogenic elements that interact with heparin through the 
secretion of proteases; and increase the permeability of microvascular 
structures through histamine, further promoting angiogenesis (Norrby, 
2002). 

Recently, Cho et al. used a well-characterized murine model of in-
flammatory corneal neovascularization to determine how non-IgE 
mediated activation of MCs promotes neovascularization. They found 
that mast cell-deficient mice developed significantly fewer new blood 
vessels compared to controls, suggesting a direct role of MCs in pro-
moting neovascularization by secreting high levels of VEGF-A and pro-
moting vascular endothelial cell proliferation and tube formation. In line 
with this, pharmacological inhibition of mast cell activation with cro-
molyn significantly reduced corneal neovascularization, underscoring 
their critical involvement in corneal neoangiogenesis, and highlighting 
them as a potential therapeutic target to inhibit the pathological growth 
of blood vessels in the cornea (Cho et al., 2020). 

Further investigation highlighted that MCs are unevenly distributed 
across the corneal surface, with a higher concentration along the nasal 
limbus compared to the temporal side, and that this distribution pattern 
correlates with more extensive angiogenesis following injury on the 
nasal side than the temporal side. In mast cell-deficient mice, this 

asymmetry in blood vessel growth following nasal or temporal corneal 
injury was not observed, indicating that the presence of MCs is crucial 
for this differential angiogenic response. Moreover, pharmacological 
inhibition of MCs with cromolyn attenuated the asymmetrical neo-
vascularization (Cho et al., 2021). 

Additionally, the interplay between MCs and lymphangiogenesis has 
been established; Cho et al. found that MCs migrate adjacent to newly 
forming lymph vessels, suggesting that they are actively involved in the 
process of lymphangiogenesis; moreover, in vitro co-culture assays 
demonstrated that MCs, expressing high levels of the lymphangiogenic 
factor VEGF-D, directly enhance the tube formation and proliferation of 
lymphatic endothelial cells. Furthermore, mast cell knockout mice and 
cromolyn-mediated mast cell inhibition showed that mast cell deficiency 
suppresses the induction of pathological lymphangiogenesis (Cho et al., 
2022). 

3.3. Corneal injury and tissue remodeling 

The cornea, being a barrier directly exposed to the environment, is 
susceptible to harm from physical scrapes, chemicals, pathogens, and 
exposure to UV light. Damage to the cornea manifests through the 
breakdown of its epithelial layer and the recruitment and activation of 
immune cells from the surrounding limbus area as well as the cornea’s 
own immune cells. This leads to an inflammatory response and disrupts 
the cornea’s natural homeostasis (Liu and Li, 2021). 

Healing from such corneal injuries involves a complex, multi-phase 
process that includes stages of inflammation, cell proliferation, 
re− epithelialization, and tissue remodeling (Li et al., 2006, 2011a, 
2011b; Liu et al., 2012). To facilitate effective healing, intricate in-
teractions among various cell types, soluble mediators, and extracellular 
matrix elements are necessary to reconstruct the tissue (Schultz et al., 
2011). The inflammatory process is pivotal during wound healing. In its 
initial phase, inflammation serves a protective role, combating patho-
gens and removing dead cells to pave the way for tissue repair. Subse-
quently, it stimulates the generation of growth factors that promote the 
phases of proliferation and tissue remodeling (Bukowiecki et al., 2017; 
Eming et al., 2014). Nonetheless, if this inflammatory response becomes 
excessive or prolonged, it can impede proper re-epithelialization. The 
overactive immune cells may produce myeloperoxidase (MPO) and 
TNFα, leading to additional tissue harm that can slow the healing of 
corneal wounds, potentially causing the cornea to become thinner, 
develop perforations, or scar (Ljubimov and Saghizadeh, 2015; Wilson, 
2020). MCs are among the cellular players involved in various stages of 
the healing process, contributing significantly to different facets of 
wound repair (Noli and Miolo, 2001). MCs become notably active 
shortly after an injury, triggering acute inflammation by releasing a 
variety of mediators. These mediators, some of which are pre-stored in 
granules and others synthesized on-demand, play a crucial role in 
initiating the inflammatory response (Galli et al., 2005b). A significant 
number of these substances promote inflammation, leading to increased 
blood flow, enhanced vascular permeability, and the mobilization and 
attraction of immune cells, particularly neutrophils, to the site of injury 
(Dvorak, 2005; Egozi et al., 2003; Weller et al., 2006). 

During the subsequent phases of healing, activated MCs contribute 
by secreting cytokines and growth factors. These substances are vital for 
the proliferation and movement of various cell types, thus facilitating 
the repair process. They stimulate the reformation of the epithelial layer, 
new blood vessel formation, and scar formation (Egozi et al., 2003; Iba 
et al., 2004; Ng, 2010; Younan et al., 2011). Furthermore, MCs influence 
fibroblasts, which are pivotal for collagen deposition and tissue 
remodeling, during the later stages of wound repair. They release several 
pro-fibrotic agents including TGF-β and PDGF, among others, to aid in 
this process (Gailit et al., 2001; Gruber, 2003; Kupietzky and 
Levi-Schaffer, 1996). However, MCs are also known for producing 
anti-inflammatory and immunosuppressive cytokines such as inter-
leukin IL-4 and IL-10 (Grimbaldeston et al., 2007; Hügle et al., 2011; 
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Trautmann et al., 2000). This dual role underscores their ability to 
initiate inflammation at the early stages of tissue repair and subse-
quently help dampen the inflammatory response as healing progresses 
(Galli et al., 2008; Serhan et al., 2008; Tsai et al., 2011). 

Using a mouse model of corneal injury, Sahu et al. observed that 
neutrophils quickly gather in the cornea shortly after the injury. This 
gathering is closely linked to the activation of MCs and a surge in CXCL2 
expression, a chemoattractant molecule naturally produced by MCs that 
is further over-expressed in response to corneal harm, thereby facili-
tating the early arrival of neutrophils. The study also examined the ef-
fects of suppressing MCs using cromolyn sodium. The results showed a 
decrease in CXCL2 levels, a reduction in the early entry of neutrophils, 
and a consequent reduction in corneal inflammation (Sahu et al., 2018). 

Elbasiony et al. highlighted the dual role of MCs in the inflammatory 
response: initially drawing neutrophils to the injury site and subse-
quently enhancing their activation. This increased activation leads to a 
higher discharge of myeloperoxidase (MPO), thus promoting its tissue- 
destructive properties (Elbasiony et al., 2022). 

Additionally, MCs, when activated by corneal injury, may also 
engage with corneal nerves, fostering neuroinflammation and nerve 
damage, thereby hindering the wound healing process (Guan et al., 
2022). 

Furthermore, Guan et al. revealed that cells of the injured corneal 
epithelium produce high amounts of IL-33. This cytokine, known for its 
broad influence on various types of immune responses, prompts MCs to 
release elevated levels of CXCL2. Moreover, the application of agents 
that neutralize IL-33 directly on the ocular surface was found to hinder 
the activation of MCs, lessen the invasion of neutrophils, and diminish 
inflammatory clouding of the cornea, thereby maintaining the integrity 
of the tissue structure (Guan et al., 2022). 

3.4. Corneal alloimmunity 

Corneal transplantation has become one of the most common forms 
of solid tissue grafting, often being the only possible intervention for 
vision restoration. However, the success of transplantation is often 
compromised by the inherent reactivity of the immune system toward 
allogeneic tissues (Dana et al., 2000; Niederkorn, 2002; Singh et al., 
2019). The process of graft rejection involves a complex series of in-
teractions between the innate and adaptive branches of the immune 
system (Murphy et al., 2011; Singh et al., 2019). Surgical trauma and the 
associated tissue damage trigger an initial response from the innate 
immune system, marked by an influx of inflammatory cells such as DCs 
and macrophages, alongside a surge in pro-inflammatory cytokines. 
APCs then travel from the transplant site to the recipient’s nearby 
lymphoid tissues, initiating an adaptive immune response by presenting 
the donor’s antigens to the recipient’s naïve T cells. This process leads to 
the creation of T-helper type 1 (Th1) cells that target the graft. (Alegre 
et al., 2016; Amouzegar et al., 2016; Zhu et al., 2021). 

Additionally, Treg dysfunction plays an important role in corneal 
graft rejection (Inomata et al., 2016). In acute rejection, mast cells (MCs) 
support graft survival by promoting the immunosuppressive properties 
of Treg cells and inhibiting effector T cells. Conversely, in chronic 
rejection, MCs contribute to graft damage, particularly through the 
release of profibrotic mediators (Elieh Ali Komi and Ribatti, 2019; Kritas 
et al., 2013). This highlights the importance of studying the interplay 
between these cells to better understand and potentially mitigate the 
mechanisms underlying graft rejection. 

MCs, key players in both innate and adaptive immune responses, 
have been demonstrated to participate in the process of allosensitization 
on the ocular surface, contributing to the challenges of corneal trans-
plantation. Li et al. identified that MCs are instrumental in promoting 
allosensitization post-transplantation, as evidenced by the increased 
presence and activation of MCs at the site of the graft. They highlight a 
significant rise in TNF-α secretion by MCs after transplantation. This 
increase in TNF-α is known to encourage the maturation of APCs and 

enhance interactions between APCs and CD4+ Th1 cells in the draining 
lymph nodes. Furthermore, the inhibition of MCs achieved with the 
topical application of 2% cromolyn sodium was found to reduce the 
inflammatory cell invasion and APC maturation, decrease Th1 cell for-
mation within draining lymphoid organs, and diminish the infiltration 
of alloimmune-inflammatory cells into the graft (Li et al., 2019). 

Elbasiony et al. observed that MCs not only possess high levels of 
MHC II but also exhibit an increased expression of MHC II upon stimu-
lation by IFNγ. When CD4+ T cells, previously primed to recognize al-
loantigens, were cultured together with MCs, there was a marked 
elevation in IFNγ production compared to when T cells were cultured 
independently. This effect mirrors the response seen with traditional 
allogeneic APCs (Elsayed Elbasiony et al., 2021). 

4. Conclusion 

This extensive review of MCs physiology, their roles in the immune 
response, and specific contributions to ocular surface homeostasis, un-
derscores the complexity and significance of these cells beyond their 
traditional perception as mere facilitators of allergic reactions. The ca-
pacity of MCs to interact with a wide array of immune cells through their 
diverse mediators, as well as their strategic positioning across barrier 
sites, highlights their essential role in coordinating immune responses. 

Given the breadth of functions attributed to MCs, coupled with their 
involvement in a range of ocular conditions, targeting these cells and 
their mediators presents a promising avenue for therapeutic interven-
tion. Therefore, the administration of mast cell stabilizers may play a 
promising role in modulating corneal immune homeostasis and influ-
encing the course of chronic inflammatory ocular surface diseases. 
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