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Abstract 
Over the years, the clinical outcome of cancer patients has remarkably improved with the 

introduction of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs), that by 

targeting immune system restore an efficient anti-tumor immune response. Despite the potential of 

immunotherapy as cancer leading treatment, initial response rates with ICIs are however limited 

and depend on the host pre-existing anti-cancer immunity and the degree of immunosuppression 

present in the patient. Most of patients fail to respond and to increase the number of responder 

patients is necessary a more in-depth understanding of the underlying immunity and the 

identification of biomarkers. In this research project we investigate and characterize the immune 

system of cancer patients (mRCC, NSCLC, HNSCC, UM) before and during treatment with TKIs 

or ICIs, in order to investigate the relation between circulating immune profile, tumor 

microenvironment (TME), the gut microbiome and clinical outcome. The aim was the 

identification of possible biomarkers/immune profile able to select patients and improve clinical 

outcome. We assessed immunological analysis to evaluate exhausted/activated circulating T cells 

by cytofluorimetric assay, 14 immune checkpoint-related proteins and 20 inflammation 

cytokines/chemokines using Luminex assay. The immunological profile was correlated with 

survival (PFS and OS), clinical parameters and response to treatment. Gut microbiota composition 

was evaluated through metagenomic analysis and immunohistochemistry was used to 

characterize tumor microenvironment.  

Our results demonstrated that TKIs and ICIs modulate immune system. We observed a decrease of 

soluble immune checkpoint molecules in serum of mRCC (sPDL2, sHVEM, sPD1, sGITR) and 

NSCLC patients (sPD1, sPDL2) during treatment (p<0.05). In particular, the decrease of sPD1 and 

sPDL2 resulted associated with response to treatments (p=0.03 and p=0.01, respectively). 

Moreover, the immune profile of responder (R) patients was characterized by low levels of soluble 

protein (sCTLA4, sPD-L1 in mRCC vs sCD137, sTIM3, sPDL1, sPDL2 in NSCLC) (p<0.05) and by a 

high proportion of eubiosis-associated gut metabolites. These data resulted also associated with 

better clinical status, PS=0 (performance status).  

Profiling circulating immune cells in patients undergoing ICI treatment (anti-PD1) we identified 

CD3+CD137+ and CD3+CD8+CD137+ T cells that correlate with improved response to therapy. The 

percentage of both CD3+CD137+ and CD3+CD8+CD137+ T population was higher in R patients 
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(p=0.03 and p=0.02) and correlated to a better survival in terms of PFS and OS (p<0.05). Moreover, 

R patients had higher levels of CD3+CD137+PD1+ and of CD8+CD137+PD1+ lymphocytes (p=0.02 and 

p=0.01), but only CD3+CD137+PD1+ resulted associated with a low number of metastasis (p=0.01) 

and longer survival (OS)(p=0.015). Instead, the high concentration of the immunosuppressive 

sCD137 in the serum was associated with a lower PFS (p=0.038) and OS (p=0.012). In tumor 

microenvironment, patients with a complete pathological response showed a high percentage of 

CD137+ and CD8+ T cells. Results were validated in an independent cohort of metastatic cancer 

patients. 

These results identified immunological parameters that, independently from tumor setting and 

administered therapy, predict clinical outcome of cancer patients, monitor immune response and 

help clinicians in the decision-making. 
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Introduction 
 

Tumor microenvironment as a hallmark of cancer 
 
Cancer is the second leading cause of death worldwide with a high rate of incidence 1. However, 

the development of new treatments, progression in cancer screening and prevention, are 

improving survival rates for many types of tumors.   

Cancer is a multi-step process driven by the so called “hallmarks” of cancer (Figure 1), a set of 

functional capabilities acquired by human cells, crucial for their ability to form tumors2.  

 

 
Figure 1: Hallmarks of cancer2 

Hallmarks and enabling characteristics to explain the complexity of cancer phenotype and genotype 

 

Genetic insults that involve oncogenes and tumor suppressor genes are part of several factors that 

causes heterogeneity within and between tumors and are known to deregulate the pathways that 

govern the cell’s physiological process like metabolism, proliferation, cellular growth and death 3 4. 

For example, mutation affecting the structure of the oncogene B-Raf, PI3K, Her2, K-RAS and c-Myc 

as well as that striking the most known tumor suppressor genes, p53 and Rb confer to cancer cells 

the ability to deregulate the growth-promoting signals required to the cell growth - and-division 

cycle, resulting in sustained proliferation.  
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The tumorigenesis process is not solely regulated by genetic alterations within tumor cells but is 

also critically regulated by the surrounding niche, known as “tumor microenvironment” (TME), an 

heterogenous environment in which several cells interact among them promoting cancer 

progression. TME is characterized by the presence of several cellular components.  Apart from 

tumor cells it is composed by stromal cells, fibroblasts, tumor endothelial cells, immune cells, and  

it also includes surrounding blood vessels and the extracellular matrix (ECM). 9,10 In particular, 

TME resulted infiltrated by immune cells that have a dual role either suppressing tumor growth or 

promoting it (Figure 2). 

All these cells and component interact with each other by a complex networks of cytokines , 

chemokines, growth factor but even by others mechanism of interaction like circulating tumor 

cells, exosome or apoptotic bodies that deliver information to distant target. 11  

 
Figure 2.  Impact of immune cells within tumor microenvironment 10  

The role of immune cells in the TME can be to either suppress tumor formation or promote tumorigenesis. 

Depending on context and tumor type, immune cells can be either pro- or anti-tumorigenic. M1=TAM M1; 

M2= TAM M2; Neu= neutrophils; DC= dendritic cells; NK= natural killer; Treg= T regulatory cells;  

 

Stomal cells and fibroblasts can secrete in TME growth factors like FGF, HGF and some cytokines 

like CXCL12 both promoting growth and survival of cancerous cells both stimulating the 

recruiting of other cells into TME12.  

Tumor cells can release several soluble factors like transforming growth factor (TGFb) or tumor 

necrosis factor (TNF-α) that remodel the Extracellular matrix. In turn, TGFb stimulates the 
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differentiation of fibroblast in cancer associated fibroblast (CAFs), the most abundant cells in the 

stroma, that by secreting many types of cytokines like vascular endothelial growth factors 

(VEGFA), CXCL12, IL-6, they produce ECM protein and as a result, they contribute to a tumor-

friendly microenvironment that influences tumor growth and progression, especially invasion and 

metastasis.  

TME is also conditioned by physiological changes such as hypoxia, low pH, nutrient deprivation, 

and production of immunosuppressive metabolites that could also impede anti-tumor immunity15.  

Tumor promotes angiogenesis to restore oxygen and nutrient supply and remove metabolic waste.  

Low oxygen tension (pO2) leads to the activation of hypoxia-inducible factor (HIF1) that 

stimulates endothelial cells to overproduce VEGF, that together with other molecules like 

Angiopoietin 1 and angiopoietin 2 (Ang 1/2) plays a pivotal role in promoting angiogenesis. 

Angiogenic factors stimulate endothelial cells to produce matrix metalloproteinases (MMP) that 

degrade the extracellular matrix (ECM) allows endothelial cells to migrate, proliferate and form 

new blood vessels.  

Besides hypoxic conditions, VEGF is produced and secreted by tumor cells and surrounding 

stroma and is associated with tumor progression, effects on vascular permeability, invasiveness, 

and metastasis. It orchestrates the proliferation and spread of endothelial cells through the 

interaction with the tyrosine kinase receptors VEGFR-1 and VEGFR-2 (vascular endothelial growth 

factor receptor) expressed on endothelial cells. This binding is followed by receptors dimerization 

and phosphorylation, and allows the recruitment of specific downstream mediators promoting 

tumor angiogenesis. 8 

In addition to angiogenesis, VEGF exerts immunosuppressive functions. It creates a pro-tumor 

microenvironment by increasing the number and enhancing the suppressive functions of Treg and 

TAMs. VEGF inhibits DCs maturation and antigens presentation, as well as inhibits CTL 

trafficking, proliferation, and effector function16,17. (Fig. 3) 
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Figure 3. The abnormal tumor vasculature elicits immune suppression in the tumor microenvironment17 

Hypoxia and acidosis in TME promote immune suppressive mechanism. Hypoxia stimulates HIF-1 

thereby upregulates VEGF that in turn induces tumor angiogenesis and modulates the functions of innate 

and adaptative immune cells towards immunosuppression.  

 

 

Furthermore, recent evidences have pointed out the role in tumor growth and spread of an 

unexpected player: the gut microbiota, recently added as an hallmarks of cancer (Figure 1) 2.   

Its complexity and behavior deserve the definition of tissue organ, an important immunological 

organ that influences different pathways of whole metabolism.  

The entire human body (skin, gut, or other mucosa) is colonized by trillions of different microbes 

which interact with the host maintaining its physiology and health and influencing basic function, 

such as metabolism, nutrition, immunomodulation, and pathogen resistance.  

Regarding the immunity, it plays a fundamental role in development, function, maintenance of the 

host immune system. It shapes immune system, and these changes lately affect the immune 

system it-self. For example, gut microbiota is crucial in reducing neutrophils number. Moreover, 

the inosine, a gut microbiota metabolite, promotes the differentiation of TH1 cells as well as the 

short chain fatty acids (SCFA) activate DC cells and macrophages (Figure 4).   

In addition to pathogen defense, to maintenance of intestinal ecosystem, to immunity and others 

physiological processes, gut microbiota plays a pivotal role in the pathogenesis of disease 19. 
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Figure 4: Gut microbiota and its metabolite act on the host immune system 18 
Gut microbiota and its metabolites influence the shaping of the TME. TLR4 signaling in tumor cells can 

recruit neutrophils, while TNF released by neutrophils induce metastasis of tumor cells. Gut microbiota 

reduces the number of neutrophils, which plays a promoting role in the treatment of tumors. Gut 

microbiota metabolite inosine significantly promotes the differentiation of Th1 cells, while SCFA can 

regulate the production of cytokines, activate DC cells and macrophages, and affect the differentiation of 

memory T cells, which also plays an important role in cancer therapy. 

 
Alterations in composition and function of gut microbiota are referred to as dysbiosis and may 

increase metabolic disorders and the abundance of inflammation-inducing bacteria, which can 

induce carcinogenesis.  Indeed, a broad effect of polymorphic microbiomes involves the 

modulation of the adaptive and innate immune systems through several routes. Bacteria produce 

immunomodulatory factors that activate damage sensors on epithelial or resident immune cells. 

Moreover, can intact protective biofilm and the mucus lining the colonic epithelia, disrupting the 

epithelial cell-cell tight junctions that maintain the integrity of the physical barrier that normally 

compartmentalizes the intestinal microbiome. Once invaded the stroma, bacteria can trigger both 

innate and adaptative immune response that secrete a repertoire of cytokines and chemokines.  

One manifestation can be the creation of tumor-promoting or tumor-suppressing immune 

microenvironments, consequently protecting against or facilitating tumorigenesis.2 

The complex network among all these factors orchestrates tumor progression.  
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Immune system and cancer: cell cycle immunity and immunoediting 
 
Immune system involves a complex network of chemical and molecular signals in which 

specialized cells and tissue have the potential to control the homeostasis and to defend the host 

from chemical, traumatic, and infectious insults, such as bacteria, viruses but also transformed 

cells. To fight foreign pathogens and tumor cells, immune system has two arms: innate and 

adaptative immunity. (Figure 5)  

 

 
Figure 5: The innate and adaptative immune response20  

The innate immune response functions as the first line of defense against infection. It consists of soluble 

factors, such as complement proteins, and several cellular components including granulocytes, 

macrophages, dendritic cells, and natural killer cells. The adaptive immune response is slower to develop 

but manifests as increased antigenic specificity and memory. It consists of antibodies, B cells, and 

CD4+ and CD8+ T lymphocytes.  

 

During tumor development and progression, the host’ immune system reacts by generating a 

series of stepwise anti-cancer immune mechanisms termed as the “cancer-immunity” cycle. 22 

(Figure 6) 

It is defined as a series of functional steps needed to provide control of cancer growth and generate 

a protective anti-cancer response by the immune system.  
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Figure 6: Cancer-immunity cycle22 

The generation cancer immunity is a cyclic process that is characterized by immune-stimulatory factors 

that should amplify T cell responses but also inhibitory factors that lead to immune regulatory feedback 

mechanisms, which can limit the immunity. This cycle can be divided into seven major steps, starting with 

the release of antigens from the cancer cell and ending with the killing of cancer cells.  

 

The process initiates with the production of neoantigens generated by genomic instability (I).  This 

tumor-associated antigens (TAAs) are captured by dendritic cells and presented on MHC I or 

MHC II molecule (II). DCs migrate away from TME and go towards lymph nodes. Here tumor-

specific cytolytic CD8+ T cells recognize TAAs presented on MHC-I through their TCR (III). Once 

activated, T cells migrate and infiltrate TME (IV-V) where can recognize the specific antigen and 

eliminate tumor cells. (VI-VII). After killing, tumor cells release additional tumor-associated 

antigens amplifying the subsequent round of cancer immunity cycle. 22 

Adaptative immune cells, together with cells of innate immunity are predominant in TME and act 

by identifying and eliminating mutated or abnormal cells thanks to a process called 

“immunosurveillance”26. 

Immune cells had a role in protecting the host from microbial pathogens, and although is still 

controversial, it has been recognized that immune system can also control tumor. 

So, in this way, to describe the dual function of immune system both in protecting and remodeling 

tumor, the term immunosurveillance loses its effectiveness. The concept evolves into that of 
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immunoediting, a dynamic process consisting of three phases: elimination, equilibrium, escape such 

are termed the “three Es of cancer immunoediting” (Figure 7) 26.  

Elimination is a consequence of immunosurveillance. During this phase malignant or potentially 

malignant cells can be identified and eliminated by cells of both innate and adaptative immune 

system 27. Cells present in TME together with tumor cells produce and release pro-inflammatory 

cytokines like IL-12, IFN-γ, IFN-αβ necessary for recruit and activate immune system cells such as 

T lymphocytes, NKT, NK and DCs in tumor site. These immune cells exert several effector 

mechanisms to eliminate tumor cells, releasing IFN-γ that controls tumor growth and amplifies 

immune responses through the production of chemokines. In return, chemokines attract more 

immune cells to the tumor site.  

  

Figure 7: Cancer immunoediting 26 

Cancer immunoediting consists of three sequential phases: elimination, equilibrium, and escape. 
 

 

Although the elimination phase contributes to destruction of transformed cells, there are cells with 

reduced immunogenicity that escape control and enter a period of latency that constitutes the 
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equilibrium phase 28. During this second phase the elimination of tumor cells occurs accompanied 

by the simultaneous production of new tumor variants with an increased resistance.  

This is the longest of three phases and may occur over a period of many years. Tumor cells that 

cannot be recognized and eliminated by immune system progress in the third and last phase, the 

escape, which is acknowledge as one of hallmarks of cancer.  Further mutations occur in malignant 

cells and lead to progression of tumor that grows and becomes clinically detectable.   

Several studies demonstrated that tumors avoid the immune system through direct or/and indirect 

mechanism like lack of costimulatory molecules, defects developed by tumor cells in antigen 

processing and presentation or tolerance of T cells to tumor antigens, presence of 

immunosuppressive cells (Treg, MDSCs), suppression of T cells caused by tumor-derived factors 

(TGF-β, IL-10). Another fundamental immune escape mechanism used by cancer cells is the ability 

to exploit immune checkpoint (ICs) molecules expressed on T cells. Immune checkpoint are cell 

surface inhibitory molecules that inhibit T cells hyperactivation, maintaining self-tolerance and 

preventing autoimmunity. The most famous are programmed cell death-1 (PD1) and cytotoxic T – 

Lymphocyte antigen – 4 (CTLA4).  In particular, PD1 recognizes its ligand PDL1 or PDL2 

expressed on APCs, while CTLA-4 binds the ligands CD80 and CD86, thereby inducing T 

lymphocyte anergy and exhaustion both in the lymphoid tissue and in the periphery 25. Tumor 

cells, by expressing immune checkpoint ligands prevent T cells activation and avoid anti-tumor 

immune response (Figure 8). Besides ICs with inhibitory functions, T cells express on their surface 

also costimulatory receptors that play a central role in T-cell priming and activation as well as in 

modulating T-cell differentiation, proliferation, and effector function. The most known is CD137 

(4-1BB, TNFRSF), a member of tumor necrosis factor receptors (TNFR) family. It has costimulatory 

function expressed by CD8+ and CD4+ T cells upon activation, by NKs, DCs, eosinophils and 

vascular endothelium cell.  The engagement with its ligand, CD137L, expresses on APC, is capable 

of increasing T-cell survival, proliferation, and cytokine production. Within cancer landscape, 

CD137 has generated great interest because it identifies antigen-specific T cells that kill tumor cell 

upon activation. Tumor cells by expressing CD137L, also in this case block T cells activation, 

avoiding anti-tumor immune response. 
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The interplay between host immune system, tumor cells and tumor microenvironment have a key 

role in cancer progression. An in-depth understanding of this dynamic process has allowed the 

development of appropriate therapeutic strategies. 

 

 

 
Figure 8. Current and emerging immune checkpoint receptors and their respective ligands25 

Various immune checkpoint molecules expressed on T cells were shown with their ligands. Immune 

checkpoints such as PD-1, CTLA-4, LAG-3, TIM-3, TIGIT bound with their respective ligands on APCs 

and/or tumor cells, triggering a negative or positive signal to T cells response 
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The evolving landscape of cancer treatment: immunotherapy and target therapy  
 

The backbone of cancer treatment has traditionally included surgery, radiotherapy, and 

chemotherapy that are still part of current therapeutic approaches. 

They are designed to kill cancer cells by compromising cellular integrity during division, 

inhibiting the growth and proliferation of tumor cells but, despite the anti-tumor function, they 

also display side effect. In particular,  chemotherapy has the inability to distinguish cancer cells 

from normal cells inducing toxicities and adverse reactions. 29  

Anyway, over the years thanks to a better understanding of tumor biology, to a comprehension of 

tumor microenvironment and to the contribution of immune system, therapeutic landscape has 

been drastically evolved.  

The scenario shifted from cytotoxic drugs to targeted drugs that differently from the first one can 

specifically target tumor cells and save normal cells, hence having high efficacy and low toxicity.  

Targeted drugs can be classified in small molecules and immunotherapy, both interact with 

specific protein inhibiting cancer cells proliferation and progression, and with the aim to re-

activate anti-cancer immunity. Small molecules, because of their small size, target extracellular 

receptors as well as intracellular proteins involved in transducing downstream signaling in the 

pathway of tumor growth and metastasis proliferation. For instance, Palbociclib and ribociclib are 

two cyclin – dependent kinase inhibitors (CDKi) used in metastatic breast cancer therapy that 

block protein involved in cell cycle, thereby inhibiting cancer cells proliferation and tumor 

progression. 30 Pazopanib and Sunitinib are tyrosine kinase inhibitors used in treatment of 

metastatic renal cell carcinoma which inhibit the tyrosine kinases receptors associated with the 

molecular pathways of VEGF and PDGF, both implicated in angiogenesis and tumor growth.31 

(Figure 9) 
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Figure 9: Main targets of approved tyrosine kinase inhibitors (TKIs)32 

Anti-angiogenic TKIs can target multiple receptor sites simultaneously. The main targets included 

vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), 

fibroblast growth factor receptor (FGFR), c-Kit, and c-Met. Anti-angiogenic TKIs block the kinase activity 

of receptor and transduction of downstream signal involved in the proliferation, migration, and survival 

 
 
 

Taken together, small molecules can inhibit proliferation, survival, progression in the cell cycle, 

angiogenesis, and migration of tumor cells.32  

Immunotherapy includes approaches that overcome tumors by using immune system.  Examples 

include checkpoint blockade, cancer vaccines, adoptive T cell therapies (ATC). In ATC therapy 

TILs are isolated from a cancer biopsy, expanded, and re-inoculate into patients. Immune 

checkpoint inhibitors (ICI) instead are monoclonal antibodies that target the immune checkpoints 

like PD1 and CTLA-4, express on T cells impeding the binding with their ligands, respectively PD-

L1 and CD80/CD86 express on tumor cells. Abrogating this negative regulation, they restore T 

cells effector function and proliferation. Several ICI are approved by FDA and the most know are 

directed to PD1/PD-L1 axis or CTLA4/CD80-CD86 axis (Figure 10).  
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Figure 10: Immune checkpoint inhibitors in cancer treatment 33   

Inability to activate CTLs in tumor microenvironment through the immune checkpoints allows cancer cells 

to escape immune attack, survive, and grow. Pharmacological inhibition of immune checkpoints with 

monoclonal antibodies restores CTL antitumor activity and relieves immunosuppression  

 

Pembrolizumab and Nivolumab are anti-PD1 antibodies and was approved for non-small cell lung 

cancer (NSCLC), renal cell cancer and head and neck cancer.  Ipilimumab, an anti-CTLA4 is used 

in metastatic melanoma treatment.  

Although immunotherapy has notably improved patients’ survival, not all patients benefit from 

therapy and most experienced immune related adverse events. 24 The synergy between tumor cells 

and immune cells contributes to mechanisms of tumor evasion and progression, inducing 

resistance to therapy in individual patients. To overcome these limitations there is a need to search 

for predictive biomarkers to stratify patients into responders and non-responders and to determine 

the outcome of a therapy before starting it. In addition, these biomarkers can indicate where and 

when a patient may benefit from monotherapy or combination therapy, while also reducing side 

effects 34.  
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Biomarkers and the importance of immune profiling 
 

Despite the encouraging progresses made in cancer treatment, a large part of patients does not 

benefit from therapy. The interplay between tumor, TME and immune cells has been widely 

explored with the purpose to identify immune biomarkers capable of predicting clinical response.  

These biomarkers are biomolecules produced either by tumor cells and by other cells in response 

to tumor and they could be a tool of diagnosis, prognosis, and prediction. 

To date tumor mutation burden (TMB) and PD-L1 expression on immune and tumor cells are 

validated factors useful for the qualification of cancer patients for immunotherapy.  

The high number of mutations in somatic cells (TMB) causes an elevated numbers of neoantigens, 

which translates into increased immunogenicity of tumors. Several studies demonstrated that 

tumor types with high TMB are associated with a better PFS or OS. 35 Similarly, neoantigens 

presented on the surface of tumor cells by MHC and then recognized by T cells may be considered 

a useful biomarker to predict patient response to cancer immunotherapy. 36  

PD-L1 expression on numerous tumor cells is a strategy to evade immune response and may play 

an important role in suppress T cell. The anti-PD1 antibody inhibits the PD1/PD-L1 axis 

stimulating tumor reactive T lymphocytes to kill cancer cells. Several studies reported better 

results in patients with a positive PD-L1 expression. For instance, in a multi tumor study 

(melanoma, NSCLC, RCC, colorectal and prostate cancer), patients with PD-L1 positive tumor 

exhibited a significant objective response compared to PD-L1 negative tumors. Similarly, in 

NSCLC patients with a PD-L1 expression >50% was registered a better efficacy of Pembrolizumab 

treatment37.  

However, other studies reported opposite results, showing a clinical benefit to anti-PD1 therapy in 

patients with low or negative expression of PD-L138. This controversy could be explained by a 

spatial and temporal heterogeneity of PD-L1 expression, it varies substantially across different 

anatomic sites and during clinical course. Moreover, it may depend also on different definition of 

PD-L1 expression evaluated either on tumor than immune cells. 36 

In TME the presence of tumor infiltrating lymphocytes (TILs), a mixture of cytotoxic T cells and 

helper T cells, as well as B cells, macrophages, NK and DCs) provides a successful control of tumor 

progression. This concept is reflected in three different phenotypes that influence therapy efficacy: 

immune-desert, immune-excluded, and immune-inflamed phenotypes39 (Figure 11). The immune-



 
 
 
 

 

 20 

desert is a non-inflamed tumor characterized by the absence of TILs, a poor expression of PD-L1 

and a low mutational burden. It is a no reactive TME permissive to tumor progression and 

unresponsive to immunotherapy. Immune-excluded phenotype is always part of non-inflamed 

tumor but there is a mild infiltrate of T cells that remained confined surrounding the tumor mass. 

In the immune-inflamed, the scenario radically changes in favor of a more conspicuous number of 

TILs in the parenchyma, a high mutational load, several cytokines (like IFN, IL-12, IL1b) which 

provide a more favorable environment for T cells activation and expansion. Moreover, T 

lymphocytes express on their surface several immune checkpoints including PD-L1, LAG-3 and 

Tim-3 that leads to T cells exhaustion. This profile suggests that an anti-tumor immune response is 

present but is hampered by the tumor and it’s necessary reactivate it.  

 

 
Figure 11: Tumor immune phenotypes 40 

These phenotypes expand the concept of “cold” vs “hot” tumors and reflect the infiltration status of 

immune cells, predominantly T lymphocytes Based on the spatial distribution of CD8+ T lymphocytes in 

the tumor microenvironment (TME), a gradient of three immunophenotypes is observed: the immune-

desert, immune-excluded and immune-inflamed phenotypes. The three different phenotypes have 

different response rates to immune checkpoint inhibitors. 

 

TILs role as prognostic biomarkers has been largely studied. The presence of CD8+ T cells in TME is 

associated with a better prognosis in melanoma or NSCLC 41. A study conducted on patients with 

advanced melanoma showed that before starting Pembrolizumab therapy responder patients had 

higher CD8+ T cells densities at both the invasive margin and tumor center respect to non-

responder. In addition , an increase in the intratumoral CD8+  densities during therapy was 
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associated with a reduction in tumor size, indicating that pre-existing immune response ameliorate 

treatment efficacy.42 

Quantify the CD3+ and CD8+ expression within tumor and its invasive margin, provides the 

introduction of Immunoscore as a valid biomarker to predict treatment response and prognosis.  

Biomarker’s identification in tumor site requires invasive procedure like tumor tissue biopsy or 

surgical removal. Sometimes the amount of tissue is not sufficient because of difficult to access due 

to the tumor’s anatomical site. To overcome this problem, peripheral blood marker can be used as 

with multiple advantages, limited costs, non-invasive procedures that monitor not only 

biochemical changes, but also variation in frequencies of immune cells during treatment.   

Peripheral blood samples evaluate different blood components such as lymphocytes, neutrophils, 

monocytes, eosinophils, myelogenous suppressor cells. High lymphocyte and low neutrophil 

counts were associated with a good prognosis in cancer patients 43,44. Consequently, the high 

neutrophil-to-lymphocyte ratio (NLR) has been shown to be associated with poor response in 

advanced cancers.  

In the blood could be detected also the immunosuppressives population Tregs and MDSCs as well 

as it could be evaluated the expression of inhibitory receptors, such as PD1, CTLA4, Tim3, on T 

lymphocytes. It has been reported that a high percentage of this markers characterized an 

exhausted T lymphocytes with reduced proliferation and effector functions.  

Immune checkpoint receptors could exist as soluble form. These soluble proteins can be produced 

by a proteolytic cleavage of membrane receptors, as an alternative variants of mRNA splicing that 

lack the transmembrane domain, or they can be included on exosome or microvesicles and 

released in circulation45. Their functions are not completely elucidated, but mounting evidence 

demonstrated that they seem to play a crucial role in immune regulation46. It was demonstrated 

that high serum levels of several IC proteins correlate with resistance to immunotherapy in 

melanoma patients47. A study conducted on mRCC patients showed that high baseline value of 

sPDL1 and sPD1 predict response with Nivolumab treatment48. sICs could be considered as 

prognostic biomarker for tumour progression or predictive for response to therapy46.  

In the variety of biomarkers should be included those host-related such as gender, age, body fat 

distribution, but also intestinal commensal microbiota49. 
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The microbiome plays an important role in the maintenance of host metabolism and immune 

system and its role in cancer has attracted much interest. Metagenome analysis showed a 

significant difference in the gut microbiota composition between healthy donors and cancer 

patients. In patients with colorectal cancer there was a decrease in microbial diversity and an 

increase in the presence of fusobacterium nucleatum, a common resident in oral microbiome , but 

rarely found in healthy gut50. A high abundance of this bacterium is associated with regional 

lymph node metastasis and shorter survival51.  

Biomarker’s landscape is widespread but their predictive and prognostic abilities have not yet 

been validated (Figure 12). To dissect and predict anti-cancer immune response, it’s crucial to not 

only monitor TME, the frequency and phenotype of tumor-infiltrating cells, but also monitor 

circulating immune cells as well as soluble immune checkpoint molecules and cytokines or any 

other molecules involved in anti-tumor immune response correlating them with survival and 

clinical parameters.  Moreover, using a single biomarker could not be an appropriate strategy due 

to heterogeneity of tumor, TME and immune system. Therefore, a comprehensive and dynamic 

assessment of tumor immunity is essential for a successful anti-cancer therapy.  

	

Figure 12: An overview of predictive biomarkers for immune checkpoint inhibitors efficacy.49 
Key elements in predictive biomarker development for the efficacy of immune checkpoint inhibitors therapy are 

briefly described in the figure, including tumor cells-related biomarkers, tumor immune microenvironment 

phenotype biomarkers, circulating factors, host-related factors, and immune-related adverse events 
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 Aim of Project 
 
In this project we characterized patients’ immune profile to investigate the role of immune system 

before and during immunotherapeutic interventions (TKIs or ICIs) and to identify possible 

prognostic and predictive biomarkers able to improve patients’ selection. 

Consequently, this project has involved immunological analysis on peripheral blood of cancer 

patients evaluating exhausted/activated circulating T cells, immune checkpoint-related proteins 

and inflammation cytokines/chemokines and correlating the immunological status of patients with 

different clinical parameters.   
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Material and methods 
 

Patients’ enrollment 
 
This study prospectively enrolled 129 patients with a confirmed diagnosis of no squamous cell 

lung carcinoma (NSCLC) (51 patients), metastatic renal cell carcinoma (mRCC) (28 patients), Head 

and neck squamous cell carcinoma (HNSCC) (36 patients) and uveal melanoma (UM) (14 patients) 

at the Medical Oncology Department of Policlinico Umberto I Hospital, Azienda Ospedaliera S. 

Andrea and Fondazione Policlinico Universitario Agostino Gemelli IRCCS between April 2017 and 

August 2021.   

20 out of 28 mRCC patients were treated in first line with TKIs. The remaining 109 out of 129 

patients underwent treatment with single-agent anti-PD1 as the first or second line of treatment.  

Patients were treated according to the tumor type with standard dose of TKI (sunitinib or 

pazopanib every 3 weeks) or Immunotherapy (Nivolumab or Pembrolizumab every 2 weeks) and 

scheduled until disease progression or unacceptable toxicity. Toxicity was reported according to 

Common Terminology Criteria for Adverse Events (version 4.0) and was evaluated on day 1 of 

every cycle until the end of treatment. Criteria of inclusion were:  age > 18 years, histologically-

documented diagnosis of NSCLS, RCC, HNSCC and UM, adequate cardiac, pulmonary, renal, 

liver and bone marrow function, EOCG Performance Status (PS) scored between 0-2.  Criteria of 

exclusion were: autoimmune disease, systemic immunosuppression and any significant 

comorbidity.  

Performance status (PS) defines the functional status of a patient. Patients scored as PS=0 are fully 

active, able to carry on all pre-disease performance without restriction. Patients with PS=1 are 

restricted in physically strenuous activity, but ambulatory and able to carry out work of a light or 

sedentary nature. Patients scored as PS=2 are ambulatory and capable of all self-care patients, but 

are unable to carry out any work activities; up and about more than 50% of waking hours 52. 

PFS, OS and clinical response rate were evaluated. PFS was defined as the time from the start of 

therapy (TKI or immunotherapy) until the first documented tumor progression or death from any 

cause. OS was defined as the interval between the beginning of treatments (immunotherapy or 

TKi) (OS) or tumor diagnosis (OStot) to death for any case. The response was assessed every 4 

weeks until disease progression using immune-related Response Evaluation Criteria in Solid 
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Tumors (i-RECIST) and classified as an incomplete and partial response, stable and progressive 

disease. The Clinical Response Rate was used to classified patients in Responders (patients with a 

complete, partial response and stable disease) and not-responders (progressors) after 6 months of 

therapy. The study was conducted in accordance with the Declaration of Helsinki and with good 

clinical practice guidelines. All patients signed informed consent. The Institutional Ethics 

Committee of the three involved institutions agreed to the final version of the protocol (RIF.CE: 

4181). 

 

 

Isolation of PBMCs (peripheral blood mononuclear cells) and serum collection 
 
Peripheral blood samples of 129 cancer patients and 20 healthy donors were collected into EDTA 

anticoagulant tubes (BD vacutainer) and processed within 1 hour after blood sampling to collect 

PBMCs.  

Blood samples, diluted with an equal volume of PBS were layered onto Ficoll-Hypaque gradient 

separation (1077 g/mL; Pharmacia LKB), centrifuged at 1800 rpm for 30 minutes without brake. 

PBMCs were collected and cryopreserved until use. Concurrently, serum of cancer patients was 

collected using BD Vacutainer Plus Plastic Serum tubes (Becton Dickinson, NJ, USA) after 

centrifugation at 1800 rpm for 10 min and stored at -80°C.  

In cancer patients, blood samples were collected at baseline (T0) in 129 patients (51 NSCLC, 28 

mRCC, 36 HNSCC and 14 UM patients) and in 42 patients at the first clinical evaluation (22 

NSCLC, 20 mRCC,) performed after 3 months from the beginning of treatment (>T0) according to 

the research plan (Table 1).  

  

Table 1: Samples collection and patient’s therapy 

 

 

 

 
 
 
  

Histotype Therapy Blood samples Fecal samples  
T0 >T0 T0 

mRCC TKIs 20 20 / 
Anti-PD1 8 / / 

NSCLC Anti-PD1 51 22 11 

HNSCC Anti-PD1 36 / / 

UM Anti-PD1 14 / / 
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Fecal samples collection 
 
Fecal samples derived from 11 NSCLC were collected at baseline (T0) and stored at -20°C until use.  

 

Immunophenotyping  
 
Cell immunophenotype was carried out by cytofluorimetry using a multi-parametric analysis 

combining the following conjugated anti-human monoclonal antibodies (MoAbs): anti- CD3 BV510 

(clone HIT3a), anti-CD8 APCH7 (clone SK1), anti- CD137 APC (clone 4B4-1), anti-KI67 Pecy7 

(clone B56), anti-PD1 BB700 (clone EH12.1).  

Cell autofluorescence and the fluorescence minus one (FMO) were used as negative controls. Flow 

cytometric acquisition was performed using FACSCantoII flow cytometer running FACS Diva 

data acquisition. FACS DIVA analysis software and FlowJo were used to analyze data (BD 

Biosciences).  

All Abs were purchased by BD Biosciences.  

 

Immunohistochemistry  
 
Immunohistochemistry was performed on paraffin slides representative of each tumor with the 

Leica Bond 3 auto Stainer, using the primary antibodies to CD4 (4B12), CD8 (4B11), CD20 (L26), 

CD21 (2G9), CD23 (1B12), CD3 (LN10) all purchased by Leica Biosystems, (Wetzlar, Germany) and 

CD137 (ab197942, Abcam, Cambridge, UK). The signal was obtained with Bond Polymer Refine 

detection that contains peroxide block, post primary, polymer reagent, DAB chromogen (brown 

signal) and Hematoxylin counterstain. The section was dehydrated and mounted. Tertiary 

lymphoid structures (TLS) characterization was determined based on cellular marker composition 

(CD20, CD21, CD23 and CD3)53,54.  

 

 

Detection of inflammatory cytokines, chemokines, and soluble immune checkpoints in 
serum 
 
Serum derived from all different cancer patients was used to evaluate the levels of 34 circulating 

immune molecules by multiplex assay.  
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The concentration of cytokines, chemokines and, soluble immune checkpoints was measured using 

the ProcartaPlex Human Inflammation Panel (20 Plex, catalog number EPX200-12185-901; sE-

Selectin; GM-CSF; ICAM-1/CD54; IFN alpha; IFN gamma; IL-1 alpha; IL-1 beta; IL-4; IL-6; IL-8; IL-

10; IL-12p70; IL-13; IL-17A/CTLA-8; IP-10/CXCL10; MCP-1/CCL2; MIP-1alpha/CCL3; MIP-1 

beta/CCL4; sP-Selectin; TNF alpha) (eBioscence, Vienna, Austria) and the Human Immuno-

Oncology Checkpoint 14-Plex ProcartaPlex Panel 1 (catalog number EPX14A-15803-901; BTLA; 

GITR; HVEM; IDO; LAG-3: 47; PD1; PD-L1; PD-L2; TIM-3; CD28; CD80; CD137; CD27; CD152) 

(eBioscence).  

Samples were prepared according to manufacturer’s instructions samples were prepared and 

measured using Luminex 200 platform (BioPlex; Bio-Rad, Bio-Rad, Hercules, CA, USA). Data, 

expressed in pg/mL of protein, were analyzed using Bio-Plex Manager Software (version 6.1, Bio-

Rad). 

 

 
Targeted Metagenomic on Fecal Microbiota  
 
To extract DNA from stool samples a QIAmp Fast DNA Stool mini kit (Qiagen, Hilden, Germany) 

was used. The bacterial DNA library was obtained by the amplification of 16S rRNA variable 

region V3-V4 (~460 bp) following the MiSeq rRNA Amplicon Sequencing protocol (Illumina, San 

Diego, CA, USA). Then the pooled library was sequenced on an Illumina MiSeqTM platform. 

Obtained raw reads, after quality and length trimming and chimera checking, were analyzed by 

Qiime v1.8.(http: //qiime.org/1.4.0/) 55. Operational Taxonomic Units (OTUs, Chicago, IL, USA) 

with a 97% clustering threshold of pairwise identity and representative sequences were aligned 

using PyNAST v.0.1. (https://biocore.github.io/pynast/) 56 and matched against Greengenes 13_08 

database 57. An OTU table was filtered, retaining all OTUs that had at least a 0.01% total abundance 

in the table and removing all OTUs present in less than 25% of samples.  

 

 

Gut Microbiome Metabolomics Profiling  
 
The gut metabolome profile was characterized for 11 NSCLC patients in order to analyze volatile 

and non-volatile metabolites. For volatile organic compound (VOC) detection, stool samples were 
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analyzed with gas chromatography-mass spectrometry (GC-MS) by using the carboxen-

polydimethylsiloxane coated fiber (CAR-PDMS) (85 µm) and the manual solid-phase 

microextraction (SPME) holder (Supelco Inc., Bellefonte, PA, USA) 58. Run conditions were 

previously reported by Botticelli et al. 59. The chromatograms were integrated and identified 

compared to fragment pattern presents in the mass spectral NIST library (version 2.2, NIST 14MS 

database; National Institute of Standards and Technology, Rockville, MD, USA), with the literature 

60 and also followed by manual visual inspection. Quantitative data compounds were obtained by 

interpolation of the relative areas vs. internal standard (IS) area expressed as ppm (mg/kg).  

Determination of non-volatile metabolites was performed by nuclear magnetic resonance 

spectroscopy (NMR) analysis; the stools were processed to obtain fecal waters as described by  

Brasili et al.61.  Subsequently, to sample collection, 2 out of 11 NSCLC samples were excluded for 

an inadequate sample amount. The pipelines and the NMR analyses were performed according to 

Brasili et al. 62 and Botticelli et al. 59Moreover, the assignment was confirmed according to the 

Human Metabolome Data Base 63 and our own laboratory database. 1D 1H NMR spectra were 

processed and quantified (µmol/g) according to Botticelli et al. 59 

 

 

Statistical analysis  

Descriptive statistics (median, range, and percentages) of clinical and biological characteristics of 

cancer patients were calculated. Student's t-test was used for comparing continuous variables 

between groups, whereas Fisher’s exact test or χ2-test was used for categorical variables. The 

impact of clinicopathological variables on OS and PFS was analysed by both the univariate and 

multivariate analyses (UVA and MVA, respectively). With regards to UVA, patients’ OStot or OS 

(from diagnosis or therapy, respectively) and PFS were analysed using the Kaplan–Meier method 

and log-rank tests. Prognostic clinic-pathological variables deemed of potential relevance in the 

univariate analysis (corresponding to a cutoff of p < 0.10) were included in the multivariate Cox 

proportional hazards regression analysis. A nomogram to predict 1- or 2-year OS probability was 

developed based on covariates retaining a statistically significant power (p < 0.05) in MVA. The 

nomogram was validated using the point assignment as follow: female/male: 0/28 points; 

PS=0,1/PS=2: 0/36 point; the levels of %CD137+ T cells of 5 corresponded to 37.5 points. 
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Discrimination of nomogram was tested by Kaplan–Meier curves. A p < 0.05 was considered 

statistically significant. Statistical analyses were performed using R-package software 

(Version 1.4.1106 ).  
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Results  
 
This research project has involved immunological analysis on several setting of metastatic cancer 

patients treated with immunotherapy (Pembrolizumab or Nivolumab) or TKIs (Pazopanib and 

Sunitinib) as first or second line agent. Despite tumor heterogeneity the through line of project is to 

delineate patients’ immune profile taking into account all the actors implicated as promoters or 

inhibitors of the anti-tumor immune response. The requisite for understanding why 

immunotherapeutic agents fail and promote tumor rejection is to understand the role of immune 

system and monitor the impact of therapies on its immunological components, considering also 

clinical feature i.e. microbiota or performance status.  Hence, independently from tumor type or 

administered treatment, the fundamental thought is the idea of immune system as driving force in 

clinical outcome.  
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Patients’ characteristics  
 
In this research studies were enrolled 129 metastatic cancer patients belonging to several cancer 

setting (mRCC, NSCLC, HNSCC, UM). Their main characteristics were listed in Table 2 (mRCC 

patients treated with TKIs) and in Table 3 (patients treated with anti-PD1).  

 

Table 2. Clinic-pathological characteristics and treatment of mRCC patients. 
 All Patients N 20 (100%) 

Age (years) 

Median Age (range) 

 

56,5  (36-78) 

Gender 

Male 

Female 

 

15 (75) 

5 (25) 

Risk Factors 

Smoking history (SH) 

 

9 (45) 

Histology 
Clear cell carcinoma 
Other 

 
16 (80) 
4 (20) 

Fuhrman grading 
G2 
G3 
unknown 

 
7 (35) 
9 (45) 
4 (20) 

Metastatic site at the diagnosis 
Liver 
Nodal 
Lung 
Bone 
Brain 
Adrenal 

 
4  (20) 
8 (40) 
12 (60) 
5 (25) 
3  (15) 
1 (5) 

IMDC score 
Poor risk 
intermediate 
good risk 

 
5   (25) 
10 (50) 
5   (25) 
 

I line treatment 
Sunitinib 
Pazopanib 

20 
8  (40) 
12  (60) 

II line treatment 
Nivolumab 

10  (50) 
10 (100) 

III line treatment 
Cabozantinib 

2 
2 
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Table 3: clinical and pathological characteristics 
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Soluble immune profile and response to immunological treatment 
 
TKIs and ICI modulate the release of sIC  
 
Levels of circulating soluble immune checkpoint (sIC) were measured in serum of metastatic 

cancer patient in order to evaluate the effect of immunological treatment on the release of these 

soluble proteins both at baseline (T0) and during treatment (TKIs or ICIs) (>T0; after 3 months of 

therapy, at first clinical revaluation).  

It was recently demonstrated that the soluble isoforms of the checkpoint receptors are involved in 

positive or negative immune regulation and that changes in their plasma levels affect the 

development, prognosis, and treatment of cancer 46.  Moreover, several evidence demonstrated 

that these molecules could contribute to immune regulation, representing a putative biomarker for 

tumor outcome 64.  

Our results suggested that both TKIs and ICIs modulate the release of several sICs in mRCC 

patients and NSCLC patients respectively.  

In particular, as shown in figure 13 the concentration of sPD1 and its ligand sPDL2 significantly 

decreased in NSCLC patients during anti-PD1 treatment (respectively p=0.02 and p=0.03) instead 

levels of sLAG3 were significantly increased (p=0.007). Correlating these results with clinical 

response, it was observed that the significant decrease of sPD1 occurs only in Responder (R) 

patients (p=0.03) and not in Non-Responder (NR) group. On the contrary, a significant increase of 

sLAG3 was ascribable only to NR patients (p=0.02). No correlation with clinical response was 

observed for sPDL2 decrease.  
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Figure 13: Changes in soluble immune checkpoints (sICI) in NSCLC patients during Nivolumab 
treatment. (A) Levels of soluble immune checkpoint-related protein evaluated in 22 NSCLC patients before the 
beginning of Nivolumab treatment (T0) and at first clinical evaluation (>T0). The proteins were analyzed by 
Luminex assay, and the results are reported as concentration (pg/mL) of sICs present in patient’s sera. Histogram 
represent the concentration mean values ± SEM of sPD1 (T0 67 ± 10 pg/mL vs. >T0 41 ± 10 pg/mL), sPD-L2 (T0 18.6 
± 4 pg/mL vs >T0 8 ± 1.4 pg/mL), and sLAG3 (T0 627 ± 50 pg/mL vs >T0 859 ± 109 pg/mL), at baseline (T0, black 
histogram) and at first clinical evaluation (>T0, gray histogram). (B) Box plots of sPD1, sPDL2 and sLAG-3 in 
responder (R) and not-responder (NR) patients (respectively 11 R and 11 NR patients) between Nivolumab 
initiation (T0) and the first clinical evaluation (>T0). The line in the box shows the median values. The error bars 
represent the minimum and the maximum values of sICs concentration (pg/mL). A student’s paired t-test was 
used to compare the differences between T0 and >T0. p values < 0.05 were considered significant. NS = not 
significant 
 

 

Similarly, in mRCC patients, the release of several sICs were modulated by TKIs. Figure 14 

Showed that the concentration of sPDL2 significantly decreased during TKI therapy (7842.5 ± 2865 

pg/mL for T0 vs. 4989 ± 4462 pg/mL for >T0; p = 0.02). Similar results were observed for sHVEM 

(4085.5 ± 3388 pg/mL for T0 vs. 1777 ± 1578 pg/mL for >T0; p = 0.01). It was shown that the high 
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the results indicate that TKI treatment also affects the release of sPD1 and sGITR, decreasing the 

concentration of both molecules between T0 and >T0 (sPD1: 561.5 ± 431 pg/mL for T0 vs. 238 ± 176 

pg/mL for >T0, p = 0.02; sGITR: 548 ± 425 pg/mL for T0 vs. 214 ± 212 pg/mL for >T0, p = 0.01). 

Correlating the concentration of these soluble molecules with clinical response, sPDL2 resulted the 

unique sICs differently modulated during TKI treatment and, in particular, only in R patients 

(Figure 14B) (sPDL2: 8855 ± 3985 pg/mL for T0 vs. 5057 ± 4243 pg/mL for >T0, p = 0.01). This result 

is in line with literature, in fact  in a recent study, conducted on ccRCC patients, it was 

demonstrated that high levels of sPDL2 were associated with an augmented risk of recurrence 66. 

No significative difference was observed for NR patients.  

These data demonstrate that immunological treatments positively modulate the release of soluble 

immune molecules, suggesting their possible role in the clinical outcome of cancer patients.   

 

 
Figure 14 Changes	in	the	soluble	immune	checkpoint--related	proteins	during	TKI	therapy	in	mRCC patients.  

(A) Analysis of soluble immune checkpoint-related proteins levels (i.e. sPDL2, sHVEM, sPD1, and sGITR) in 

patients with mRCC at T0 and after 3-4 months of TKI treatment (>T0). The proteins were analyzed by Luminex 

multiplex assay and the results are reported as the concentration (pg/mL) of soluble checkpoint inhibitors present 

in the serum of mRCC patients. (B) sPDL2 levels in the serum of R and NR mRCC patients analyzed at T0 and 

>T0. sPDL2 resulted in the only significant molecule modulated associated with the response to TKI treatment. 

Statistical significance was determined by a student’s paired t-test, and a p-value < 0.05 was considered 

statistically significant. 
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TKI Responsive Patients Have Low Levels of Serum IFNγ 

To further analyze the contribution of TKI treatment to patient’ response, cytokines were 

evaluated at T0 and at first clinical revaluation (>T0). Figure 15 showed that, at baseline, R patients 

had a significantly lower concentrations of IFNg compared to NR patients (27.47 ± 8.5 pg/ml for R 

vs 515.8±210.6 pg/mL for NR p=0.007). The same significance difference was found at >T0 (48.74± 

21.24 pg/mL for R vs 267.8±77.12 pg/mL for NR p=0.002). These data show that low levels of IFNg 

correlates with response to TKI treatment.  

IFNg  is a pleiotropic cytokine involved in anti-tumor immunity, that play a key role in the 

elimination phase of the immunoediting paradigm. More recent evidence demonstrated a dark 

side of this cytokines, as tumor promoting 70.  

To determine whether IFNg  levels could contribute to mRCC patient’ survival from TKI, survival 

curves were calculated. According to median value of IFNg, patients were divided in those with 

high levels of IFNg  (>65 pg/ml) and those with low levels (< 65 pg/ml). Figure 15 shows that IFNg 

predicts at baseline the duration of response to TKI treatment, in fact patients with IFNg levels < 65 

pg/ml had a longer duration of response to TKI therapy compared to high levels group (p=0.04). 

The average time of duration of response was undefined vs 7 months, and no significance 

correlation was observed during treatment (>T0) (median value of IFNg equal to 59 pg/ml).   
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Figure 15: Levels of IFNg in serum of R and NR patients evaluated at baseline (T0) and during TKI 

treatment (>T0). (A) the line in the boxes shows the median value. The error bars show the minimum and 

maximum value. (B) Survival curve analysis of mRCC patients at baseline and during TKI treatment 

according to the levels of IFNg. According to median value of IFNg, equal to 65 pg/mL at T0 and equal to 59 

pg/mL at >T0, patients were dichotomized in those with high concentration and those with low 

concentration of IFNg.  A log-rank test was used to compare the survival between two groups. p-value < 

0.05 was considered statistically significant. 
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Levels of sICs were associated with clinical response  
 
To further understand the immune profile of cancer patients, we investigated differences between 

R and NR patients, by evaluating levels of soluble immune molecules in serum of NSCLC and 

mRCC patients at T0 and during treatment (>T0).  

It’s interesting to note that independently from tumor histotype, significant differences in the 

levels of sICs between R and NR patients were detected during therapy (>T0).   

In fact, in mRCC responder patients sPDL1 and sCTLA4 resulted differently concentrated in 

serum of patients, with high levels in NR patient. This difference was statistically significant at >T0 

where levels of sPDL1 and sCTLA4 were higher in NR compared to R patients (respectively 146.5 

± 122.3 pg/mL vs. 56.25 ± 36.5 pg/mL, p=0.03 616.4 ± 330.3; pg/mL vs 281.6 ± 133 pg/mL p=0.008) 

(Figure 16).  

 

  
Figure 16: Profiling of levels of immune molecules at baseline and during TKI treatment in responder (R) and 

non-responder (NR) patients. Box plots of sPDL1 and sCTLA4 at T0 and after 3-4 months of therapy (>T0). A 

student’s unpaired t-test was used to compare R vs NR patients, and a p-value < 0.05 was considered statistically 

significant 
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concentrations of other sICs such as BTLA and its receptor HVEM, Tim3 and CTLA4, were higher 

in the serum of NR patients compared to R.  

Interestingly, also the levels of the costimulatory molecules sCD137 is higher in NR patients.  This 

protein acts as T cell activator in its membrane bound structure, but its soluble form inhibits 

CD137 – CD137L ligand , blocking T cells proliferation and antigen-presenting cells maturation 67. 

Consequently, to better understand the significance of these experimental evidence and the 

relation with clinical outcome, the association between sICs and duration of response to therapy in 

NSCLC patients was studied. Median concentrations of sICs were calculated and based on these 

median value NSCLC patients were stratified in those with low and high levels of a certain 

molecules.  According to this classification, patients with low levels of sPD1, sPDL2, sCD137, 

sTim3 or sBTLA performed a longer clinical response (Figure 17B) compared to patients with high 

levels of these factor, suggesting the possible role of these molecules as biomarkers of response to 

treatment. 

These results strongly suggest that the response to immunotherapeutic agent is associated with 

low levels of sICs measured 3 months from the start of therapy  
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Figure 17: Levels of sICs evaluated in R and NR patients at first clinical evaluation (>T0) and their 

correlation with duration of response. (A) Soluble immunecheckpoint-related molecules were evaluated in the 

serum of R (Black histogram) and NR (grey histograms) patients after three months of the beginning of Nivolumab 

treatment (>T0) by Luminex multiple assays. Histograms represent the concentration mean values ± SEM of PD1 (R 31±4 

pg/mL vs NR 53±6 pg/mL), PDL1 (R 1,7±0,06 pg/mL vs NR 57±12 pg/mL), PDL2 (R 7,3±1,4 ng/mL vs NR 22±4,4 ng/mL), 

BTLA4 (R 1,4±0,4 ng/mL vs NR 3,3± 0,4 ng/mL), HVEM (R 332±82 pg/mL vs NR 687±124 pg/mL), Tim3 (R 5,4±0,8 ng/mL 

vs NR 10±0,7 ng/mL), CTLA4 (R 61±5 pg/mL vs NR 86±8 pg/mL) and CD137 (R 429±113 pg/mL vs NR 859±117 pg/mL). 

(B) Survival analysis carried out at >T0 in NSCLC patients with high and low levels of sICs. The median values used to 

define patients with high and low levels of sICs are the following: PDL1 (20pg/mL), PDL2 (7.7ng/mL), CD137 

(624pg/mL), Tim3 (8.1ng/mL) and BTLA4(2.2 ng/mL). p values ≤ 0.05 were considered significant. * p≤0.05, **p≤0.01. 

ms=median survival.	
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sICs Are Differently Modulated According to ECOG PS Scale  
 
Moreover, for a more complete picture the immune profile was related to clinical parameters like 

performance status. This represents a measurement of clinical condition of cancer patients and 

their cancer progression in terms of their ability to take care of themselves.  

Thus, sICs were analyzed and correlated with the Eastern Cooperative Oncology Group (ECOG) 

PS scale. According to this, NSCLC patients were stratified into 2 groups: PS = 0 and PS = 1,2, in 

particular 9 were classified as PS = 0 and 13 as PS = 1,2 (11 patients with PS = 1; 2 patients with PS = 

2). Monitoring the variation of sICs during treatment in these groups we observed that in patients 

scored as PS = 0 there was a significant decrease of sPD1 during Nivolumab administration (PD1: 

T0 59 ± 14 pg/mL vs. >T0 32 ± 4 pg/mL, p = 0.04. Instead in PS=1,2 patients sPD1 levels remained 

similar (PD1: T0 71 ± 14 pg/mL vs. >T0 69 ± 13 pg/mL, p = 0.8). Moreover, the analysis displayed a 

trend of association between low levels of sICs and PS = 0 (Figure 18). This group of patients 

compared to PS=1,2 group showed low levels of the inhibitory molecules sPDL2 and sGITR and 

seems to have a better immune fitness before the beginning of therapy. Moreover, at first clinical 

evaluation (>T0), concentration of sPD1, sPDL1, sCTLA4 and sHVEM were less abundant in PS = 0 

patients compared to PS = 1,2 group. These data suggest that Nivolumab treatment appears to be 

more efficient in patients with PS = 0, decreasing sPD1 and maintaining low levels of immune-

evasion molecules.  
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Figure 18: Levels of sICIs evaluated in NSCLC patients scored as performance status (PS)=0 and PS=1,2 

before the beginning of Nivolumab treatment (T0) and at first clinical evaluation (>T0). Histograms 

represent the concentration mean values±SEM of sICs detected in patients with PS=0 (black histograms) and PS=1,2 (grey 

histograms) at T0 and >T0. The median values ± SEM of sICs at T0 are the follow: PDL2: PS=0 vs PS1,2, 12± vs 36± ng/mL; 

GITR: PS=0 vs PS1,2, 39± vs 95± pg/mL; CTLA4: PS=0 vs PS1,2, 64± vs 81± pg/mL; PD1 PS=0 vs PS1,2, 59± vs 71± pg/mL; 

PDL1: PS=0 vs PS1,2, 21± vs 49± pg/mL; HVEM: PS=0 vs PS1,2, 296± vs 677± pg/mL. At >T0 the mean values are: PDL2: 

PS=0 vs PS1,2, 8± vs 21± ng/mL; GITR: PS=0 vs PS1,2, 48± vs 84± pg/mL; CTLA4: PS=0 vs PS1,2, 60± vs 84± pg/mL; PD1 

PS=0 vs PS1,2, 32± vs 69± pg/mL; PDL1: PS=0 vs PS1,2, 8± vs 48± pg/mL; HVEM: PS=0 vs PS1,2, 319± vs 668± pg/mL.  p 

values ≤ 0.05 were considered significant. 
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Responder Patients Have a High Proportion of Eubiosis-Associated Gut Metabolites  
 
An important district that could impact the immunological fitness and influence patients response 

is represented by gut microbiota and its metabolomic profile 68. Several data demonstrated that 

specific gut microbiota and metabolome profiles have been associated with eubiosis or dysbiosis 

status 69. To analyze the gut microbiota and the proportion of eubiosis/dysbiosis-associated gut 

metabolites in R and NR patients, stool samples derived from 11 NSCLC patients (6 R and 5 NR) 

were collected at T0 and 9 out of 11 were analyzed.  

The analysis of the gut metabolome profile showed a set of 114 metabolites, 67 (59%) volatile 

organic compounds (VOCs) and 47 (41%) non-volatile. Among these compounds, 42 were related 

to eubiosis or dysbiosis (14 and 28, respectively). 

 In particular, VOCs showed the eubiosis related metabolites belonging to a chemical class of short 

chain fatty acids (SCFAs) (i.e., butyric, proprionic, acetic and pentanoic) and terpenes; on the 

contrary, the metabolites probably associated with dysbiosis were aldehydes (i.e., butanal 3-

Methyl, benzeneacetaldehyde), alcohols (i.e., ethanol, 2-Octanol) and phenols. Evaluating the 

concentration average values of these 42 metabolites in R and NR patients, 31 of them showed a 

difference of at least two-fold in their concentration between the two groups and were further 

analyzed (Figure 19). In R patients, a total of 14 compounds were found, 9 (64%) potentially related 

to eubiosis and 5 (36%) to dysbiosis, while NR patients showed dysbiosis, while NR patients 

showed 17 metabolites, 2 (12%) might be associated with eubiosis and 15 (88%) with dysbiosis.  
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Figure 19: Percentage of eubiosis/dysbiosis gut metabolites in R and NR patients evaluated before the 

beginning of nivolumab treatment (T0). Gut metabolites were evaluated in the fecal samples of 9 NSCLC 

patients. Volatile organic compounds were analysed by gas chromatography-mass spectrometry, while non-

volatile metabolites were analysed by proton nuclear magnetic resonance spectroscopy. In R patients 14 

metabolites were found, 9 related to eubiosis and 5 to dysbiosis. The histograms represent the percentage of 

eubiosis (in green) and dysbiosis (in red) associated gut metabolites evaluated, considering the 14 and 17 

metabolites found in R and NR patients as 100%, respectively.  
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CD137+ subset as an immune biomarker to define the wellness status of immune system 
  
To better define immune profile, it’s fundamental taking into account the cellular component in 

terms of circulating T lymphocytes. The analysis of the immune profiling revealed that the 

expression of CD137 molecule on T cells was associated to clinical response in several cancer 

setting treated with TKIs or ICIs.  

CD137 is a co-stimulatory receptor expressed on activated antigen-specific T cells. The engagement 

with its ligand, CD137L, enhances T cells proliferation and effector function70. It is considered a 

marker of antigen-specific cells. 

Specifically, figure 20A, showed that in mRCC setting treated with TKIs, responder patients had a 

significantly higher percentage of CD3+CD137+ T cells (2.7% ± 0.92%) compared to non-responder 

(0.9% ± 0.87%) both at baseline (T0) that during TKIs therapy (>T0) (R: 2.6% ± 0.78%; NR 0.67% ± 

0.4%) (respectively p = 0.003 and p = 0.0001). Then, evaluating CD3+CD137+ subpopulations, it’s 

interestingly to note that this significance was ascribable only to CD8. Indeed, at T0, the expression 

of CD137 on CD8+ T cells was significantly higher in R patients (2.02% ± 0.7%) compared to NR 

patients (0.6% ± 0.5%) (p = 0.001). This data became even more significant also during therapy 

(>T0), observing a percentage of CD8+CD137+ subpopulation equal to 1.91% ± 0.75% in responder 

patients vs. 0.43% ± 0.25% in NR (p = 0.0008). Instead, no significant difference was obtained for 

CD4+ T-cell subpopulation (%CD4+CD137+at T0: 0.6% ± 0.2% in responder patients vs. 0.27% ± 

0.18% in NR, p = 0.28; at >T0: 0.87% ± 0.28% in R vs. 0.23% ± 0.08% in NR, p = 0.18).  

These results showed that CD137+ T cells could represent a possible biomarker able to identify 

patients that could clinically benefit from TKI treatment.  
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Figure 20: CD137+ expression on T lymphocytes in mRCC patient treated with TKIs 

Immune cells subpopulations were evaluated using flow cytometry and analyzed by FACSDiva Software. To 

analyze the CD137+ T cells, lymphocytes were first gated on FSC-A and SSC-A and then the CD3+ T cells sub-

population was selected from lymphocytes. CD3+CD137+ T cells were selected and then analyzed for the 

expression of CD4 and CD8. The results are shown as percentage of CD3+CD137+, CD8+CD137+ and CD4+CD137+ 

T cells in R and NR patients at baseline and during TKIs therapy. The dot plot analysis of CD3+ CD8+CD137+ T 

lymphocytes is shown in the right side of panel A. The results are representative of one R patient and one NR 

mRCC patient. 

 

Subsequently, CD137 circulating levels were examined in 66 cancer patients with different tumor 

diagnosis, all treated with anti-PD1 and then compared to 20 healthy donors (HD). Flow 

cytometry analysis showed that HD expressed a significantly higher percentage of CD3+CD137+ T 

cells (3.2% ± 1.2%) than tumor patients (% 1.8 ± 1.6) (p<0.0007) (Figure 21A), suggesting a role as 

possible parameters to monitor a wellness status of immune system for CD3+CD137+. 

Later, correlating this cellular subset to clinical outcome it was observed that R patients had a 

percentage of CD3+CD137+ T cells significantly higher (2.2% ± 1.8%) than NR patients (1.3% ± 1.1%) 

(p<0.03) (Figure 21B) This data was mainly ascribable to CD8+CD137+ T cells (p=0.0001). No 

association was found between the levels of CD4+CD137+ T cell subset and the clinical response 

(Figure 21C) (p=0.2) 
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Further analysis examined the frequency of CD137+ related to several clinical parameters, i.e. PS, 

number of metastasis (n° met), toxicity and previous therapies. Results obtained are shown in 

figure 21D.  

Patients with PS=0-1 and with n° met < 2 expressed a more elevated levels of CD3+CD137+ T cells 

(respectively p=0.02 and p=0.006) suggesting that a better clinical status is correlated with high 

levels of CD137+ T cells.  

 

              
Figure 21: The high frequency of CD137+T cells correlates with the response to treatments and with 

clinical parameters. (A) The scattered dot plot represents the percentage values of circulating CD3+CD137+ 

cells evaluated by cytofluorimetry in 20 healthy donors (HD) and 66 cancer patients (Cancer) ± standard 

deviation (SD). The scattered plots show the percentage of circulating CD3+CD137+ cells (B), CD3+ 

CD8+CD137+ cells and CD3+ CD4+CD137+ (C) in responder (R) and non-responder (NR) patients to anti-

PD1 treatment ± SD.  

(D) Tukey’s box plots represent the median distribution of CD3+CD137+ cells according to performance 

status (PS) and number of metastasis (n°met) + the lowest and the largest data point excluding any outlier. 

Unpaired Student’t test was used to compare the different groups. p values<0.05 were considered 

significant.  
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CD137+ T cells as a predictive and prognostic biomarker for progression-free survival 
and overall survival in cancer patients treated with immunotherapeutic agents 
 

Once identified CD137+ T cells as a biomarker of immune wellness, we evaluated its predictive and 

prognostic role by the correlation with survival either in mRCC patients treated with TKIs or 

cancer patients treated with anti-PD1.  

Kaplan-Meier curves for mRCC patients treated with TKIs, with high and low concentrations of 

CD8+CD137+ T cells are represented in Figure 22 showing a longer survival in patients with high 

percentage of this population. While at baseline survival curves showed a trend for this data, 

during treatment survival curves showed an undefined survival for patient with high percentage 

of CD8+CD137+ and a median survival equal to 12 months for low CD8+CD137+ group (p = 0.04, log-

rank test), suggesting that the maintenance of CD8+CD137+ T cells in circulation is associated with 

the duration of the response to TKIs.  

  
Figure 22: Kaplan-Meyer curves of PFS based on Survival analysis of mRCC patients at baseline and during TKI 

treatment. According to median value of CD3+ CD8+CD137+ T cells (T0: 1,4 % ; >T0 1,3%) patients were divided in those 

with high or low percentage of CD3+ CD8+CD137+  T cells. Log-rank test compared the survival between two groups. 

 

The prognostic role of CD137 T cells was observed at baseline in the cohort of 66 patients 

belonging to different cancer setting. According to median value of CD3+CD137+ and CD8+CD137+ 

(respectively equal to 1.2% and 0.8%) these patients were stratified in those with high and low 

percentage of CD137+ T cells.  Figure 23 showed that high CD3+CD137+ and high CD8+CD137+ 

group of patients had a significantly longer PFS (figure 23A) and OS (Figure 23B). Instead, high 

levels of CD3+CD4+CD137+ were associated with PFS (p=0.02), but not with OS (p=0.05).  
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Figure 23:  Kaplan Mayer curves of PFS after anti-PD1 treatment (A) and OS evaluated at the beginning of 

anti-PD1 treatment (OS) (B) and at diagnosis (OStot) (C) analyzed considering the median values of the 

percentage of circulating CD3+CD137+ (1.2%), CD3+CD8+ CD137+ (0.8%), and CD3+CD4+CD137+ (0.2%), 

cells. Log-rank test was used to compare survival between the two groups. ms=months; (D) Prognostic 

nomogram of OS probability at 1 and 2 years in metastatic cancer patients treated with anti-PD1. p<0.05 

were considered significant.  

 

A CD3+CD137+ CD3+CD8+CD137+ CD3+CD4+CD137+ 

ms=9 

ms=3 

ms=11 

ms=3 
ms=2 

ms=8 

HR= 1.99; 95% CI = 1.23-4.15 HR= 2.15; 95% CI = 1.36-4.66 HR= 1.83; 95% CI = 1.11-4.08 

B 

D 

ms=20 

ms=5 ms=5 

ms=17 

HR= 2.68; 95% CI = 1.58-5.47 HR= 2.61; 95% CI = 1.54-5.32 

C 

ms=16 

ms=50 

Time (months) 

ms=45 

ms=16 

Time (months) 

HR= 2.2; 95% CI = 1.26-4.27 
HR= 2.61; 95% CI = 1.54-5.32 

p = 0.006 
p = 0.0008 

<0.2 >0.2 

HR= 1.47; 95% CI = 0.79-2.5 

ms=6 

ms=16 



 
 
 
 

 

 50 

Moreover, correlation with clinical parameters showed that PS resulted associated with an 

increased PFS (Table 4) and OS (Table 5). In particular, patients with PS=0-1 had a longer PFS 

(PS=0-1 vs. PS=2: median survival 8 months vs. 1,5 months) and OS (PS=0-1 vs. PS=2: median 

survival 15 months vs. 3 months) than patients scored as PS=2.  

 

Table 4: predictive and prognostic factors for PFS 

 

 

Table 5: predictive and prognostic factors for OS evaluated from the beginning of immunotherapy 

 

 

Another clinical characteristic that showed a correlation with the OS was the patients’ gender 

(females vs. males) (Table 5). Females appeared to have longer survival compared to males 

(females vs. males: median survival 26 months vs. 7 months) after the beginning of the anti-PD1 

treatment.  

On the other hand, multivariate analysis (MVA) revealed that a high level of CD3+CD8+CD137+ 

cells was an independent prognostic factor of PFS (Table 4) and that the female gender, PS=0-1 and 

high levels of CD3+CD137+ cells were significantly associated with longer OS evaluated after the 

beginning of immunotherapy (Table 5).  
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These three factors were integrated as part of a dynamic prognostic nomogram that evaluated the 

survival probability at 1 and 2 years of cancer patients treated with immunotherapy (Figure 23D). 

In the nomogram a final score was obtained by summing the point value of each variable. Finally, 

from the total points, a vertical line needed to be drawn to get the value of 1- or 2-year OS 

probability. The female sex corresponded to 0 points, the PS=2 corresponded to 36 points, while 

the levels of %CD137+ T cells of 5 corresponded to 37.5 points. The total point of 73.5 corresponded 

to a 1- and 2-year OS of about 0.8 (80%) and 0.6 (60%), respectively. It is interesting to note that a 

poor OS was observed when patients showed lower values of CD137+ cells. 

At the end, considering the OS of cancer patients from tumor diagnosis, UVA confirmed the 

results described above, i.e. PS=0-1, high levels of CD3+CD137+ and CD3+CD8+CD137+ cells 

characterized patients with longer survival (Figure 24C). Moreover, at the multivariate analysis, 

the high levels of CD3+CD137+ cells resulted as an independent predictive factor for patients’ 

survival. 

The prognostic role of CD137+ T cells was validated in an indipendent cohort of 43  metastatic 

cancer patients (NSCLC and HNSCC) treated with anti-PD1. Univariate analysis confirmed the 

association of CD137+ T cells cut- off=1.2) with the OS (HR 8.26, 95% CI: 1.34-12.8; p=0.001) (Figure 

24A), and with the OStot (HR 6.87, 95% CI: 1.13-11.24; p=0.02) (Figure 24B) Data exhibited a 

favorable survival outcome for those patients with a percentage of CD3+CD137+ >1.2 before the 

beginning of therapy (T0). Moreover, also the frequency of CD8+CD137+ T cells (cut-off=0.8%) 

found in the identification cohort was confirmed as prognostic factor of PFS (HR 5.2, 95% CI: 1.02-

10.59; p=0.04) (Figure 24C).  

To definetely validate our results, the nomogram obtained in the identification cohort was used to 

evaluate the survival probability of cancer patients of the validation group. The point assignment 

was the same used in the  identification cohort (female/male: 0/28 points; PS=0,1/PS=2: 0/36 point; 

the levels of %CD137+ T cells of 5 corresponded to 37.5 points). The nomogram score was assigned 

to each patient and plotted as a Kaplan-Mayer curve (Figure 24D). Patients with a score lower than 

the median value showed a poor survival (p=0.01), confirming the analysis carried out in the 

identification cohort. The factors  were the same used in the identification cohort.  
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Figure 24: CD137 was validated as prognostic factor to survival.  

(A) Kaplan Mayer curve of OS after anti-PD1 treatment calculated in the validation cohort considering the 

median percentage of CD137 (1.2%). (B) Kaplan Mayer curve of OS evaluated at diagnosis, analysed 

considering the median values of the percentage of CD137+ T cells (1,2%) in the validation cohort (C) 

Kaplan Mayer curve of PFS after anti-PD1 treatment calculated in the validation cohort considering the 

median percentage of CD8+CD137+ T cells (0.8%). (D) Kaplan Mayer curve of OS evaluated in the 

validation cohort using the median score of 114.3 obtained assigning to each patient belonging to the 

validation group the nomogram score used in the identification cohort. Log-rank tests were used to 

compare survival between two groups. p values<0.05 were considered significant. ms=months; ND= not 

determined.  
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Cancer patients with high levels of CD137+PD1+T cells showed a longer OS  
 
PD1 molecules is a marker of activated T cells, but in the last years has been demonstrated that its 

expression identify also exhausted lymphocytes 73. Recently, it has been demonstrated that the 

expression of CD137 molecule plays a critical role in the discrimination of the activated and 

exhausted T cells identifying the CD137+PD1+ subset as the most functionally active T cells 

population 74. Therefore, the double positive expression of T lymphocytes to CD137 and PD1 was 

analyzed in our cohort of cancer patients and in healthy donors and then correlated with clinical 

parameters previously described.  Figure 25A showed that the frequency of CD137+PD1+T cells in 

HD was significantly higher (7.7% ± 3.3%) compared to cancer patients (2.7% ± 2.3%). Then, 

associating this population with clinical parameter, we observed that the percentage of 

CD137+PD1+ cells was inversely correlated with n* of metastasis (Figure 25B). However, when this 

population was analysed in regard to clinical response to anti-PD1 treatment, no significant 

differences between responders and non-responders were observed (Figure 25C).  

Moreover, we assessed the frequency of CD3+CD137+PD1+ in relation to PFS and OS observing 

that, before starting treatment, high levels of CD3+CD137+PD1+ (>1.85%), were associated with a 

longer OS evaluated at diagnosis (figure 25D), but not with a PFS.  Instead, regarding OS 

calculated from the start of immunotherapy we observed a difference between patients with 

CD3+CD137+PD1+ percentage < 1.85% and >1.85%, even if it was only a trend and not a statistically 

significant difference (p=0.055) (Figure 25E). 

To understand the abundance of CD137 expression in the different PD1+ T cell subsets and their 

correlation with clinical parameters, the frequency of CD8+CD137+PD1+ and CD4+CD137+PD1+T 

cells was analyzed. The levels of CD3+CD8+CD137+PD1+ (0.43% ± 0.3%) and CD3+CD4+CD137+PD1+ 

(0.49% ± 0.9%) cells represent respectively the 44% and 63% of the total CD3+CD8+CD137+ and 

CD3+CD4+CD137+.  Analyzing this cellular subset according to clinical outcome, we observed that 

responder patients showed increased levels of CD3+CD8+CD137+PD1+ (0.59%± 0.4%) compared to 

NR (0.34± 0.28) (p=0.01), while no significant difference was obtained for CD3+CD4+CD137+PD1+ T 

cell subpopulation (R vs. NR: %0.68±1 vs. % 0.34±0.73%; p=0.09) (Figure 25F). These two 

populations were also analyzed in regard to PFS and OS, however, no significant correlation with 

the survival was obtained (CD3+CD8+CD137+PD1+ cells, PFS: HR:1.52, 95% CI:0.87-3.1, p=0.12; OS: 
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HR:1.32, 95% CI:0.72-2.56, p=0.3; CD3+CD4+CD137+PD1+ T cells, PFS: HR: 1.3, 95% CI: 0.69-2.56, 

p=0.3; OS: HR:1.2, 95% CI: 0.68-2.38, p=0.6).  

Finally, to evaluate the activation status of CD8+CD137+PD1+ respect to CD8+CD137-PD1+ this 

cellular subset was analyzed using the proliferation marker Ki67. As reported in figure 25G, the 

expression of Ki67 was significantly higher CD8+CD137+PD1+ T cells population compared to 

CD8+CD137-PD1+(49.65%±16.86 vs. 38%±19.08 respectively; p=0.004), demonstrating that the 

CD137 marker mainly identify those lymphocytes with the higher proliferation capacity. 
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Figure 25: High levels of CD137+PD1+ T cells correlate with a better clinical status and survival 
(A) The scattered dot plot represents the percentage values of circulating CD137+PD1+ T cells evaluated in 20 HD and 66 

cancer patients (Cancer) ± SD by flow cytometry. The values of CD137+PD1+ T cells were calculated gating on CD3+PD1+ 

cells. (B) The tukey’s box plots represent the median distribution of CD137+PD1+ T cells according to the number of 

metastasis (n°met) + the lowest and the largest data point excluding any outliers. (C) The scattered dot plot shows the 

percentage of CD137+PD1+ T cells in R and NR patients. Unpaired Student’t test was used to compare the different 

groups (D) Kaplan Mayer curves of OS evaluated at diagnosis (OStot) considering the median value of the percentage of 

CD137+PD1+T cells (1.85%). (E) Kaplan Mayer curves of OS evaluated from the beginning of immunotherapy (OS). (F) 

The scattered plots show the percentage of circulating CD3+CD8+CD137+PD1+and CD3+CD4+CD137+PD1+ cells in R and 

NR patients to anti-PD1 treatment. (G) Percentage of Ki67 expression on CD8+CD137-PD1+ T cells and CD8+CD137+PD1+ 

T cells. p values <0.05 were considered significant. ms= months; ND=not yet defined.  
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High levels of sCD137 in serum are associated with a poor survival  
 
Several evidence demonstrated the existence of a soluble form of CD137 and its negative role in 

immune response 67. Thus, levels of this molecule were measured at baseline in serum of 66 cancer 

patients and then associated with survival. As expected, the sCD137 didn’t correlate with CD137 

expressed on the plasma membrane of T cells. Indeed, no correlation of sCD137 with CD137+ (r = -

0.26, 95% CI: -0.53-0.05, p=0.09), CD8+CD137+ (r = -0.2, 95% CI: -0.47-0.41, p=0.09) and also with 

overall CD8+ (r = 0.1, 95% CI: -0.19- 0.41, p=0.4) T cells was found.  

Patients with a serum concentration of sCD137 >158 pg/mL showed a shorter PFS and OS 

calculated both from the beginning of anti-PD1 therapy (OS) and from tumor diagnosis (OStot) 

(Figure 26A, B, C, respectively), confirming the negative impact of this molecule on the clinical 

outcome. 

 

 

  

 
Figure 26: Low concentration of sCD137 is correlated with a better survival.  

Kaplan Mayer curves of PFS after anti-PD1 treatment (A) and Overall Survival evaluated at the beginning of anti-PD1 

treatment (OS) (B) and at diagnosis (OStot) (C) calculated considering the concentration median values of sCD137 (158 

pg/mL). Log-rank tests were used to compare survival between two groups. p values<0.05 were considered significant. 

ms=months.  
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The presence of CD137+ T cells in the tumor microenvironment appears to be associated 
with a complete pathological response to immunotherapy  
 
At the end, to understand whether circulating cells correspond to lymphocytes in the tumor nests, 

the expression pattern of CD137+T cells in the tumor microenvironment was analyzed in tumor 

samples from three oligometastatic NSCLC patients who underwent radical surgery to achieve the 

complete local control after immunotherapy treatment. As pictured in figure 22, a detailed 

histological examination of tertiary lymphoid structure (TLS) showed the distribution of CD137+, 

CD8+ and CD4+ cells in these representative TLSs. Results demonstrated that the distribution of 

CD137+ T cells in the tumor microenvironment appeared to differ among patients in relation to the 

response to immunological treatment. Indeed, Patient 1 showed a complete pathological response 

with a high tumor regression grade. The tumor bed was characterized by proliferative fibrosis, 

neovascularization, and high numbers of TILs and TLSs.  
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Figure 22: Paraffine tumor slides derived from three NSCLC patients with different responses to anti-PD1 treatment. 
(A) Patient 1 (first column): Pathologic complete response with diffuse proliferative fibrosis, calcifications, cholesterol 

clefts and intense inflammatory infiltrates with several tertiary lymphoid follicles (TLF) (arrows, insert); Patient 2 

(second column): pathologic partial response with a small nest of residual cancer (left) associated with proliferative 

fibrosis, necrosis, inflammatory infiltrates with foamy macrophages and occasional TLF (arrows, insert); Patient 3: 

Absence of pathologic response: scanty interstitial inflammatory infiltrates and rare TLF  within neoplasia (arrows, 

insert). Original magnification 1x. (B) Patient 1: TLF from a lung cancer sample with pathological complete response 

show a high number of lymphocytes positive for both CD137 and CD8. A small number of CD4+ T lymphocytes is also 

present; Patients 2: TLF from a lung cancer sample with pathological partial response show a lower number of 

lymphocytes positive for both CD137 and CD8 as compared to case 1 while the amount of CD4+ T lymphocytes is higher; 

Patients 3: tertiary lymphoid follicles from a lung cancer sample with absence  
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The representative TLS found around the tumor showed a high number of CD137+ and CD8+ cells 

suggesting the involvement of cytotoxic CD137+ cells in the elimination of tumor cells. Patient 2 

showed a pathologic partial response with a small nest of residual cancer associated with 

proliferative fibrosis, necrosis, inflammatory infiltrates with foamy macrophages and occasional 

tertiary lymphoid follicles. TLS had a low infiltration of CD137+ and CD8+ T cells compared to 

patients 1. Patient 3 classified as non-major pathological response (non-MPR), showed a very 

limited pathological response, with extensive residual neoplasia.  The residual tumor was 

characterized by the presence of sparse inflammatory infiltrates with rare TLSs. The number of 

both CD137+ and CD8+ cells in the TLS was scarce. The amount of CD4+ T lymphocytes was similar 

in the three patients. Interestingly, the number of lymphocytes positive for both CD137 and CD8 

within the inflammatory infiltrates was inversely related to the extent of pathological response, 

while CD4+ T cells seemed to not correlate with the response. Similar results were obtained 

analyzing the TILs derived from two patients who suffered from cutaneous melanoma and 

HNSCC (Figure 23) treated with immunotherapy and chemotherapy, respectively, before surgery. 

The melanoma patient showed a complete response and exhibit high levels of infiltrating CD137+ 

and CD8+ T cells in the TME. The HNSCC patient, with a pathological incomplete response (non-

MPR), showed a low level of CD137+ and CD8+ T cells in the tumor bed. These data further 

suggested that the presence of CD137+ cells is strongly associated with tumor regression and with 

response to therapy independently by the type of treatment.  
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Figure 23: TILs analysis in melanoma and HNSCC tumor slide. 
Surgical sample of melanoma (first column) with pathological complete response to immunotherapy 

showing a marked inflammatory infiltrate with abundant TLFs. A high number of lymphocytes positive 

for both CD137 and CD8 are shown. A small amount of CD4+ T lymphocytes is also present. Original 

magnification 4X; Surgical sample of squamous cell carcinoma of the oral cavity (second column) with 

pathological incomplete response. Inflammatory infiltrates are scanty with low number of lymphocytes 

positive for both CD137 + and CD8 + cells; a small amount of CD4 + T lymphocytes is present. Original 

magnification 20X. 
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Discussion 
 
The immune profile of each individual is the result of their own immune history such as lifestyle, 

the encounter with pathogens, age, gender, microbiota composition and several other factors 

including predisposing and heritable conditions. This complexity further increases in cancer 

patients. We believe that the wellness of immune system represents a crucial point to define the 

success of anti-cancer immunological treatment. 

Despite the exciting immunological treatment that, targeting the immune system, contributes to 

modify the activation state of the immune cells, a high percentage of patient doesn’t benefit from 

this type of therapy and develops toxicities or adverse events. In this scenario the identification of 

biomarkers predictive and prognostic could be a useful tool to maximize response to treatment. 

Beyond the most known and validated biomarkers, it’s fundamental identify new biomarkers with 

a simple and not invasive method, thus peripheral circulating biomarkers come into play.  

In this project we investigated, across different tumor types, the role of peripheral immune cells 

and circulating immune molecules in patients treated with TKIs and immunotherapy, evaluating 

patient’s immune profile at baseline and during treatment, to figure out whether eventual changes 

could impact on clinical outcome.  

Our results suggest that TKIs and ICIs modulate the release of several sICs respectively in mRCC 

and in NSCLC patients. In mRCC patients, several sICs decreased during treatment (i.e. sPDL2, 

sHVEM, sPD1, and sGITR), but sPDL2 resulted the unique biomarker downregulated in responder 

patients during TKIs therapy.  This data is supported by a previous work that identified sPDL2 as 

significant predictive biomarker of recurrence risk in ccRCC 66. 

Instead, in NSCLC patients Nivolumab affected the decrease of sPD1 and sPDL1 during therapy 

but only sPD1 resulted reduced in responder patients during treatment. The role of sPD1 is the 

most discussed and it is also controversial. Several studies suggested a positive role in anti-tumor 

immunity to PD1, hypothesizing that the binding between soluble PD1 and the membrane-bound 

PDL1/PDL2 might prevent T cell inhibition 72 and that high levels of this soluble protein are 

associated with longer PFS and OS in NSCLC patients after two cycles of Nivolumab73. On the 

contrary, other studies describe soluble PD1 as a negative regulator: low levels of PD1 favor the 

activation of the immune system inducing the maturation of dendritic cells and decreasing the 

threshold of T cell activation74. 
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The importance of biomarker’s identification is highlighted not only at baseline, but also during 

treatment. In fact, we observed low levels of soluble immune-related proteins in mRCC and 

NSCLC responder patients during treatment. We demonstrated that IFNγ, sPDL1 and sCTLA4 

play important roles in regulating the response to TKI treatment in mRCC patients. Interestingly, 

we observed that low levels of IFNγ correlated with the response to TKI therapy, both at baseline 

and after 3–4 months from starting treatment and that at baseline they seem to be associated with a 

better PFS. IFNγ has a dual and opposite role both as anti- and pro-tumor cytokine75. It induces 

various genes, such as PDL1, PDL2, CTLA4, and IDO, involved in cancer cells immune evasion. 76 

Our results showed that the presence of sPDL1 and sCTLA4 is associated with a poor response to 

TKI confirming their role for poor prognosis and failure to response during TKI therapy.  

Likewise, our data in NSLCS group showed low levels of several sICs in responder patients during 

treatment, that are also associated with duration of response to Nivolumab (PFS).  

Moreover, the efficiency of immune system could be related to clinical condition of cancer patients 

like performance status that represents a clinical measure to establish cancer progression. 

Most studies do not enroll patients with poor PS (PS ≥ 2) because this is a negative prognostic 

factor for response to treatment and survival and a predictive factor of adverse events 77. Patients 

belonging to PS ≥ 2 group had moderate or severe comorbidities, frequently required the use of 

antibiotics or corticosteroid which influence the activation of the immune response and the 

response to ICI. In our study, sICs seem to be modulated by Nivolumab treatment according to 

patients’ PS. NSCLC patients with a PS = 0 were linked to a better immunological fitness at the 

beginning of therapy. Nivolumab seems to perform its immunoregulatory function more 

effectively in this setting of patients reducing PD1 and maintaining low levels of several sICs with 

immunosuppressive functions. 

In addition, an important district that could influence the immune systems response is represented 

by gut microbiota and its metabolomic profile.  

In NSCLC setting we investigated the metabolomic profile of R and NR patients observing 

differences in microbial composition associated respectively to eubiosis and dysbiosis. R patients 

showed higher levels of SFCA, whose production is essential for gut integrity by the regulation of 

the luminal pH, action on mucosal immune function and mucus production. NR patients showed 

a prevalence of dysbiosis-associated metabolites like alcohols, the principal mediators to the 
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development of non-alcoholic steatohepatitis (NASH), and aldehydes that could promote 

mutagenesis. 

Due to the strict correlation between bacterial metabolism and immune fitness, it is conceivable to 

believe that the presence of eubiosis-related compounds in responding patients contributes to 

maintaining optimal the wellness of the immune fitness, thus resulting in a better and durable 

response to Nivolumab treatment. Eubiosis, together with sICs and performance status could be 

used as possible biomarkers of response in NSCLC patients.  

The other important parameters evaluated in this project are the circulating immune cells and their 

role in cancer patients treated with immunological therapies.  

In particular, we identified the CD137+ T cells, as a predictive biomarker of response to therapy.  

We showed that mRCC patients who benefited from TKI treatment had high percentage of 

CD3+CD137+ T cells and CD8+CD137+ T cells both at baseline and during therapy, observing that 

the maintenance of CD8+CD137+ T in circulation is associated with a better PFS. Numerous studies 

have demonstrated that although both activated CD4+ and CD8+ T cells express CD137, signals 

through CD137 are more biased toward CD8+ T cells, both in vitro and in vivo.  

In line with the analysis in mRCC patients, we proposed the CD137+ T cell subset as a driver of 

successful anti-tumor therapy in a larger cohort of patients treated with immunotherapy 

demonstrating that it could define the “quality” of the immune activation thus predicting the 

patients’ clinical outcome independently from tumor histotype, previous therapies, as well as 

toxicity. Indeed, we showed that the frequency of CD3+CD137+ is higher in healthy donors and in 

those patients with a better clinical status, who presumably have a fully or less dysregulated active 

immune system.  The CD137+ T and in particular CD8+CD137+T cells subset seem to have a crucial 

role in response to anti-PD1 therapy, in fact high levels of these cells correlated with survival and 

have been identified as independent prognostic factors. The CD4+CD137+ cells influence the 

patients’ survival but resulted not associated with response. As reported above, several studies 

underlined the main involvement of CD8+CD137+ population compared the CD4+CD137+ subset. 

These evidences are supported by anti-CD137 agonistic antibodies that promote the expansion of 

CD8+ T cells in several diseases including cancer 78. These therapies not only are positively 

correlated with clinical outcome, by increasing the frequency of anti-tumor specific memory T cells 
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that provides a long-lasting anti-tumor immune response, but they also enhance the recruitment of 

specific lymphocytes in TME that act by reducing Treg and MDSC79,80. 

Interestingly combining the levels of CD137+ T cells with PS and patients’ gender in a nomogram 

analysis, could identify the profile of the patients who will benefit from immunotherapy in terms 

of survival. Indeed, a poor OS is observed in patients that had low expression of CD137 on T cells. 

All these studies confirm the hypothesis that the frequency of CD137 represents a key point to 

obtain an efficacious anti-tumor immune response.  

Later, we analyzed the frequency of these cells also in TME observing the distribution of CD137+ T 

cells in the Tertiary Lymphoid Structures that surround the tumor of three NSCLC patients with a 

different clinical outcome. We identified high levels of CD137+ and CD8+ T cells only in TLS of 

patients with a complete tumor response, confirming the hypothesis that the intensity of the anti-

tumor immune response is strictly correlated with the amount of CD137+ T cells in the tumor bed.  

Our data were supported by previous studies that analyzed the distribution of CD137 in milieu   

identifying this molecule as a biomarker to detect and isolate the full repertoire of tumor-specific 

CD8+ T cells distributed in the tumor site.  

CD137+ T cells have been also analyzed for the expression of PD1 molecule. The CD137+PD1+ and 

CD8+CD137+PD1+ subsets were associated with the response to anti- PD1 therapy, and with a 

longer OS. The co-expression of these two molecules identifies those lymphocytes that exhibit a 

higher tumor reactivity. For instance, in the hepatocarcinoma, CD137+PD1high T cells show a 

transcriptomic profile correlated with a T cell activation and a high proliferative capacity81. Our 

data showed that CD8+CD137+PD1+ had a higher proliferation capacity when compared to 

CD8+CD137-PD1+ cells (evaluated by the expression of Ki67 marker), demonstrating the existence 

of several T cell populations with different levels of activation based on the expression of CD137 

and PD1, and suggesting the critical role of CD137 markers in determining the activation state of T 

cells.  

CD137 could be released as soluble form, an immunoinhibitory molecule produced by 

overactivated immune cells, including Treg that allow a faster tumor progression in vivo82. In 

hypoxic conditions, several cancer cells release high levels of this molecule independently by the 

expression of the membrane-bound CD137, suggesting its beneficial effect for cancer survival.  
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In this study we evaluated the concentration of sCD137 in our cohort of cancer patients, observing 

that high levels of this molecule are associated with a shorter PFS and OS, but no correlation was 

found between sCD137 and several CD137+ T cell subsets. 

All these results identified and validated the role of CD137+ T cells as a biomarker of immune 

wellness able to predict the success of anti-cancer immunotherapy.  

 

Conclusion 
The results obtained in this project highlighted the importance of the immune profiling, in order to 

identify predictive biomarkers of patients’ clinical outcome as well as to elucidate why some 

patients fail to respond to immunological treatment. Moreover, we observed that these therapies 

have a strong impact on immunological components, and they contribute to changes patients’ 

immune system in the course of treatment, underlying the importance of a comprehensive and 

longitudinal immune monitoring as a dynamic process.  

Due to the urgent need to increase the number of responding patients treated with immunological 

therapies we believe that these prognostic and predictive biomarkers could help clinicians in the 

decision-making. Moreover, these findings translated into large-scale studies, using a network-

based approach that includes clinical and experimental data, could be the basis for a personalized 

medicine. 
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