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1. Introduction

The minimal model conjecture predicts that an arbitrary algebraic variety is birational

to either a minimal model or a Mori fibre space π : V → B. A distinguished property

of Mori fibre spaces in characteristic zero is that any relative numerically trivial line

bundle is automatically trivial (cf. [18, Lemma 3.2.5]). In [41, Theorem 1.4], the second

author constructs counterexamples to the same statement in positive characteristic. More

specifically, if the characteristic is two or three, then there exists a Mori fibre space

π : V → B and a line bundle L on V such that dim V = 3, dim B = 1, L ≡π 0, and L 6∼π 0.

Then it is tempting to ask how bad the torsion indices can be. One of the main results of

this paper is to give such an explicit upper bound of torsion indices for three-dimensional

del Pezzo fibrations.

Theorem 1.1 (Theorem 8.2). Let k be an algebraically closed field of characteristic

p > 0. Let π : V → B be a projective k-morphism such that π∗OV = OB , where V is

a three-dimensional Q-factorial normal quasi-projective variety over k and B is a smooth

curve over k. Assume that there exists an effective Q-divisor 1 such that (V,1) is klt

and π : V → B is a (KV +1)-Mori fibre space. Let L be a π-numerically trivial Cartier

divisor on V . Then the following hold:

(1) If p > 7, then L ∼π 0.

(2) If p ∈ {3, 5}, then p2L ∼π 0.

(3) If p = 2, then 16L ∼π 0.

We also prove a theorem of Graber–Harris–Starr type for del Pezzo fibrations in positive

characteristic.

Theorem 1.2 (Theorem 8.1). Let k be an algebraically closed field of characteristic p > 0.
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Let π : V → B be a projective k-morphism such that π∗OV = OB , V is a normal

three-dimensional variety over k, and B is a smooth curve over k. Assume that there

exists an effective Q-divisor 1 such that (V,1) is klt and −(KV +1) is π-nef and π-big.

Then the following hold:

(1) There exists a curve C on V such that C → B is surjective and the following

properties hold:

(a) If p > 7, then C → B is an isomorphism.

(b) If p ∈ {3, 5}, then K (C)/K (B) is a purely inseparable extension of degree 6 p.

(c) If p = 2, then K (C)/K (B) is a purely inseparable extension of degree 6 4.

(2) If B is a rational curve, then V is rationally chain connected.

Theorem 1.2 can be considered as a generalisation of classical Tsen’s theorem, i.e. the

existence of sections on ruled surfaces. Tsen’s theorem was used to establish the log

minimal model program in characteristic p > 5 [4, § 3.4]. Also, Tsen’s theorem was used

to show that H i (X,WOX,Q) = 0 for threefolds X of Fano type in characteristic p > 5
when i > 0 (cf. [15, Theorem 1.3]).

The proofs of Theorems 1.1 and 1.2 are carried out by studying the generic fibre

X := V ×B Spec K (B) of π , which is a surface of del Pezzo type defined over an imperfect

field. Roughly speaking, Theorems 1.1 and 1.2 hold by the following two theorems.

Theorem 1.3 (Theorem 4.10). Let k be a field of characteristic p > 0. Let X be a k-surface

of del Pezzo type. Let L be a numerically trivial Cartier divisor on X . Then the following

hold:

(1) If p > 7, then L ∼ 0.

(2) If p ∈ {3, 5}, then pL ∼ 0.

(3) If p = 2, then 4L ∼ 0.

Theorem 1.4 (Theorem 6.12). Let k be a C1-field of characteristic p > 0. Let X be a

k-surface of del Pezzo type such that k = H0(X,OX ). Then

(1) If p > 7, then X (k) 6= ∅;

(2) If p ∈ {3, 5}, then X (k1/p) 6= ∅;

(3) If p = 2, then X (k1/4) 6= ∅.

1.1. Sketch of the proof of Theorem 1.3

Let us overview some of the ideas used in the proof of Theorem 1.3. By considering the

minimal resolution and running a minimal model program, the problem is reduced to

the case when X is a regular surface of del Pezzo type which has a K X -Mori fibre space

structure X → B. In particular, it holds that dim B = 0 or dim B = 1.

1.1.1. The case when dim B = 0. Assume that dim B = 0. In this case, X is a regular

del Pezzo surface. We first classify Y := (X ×k k)N
red (Theorem 1.5). We then compare

X ×k k with Y = (X ×k k)N
red (Theorem 1.6).
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Theorem 1.5 (Theorem 3.3). Let k be a field of characteristic p > 0. Let X be a projective

normal surface over k with canonical singularities such that k = H0(X,OX ) and −K X is

ample. Then the normalisation Y of (X ×k k)red satisfies one of the following properties:

(1) X ×k k is normal. Moreover, X ×k k has at worst canonical singularities. In

particular, Y ' X ×k k and −KY is ample.

(2) Y is isomorphic to a Hirzebruch surface, i.e. a P1-bundle over P1.

(3) Y is isomorphic to a weighted projective surface P(1, 1,m) for some positive integer

m.

Theorem 1.6 (cf. Theorem 3.7). Let k be a field of characteristic p > 0. Let X be a

projective normal surface over k with canonical singularities such that k = H0(X,OX )

and −K X is ample. Let Y be the normalisation of (X ×k k)red and let

µ : Y → X ×k k

be the induced morphism.

(1) If p > 5, then µ is an isomorphism and Y has at worst canonical singularities.

(2) If p = 3, then the absolute Frobenius morphism FX×k k of X ×k k factors through µ:

FX×k k : X ×k k → Y
µ
−→ X ×k k.

(3) If p = 2, then the second iterated absolute Frobenius morphism F2
X×k k

of X ×k k
factors through µ:

F2
X×k k

: X ×k k → Y
µ
−→ X ×k k.

Note that Theorem 1.5 shows that Y = (X ×k k)N
red is a rational surface. In particular,

any numerically trivial line bundle on Y is trivial. By Theorem 1.6, if L ′ denotes the

pullback of L to X ×k k, then it holds that L ′4 ' OX×k k in the case (3). Then the flat

base change theorem implies that also L4 is trivial.

We now discuss the proofs of Theorems 1.5 and 1.6. Roughly speaking, we apply

Reid’s idea [32, cf. the proof of Theorem 1.1] to prove Theorem 1.5 by combining with

a rationality criterion (Lemma 3.2). As for Theorem 1.6, we use the notion of Frobenius

length of geometric normality `F (X/k) introduced in [42] (cf. Definition 3.4, Remark 3.5).

Roughly speaking, if p = 2, then we can prove that `F (X/k) 6 2 by computing certain

intersection numbers (cf. the proof of Proposition 3.6). Then a general result on `F (X/k)
(Remark 3.5) implies (3) of Theorem 1.6.

1.1.2. The case when dim B = 1. Assume that dim B = 1, i.e. π : X → B is a

K X -Mori fibre space to a curve B. Since X is of del Pezzo type, we have that the

extremal ray R of NE(X) that is not corresponding to π : X → B is spanned by an

integral curve 0, i.e. R = R>0[0]. In particular, 0→ B is a finite surjective morphism of

curves. If K X ·0 < 0, then the problem is reduced to the above case (1.1.1) by contracting

0. Even if K X ·0 = 0, then we may contract 0 and apply the same strategy. Hence, it

is enough to treat the case when K X ·0 > 0. Note that the numerically trivial Cartier
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divisor L on X descends to B, i.e. we have L ∼ π∗L B for some Cartier divisor L B on

B. Then, a key observation is that the extension degree [K (0) : K (B)] is at most five

(Proposition 4.7). For example, if p > 5, then 0→ B is separable. Then the Hurwitz

formula implies that −K B is ample; hence, L B ∼ 0. If K (0)/K (B) is purely inseparable

of degree pe, then it holds that L pe

B ∼ 0 since −K0N is ample. For the remaining case,

i.e. p = 2, [K (0) : K (B)] = 4, and K (0)/K (B) is inseparable but not purely inseparable,

we prove that H0(B, L4
B) 6= 0 by applying Galois descent for the separable closure of

K (0)/K (B) (cf. the proof of Proposition 4.9).

1.2. Sketch of the proof of Theorem 1.4

Let us overview some of the ideas used in the proof of Theorem 1.4. The first step is

the same as § 1.1, i.e. considering the minimal resolution and running a minimal model

program, we reduce the problem to the case when X is a regular surface of del Pezzo

type which has a K X -Mori fibre space structure X → B.

1.2.1. The case when dim B = 0. Assume that dim B = 0. In this case, X is a

regular del Pezzo surface with ρ(X) = 1. Since the p-degree of a C1-field is at most one

(Lemma 6.1), it follows from [11, Theorem 14.1] that X is geometrically normal. Then
Theorem 1.5 implies that the base change X ×k k is a canonical del Pezzo surface, i.e.

X ×k k has at worst canonical singularities and −K X×k k is ample. In particular, we have

that 1 6 K 2
X 6 9. Note that if X is smooth, then it is known that X has a k-rational point

(cf. [19, Theorem IV.6.8]). Following the same strategy as in [19, Theorem IV.6.8], we

can show that X (k) 6= ∅ if K 2
X 6 4 (Lemma 6.3). For the remaining cases 5 6 K 2

X 6 9, we

use results established in [34], which restrict the possibilities for the type of singularities

on X ×k k. For instance, if p > 11, then [34, Theorem 6.1] shows that the singularities

on X ×k k are of type Ape−1. However, such singularities cannot appear because the

minimal resolution V of X ×k k satisfies ρ(V ) 6 9. Hence, X is actually smooth if p > 11
(Proposition 5.2). For the remaining cases p 6 7, we study the possibilities one by one

so that we are able to deduce what we desire. For more details, see § 6.1.

1.2.2. The case when dim B = 1. Assume that dim B = 1, i.e. π : X → B is a

K X -Mori fibre space to a curve B. Then the outline is similar to the one in (1.1.2).

Let us use the same notation as in (1.1.2). The typical case is that −K B is ample. In this

case, B has a rational point. Then also the fibre of π over a rational point, which is a conic

curve, has a rational point. Although we need to overcome some technical difficulties, we
may apply this strategy up to suitable purely inseparable covers for almost all the cases

(cf. the proof of Proposition 6.10). There is one case where we cannot apply this strategy:

p = 2, K X ·0 > 0, and K (0)/K (B) is inseparable and not purely inseparable. In this case,

we can prove that −K B is actually ample (Proposition 6.9).

1.3. Large characteristic

Using the techniques developed in this paper, we also prove the following theorem, which

shows that some a priori possible pathologies of log del Pezzo surfaces over imperfect

fields can appear exclusively in small characteristic.
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Theorem 1.7 (cf. Corollary 5.5 and Theorem 5.7). Let k be a field of characteristic p > 7.

Let X be a k-surface of del Pezzo type such that k = H0(X,OX ). Then X is geometrically

integral over k and H i (X,OX ) = 0 for any i > 0.

As a consequence, we deduce the following result on del Pezzo fibrations in large

characteristic.

Corollary 1.8. Let k be an algebraically closed field of characteristic p > 7. Let π : V → B
be a projective k-morphism of normal k-varieties such that π∗OV = OB and dim V −
dim B = 2. Assume that there exists an effective Q-divisor 1 on V such that (V,1) is

klt and −(KV +1) is π-nef and π-big. Then general fibres of π are integral schemes and

there is a non-empty open subset B ′ of B such that the equation (Riπ∗OV )|B′ = 0 holds

for any i > 0.

The authors do not know whether surfaces of del Pezzo type are geometrically normal

if the characteristic is sufficiently large. On the other hand, even if p is sufficiently large,

regular surfaces of del Pezzo type can be non-smooth. More specifically, for an arbitrary
imperfect field k of characteristic p > 0, we construct a regular surface of del Pezzo type

which is not smooth (Proposition 7.2).

1.4. Related results

In this subsection, we summarise known results on log del Pezzo surfaces mainly over

imperfect fields.

1.4.1. Vanishing theorems. We first summarise results over algebraically closed
fields of characteristic p > 0. It is well known that smooth rational surfaces satisfy the

Kodaira vanishing theorem (cf. [28, Proposition 3.2]). However, the Kawamata–Viehweg

vanishing theorem fails even for smooth rational surfaces (cf. [5, Theorem 3.1]). Moreover,

the surface used in [5, Theorem 3.1] is a weak del Pezzo surface if the base field is of

characteristic two [5, Lemma 2.4]. Also in characteristic three, there exists a surface of

del Pezzo type which violates the Kawamata–Viehweg vanishing [3, Theorem 1.1]. On

the other hand, if the characteristic is sufficiently large, it is known that surfaces of del

Pezzo type satisfy the Kawamata–Viehweg vanishing by [7, Theorem 1.2].

We now overview known results over imperfect fields. If the characteristic is two

or three, there exists a surface X of del Pezzo type such that H1(X,OX ) 6= 0 (cf.

§ 7.1). On the other hand, regular del Pezzo surfaces of characteristic p > 5 satisfy the

Kawamata–Viehweg vanishing theorem as shown in [8, Theorem 1.1].

1.4.2. Geometric properties. In characteristics two and three, there exist regular

del Pezzo surfaces which are not geometrically reduced (cf. § 7.1). On the other hand,

Patakfalvi and Waldron prove that regular del Pezzo surfaces are geometrically normal

if the base field is of characteristic p > 5 (cf. [30, Theorem 1.5]). Furthermore, Fanelli

and Schröer show that a regular del Pezzo surface X is geometrically normal in every

characteristic p if [k : k p
] 6 p and ρ(X) = 1 (cf. [11, Theorem 14.1]).
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2. Preliminaries

2.1. Notation

In this subsection, we summarise notations that we will use in this paper.

(1) We will freely use the notation and terminology in [16] and [20].

(2) We say that a noetherian scheme X is excellent (respectively regular) if the local

ring OX,x at any point x ∈ X is excellent (respectively regular). For the definition
of excellent local rings, we refer to [27, § 32].

(3) For a scheme X , its reduced structure Xred is the reduced closed subscheme of X
such that the induced morphism Xred → X is surjective.

(4) For an integral scheme X , we define the function field K (X) of X to be OX,ξ for

the generic point ξ of X .

(5) For a field k, we say that X is a variety over k or a k-variety if X is an integral

scheme that is separated and of finite type over k. We say that X is a curve over

k or a k-curve (respectively a surface over k or a k-surface, respectively a threefold

over k) if X is a k-variety of dimension one (respectively two, respectively three).

(6) For a field k, we denote by k (respectively ksep) an algebraic closure (respectively

a separable closure) of k. If k is of characteristic p > 0, then we set k1/p∞
:=⋃

∞

e=0 k1/pe
=
⋃
∞

e=0{x ∈ k | x pe
∈ k}.

(7) For an Fp-scheme X , we denote by FX : X → X the absolute Frobenius morphism.

For a positive integer e, we denote by Fe
X : X → X the eth iterated absolute

Frobenius morphism.

(8) If k is a field of characteristic p > 0 such that [k : k p
] <∞, we define its p-degree

p-deg(k) as the non-negative integer n such that [k : k p
] = pn . The p-degree p-deg(k)

is also called the degree of imperfection in some literature.

(9) If k ⊂ k′ is a field extension and X is a k-scheme, we denote X ×Spec k Spec k′ by

X ×k k′ or Xk′ .

(10) Let k be a field, let X be a scheme over k and let k ⊂ k′ be a field extension. We

denote by X (k′) the set of the k-morphisms Homk(Spec k′, X). Note that if X is a
scheme of finite type over k and k ⊂ k′ is a purely inseparable extension, then the

induced map θ : X (k′)→ X is injective and its image θ(X (k′)) consists of closed

points of X .

(11) Let L be a Cartier divisor on a variety X over k. We define the base locus Bs(L) of

L by

Bs(L) :=
⋂

s∈H0(X,L)

{x ∈ X | s(x) = 0} .

In particular, Bs(L) is a closed subset of X .

(12) Let k be an algebraically closed field. For a normal surface X over k and a

canonical singularity x ∈ X (i.e. a rational double point), we refer to the table

at [1, pages 15–17] for the list of equations of types An , Dm
n , and Em

n . For example,

we say that x is a canonical singularity of type An if the henselisation of OX,x is
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isomorphic to k{x, y, z}/(zn+1
+ xy), where k{x, y, z} denotes the henselisation of

the local ring of k[x, y, z] at the maximal ideal (x, y, z).

2.2. Geometrically klt singularities

The purpose of this subsection is to introduce the notion of geometrically klt singularities
and its variants.

Definition 2.1. Let (X,1) be a log pair over a field k such that k is algebraically closed
in K (X). We say that (X,1) is geometrically klt (respectively terminal, canonical, lc) if

(X ×k k,1×k k) is klt (respectively terminal, canonical, lc).

Lemma 2.2. Let k be a field. Let X and Y be varieties over k which are birational to each

other. Then X is geometrically reduced over k if and only if Y is geometrically reduced
over k.

Proof. Recall that for a k-scheme, being geometrically reduced is equivalent to being S1
and geometrically R0. Since both X and Y are S1, the assertion follows from the fact that

being geometrically R0 is a condition on the generic point.

We prove a descent result for such singularities.

Proposition 2.3. Let (X,1) be a geometrically klt (respectively terminal, canonical, lc)

pair such that k is algebraically closed in K (X). Then (X,1) is klt (respectively terminal,
canonical, lc).

Proof. We only treat the klt case, as the others are analogous. Let π : Y → X be a
birational k-morphism, where Y is a normal variety and we write KY +1Y = π

∗(K X +1).

It suffices to prove that b1Y c 6 0. Thanks to Lemma 2.2, Y is geometrically integral.

Let ν : W → Y ×k k be the normalisation morphism and let us consider the following

commutative diagram:
W

ν

y
Y ×k k

g
−−−−→ Y

πk

y π

y
X ×k k

f
−−−−→ X.

Denote by ψ := πk ◦ ν and h := g ◦ ν the composite morphisms. We have

KW +1W := ψ
∗(K Xk

+1k) = h∗π∗(K X +1) = h∗(KY +1Y ).

By [40, Theorem 4.2], there exists an effective Z-divisor D such that

h∗(KY +1Y ) = KY + D+ h∗1Y ,

and, thus, 1W = D+ h∗1Y > h∗1Y . Since (Xk,1k) is klt, any coefficient of 1W is < 1.

Then any coefficient of 1Y is < 1, and, thus, (X,1) is klt.
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Remark 2.4. If k is a perfect field, being klt is equivalent to being geometrically klt by

[20, Proposition 2.15]. However, over imperfect fields, being geometrically klt is a strictly

stronger condition. As an example, let k be an imperfect field of characteristic p > 0
and consider the log pair (A1

k,
2
3 P), where P is a closed point whose residue field κ(P)

is a purely inseparable extension of k of degree p. This pair is klt over k, but it is not

geometrically lc.

2.3. Surfaces of del Pezzo type

In this subsection, we summarise some basic properties of surfaces of del Pezzo type

over arbitrary fields. For later use, we introduce some terminology. Note that del Pezzo

surfaces in our notation allow singularities.

Definition 2.5. Let k be a field. A k-surface X is del Pezzo if X is a projective normal
surface such that −K X is an ample Q-Cartier divisor. A k-surface X is weak del Pezzo if

X is a projective normal surface such that −K X is a nef and big Q-Cartier divisor.

Definition 2.6. Let k be a field. A k-surface X is of del Pezzo type if X is a projective

normal surface over k and there exists an effective Q-divisor 1 > 0 such that (X,1) is

klt and −(K X +1) is ample. In this case, we say that (X,1) is a log del Pezzo pair.

We study how the property of being of del Pezzo type behaves under birational

transformations.

Lemma 2.7. Let k be a field. Let X be a k-surface of del Pezzo type. Let f : Y → X be

the minimal resolution of X . Then Y is a k-surface of del Pezzo type.

Proof. Let 1 be an effective Q-divisor such that (X,1) is a log del Pezzo pair. We define

a Q-divisor 1Y by KY +1Y = f ∗(K X +1). Since f : Y → X is the minimal resolution

of X , we have that 1Y is an effective Q-divisor. The pair (Y,1Y ) is klt and −(KY +1Y )

is nef and big. By perturbing the coefficients of 1Y , we can find an effective Q-divisor 0

such that (Y, 0) is klt and −(KY +0) is ample.

Lemma 2.8. Let k be a field. Let (X,1) be a two-dimensional projective klt pair over k.

Let H be a nef and big Q-Cartier Q-divisor. Then there exists an effective Q-Cartier

Q-divisor A such that A ∼Q H and (X,1+ A) is klt.

Proof. Thanks to the existence of log resolutions for excellent surfaces [24], the same

proof of [15, Lemma 2.8] works in our setting.

Lemma 2.9. Let k be a field. Let X be a k-surface of del Pezzo type. Let f : X → Y be a

birational k-morphism to a projective normal k-surface Y . Then Y is a k-surface of del

Pezzo type.

Proof. Let 1 be an effective Q-divisor such that (X,1) is a log del Pezzo pair. Set H :=
−(K X +1), which is an ample Q-Cartier Q-divisor on X . By Lemma 2.8, there exists an

effective Q-Cartier Q-divisor A such that A ∼Q H and (X,1+ A) is klt. Then the pair
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(Y, f∗1+ f∗A) is klt and K X +1+ A ∼Q f ∗(KY + f∗1+ f∗A) ∼Q 0. It follows from [39,

Corollary 4.11] that Y is Q-factorial. By Nakai’s criterion, the Q-divisor f∗A is ample. In

particular, (Y, f∗1) is a log del Pezzo pair.

2.4. Geometrically canonical del Pezzo surfaces

In this subsection, we collect results on the anti-canonical systems of geometrically

canonical del Pezzo surfaces we will need later.

2.4.1. Canonical del Pezzo surfaces over algebraically closed fields. We verify

that the results in [19, Chapter III, § 3] hold for del Pezzo surfaces with canonical

singularities over algebraically closed fields. Recall that we say that X is a canonical

(weak) del Pezzo surface over a field k if X is a surface over k, X is (weak) del Pezzo in

the sense of Definition 2.5, and (X, 0) is canonical in the sense of [20, Definition 2.8].

Proposition 2.10. Let X be a canonical weak del Pezzo surface over an algebraically closed

field k. Then the following hold:

(1) H2(X,OX (−mK X )) = 0 for any non-negative integer m.

(2) H i (X,OX ) = 0 for any i > 0.

(3) H0(X,OX (−K X )) 6= 0.

(4) H1(X,OX (mK X )) = 0 for any integer m.

(5) h0(X,OX (−mK X )) = 1+ m(m+1)
2 K 2

X for any non-negative integer m.

Proof. The assertion (1) follows from Serre duality. We now show (2). It follows from

[37, Theorem 5.4 and Remark 5.5] that X has at worst rational singularities. Then the

assertion (2) follows from the fact that X is a rational surface [38, Theorem 3.5].

We now show (3). By H2(X,OX (−K X )) = 0 and the Riemann–Roch theorem, we have

h0(X,OX (−K X )) > 1+ K 2
X > 0. Thus, (3) holds.

We now show (4). By (3), there exists an effective Cartier divisor D such that D ∼ −K X .

In particular, D is effective, nef, and big. It follows from [6, Proposition 3.3] that

H1(X,OX (−nD)) = H1(X,OX (K X + nD)) = 0

for any n ∈ Z>0. Replacing D by −K X , the assertion (4) holds. Thanks to (1) and (4),

assertion (5) follows from the Riemann–Roch theorem.

Lemma 2.11. Let Y be a canonical weak del Pezzo surface over an algebraically closed

field k. If a divisor
∑r

i=1 ai Ci ∈ |− KY | is not irreducible or not reduced, then every Ci
is a smooth rational curve.

Proof. Taking the minimal resolution of Y , we may assume that Y is smooth. Fix an

index 1 6 i0 6 r . By adjunction, we have

2pa(Ci0)− 2 = −Ci0 ·

∑
i 6=i0

ai

ai0

Ci

− ai0 − 1
ai0

Ci0 · (−KY ). (2.11.1)

Note that both the terms on the right-hand side are non-positive.
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Since Y is smooth and
∑

i ai Ci is nef and big, it follows from [38, Theorem 2.6] that

H1(X,−n
∑

i ai Ci ) = 0 for n � 0. Hence,
∑

i ai Ci is connected. Therefore, if
∑

i ai Ci
is reducible, the first term in the right-hand side of (2.11.1) is strictly negative; hence

pa(Ci0) < 0.

If ai0 > 2 and Ci0 · KY < 0, then the second term in the right-hand side of (2.11.1) is

strictly negative; hence pa(Ci0) < 0. If Ci0 · KY = 0, then Ci is a smooth rational curve

with C2
i = −2.

Proposition 2.12. Let Y be a canonical weak del Pezzo surface over an algebraically closed

field k. Let Bs(−KY ) be the base locus of −KY , which is a closed subset of Y . Then the
following hold:

(1) Bs(−KY ) is empty or dim(Bs(−KY )) = 0.

(2) A general member of the linear system | − KY | is irreducible and reduced.

Proof. Taking the minimal resolution of Y , we may assume that Y is smooth. Using

Proposition 2.10, the same proof of [9, Theorem 8.3.2.i] works in our setting so that (1)

holds and general members of | − KY | are irreducible.
It is enough to show that a general member of | − KY | is reduced. Suppose it is not.

Then there exists a > 1 such that a general member is of the form aC ∈ |− KY | for some

curve C . In particular, C is a smooth rational curve by Lemma 2.11. Recall that we have

the short exact sequence

0→ H0(Y,OY )→ H0(Y,OY (C))→ H0(C,OC (C))→ 0.

Since H1(Y,OY ) = 0 (Proposition 2.10), we have that h0(Y,OY (C)) = 1+ h0(C,OC (C)).
As C is a smooth rational curve, we conclude by the Riemann–Roch theorem that

h0(Y,OY (C)) = 2+C2.

We now consider the induced map

θ : H0(Y,OY (C)) → H0(Y,OY (aC)) ' H0(Y,OY (−KY ))

ϕ 7→ ϕa .

Since a general member of | − KY | is of the form aD for some D > 0, θ is a dominant

morphism if we consider θ as a morphism of affine spaces. Therefore, it holds that

h0(Y,OY (−KY )) 6 h0(Y,OY (C)) = 2+C2
= −KY ·C 6 K 2

Y ,

which contradicts Proposition 2.10.

2.4.2. Anti-canonical systems on geometrically canonical del Pezzo surfaces.

In this section, we study anti-canonical systems on geometrically canonical del Pezzo
surfaces over an arbitrary field k and we describe their anti-canonical model when the

anti-canonical degree is small.

We need the following results on geometrically integral curves of genus one.

Lemma 2.13. Let k be a field. Let C be a geometrically integral Gorenstein projective

curve over k of arithmetic genus one with k = H0(C,OC ). Let L be a Cartier divisor on

C and let R(C, L) :=
⊕

m>0 H0(C,mL) be the graded k-algebra. Then the following hold:
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(i) If degk(L) = 1, then Bs(L) = {P} for some k-rational point P and R(C, L) is

generated by
⊕

16 j63 H0(C, j L) as a k-algebra.

(ii) If degk(L) > 2, then L is globally generated and R(C, L) is generated by H0(C, L)⊕
H0(C, 2L) as a k-algebra.

(iii) If degk L > 3, then L is very ample and R(C, L) is generated by H0(C, L) as a

k-algebra.

Proof. See [42, Lemma 11.10 and Proposition 11.11].

Proposition 2.14. Let k be a field. Let X be a geometrically canonical weak del Pezzo

surface over k such that k = H0(X,OX ). Let R(X,−K X ) =
⊕

m>0 H0(X,OX (−mK X )) be

the graded k-algebra. Then the following hold.

(1) If m is a positive integer such that mK 2
X > 2, then | −mK X | is base point free.

(2) If K 2
X = 1, then Bs(−K X ) = {P} for some k-rational point P.

(3) If K 2
X = 1, then R(X,−K X ) is generated by

⊕
16 j63 H0(X,− j K X ) as a k-algebra.

(4) If K 2
X = 2, then R(X,−K X ) is generated by H0(X,−K X )⊕ H0(X,−2K X ) as a

k-algebra.

(5) If K 2
X > 3, then R(X,−K X ) is generated by H0(X,−K X ) as a k-algebra.

In particular, if −K X is ample, then | − 6K X | is very ample.

Proof. Consider the following condition.

(2)’ If K 2
X = 1, then Bs(−K X ) is not empty and of dimension zero.

Since K 2
X = 1, (2) and (2)’ are equivalent. Note that to show (1), (2)’, and (3)–(5), we

may assume that k is algebraically closed.

From now on, let us prove (1)–(5) under the condition that k is algebraically closed. It

follows from Proposition 2.12 that a general member C of | − K X | is a prime divisor.

Since C is a Cartier divisor and X is Gorenstein, then C is a Gorenstein curve. By

adjunction, C is a Gorenstein curve of arithmetic genus pa(C) = 1. By Proposition 2.10,

we have the following exact sequence for every integer m:

0→ H0(X,−(m− 1)K X )→ H0(X,−mK X )→ H0(C,−mK X |C )→ 0.

By the above exact sequence, the assertions (1) and (2) follow from (3) and (2) of

Lemma 2.13, respectively.

We prove the assertions (3), (4), and (5). By the above short exact sequence, it is

sufficient to prove the same statement for the k-algebra R(C,OC (−K X )), which is the

content of Lemma 2.13.

Theorem 2.15. Let k be a field. Let X be a geometrically canonical del Pezzo surface over

k such that H0(X,OX ) = k. Then the following hold:

(1) If K 2
X = 1, then X is isomorphic to a weighted hypersurface in Pk(1, 1, 2, 3) of degree

six.
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(2) If K 2
X = 2, then X is isomorphic to a weighted hypersurface in Pk(1, 1, 1, 2) of degree

four.

(3) If K 2
X = 3, then X is isomorphic to a hypersurface in P3

k of degree three.

(4) If K 2
X = 4, then X is isomorphic to a complete intersection of two quadric

hypersurfaces in P4
k .

Proof. Using Proposition 2.14, the proof is the same as in [19, Theorem III.3.5].

2.5. Mori fibre spaces to curves

In this subsection, we summarise properties of regular curves with anti-ample canonical

divisor and of Mori fibre space of dimension two over arbitrary fields.

Lemma 2.16. Let k be a field. Let C be a projective Gorenstein integral curve over k.
Then the following are equivalent:

(1) ω−1
C is ample.

(2) H1(C,OC ) = 0.

(3) C is a conic curve of P2
K , where K := H0(C,OC ).

(4) degk ωC = −2 dimk(H0(C,OC )).

Proof. It follows from [39, Corollary 2.8] that (1), (2), and (4) are equivalent. Clearly,

(3) implies (1). By [20, Lemma 10.6], (1) implies (3).

Lemma 2.17. Let k be a field and let C be a projective Gorenstein integral curve over k
such that k = H0(C,OC ) and ω−1

C is ample. Then the following hold:

(1) If C is geometrically integral over k, then C is smooth over k.

(2) If the characteristic of k is not two, then C is geometrically reduced over k.

(3) If the characteristic of k is not two and C is regular, then C is smooth over k.

Proof. By Lemma 2.16, C is a conic curve in P2
k . Thus, the assertion (1) follows from the

fact that an integral conic curve over an algebraically closed field is smooth.

Let us show (2) and (3). Since the characteristic of k is not two and C is a conic curve

in P2
k , we can write

C = Proj k[x, y, z]/(ax2
+ by2

+ cz2)

for some a, b, c ∈ k. Since C is an integral scheme, two of a, b, c are not zero. Hence, C
is reduced. Thus, (2) holds. If C is regular, then each of a, b, c is nonzero; hence, C is

smooth over k.

Proposition 2.18. Let k be a field. Let π : X → B be a K X -Mori fibre space from a

projective regular k-surface X to a projective regular k-curve with k = H0(B,OB). Let

b be a (not necessarily closed) point. Then the following hold:

(1) The fibre Xb is irreducible.

(2) The equation κ(b) = H0(Xb,OXb ) holds.
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(3) The fibre Xb is reduced.

(4) The fibre Xb is a conic in P2
κ(b).

(5) If char k 6= 2, then any fibre of π is geometrically reduced.

(6) If char k 6= 2 and k is separably closed, then π is a smooth morphism.

Proof. If Xb is not irreducible, it contradicts the hypothesis ρ(X/B) = 1. Thus, (1) holds.

Let us show (2). Since π is flat, the integer

χ := dimκ(b) H0(Xb,OXb )− dimκ(b) H1(Xb,OXb ) ∈ Z

is independent of b ∈ B. Since H1(Xb,OXb ) = 0 for any b ∈ B, it suffices to show that
dimκ(b) H0(Xb,OXb ) = 1 for some b ∈ B. This holds for the case when b is the generic

point of B. Hence, (2) holds.

Let us prove (3). It is clear that the generic fibre is reduced. We may assume that

b ∈ B is a closed point. Assume that Xb is not reduced. By (1), we have Xb = mC for

some prime divisor C and m ∈ Z>2. Since −K X ·κ(b) Xb = 2, we have that m = 2. Then

we obtain an exact sequence:

0→ OX (−C)|C → OXb → OC → 0.

Since C2
= 0 and ω−1

C is ample, we have that OX (−C)|C ' OC . Since H1(C,OC ) = 0, we

get an exact sequence:

0→ H0(C,OC )→ H0(Xb,OXb )→ H0(C,OC )→ 0.

Then we obtain dimκ(b) H0(Xb,OXb ) > 2, which contradicts (2). Hence, (3) holds.

We now show (4). By [39, Corollary 2.9], degκ(b) ωXb = (K X + Xb) ·κ(b) Xb < 0.

Hence, (4) follows from (2) and Lemma 2.16.

The assertions (5) and (6) follow from Proposition 2.17.

2.6. Twisted forms of canonical singularities

The aim of this subsection is to prove Proposition 2.27. The main idea is to bound the
purely inseparable degree of regular non-smooth points on geometrically normal surfaces

according to the type of singularities. For this, the notion of Jacobian number plays a

crucial role.

Definition 2.19. Let k be a field of characteristic p > 0. Let R be an equi-dimensional

k-algebra essentially of finite type over k. Let JR/k be its Jacobian ideal of R over k (cf.

[17, Definition 4.4.1 and Proposition 4.4.4]). We define the Jacobian number of R/k as

ν(R) := ν(R/k) := dimk(R/JR/k). Note that ν(R/k) <∞ if R/JR/k is an artinian ring

and its residue fields are finite extensions of k.

Remark 2.20. Let k ⊂ k′ be a field extension of characteristic p > 0 and let R be an

equi-dimensional k-algebra essentially of finite type over k. Then the following hold:

(1) By [17, Definition 4.4.1], we get

JR/k · (R⊗k k′) = JR⊗k k′/k′ .
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In particular, if R/JR/k is an artinian ring and its residue fields are finite extensions

of k, then we have ν(R/k) = ν(R⊗k k′/k′).

(2) Assume that k is a perfect field. By [17, Definition 4.4.9], Spec (R/JR/k)

set-theoretically coincides with the non-regular locus of Spec R.

(3) Assume that R is of finite type over k. Then (1) and (2) imply that Spec (R/JR/k)

set-theoretically coincides with the non-smooth locus of Spec R→ Spec k.

Remark 2.21. In our application, R will be assumed to be a local ring OX,x at a closed

point x of a geometrically normal surface X over k. In this case, (3) of Remark 2.20

implies that R/JR/k is an artinian local ring whose residue field is a finite extension of k.

Hence, ν(R/k) = dimk(R/JR/k) is well defined as in Definition 2.19.

To treat local situations, let us recall the notion of essentially étale ring

homomorphisms. For its fundamental properties, we refer to [13, § 2.8].

Definition 2.22. Let f : R→ S be a local homomorphism of local rings. We say that f
is essentially étale if there exists an étale R-algebra S and a prime ideal p of S such that
p lies over the maximal ideal of R and S is R-isomorphic to Sp.

Lemma 2.23. Let k be a field. Let f : R→ S be an essentially étale local k-algebra

homomorphism of local rings which are essentially of finite type over k. Let mR and

mS be the maximal ideals of R and S, respectively. Set κ(R) := R/mR and κ(S) := S/mS.

Then the following hold:

(1) If M is an R-module of finite length whose support is contained in the maximal

ideal mR, then the equation

dimk(M ⊗R S) = [κ(S) : κ(R)] dimk M

holds.

(2) Suppose that R is an integral domain, R/JR/k is an artinian ring, and κ(R) is a

finite extension of k. Then the equation

ν(S/k) = [κ(R) : κ(S)]ν(R/k)

holds.

Proof. Let us show (1). Since M is a finitely generated R-module, there exists a sequence

of R-submodules M =: M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 such that Mi/Mi+1 ' R/p for some

prime ideal p by [27, Theorem 6.4]. Since the support of M is mR , we have p = mR .

As R→ S is flat, the problem is reduced to the case when M = R/mR = κ(R). In this

case, we have

κ(R)⊗R S = (R/mR)⊗R S ' S/mR S = S/mS = κ(S),

where the equality S/m R S = S/mS follows from the assumption that f is a localisation

of an unramified homomorphism. Hence, (1) holds.
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Let us show (2). Set n := dim R. We use the description of the Jacobian of R via Fitting

ideals (cf. [17, Discussion 4.4.7]): JR/k = Fitn(�
1
R/k) and JS/k = Fitn(�

1
S/k). We have

JS/k = Fitn(�
1
S/k) = Fitn(�

1
R/k ⊗R S) = Fitn(�

1
R/k)S = JR/k S,

where the third equality follows from (3) of [36, Tag 07ZA]. As f : R→ S is flat, we

obtain S/JS/k ' (R/JR/k)⊗R S. By (1) and Definition 2.19, the assertion (2) holds.

Example 2.24. Let k be a field of characteristic p > 0. Let X = Spec R be a surface over

k such that

(i) X ×k k = Spec (R⊗k k) is a normal surface;

(ii) X ×k k has a unique singular point x , and x is a canonical singularity of type Apn−1.

We prove that ν(R/k) = pn . By Remark 2.20, we have ν(R/k) = ν(R⊗k k/k). In

order to compute ν(R⊗k k/k), it is sufficient to localise at the singular point by [17,

Corollary 4.4.5]. Thus, we can suppose that k is algebraically closed and R is a local

k-algebra.
By [1, pages 16–17] (cf. (12) of § 2.1), the henselisation Rh of R is isomorphic to

k{x, y, z}/(z pn
+ xy).

In particular, there exist essentially étale local k-algebra homomorphisms R→ S
and k[x, y, z]/(z pn

− xy)→ S. A direct computation shows ν(k[x, y, z]/(z pn
− xy)) = pn .

Thus, by Lemma 2.23, we have

ν(R) = ν(S) = ν(k[x, y, z]/(z pn
− xy)) = pn .

The following is a generalisation of [11, Lemma 14.2].

Lemma 2.25. Let k be a field of characteristic p > 0. Let X = Spec R, where R is an

equi-dimensional local k-algebra of essentially finite type over k. Let x be the closed point

of X . Suppose that R/JR/k is a local artinian ring and its residue field κ(x) is a finite

extension of k. Then [κ(x) : k] is a divisor of ν(R/k).

Proof. Let R/JR/k =: M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 be a composition sequence

of R/JR/k-submodules (cf. [27, Theorem 6.4]). Since R/JR/k is an artinian local ring,

it holds that Mi/Mi+1 ' κ(x) for any i . We have

ν(R/k) = dimk(R/JR/k) =

n−1∑
i=0

dimk(Mi/Mi+1) = n dimk κ(x) = n[κ(x) : k].

We thus conclude that [κ(x) : k] is a divisor of ν(R/k).

Lemma 2.26. Let X be a regular variety over a separably closed field k. Suppose that

Xk = X ×k k is a normal variety with a unique singular point y. Let x be the image of y
by the induced morphism Xk → X . Then the following hold:

(1) [κ(x) : k] is a divisor of ν(OX,x ).

(2) X ×k κ(x) is not regular.
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Proof. Since k is separably closed, the induced morphism Xk → X is a universal

homeomorphism. Note that the local ring OX,x is not geometrically regular over k.

Applying Lemma 2.25 to the local ring OX,x , we deduce that [κ(x) : k] is a divisor of

ν(OX,x ). Thus, (1) holds. Consider the base change π : X ×k κ(x)→ X . Let x ′ be the point

on X ×k κ(x) lying over x . Note that x ′ is a κ(x)-rational point of X ×k κ(x) whose base

change by (−)×κ(x) k is not regular. By [11, Corollary 2.6], we conclude that X ×k κ(x)
is not regular at x ′.

We now explain how the previous results can be used to construct closed points with

purely inseparable residue field on a regular surface. This will be used in § 6 to find purely

inseparable points on regular del Pezzo surfaces.

Proposition 2.27. Let X be a regular surface over k. Suppose that Xk = X ×k k is a normal

surface over k with a unique singular point y. Assume that y is a canonical singularity of

type Apn−1. Let z be the image of y by the induced morphism Xk → Xk1/pn = X ×k k1/pn
.

Then z is a k1/pn
-rational point on Xk1/pn .

Proof. Set R := OX,x , where x is the unique closed point along which X is not smooth.

Let ksep be the separable closure of k. For Rksep := R⊗k ksep, it follows from Example 2.24

that ν(Rksep) = pn . Lemma 2.26 implies that ksep
⊂ κ(z) is purely inseparable and [κ(z) :

k] is a divisor of pn . In particular, κ(z) ⊂ (ksep)1/pn
.

Consider the Galois extension k1/pn
⊂ (ksep)1/pn

and denote by G its Galois group. For

X(ksep)1/pn := X ×k (ksep)1/pn
, G acts on the set X(ksep)1/pn ((ksep)1/pn

). The unique singular

(ksep)1/pn
-rational point on X(ksep)1/pn is fixed under the G-action. Thus, it descends to

a k1/pn
-rational point on Xk1/pn .

3. Behaviour of del Pezzo surfaces under base changes

In this section, we study the behaviour of canonical del Pezzo surfaces over an imperfect

field k under the base changes to the algebraic closure k.

3.1. Classification of base changes of del Pezzo surfaces

In this subsection, we give classification of base changes of del Pezzo surfaces with

canonical singularities over imperfect fields (Theorem 3.3). To this end, we need two

auxiliary lemmas: Lemmas 3.1 and 3.2. The former one classifies Q-factorial surfaces

over algebraically closed fields whose anti-canonical bundles are sufficiently positive. Its

proof is based on a simple but smart idea by Reid (cf. the proof of [32, Theorem 1.1]).

The latter one, i.e. Lemma 3.2, gives a rationality criterion for the base changes of log

del Pezzo surfaces.

Lemma 3.1. Let k be an algebraically closed field. Let Y be a projective normal

Q-factorial surface over k such that −KY ≡ A+ D for an ample Cartier divisor A and

a pseudo-effective Q-divisor D. Let µ : Z → Y be the minimal resolution of Y . Then one

of the following assertions holds:

(1) D ≡ 0 and Y has at worst canonical singularities.
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(2) Z is isomorphic to a P1-bundle over a smooth projective curve.

(3) Z ' P2.

Proof. Assuming that (1) does not hold, let us prove that either (2) or (3) holds. We

have

K Z + E = µ∗KY

for some effective µ-exceptional Q-divisor E on Z . In particular, it holds that

K Z + E +µ∗(D) = µ∗(KY + D) ≡ −µ∗A.

Since (1) does not hold, we have that D 6≡ 0 or E 6= 0. Then we get

K Z +µ
∗A ≡ −E −µ∗(D) 6≡ 0;

hence, K Z +µ
∗A is not nef. By the cone theorem for a smooth projective surface [21,

Theorem 1.24], there is a curve C that spans a (K Z +µ
∗A)-negative extremal ray R of

NE(Z). Note that C is not a (−1)-curve. Indeed, otherwise µ(C) is a curve and we obtain

µ∗A ·C > 0, which induces a contradiction:

(K Z +µ
∗A) ·C > −1+ 1 = 0.

It follows from the classification of the K Z -negative extremal rays [21, Theorem 1.28]

that either Z ' P2 or Z is a P1-bundle over a smooth projective curve. In any case, one

of (2) and (3) holds.

Lemma 3.2. Let (X,1) be a projective two-dimensional klt pair over a field of

characteristic p > 0 such that −(K X +1) is nef and big. Assume that k = H0(X,OX ).

Then (X ×k k)red is a rational surface.

Proof. See [29, Proposition 2.20].

We now give a classification of the base changes of del Pezzo surfaces with canonical

singularities.

Theorem 3.3. Let k be a field of characteristic p > 0. Let X be a canonical del Pezzo

surface over k with k = H0(X,OX ). Then the normalisation Y of (X ×k k)red satisfies

one of the following properties:

(1) X is geometrically canonical over k. In particular, Y ' X ×k k and −KY is ample.

(2) X is not geometrically normal over k and Y is isomorphic to a Hirzebruch surface,

i.e. a P1-bundle over P1.

(3) X is not geometrically normal over k and Y is isomorphic to a weighted projective

surface P(1, 1,m) for some positive integer m.

Proof. Replacing k by its separable closure, we may assume that k is separably closed.

Let f : Y → X be the induced morphism and let µ : Z → Y be the minimal resolution

of Y . By [40, Theorem 4.2], there is an effective Z-divisor D on Y such that

• KY + D = f ∗K X and

• if X ×k k is not normal, then D 6= 0.
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Since −K X is an ample Cartier divisor, so is − f ∗K X . Moreover, it follows from [40,

Lemmas 2.2 and 2.5] that Y is Q-factorial. Hence, we may apply Lemma 3.1 to −KY =

− f ∗K X + D.

By Lemma 3.2, Y is a rational surface. Thus, if (2) or (3) of Lemma 3.1 holds, then one

of (1)–(3) of Theorem 3.3 holds, as desired. Therefore, let us treat the case when (1) of

Lemma 3.1 holds. Then it holds that D = 0 and Y has at worst canonical singularities.

In this case, we have that Y = X ×k k and X is geometrically canonical. Hence, (1) of

Theorem 3.3 holds, as desired.

3.2. Bounds on Frobenius length of geometric non-normality

In this subsection, we give an upper bound for the Frobenius length of geometric

non-normality for canonical del Pezzo surfaces (Proposition 3.6). We start by recalling

its definition (Definition 3.4) and fundamental properties (Remark 3.5).

Definition 3.4. Let k be a field of characteristic p > 0. Let X be a proper normal
variety over k such that k = H0(X,OX ). The Frobenius length of geometric non-normality
`F (X/k) of X/k is defined by

`F (X/k) := min{` ∈ Z>0 | (X ×k k1/p`)Nred is geometrically normal over k1/p`
}.

Remark 3.5. Let k and X be as in Definition 3.4. Set ` := `F (X/k). Let (k′, Y ) be one of

(k1/p∞ , (X ×k k1/p∞)N
red) and (k, (X ×k k)N

red). We summarise some results from [42, § 5].

(1) The existence of the right-hand side of Definition 3.4 is assured by [42, Remark 5.2].

(2) If X is not geometrically normal, then ` is a positive integer [42, Remark 5.3] and

there exist nonzero effective Weil divisors D1, . . . , D` such that

KY + (p− 1)
∑̀
i=1

Di ∼ f ∗K X ,

where f : Y → X denotes the induced morphism [42, Proposition 5.11].

(3) The `th iterated absolute Frobenius morphism F`X×k k′ factors through the induced

morphism Y → X ×k k′ [42, Proposition 5.4 and Theorem 5.9]:

F`X×k k′ : X ×k k′→ Y → X ×k k′.

Proposition 3.6. Let k be a field of characteristic p > 0. Let X be a canonical del Pezzo

surface over k with k = H0(X,OX ). Let Y be the normalisation of (X ×k k)red and let

f : Y → X be the induced morphism. Assume that the linear equivalence

KY +

r∑
i=1

Ci ∼ f ∗K X

holds for some prime divisors C1, . . . ,Cr (not necessarily Ci 6= C j for i 6= j). Then it

holds that r 6 2.
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Proof. Set C :=
∑r

i=1 Ci . We have KY +C ∼ f ∗K X . If C = 0, then there is nothing to

show. Hence, we may assume that C 6= 0. In particular, X is not geometrically normal.

In this case, it follows from Theorem 3.3 that Y is isomorphic to either a Hirzebruch

surface or P(1, 1,m) for some m > 0.

We first treat the case when Y ' P(1, 1,m). If m = 1, then the assertion is obvious.

Hence, we may assume that m > 2. In this case, for the minimal resolution g : Z → Y ,

we have that

K Z +
m− 2

m
0 = g∗KY ,

where 0 is the negative section of the fibration Z → P1 such that 02
= −m. Note that m

is the Q-factorial index of Y , i.e. m D is Cartier for any Z-divisor D on Y . We have that

−K Z =
m− 2

m
0− g∗KY ≡

m− 2
m

0+ g∗C − g∗ f ∗K X .

Consider the intersection number with a fibre FZ of Z → P1:

2 =
(

m− 2
m

0+ g∗C − g∗ f ∗K X

)
· FZ >

m− 2
m
+C · g∗(FZ )+ 1.

Thus, we obtain

2 > C · (mg∗(FZ )) > r,

where the last inequality holds since mg∗(FZ ) is an ample Cartier divisor. Therefore, we

obtain r 6 2, as desired.

It is enough to treat the case when Y is a Hirzebruch surface. For a fibre F of π : Y →
P1, we have that

−2+C · F = (KY +C) · F = f ∗K X · F 6 −1;

hence, C · F 6 1. There are two possibilities: C · F = 1 or C · F = 0.

Assume that C · F = 1. Then there is a section 0 of π and a π -vertical Z-divisor C ′

such that C = 0+C ′. Consider the intersection number with 0:

−2+0 ·C ′ = (KY +0+C ′) ·0 = (KY +C) ·0 = f ∗K X ·0 6 −1.

Therefore, we have 0 ·C ′ 6 1. This implies that either C ′ = 0 or C ′ is a prime divisor. In

any case, we get r 6 2, as desired.

We may assume that C · F = 0, i.e. C is a π -vertical divisor. Let 0 be a section of π

such that 02 6 0. We have that

−2+C ·0 = (KY +0+C) ·0 6 (KY +C) ·0 = f ∗K X ·0 6 −1.

Hence, we obtain C ·0 6 1, which implies r 6 1.

Theorem 3.7. Let k be a field of characteristic p > 0. Let X be a canonical del Pezzo

surface over k such that k = H0(X,OX ). Let Y be the normalisation of (X ×k k)red and

let

µ : Y → X ×k k

be the induced morphism.
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(1) If p > 5, then X is geometrically canonical, i.e. µ is an isomorphism and Y has at

worst canonical singularities.

(2) If p = 3, then `F (X/k) 6 1 and the absolute Frobenius morphism FX×k k of X ×k k
factors through µ:

FX×k k : X ×k k → Y
µ
−→ X ×k k.

(3) If p = 2, then `F (X/k) 6 2 and the second iterated absolute Frobenius morphism

F2
X×k k

of X ×k k factors through µ:

F2
X×k k

: X ×k k → Y
µ
−→ X ×k k.

Proof. The assertion follows from Remark 3.5 and Proposition 3.6.

4. Numerically trivial line bundles on log del Pezzo surfaces

The purpose of this section is to give an explicit upper bound on the torsion index

of numerically trivial line bundles on log del Pezzo surfaces over imperfect fields

(Theorem 4.10). To achieve this result, we use the minimal model program to reduce

the problem to the case when our log del Pezzo surface admits a Mori fibre space
structure π : X → B. The cases dim B = 0 and dim B = 1 will be settled in Theorem 4.1

and Proposition 4.9, respectively.

4.1. Canonical case

In this subsection, we study numerically trivial Cartier divisor on del Pezzo surfaces with

canonical singularities.

Theorem 4.1. Let k be a field of characteristic p > 0. Let X be a canonical weak del Pezzo

surface over k such that k = H0(X,OX ). Let L be a numerically trivial Cartier divisor

on X . Then the following hold:

(1) If p > 5, then L ∼ 0.

(2) If p = 3, then 3L ∼ 0.

(3) If p = 2, then 4L ∼ 0.

Proof. We first reduce the problem to the case when −K X is ample. It follows from

[39, Theorem 4.2] that −K X is semi-ample. As −K X is also big, | −mK X | induces a

birational morphism f : X → Y to a projective normal surface Y . Then it holds that KY
is Q-Cartier and K X = f ∗KY . In particular, Y has at worst canonical singularities. Then

[39, Theorem 4.4] enables us to find a numerically trivial Cartier divisor LY on Y such

that f ∗LY ∼ L. Hence, the problem is reduced to the case when −K X is ample.

We only treat the case when p = 2, as the other cases are easier. By Theorem 3.7, the

second iterated absolute Frobenius morphism

F2
X×k k

: X ×k k → X ×k k

factors through the normalisation (X ×k k)N
red of (X ×k k)red:

F2
X×k k

: X ×k k → (X ×k k)N
red

µ
−→ X ×k k,
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where µ denotes the induced morphism. Set L := OX (L) and let Lk be the pullback of L
to X ×k k. Since (X ×k k)N

red is a normal rational surface by Lemma 3.2, any numerically

trivial invertible sheaf is trivial: µ∗Lk ' O(X×k k)N
red

. As F2
X×k k

factors through µ, we have

that

L4
k
= (F2

X×k k
)∗Lk ' OX×k k .

Then it holds that

H0(X,L4)⊗k k ' H0(X ×k k,L4
k
) ' H0(X ×k k,OX×k k) 6= 0.

Hence, we obtain H0(X,L4) 6= 0, i.e. 4L ∼ 0.

4.2. Essential step for the log case

In this subsection, we study the torsion index of numerically trivial line bundles on log

del Pezzo surfaces admitting the following special Mori fibre space structure onto a curve.

Notation 4.2. We use the following notations:

(1) k is a field of characteristic p > 0.

(2) X is a regular k-surface of del Pezzo type such that k = H0(X,OX ) and ρ(X) = 2.

(3) B is a regular projective curve over k such that k = H0(B,OB).

(4) π : X → B is a K X -Mori fibre space.

(5) Let R = R>0[0] be the extremal ray which does not correspond to π , where 0

denotes a curve on X . Note that π(0) = B. Set d0 := dimk H0(0,O0) ∈ Z>0 and

m0 := [K (0) : K (B)] ∈ Z>0. We denote by π0 : 0→ B the induced morphism.

(6) Assume that K X ·0 > 0.

Lemma 4.3. We use Notation 4.2. Then the following hold:

(7) 02 6 0.

(8) There exists a rational number α such that 0 6 α < 1 and (X, α0) is a log del Pezzo

pair.

Proof. The assertion (7) follows from Lemma 4.4. Let us prove (8). By Notation 4.2(2),

there is an effective Q-divisor 1 such that (X,1) is a log del Pezzo pair. We write

1 = α0+1′ for some rational number 0 6 α < 1 and an effective Q-divisor 1′ with

0 6⊂ Supp(1′). Since NE(X) is generated by 0 and a fibre F of the morphism π : X → B,

we conclude that any prime divisor C such that C 6= 0 is nef. In particular, 1′ is nef.

Hence, (X, α0) is a log del Pezzo pair. Thus, (8) holds.

Lemma 4.4. Let k be a field. Let X be a projective Q-factorial normal surface over k
Let R = R>0[0] is an extremal ray of NE(X), where 0 is a curve on X . If 02 > 0, then

ρ(X) = 1.

Proof. We may apply the same argument as in [37, Theorem 3.21, Proof of the case

where C2 > 0 in page 20].
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The first step is to prove that m0 6 5 (Proposition 4.7). To this end, we find an upper

bound and a lower bound for α (Lemmas 4.5 and 4.6).

Lemma 4.5. We use Notation 4.2. Take a closed point b of B and set Fb := π
∗(b). Let

κ(b) be the residue field at b and set d(b) := [κ(b) : k]. Then the following hold:

(1) K X ·k Fb = −2d(b).

(2) 0 ·k Fb = m0d(b).

(3) If α is a rational number such that −(K X +α0) is ample, then αm0 < 2.

Proof. Let us show (1). We have that

degk ωFb = (K X + Fb) ·k Fb = K X ·k Fb < 0.

Hence, Lemma 2.16 implies that

K X ·k Fb = degk ωFb = −2d(b).

Thus, (1) holds. Clearly, (2) holds.

Let us show (3). Since −(K X +α0) is ample, (1) and (2) imply that

0 > (K X +α0) ·k Fb = −2d(b)+αm0d(b).

Thus, (3) holds.

Lemma 4.6. We use Notation 4.2. Then the following hold:

(1) (K X +0) ·k 0 = −2d0 < 0.

(2) For a rational number β with 0 6 β 6 1, it holds that

(K X +β0) ·k 0 > d0(1− 3β).

(2) If α is a rational number such that 0 6 α < 1 and −(K X +α0) is ample, then it
holds that 1/3 < α.

Proof. We fix a rational number α such that 0 6 α < 1 and −(K X +α0) is ample, whose

existence is guaranteed by Lemma 4.3.

Let us show (1). It holds that

(K X +0) ·k 0 6 (K X +α0) ·k 0 < 0,

where the first inequality follows from 02 6 0 and 0 6 α < 1, whilst the second one

holds since −(K X +α0) is ample. Therefore, by adjunction and Lemma 2.16, we deduce

(K X +0) ·k 0 = degk ω0 = −2d0. Thus, (1) holds.

Let us show (2). For k0 := H0(0,O0), the equation d0 = [k0 : k] (Notation 4.2(5))

implies that

K X ·k 0 = degk(ωX |0) = d0 · degk0 (ωX |0) ∈ d0Z.

Combining with K X ·k 0 > 0 (Notation 4.2(6)), we obtain K X ·k 0 > d0. Hence, it holds

that
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(K X +β0) ·k 0 = (1−β)K X ·k 0+β(K X +0) ·k 0

= (1−β)K X ·k 0+β(−2d0) > (1−β)d0 +β(−2d0) = d0(1− 3β).

Thus, (2) holds. The assertion (3) follows from (2).

Proposition 4.7. We use Notation 4.2. It holds that m0 6 5.

Proof. We fix a rational number α such that 0 6 α < 1 and −(K X +α0) is ample, whose

existence is guaranteed by Lemma 4.3. Then the inequality m0 < 6 holds by

2
m0

> α >
1
3
,

where the first and second inequalities follow from Lemmas 4.5 and 4.6, respectively.

To prove the main result of this subsection (Proposition 4.9), we first treat the case

when K (0)/K (B) is separable or purely inseparable.

Lemma 4.8. We use Notation 4.2. Let L B be a numerically trivial Cartier divisor on B.

Then the following hold:

(1) If K (0)/K (B) is a separable extension, then ω−1
B is ample and L B ∼ 0.

(2) If K (0)/K (B) is a purely inseparable morphism of degree pe for some e ∈ Z>0, then

pe L B ∼ 0.

Proof. We first prove (1). Assume that K (0)/K (B) is a separable extension. Let 0N
→ 0

be the normalisation of 0. Set π0N : 0N
→ B to be the induced morphism. Since ω−1

0

is ample, so is ω−1
0N . Hence, we obtain H1(0N ,O0N ) = 0 (Lemma 2.16). Thanks to the

Hurwitz formula (cf. [25, Theorem 4.16 in § 7]), we have that H1(B,OB) = 0; thus, ω−1
B

is ample (Lemma 2.16). In particular, the numerically trivial Cartier divisor L B is trivial,

i.e. L B ∼ 0. Thus, (1) holds.

We now show (2). Since K (0)/K (B) is a purely inseparable morphism of degree pe,

the eth iterated absolute Frobenius morphism Fe
B : B → B factors through the induced

morphism π0N : 0N
→ B:

Fe
B : B → 0N π

0N
−−→ B.

It holds that π∗
0N L B ∼ 0; hence, pe L B = (Fe

B)
∗L B ∼ 0. Thus, (2) holds.

Proposition 4.9. We use Notation 4.2. Let L be a numerically trivial Cartier divisor on

X . Then the following hold:

(1) If p > 7, then L ∼ 0.

(2) If p ∈ {3, 5}, then pL ∼ 0.

(3) If p = 2, then 4L ∼ 0.

Proof. By [39, Theorem 4.4], there exists a numerically trivial Cartier divisor L B on B
such that π∗L B ∼ L. If K (0)/K (B) is separable, then Lemma 4.8(1) implies that L ∼ 0.

Therefore, we may assume that K (0)/K (B) is not a separable extension. Thanks to

Proposition 4.7, we have

[K (0) : K (B)] = m0 6 5.
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Let us show (1). Assume p > 7. In this case, there does not exist an inseparable

extension K (0)/K (B) with [K (0) : K (B)] 6 5. Thus, (1) holds.

Let us show (2). Assume p ∈ {3, 5}. Since K (0)/K (B) is not a separable extension and

[K (0) : K (B)] 6 5, it holds that K (0)/K (B) is a purely inseparable extension of degree

p. Hence, Lemma 4.8(2) implies that pL ∼ 0. Thus, (2) holds.

Let us show (3). Assume p = 2. Since K (0)/K (B) is not a separable extension and

[K (0) : K (B)] 6 5, there are the following three possibilities:

(i) K (0)/K (B) is a purely inseparable extension of degree 2.

(ii) K (0)/K (B) is a purely inseparable extension of degree 4.

(iii) K (0)/K (B) is an inseparable extension of degree 4 which is not purely inseparable.

If (i) or (ii) holds, then Lemma 4.8(2) implies that 4L ∼ 0. Hence, we may assume that

(iii) holds. Let 0N
→ 0 be the normalisation of 0. Corresponding to the separable closure

of K (B) in K (0) = K (0N ), we obtain the following factorisation:

0N
→ B1 → B,

where K (0N )/K (B1) is a purely inseparable extension of degree two and K (B1)/K (B) is

a separable extension of degree two. In particular, K (B1)/K (B) is a Galois extension. Set

G := Gal(K (B1)/K (B)) = {id, σ }. Since L B |0N ∼ L|0N ∼ 0 and the absolute Frobenius
morphism FB1 : B1 → B1 factors through 0N

→ B1, it holds that 2L B |B1 ∼ 0. In

particular, we have that H0(B1, 2L B |B1) 6= 0. Fix 0 6= s ∈ H0(B1, 2L B |B1). We obtain

0 6= sσ(s) ∈ H0(B1, 4L B |B1)
G .

As sσ(s) is G-invariant, sσ(s) descends to B, i.e. there is an element

t ∈ H0(B, 4L B)

such that t |B1 = sσ(s). In particular, we obtain t 6= 0; hence, 4L B ∼ 0. Therefore, we have

4L ∼ 0.

4.3. General case

We are ready to prove the main theorem of this section.

Theorem 4.10. Let k be a field of characteristic p > 0. Let X be a k-surface of del Pezzo

type. Let L be a numerically trivial Cartier divisor on X . Then the following hold:

(1) If p > 7, then L ∼ 0.

(2) If p ∈ {3, 5}, then pL ∼ 0.

(3) If p = 2, then 4L ∼ 0.

Proof. Replacing k by H0(X,OX ), we may assume that k = H0(X,OX ). Furthermore,

replacing X by its minimal resolution, we may assume that X is regular by Lemma 2.7.

We run a K X -MMP:

ϕ : X =: X0 → X1 → · · · → Xn .
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Since −K X is big, the end result Xn is a K Xn -Mori fibre space. It follows from [39,

Theorem 4.4(3)] that there exists a Cartier divisor Ln with ϕ∗Ln ∼ L. Since also Xn is of

del Pezzo type by Lemma 2.9, we may replace X by Xn . Let π : X → B be the induced

K X -Mori fibre space.

If dim B = 0, then we conclude by Theorem 4.1. Hence, we may assume that dim B = 1.

Since X is a surface of del Pezzo type, there is an effective Q-divisor such that (X,1) is klt

and −(K X +1) is ample. Hence, any extremal ray of NE(X) is spanned by a curve. Note

that ρ(X) = 2 and a fibre of π : X → B spans an extremal ray of NE(X). Let R = R>0[0]

be the other extremal ray, where 0 is a curve on X . To summarise, (1)–(5) of Notation 4.2

hold. There are the following three possibilities:

(i) 02 > 0.

(ii) 02 < 0 and K X ·0 6 0.

(iii) 02 < 0 and K X ·0 > 0.

Assume (i). In this case, any curve C on X is nef. Since −(K X +1) is ample, also −K X
is ample. Therefore, we conclude by Theorem 4.1.

Assume (ii). In this case, −K X is nef and big. Again, Theorem 4.1 implies the assertion

of Theorem 4.10.

Assume (iii). In this case, all the conditions (1)–(6) of Notation 4.2 hold. Hence, the

assertion of Theorem 4.10 follows from Proposition 4.9.

5. Results in large characteristic

In this section, we prove the existence of geometrically normal birational models of log

del Pezzo surfaces over imperfect fields of characteristic at least seven (Theorem 5.4). As

consequences, we prove geometric integrality (Corollary 5.5) and vanishing of irregularity

for such surfaces (Theorem 5.7).

5.1. Analysis up to birational modification

The purpose of this subsection is to prove Theorem 5.4. To this end, we establish auxiliary

results on Mori fibre spaces (Propositions 5.2 and 5.3). We start by recalling the following
well-known relation between the Picard rank and the anti-canonical volume of del Pezzo

surfaces.

Lemma 5.1. Let Y be a smooth weak del Pezzo surface over an algebraically closed field

k. Then ρ(Y ) = 10− K 2
Y . In particular, it holds that ρ(Y ) 6 9.

Proof. Let Y =: Y1 → Y2 → · · · → Yn = Z be a KY -MMP, where Z is a weak del Pezzo

surface endowed with a K Z -Mori fibre space Z → B. It is sufficient to prove the relation

ρ(Z) = 10− K 2
Z , which is well known (cf. [21, Theorem 1.28]).

Proposition 5.2. Let k be a field of characteristic p > 11. Let X be a regular del Pezzo

k-surface such that k = H0(X,OX ). Then X is smooth over k.

Proof. By Theorem 3.7, X ×k k has at most canonical singularities. By [34, Theorem 6.1],
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such singularities are of type Ape−1. Since X ×k k is a canonical del Pezzo surface, its

minimal resolution π : Y → X ×k k is a smooth weak del Pezzo surface and we have

9 > ρ(Y ) > ρ(X ×k k)+
∑

x∈Sing(X×k k)

(p− 1) >
∑

x∈Sing(X×k k)

10,

where the first inequality follows from Lemma 5.1 and the last inequality holds by p > 11.

Thus, we obtain Sing(X ×k k) = ∅, as desired.

Proposition 5.3. Let k be a field of characteristic p > 0. Let X be a regular k-surface

of del Pezzo type such that k = H0(X,OX ). Assume that there is a K X -Mori fibre space

π : X → B to a projective regular k-curve B. Let 0 be a curve which spans the extremal

ray of NE(X) not corresponding to π . Then the following hold:

(1) If K X ·0 < 0 (respectively 6 0), then −K X is ample (respectively nef and big). If

p > 5, then ω−1
B is ample and B is smooth over k.

(2) If K X ·0 > 0 and p > 7, then ω−1
B is ample and B is smooth over k.

(3) If K X ·0 > 0, p > 7, and k is separably closed, then 0 is a section of π and π is

smooth. In particular, X is smooth over k.

Proof. The first part of assertion (1) follows immediately from Kleimann’s criterion for

ampleness (respectively [23, Theorem 2.2.16]). Assume p > 5. The anti-canonical model

Z of X is geometrically normal by Theorem 3.7, and, thus, H1(Z ,OZ ) = 0. This implies

that H1(X,OX ) = 0 and H1(B,OB) = 0. Hence, the assertion (1) holds by Lemmas 2.16

and 2.17.

Let us show (2). The field extension K (0)/K (B) corresponding to the induced
morphism π0 : 0→ B is separable (Proposition 4.7). Thus, B is a curve such that ω−1

B
is ample (Lemma 4.8). Since p > 2, B is a k-smooth curve by Lemma 2.17. Thus, (2)

holds.

Let us show (3). It follows from Proposition 2.18(6) that π is a smooth morphism.

Hence, it suffices to show that π0 : 0→ B is a section of π . Since K (0) is separable

over K (B) and B is smooth over k, K (0) is separable over k, i.e. K (0) is geometrically

reduced over k. Hence, also 0 is geometrically reduced over k. Since Xk is a smooth

projective rational surface with ρ(Xk) = 2, Xk is a Hirzebruch surface, and πk : Xk → Bk
is a projection. Since the pullback 0k of 0 is a curve with 02

k
< 0 by Lemma 4.4, 0k is

a section of πk : Xk → Bk . The base change 0k → Bk is an isomorphism, hence so is the

original one π0 : 0→ B. Thus, (3) holds.

Theorem 5.4. Let k be a separably closed field of characteristic p > 7. Let X be a k-surface

of del Pezzo type such that k = H0(X,OX ). Then there exists a birational map X 99K Y
to a projective normal k-surface Y such that one of the following properties holds:

(1) Y is a regular del Pezzo surface such that k = H0(Y,OY ) and ρ(Y ) = 1. In

particular, Y is geometrically canonical over k. Moreover, if p > 11, then Y is

smooth over k.

(2) There is a smooth projective morphism π : Y → B such that B ' P1
k and the fibre

π−1(b) is isomorphic to P1
k(b) for any closed point b of B, where k(b) denotes the
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residue field of b. In particular, Y is smooth over k and Y ×k k is a Hirzebruch

surface.

Proof. Let f : Z → X be the minimal resolution of X . By Lemma 2.7, Z is a k-surface

of del Pezzo type. We run a K Z -MMP:

Z =: Z0 → Z1 → · · · → Zn =: Y.

By Lemma 2.9, the surfaces Zi are of del Pezzo type. The end result Y is a KY -Mori fibre
space π : Y → B. If dim B = 0, then Y is a regular del Pezzo surface; hence, (1) holds

by Theorem 3.7 and Proposition 5.2. If dim B = 1, then Proposition 5.3 implies that (2)

holds.

Corollary 5.5. Let k be a field of characteristic p > 7. Let X be a k-surface of del Pezzo
type such that k = H0(X,OX ). Then X is geometrically integral over k.

Proof. We may assume that k is separably closed. It is enough to show that X is

geometrically reduced [40, Lemma 2.2]. By Lemma 2.2, we may replace X by a surface

birational to X . Then the assertion follows from Theorem 5.4.

5.2. Vanishing of H1(X,OX )

In this subsection, we prove that surfaces of del Pezzo type over an imperfect field of

characteristic p > 7 have vanishing irregularity.

Lemma 5.6. Let k be a field of characteristic p > 0. Let X be a k-surface of del Pezzo

type such that k = H0(X,OX ). If X is geometrically normal over k, then it holds that

H i (X,OX ) = 0 for i > 0.

Proof. The assertion immediately follows from Lemma 3.2.

Theorem 5.7. Let k be a field of characteristic p > 7. Let X be a k-surface of del Pezzo

type such that k = H0(X,OX ). Then H i (X,OX ) = 0 for i > 0.

Proof. We may assume that k is separably closed. Let X 99K Y be the birational

morphism as in the statement of Theorem 5.4. Lemma 5.6 implies that H i (Y,OY ) = 0
for i > 0.

Let ϕ : W → X and ψ : W → Y be birational morphisms from a regular projective

surface W . Since both Y and W are regular, we have that H i (W,OW ) = 0 for i > 0. Then

the Leray spectral sequence implies that H1(X,OX ) = 0. It is clear that H j (X,OX ) = 0
for j > 2.

Remark 5.8. We now give an alternative proof of Theorem 5.7. We use the same notation

as in [12, Chapter 9]. Assume that H1(X,OX ) 6= 0 and let us derive a contradiction.

We may assume that k is separably closed. Since X is geometrically integral over k
(Corollary 5.5), X has a k-rational point, i.e. X (k) 6= ∅. By [12, Theorem 9.2.5 and

Corollary 9.4.18.3], there exists a scheme PicX/k that represents any of the functors

PicX/k , PicX/k,(ét), and PicX/k,(fppf). Then PicX/k is a group k-scheme which is locally of
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finite type over k [12, Proposition 9.4.17] and its connected component Pic0
X/k containing

the identity is an open and closed group subscheme of finite type over k [12, Proposition

9.5.3]. By H1(X,OX ) 6= 0 and H2(X,OX ) = 0, Pic0
X/k is smooth and dim Pic0

X/k > 0 [12,

Remark 9.5.15 and Theorem 9.5.11]. Since k is separably closed, Pic0
X/k(k) is an infinite

set. In particular, there exists a numerically trivial Cartier divisor L on X with L 6∼ 0.

This contradicts Theorem 4.10.

In characteristic zero, it is known that the image of a variety of Fano type under a

surjective morphism remains of Fano type (cf. [14, Theorem 5.12]). The same result is

false over imperfect fields of low characteristic as shown in [41, Theorem 1.4]. We now

prove that this phenomenon can appear exclusively in low characteristic.

Corollary 5.9. Let k be a field of characteristic p > 7. Let X be a k-surface of del Pezzo
type such that k = H0(X,OX ) and let π : X → Y be a projective k-morphism such that

π∗OX = OY . Then Y is a k-variety of Fano type. Furthermore, if dim Y = 1, then Y is

smooth over k.

Proof. We distinguish two cases according to dim Y . If dim Y = 2, then π is birational

and we conclude by Lemma 2.9. If dim Y = 1, then thanks to the Leray spectral sequence,

we have an injection:

H1(Y,OY ) ↪→ H1(X,OX ),

where H1(X,OX ) = 0 by Theorem 5.7. Therefore, ω−1
Y is ample by Lemma 2.16 and Y is

smooth over k by Lemma 2.17.

6. Purely inseparable points on log del Pezzo surfaces

The aim of this section is to construct purely inseparable points of bounded degree on

log del Pezzo surfaces X over C1-fields of positive characteristic (Theorem 6.12). Since we

may take birational model changes, the problem is reduced to the case when X has a Mori

fibre space structure X → B. The case when dim B = 0 and dim B = 1 are treated in §§ 6.1

and 6.2, respectively. In § 6.3, we prove the main result of this section (Theorem 6.12).

6.1. Purely inseparable points on regular del Pezzo surfaces

In this subsection, we prove the existence of purely inseparable points with bounded

degree on geometrically normal regular del Pezzo surfaces over C1-fields. If K 2
X 6 4, then

we apply the strategy as in [19, Theorem IV.6.8] (Lemma 6.3). We analyse the remaining

cases by using a classification result given by [34, § 6] and Proposition 2.27. We first

relate the Cr -condition (for definition of Cr -field, see [19, Definition IV.6.4.1]) for a field

of positive characteristic to its p-degree.

Lemma 6.1. Let k be a field of characteristic p > 0. If r is a positive integer and k is a
Cr -field, then p-deg(k) 6 r , where p-deg(k) := logp[k : k

p
]. In particular, if k is a C1-field,

then p-deg(k) 6 1.

Proof. Suppose by contradiction that [k : k p
] > pr+1. Let s1, . . . , spr+1 be elements of
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k which are linearly independent over k p. Let us consider the following homogeneous

polynomial of degree p:

P :=
pr
+1∑

k=1

si x p
i = s1x p

1 + · · ·+ spr+1x p
pr+1 ∈ k[x1, . . . , x pr+1].

Since s1, . . . , spr+1 are linearly independent over k p, the polynomial P has only the trivial

solution in k. In particular, k is not a Cr -field.

We then study rational points on geometrically normal del Pezzo surfaces of degree

6 4 (compare with [19, Exercise IV.6.8.3]). We need the following result.

Lemma 6.2 (cf. Exercise IV.6.8.3.2 of [19]). Let k be a C1-field. Let S be a weighted

hypersurface of degree 4 in Pk(1, 1, 1, 2). Then S(k) 6= ∅.
Proof. Let us recall the definition of normic forms [19, Definition IV.6.4.2]. A

homogeneous polynomial h ∈ k[y1, . . . , ym] of degree m is called a normic form if h = 0
has only the trivial solution in k. If k has a normic form of degree two, then the same

argument as in the proof of [19, Theorem IV.6.7] works.

Suppose now that k does not have a normic form of degree two. We can write

Pk(1, 1, 1, 2) = Proj k[x0, x1, x2, x3], where deg x0 = deg x1 = deg x2 = 1 and deg x3 = 2.
Let

F(x0, x1, x2, x3) := cx2
3 + f (x0, x1, x2)x3+ g(x0, x1, x2) ∈ k[x0, x1, x2, x3]

be the defining polynomial of S, where c ∈ k and f (x0, x1, x2), g(x0, x1, x2) ∈ k[x1, x2, x3].

If c = 0, then F(0, 0, 0, 1) = 0. Thus, we may assume that c 6= 0. Fix (a0, a1, a2) ∈ k3
\

{(0, 0, 0)}. Set α := f (a0, a1, a2) ∈ k and β := g(a0, a1, a2) ∈ k. Since h(X, Y ) := cX2
+

αXY +βY 2 is not a normic form, there is (u, v) ∈ k2
\ {(0, 0)} such that h(u, v) = cu2

+

αuv+βv2
= 0. Since c 6= 0, we obtain v 6= 0. Therefore, it holds that F(a0, a1, a2, u/v) =

c(u/v)2+α(u/v)+β = 0, as desired.

Lemma 6.3. Let X be a geometrically normal regular del Pezzo surface over a C1-field k
of characteristic p > 0 such that k = H0(X,OX ). If K 2

X 6 4, then X (k) 6= ∅.
Proof. Since X is geometrically normal, then it is geometrically canonical by Theorem 3.3.

Thus, we can apply Theorem 2.15 and we distinguish the cases according to the degree

of K X .

If K 2
X = 1, then X has a k-rational point by Proposition 2.14(2). If K 2

X = 2, then X
can be embedded as a weighted hypersurface of degree 4 in Pk(1, 1, 1, 2) and we apply

Lemma 6.2 to conclude that it has a k-rational point. If K 2
X = 3, then X is a cubic

hypersurface in P3
k , and, thus, it has a k-rational point by definition of C1-field. If K 2

X = 4,

then X is a complete intersection of two quadrics in P4 and thus it has a k-rational point

by [22, Corollary in page 376].

We now discuss the existence of purely inseparable points on geometrically normal

regular del Pezzo surfaces over C1-fields.

Proposition 6.4. Let X be a regular del Pezzo surface over a C1-field k of characteristic

p > 7 such that k = H0(X,OX ). Then X (k) 6= ∅.
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Proof. If X is a smooth del Pezzo surface, we conclude that there exists a k-rational

point by [19, Theorem IV.6.8]. If p > 11, then X is smooth by Proposition 5.2 and we

conclude.

It suffices to treat the case when p = 7 and X is not smooth. By Theorem 3.7(2), X
is geometrically canonical. By [34, Theorem 6.1], any singular point of the base change

Xk = X ×k k is of type Apn−1. It follows from Lemma 5.1 that Xk has a unique A6 singular

point. Thus, by Lemma 5.1, we have K 2
X 6 3; hence, Lemma 6.3 implies X (k) 6= ∅.

Proposition 6.5. Let X be a regular del Pezzo surface over a C1-field k of characteristic

p ∈ {3, 5} such that k = H0(X,OX ). If X is geometrically normal over k, then X (k1/p) 6=

∅.

Proof. It is sufficient to consider the case when X is not smooth by [19, Theorem IV.6.8].

By Theorem 3.3, Xk has canonical singularities.

If p = 5 and X is not smooth, then the singularities of Xk must be of type A4 or E0
8

according to [34, Theorem 6.1 and Theorem 6.4]. If Xk has one singular point of type E0
8

or two singular points of type A4, then K 2
X = 1 by Lemma 5.1. Thus, we conclude that

X has a k-rational point by Lemma 6.3. If Xk has a unique singular point of type A4, it

follows from Proposition 2.27 that X (k1/p) 6= ∅.

If p = 3 and X is not smooth, then the singularities of Xk must be of type A2, A8,

E0
6 , or E0

8 according to [34, Theorem 6.1 and Theorem 6.4]. If one of the singular points

is of the type A8, E0
6 , and E0

8 , then K 2
X 6 3 by Lemma 5.1, and we conclude X (k) 6= ∅

by Lemma 6.3. Thus, we may assume that all the singularities of Xk are of type A2. If

there is a unique singularity of type A2 on Xk , then it follows from Proposition 2.27 that

X (k1/3) 6= ∅. Therefore, we may assume that there are at least two singularities of type

A2 on Xk . Then it holds that K 2
X 6 5. By [9, Table 8.5 in page 431], we have that K 2

X 6= 5;

hence, K 2
X 6 4. Thus, Lemma 6.3 implies X (k) 6= ∅.

Proposition 6.6. Let X be a regular del Pezzo surface over a C1-field k of characteristic

p = 2 such that k = H0(X,OX ). If X is geometrically normal, then X (k1/4) 6= ∅.

Proof. It is sufficient to consider the case when X is not smooth by [19, Theorem IV.6.8].

The singularities of Xk are canonical by Theorem 3.3. Hence, by [34, Theorem in page 57],

they must be of type A1, A3 A7, D0
n with 4 6 n 6 8 or E0

n for n = 6, 7, 8. We distinguish

five cases for the singularities appearing on Xk .

(1) There exists at least a singular point of type A7, D0
n with n > 5 or E0

n for n = 6, 7, 8.

(2) There are at least two singular points with one being of type A3.

(3) There exists at least one singular point of type D0
4 .

(4) There is a unique singular point of type A3.

(5) All the singular points are of type A1.

In case (1), it holds that K 2
X 6 4. Hence, we obtain X (k) 6= ∅ by Lemma 6.3. In case

(2), if K 2
X 6 4, then Lemma 6.3 again implies X (k) 6= ∅. Hence, we may assume that

K 2
X = 5. Then there exist exactly two singular points P and Q on Xk such that P is of

type A3 and Q is of type A1. However, this cannot occur by [9, Table 8.5 at page 431].
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In case (3), we have that K 2
X 6 5. However, a D0

4 singularity cannot appear on a del

Pezzo of degree five according to [9, Table 8.5 at page 431]. Thus, K 2
X 6 4 and Lemma 6.3

implies X (k) 6= ∅. In case (4), we apply Proposition 2.27 to conclude that X (k1/4) 6= ∅.

In case (5), consider X(ksep)1/2 . By Proposition 2.27, on X(ksep)1/2 there are singular points

{Pi }
m
i=1 of type A1 such that κ(Pi ) = (ksep)1/2 and their union

∐
i Pi is the non-smooth

locus of X(ksep)1/2 . Let Y = Bl∐
i Pi X(ksep)1/2 be the blowup of X(ksep)1/2 along

∐
i Pi . Since

each Pi is a (ksep)1/2-rational point whose base change to the algebraic closure is a
canonical singularity of type A1, the surface Y is smooth. Since the closed subscheme∐

i Pi is invariant under the action of the Galois group Gal((ksep)1/2/k1/2), the birational

(ksep)1/2-morphism Y → X(ksep)1/2 descends to a birational k1/2-morphism Z → Xk1/2 ,

where Z is a smooth projective surface over k1/2 whose base change to the algebraic

closure is a rational surface. It holds that Z(k1/2) 6= ∅ by [19, Theorem IV.6.8], which

implies X (k1/2) 6= ∅.

6.2. Purely inseparable points on Mori fibre spaces

In this subsection, we discuss the existence of purely inseparable points on log del Pezzo

surfaces over C1-fields admitting Mori fibre space structures onto curves. We start by

recalling auxiliary results.

Lemma 6.7. Let k be a C1-field and let C be a regular projective curve such that k =
H0(C,OC ) and −KC is ample. Then it holds that C ' P1

k . In particular, C(k) 6= ∅.

Proof. Since C is a geometrically integral conic curve in P2
k (Lemma 2.16), the assertion

follows from the definition of C1-field.

Lemma 6.8. Let X be a regular projective surface over a C1-field k of characteristic p > 0
such that k = H0(X,OX ). Let π : X → B be a K X -Mori fibre space to a regular projective

curve B. Then the following hold:

(1) Let k ⊂ k′ be an algebraic field extension. If B(k′) 6= ∅, then X (k′) 6= ∅.

(2) If −K B is ample, then X (k) 6= ∅.

Proof. Let us show (1). Let b be a closed point in B such that k ⊂ κ(b) ⊂ k′. By

Proposition 2.18, the fibre Xb is a conic in P2
κ(b). By [22, Corollary in page 377], κ(b) is

a C1-field; hence, we deduce Xκ(b)(κ(b)) 6= ∅. Thus, (1) holds. The assertion (2) follows

from Lemma 6.7 and (1) for the case when k′ = k.

To discuss the case when p = 2, we first handle a complicated case in characteristic

two.

Proposition 6.9. Let k be a field of characteristic two such that [k : k2
] 6 2. Let X be a

regular k-surface of del Pezzo type and let π : X → B be a K X -Mori fibre space to a curve

B. Let 0 be a curve which spans the K X -negative extremal ray which is not corresponding

to π . Assume that

(1) K X ·0 > 0 and
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(2) K (0)/K (B) is an inseparable extension of degree four which is not purely

inseparable.

Then −K B is ample.

Proof. We divide the proof into several steps.

Step 1. In order to show the assertion of Proposition 6.9, we may assume that

(3) B is not smooth over k;

(4) p-deg(k) = 1, i.e. [k : k2
] = 2; and

(5) the generic fibre of π is not geometrically reduced.

Proof. If (3) does not hold, then B is a smooth curve over k. Since (Xk)red is a rational

surface by Lemma 3.2, Bk is a smooth rational curve. Then −K B is ample, as desired.

Thus, we may assume (3). From now on, we assume (3).

If (4) does not hold, then k is a perfect field. In this case, B is smooth over k, which

contradicts (3). Thus, we may assume (4).

Let us prove the assertion of Proposition 6.9 if (5) does not hold. In this case, the

generic fibre X K (B) of π : X → B is a geometrically integral regular conic over K (B).
Thus, it is smooth over K (B) by Lemma 2.17. We use notation as in Notation 4.2.
Lemma 4.3(8) enables us to find a rational number α such that 0 6 α < 1 and (X, α0)
is a log del Pezzo pair. Then Lemma 4.5(3) implies that αm0 < 2. Since our assumption

(2) implies m0 = [K (0) : K (B)] = 4, we have that α < 1/2. By the assumption (2) and

α < 1/2, the induced pair (X K (B), α0|X K (B)
) on the geometric generic fibre is F-pure. It

follows from [10, Corollary 4.10] that −K B is ample. Hence, we may assume that (5)

holds. This completes the proof of Step 1.

From now on, we assume that (3)–(5) of Step 1 hold.

Step 2. X and B are geometrically integral over k. X is not geometrically normal over k.

Proof. Since [k : k2
] = 2, it follows from [35, Theorem 2.3] that X and B are geometrically

integral over k (note that log2[k : k
2
] is called the degree of imperfection for k in [35,

Theorem 2.3]). If X is geometrically normal over k, then also B is geometrically normal

over k, i.e. B is smooth over k. This contradicts (3) of Step 1. This completes the proof

of Step 2.

We now introduce some notation. Set k1 := k1/2. By Step 2, X ×k k1 is integral

and non-normal (cf. [42, Proposition 2.10(3)]). Let ν : X1 := (X ×k k1)
N
→ X ×k k1 be

its normalisation. Let X1 → B1 be the Stein factorisation of the induced morphism

X1 → X → B. To summarise, we have a commutative diagram

X1
ν

−−−−→ X ×k k1 −−−−→ Xy y y
B1 −−−−→ B×k k1 −−−−→ B.
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Let C ⊂ X ×k k1 and D ⊂ X1 be the closed subschemes defined by the conductors for ν.

For K := K (B), we apply the base change (−)×B Spec K to the above diagram:

V1 −−−−→ V ×K L −−−−→ Vy y y
Spec K1 −−−−→ Spec L −−−−→ Spec K ,

where V := X ×B K , L := K (B×k k1) = K (B)⊗k k1, and K1 = K (B1). Since taking Stein

factorisations commute with flat base changes, the morphism V1 → Spec K1 coincides

with the Stein factorisation of the induced morphism V1 → Spec K .

Step 3. C dominates B.

Proof. Assuming that C does not dominate B, let us derive a contradiction. Since B is

geometrically integral over k (Step 2), we can find a non-empty open subset B ′ of B such

that B ′ is smooth over k and the image of C on B is disjoint from B ′. Let B ′1, X ′, and X ′1
be the inverse images of B ′ to B1, X, and X1, respectively. Then the resulting diagram is

as follows:

X ′1
'

−−−−→ X ′×k k1 −−−−→ X ′y y yπ ′
B ′1

'
−−−−→ B ′×k k1 −−−−→ B ′.

Since X ′1 ' X ′×k k1 = X ′×k k1/2 is normal, it holds that X ′ is geometrically normal over

k.

Let π ′
k
: X ′

k
→ B ′

k
be the base change of π ′ to the algebraic closure k. Since X ′ is

geometrically normal over k, X ′
k

is a normal surface. Note that B ′
k

is a smooth curve.

Since general fibres of π ′
k
: X ′

k
→ B ′

k
are K X ′

k
-negative and (π ′

k
)∗OX ′

k
= OB′

k
, general fibres

of π ′
k

are isomorphic to P1
k
. Then the generic fibre of π ′

k
: X ′

k
→ B ′

k
is smooth, hence so is

the generic fibre of π : X → B. This contradicts (5) of Step 1. This completes the proof

of Step 3.

Step 4. The following hold:

(i) L/K is a purely inseparable extension of degree two.

(ii) V is a regular conic curve on P2
K which is not geometrically reduced over K .

(iii) V1 → V ×K L is the normalisation of V ×K L.

(iv) V ×K L is an integral scheme which is not regular.

(v) The restriction D|V1 of the conductor D to V1 satisfies DV1 = Q, where Q is a

K1-rational point.

(vi) V1 is isomorphic to P1
K1

.

(vii) [K1 : L] is a purely inseparable extension of degree two, and K1 = K 1/2.
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Proof. The assertions (i)–(iii) follow from the construction. Step 3 implies (iv). Let us

show (v). For the induced morphism ϕ : V1 → V , we have that

KV1 + D|V1 ∼ ϕ
∗KV .

Since −KV is ample, it holds that

0 > degK1
(KV1 + D|V1) > −2+ degK1

(D|V1),

which implies degK1
(D|V1) 6 1. Step 3 implies that D|V1 6= 0; hence, D|V1 consists of a

single rational point. Thus, (v) holds.

Let us show (vi). Since V1 has a K1-rational point around which V1 is regular, V1
is smooth around this point. In particular, Lemma 2.2 implies that V1 is geometrically

reduced. Then V1 is a geometrically integral conic curve in P2
K1

. Therefore, V1 is smooth

over K1. Since V1 has a K1-rational point, V1 is isomorphic to P1
K1

. Thus, (vi) holds.

Let us show (vii). The inclusion K1 ⊂ K 1/2, which is equivalent to K 2
1 ⊂ K , follows

from the fact that K is algebraically closed in K (V ) and the following:

K 2
1 ⊂ K (V1)

2
= K (V ×K L)2 = (K (V )⊗K L)2 ⊂ K (V ).

It follows from [2, Theorem 3] that the p-degree p-deg(K ) is two, i.e. [K 1/2
: K ] = 4

(note that the p-degree is called the degree of imperfection in [2]). Hence, it is enough

to show that K1 6= L. Assume that K1 = L. Then V1 is smooth over L by (vi). Hence,

V ×K L is geometrically integral over L. Therefore, V is geometrically integral over K ,

which contradicts (5) of Step 1. This completes the proof of Step 4.

Step 5. Set-theoretically, C does not contain 0×k k1.

Proof. Assuming that C contains 0×k k1, let us derive a contradiction. In this case, the

set-theoretic inclusion

f −1(0) ⊂ ν−1(C) = D

holds, where f : X1 → X is the induced morphism. Since B1 → B is a universal

homeomorphism and the geometric generic fibre 0×B Spec K of 0→ B consists of two

points, the geometric generic fibre of D→ B1 contains two distinct points. In particular,

it holds that degK1
(D|V1) > 2. However, this contradicts (v) of Step 4. This completes

the proof of Step 5.

Step 6. −K B1 is ample.

Proof. It follows from Lemma 4.3(8) that there is a rational number α such that 0 6 α < 1
and (X, α0) is a log del Pezzo pair. Consider the pullback:

K X1 + D+α f ∗0 = f ∗(K X +α0).

Take the geometric generic fibre W of π1 : X1 → B1, i.e. W = V1×K1 Spec K 1 ' P1
K 1

(Step 4(vi)). It is clear that −(KW + (D+α f ∗0)|W ) is ample. Since D|V1 = Q is a

rational point (Step 4(v)), its pullback D|W =: QW to W is a closed point on W . As
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−(KW + (D+α f ∗0)|W ) is ample, all the coefficients of B := (α f ∗0)|W must be less than

one. Therefore, Step 5 implies that (W, (D+α f ∗0)|W ) is F-pure. It follows from [10,

Corollary 4.10] that −K B1 is ample. This completes the proof of Step 6.

Step 7. −K B is ample.

Proof. As −K B1 is ample (Step 6), Lemma 2.16 implies that H1(B1,OB1) = 0. Since

K (B1) = K (B)1/2 (Step 4(vii)), the morphism B1 → B coincides with the absolute

Frobenius morphism of B. Hence, B1 and B are isomorphic as schemes. Thus, the

vanishing H1(B1,OB1) = 0 implies H1(B,OB) = 0. Then −K B is ample by Lemma 2.16.
This completes the proof of Step 7.

Step 7 completes the proof of Proposition 6.9.

Proposition 6.10. Let X be a regular k-surface of del Pezzo type over a C1-field k of

characteristic p > 0 such that k = H0(X,OX ). Let π : X → B be a K X -Mori fibre space

to a regular projective curve. Then the following hold:

(1) If p > 7, then X (k) 6= ∅.

(2) If p = {3, 5}, then X (k1/p) 6= ∅.

(3) If p = 2, then X (k1/4) 6= ∅.

Proof. Let R = R>0[0] be the extremal ray of NE(X) not corresponding to π : X → B.

In particular, we have π(0) = B. We distinguish two cases:

(I) K X ·0 6 0;

(II) K X ·0 > 0.

Suppose that (I) holds. In this case, −K X is nef and big. If p > 2, then the generic

fibre X K (B) is a smooth conic. In particular, the base change X K (B) is strongly F-regular.

By [10, Corollary 4.10], −K B is ample. Hence, Proposition 6.10 implies X (k) 6= ∅.
We now treat the case when (I) holds and p = 2. Then −K X is semi-ample and big.

Let Z be its anti-canonical model. In particular, Z is a canonical del Pezzo surface. By

Theorem 3.7, we have `F (Z/k) 6 2. Therefore, for kW := k1/4 and W := (Z ×k kW )
N
red, W

is geometrically normal over kW . In particular, H0(W,OW ) = kW = k1/4. We have the

following commutative diagram:

Y
ν

−−−−→ X ×k k1/4
−−−−→ X

f
y y y
W

µ
−−−−→ Z ×k k1/4

−−−−→ Zy y y
Spec k1/4 Spec k1/4

−−−−→ Spec k,
where µ and ν are the normalisations. It follows from Theorem 3.3 that W is geometrically

klt and H1(W,OW ) = 0. Since the morphism Y → W is birational and W is klt by

Proposition 2.3, it holds that H1(Y,OY ) = 0.
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Consider the Stein factorisation π1 : Y → B1 of the induced morphism Y → X
π
−→ B.

Since H1(Y,OY ) = 0, we conclude that H1(B1,OB1) = 0. In particular, since kW is a

C1-field, it holds that B1 ' P1
kW

(Lemma 6.7). Thanks to [40, Theorem 4.2], we can find

an effective divisor D on Y such that KY + D = f ∗K X . Since −K X is big, also −KY is big.

Fix a general kW -rational point c ∈ B1 and let Fc be its π1-fibre. Since we take c to be

general, Fc avoids the non-regular points of Y . By adjunction, ω−1
Fc

is ample. This implies

that F is a conic on P2
kW

. Hence, Y (k1/4) = Y (kW ) 6= ∅. Therefore, we deduce X (k1/4) 6= ∅.

We suppose (II) holds. We have [K (0) : K (B)] 6 5 by Proposition 4.7. If K (0)/K (B)
is separable, then −K B is ample (Lemma 4.8). Then Proposition 6.10 implies X (k) 6= ∅.
Hence, we may assume that K (0)/K (B) is inseparable. If K (0)/K (B) is not purely

inseparable, then −K B is ample by Proposition 6.9. Again, Proposition 6.10 implies

X (k) 6= ∅. Hence, it is enough to treat the case when K (0)/K (B) is purely inseparable.

Since [K (0) : K (B)] 6 5, it suffices to prove that X (k1/pe
) 6= ∅ for the positive integer

e defined by [K (0) : K (B)] = pe. Set C := 0N . Since ω−1
0 is ample, also −KC is ample.

Hence, Proposition 6.10 implies C(k′) 6= ∅, where k′ := H0(C,OC ). Since

k′p
e
⊂ K (0)pe

⊂ K (B),

it holds that k′p
e
⊂ k. Therefore, we obtain X (k1/pe

) 6= ∅, as desired.

6.3. General case

In this subsection, using the results proven above, we prove the main result in this section

(Theorem 6.12). We present a generalisation of the Lang–Nishimura theorem on rational

points. Although the argument is similar to the one in [31, Proposition A.6], we include

the proof for the sake of completeness.

Lemma 6.11 (Lang–Nishimura). Let k be a field. Let f : X 99K Y be a rational map

between k-varieties. Suppose that X is regular and Y is proper over k. Fix a closed point

P on X . Then there exists a closed point Q on Y such that k ⊂ κ(Q) ⊂ κ(P), where κ(P)
and κ(Q) denote the residue fields.

Proof. The proof is by induction on n := dim X . If n = 0, then there is nothing to show.

Suppose n > 0. Consider the blowup π : BlP X → X at the closed point P. Since X is

regular, the π -exceptional divisor E is isomorphic to Pn−1
κ(P) by [25, § 8, Theorem 1.19].

Consider now the induced map f : BlP X 99K Y . By the valuative criterion of properness,

the map f induces a rational map E = Pn−1
κ(P) 99K Y from the π-exceptional divisor E .

Then by the induction hypothesis, Y has a closed point Q whose residue field is contained

in κ(P).

Theorem 6.12. Let k be a C1-field of characteristic p > 0. Let X be a k-surface of del

Pezzo type such that k = H0(X,OX ). Then the following hold:

(1) If p > 7, then X (k) 6= ∅;

(2) if p ∈ {3, 5}, then X (k1/p) 6= ∅;

(3) if p = 2 , then X (k1/4) 6= ∅.
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Proof. Let Y → X be the minimal resolution of X . We run a KY -MMP Y =: Y0 → Y1 →

· · · → Yn =: Z . Note that the end result is a Mori fibre space. Thanks to Lemma 6.11,

we may replace X by Z . Hence, it is enough to treat the following two cases:

(i) X is a regular del Pezzo surface with ρ(X) = 1.

(ii) There exists a Mori fibre space structure π : X → B to a curve B.

Assume (i). By Lemma 6.1, we have p-deg(k) 6 1. Therefore, X is geometrically normal

by [11, Theorem 14.1]. Thus, we conclude by Propositions 6.4, 6.5, and 6.6. If (ii) holds,

then the assertion follows from Proposition 6.10.

7. Pathological examples

In this section, we collect pathological features appearing on surfaces of del Pezzo type

over imperfect fields.

7.1. Summary of known results

We first summarise previously known examples of pathologies appearing on del Pezzo

surfaces over imperfect fields.

7.1.1. Geometric properties. We have shown that if p > 7 and X is a surface of

del Pezzo type, then X is geometrically integral (Corollary 5.5). We have established a

partial result on geometric normality (Theorem 5.4). Let us summarise known examples

in small characteristic related to these properties.

(1) Let F be a perfect field of characteristic p > 0 and let k := F(t1, t2, t3). Then

X := Proj k[x0, x1, x2, x3]/(x
p
0 + t1x p

1 + t2x p
2 + t3x p

3 )

is a regular projective surface which is not geometrically reduced over k. It is easy

to show that H0(X,OX ) = k. If the characteristic of k is two or three, then −K X
is ample; hence, X is a regular del Pezzo surface.

(2) There exist a field of characteristic p = 2 and a regular del Pezzo surface X over

k such that H0(X,OX ) = k, X is geometrically reduced over k, and X is not

geometrically normal over k (see [26, Main Theorem]).

(3) If k is an imperfect field of characteristic p = 2, 3 there exists a geometrically normal

regular del Pezzo surface X of Picard rank one which is not smooth (see [11, § 14,

Equation (27)]). In [11, Theorem 14.8], an example of a regular geometrically

integral but geometrically non-normal del Pezzo surface of Picard rank two is

constructed when p = 2.

(4) If k is an imperfect field of characteristic p ∈ {2, 3}, then there exists a k-surface X
of del Pezzo type such that H0(X,OX ) = k, X is geometrically reduced over k, and

X is not geometrically normal over k [41].

7.1.2. Vanishing of H1(X,OX ). We have shown that if X is a surface of del Pezzo

type over a field of characteristic p > 7, then H i (X,OX ) = 0 for i > 0. Let us summarise

known examples in small characteristic which violate the vanishing of H1(X,OX ).
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(1) If k is an imperfect field of characteristic p = 2, then there exists a regular weak

del Pezzo surface X such that H1(X,OX ) 6= 0 (see [33]).

(2) There exist an imperfect field of characteristic p = 2 and a regular del Pezzo surface

X such that H1(X,OX ) 6= 0 (see [26, Main theorem]).

(3) If k is an imperfect field of characteristic p ∈ {2, 3}, then there exists a surface X
of del Pezzo type such that H1(X,OX ) 6= 0 (see [41]).

Remark 7.1. Since h1(X,OX ) is a birational invariant for surfaces with klt singularities,

the previous examples do not admit regular k-birational models which are geometrically

normal. This shows that Theorem 5.4 cannot be extended to characteristics two and

three.

7.2. Non-smooth regular log del Pezzo surfaces

In this subsection, we construct examples of regular k-surfaces of del Pezzo type which

are not smooth (cf. Theorem 5.4).

Proposition 7.2. Let k be an imperfect field of characteristic p > 0. Then there exists a

k-regular surface X of del Pezzo type which is not smooth over k.

Proof. Fix a k-line L on P2
k . Let Q ∈ L be a closed point such that k(Q)/k is a purely

inseparable extension of degree p whose existence is guaranteed by the assumption that

k is imperfect. Consider the blowup π : X → P2
k at the point Q. We have

K X = π
∗KP2

k
+ E and L̃ + E = π∗L ,

where E denotes the π-exceptional divisor and L̃ is the proper transform of L. Since

L̃ ∪ E is simple normal crossing and the Q-divisor

−(K X + L̃ + εE) = π∗(K X + L)− εE

is ample for any 0 < ε � 1, the pair (X, (1− δ)L̃ + εE) is log del Pezzo for 0δ � 1. Hence,

X is of del Pezzo type.

It is enough to show that X is not smooth. There exists an affine open subset

Spec k[x, y] = A2
k of P2

k such that Q ∈ Spec k[x, y] and the maximal ideal corresponding

to Q can be written as (x p
−α, y) for some α ∈ k \ k p. Let X ′ be the inverse image of

Spec k[x, y] by π . Since blowups commute with flat base changes, the base change X ′
k

is

isomorphic to the blowup of Spec k[x, y] along the non-reduced ideal ((x −β)p, y), where

β ∈ k with β p
= α.

After choosing appropriate coordinate, X ′
k

is isomorphic to the blowup of A2
k
=

Spec k[x ′, y′] along (x ′p, y′). We can directly check that X ′
k

contains an affine open subset

of the form Spec k[s, y, u]/(st − u p), which is not smooth.

Remark 7.3. The surface X constructed in Proposition 7.2 is del Pezzo (respectively

weak del Pezzo) if and only if p = 2 (respectively p 6 3). Indeed, −E2
= [k(Q) : k] =

p implies K X ·k E = (K X + E) ·k E − E2
= −2p+ p = −p. Thus, the desired conclusion
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follows from

K X ·k L̃ = K X ·k π
∗L − K X ·k E = −3+ p.

8. Applications to del Pezzo fibrations

In this section, we give applications of Theorems 4.10 and 6.12 on log del Pezzo

surfaces over imperfect fields to the birational geometry of threefold fibrations. The first

application is to rational chain connectedness.

Theorem 8.1. Let k be an algebraically closed field of characteristic p > 0. Let π : V → B
be a projective k-morphism such that π∗OV = OB , V is a normal threefold over k, and

B is a smooth curve over k. Assume that there exists an effective Q-divisor 1 such that
(V,1) is klt and −(KV +1) is π-nef and π-big. Then the following hold:

(1) There exists a curve C on V such that C → B is surjective and the following
properties hold:

(a) If p > 7, then C → B is an isomorphism.

(b) If p ∈ {3, 5}, then K (C)/K (B) is a purely inseparable extension of degree 6 p.

(c) If p = 2, then K (C)/K (B) is a purely inseparable extension of degree 6 4.

(2) If B is a rational curve, then V is rationally chain connected.

Proof. Let us show (1). Thanks to [19, Chapter IV, Theorem 6.5], K (B) is a C1-field.
Then Theorem 6.12 implies the assertion (1). The assertion (2) follows from (1) and the

fact that general fibres are rationally connected (see Lemma 3.2).

The second application is to Cartier divisors on Mori fibre spaces which are numerically

trivial over the bases.

Theorem 8.2. Let k be an algebraically closed field of characteristic p > 0. Let π : V →
B be a projective k-morphism such that π∗OV = OB , where X is a Q-factorial normal

quasi-projective threefold and B is a smooth curve. Assume that there exists an effective

Q-divisor 1 such that (V,1) is klt and π : V → B is a (KV +1)-Mori fibre space. Let L
be a π-numerically trivial Cartier divisor on V . Then the following hold:

(1) If p > 7, then L ∼π 0.

(2) If p ∈ {3, 5}, then p2L ∼π 0.

(3) If p = 2, then 16L ∼π 0.

Proof. We only prove the theorem in the case when p = 2 since the other cases are similar

and easier. Since the generic fibre VK (B) is a K (B)-surface of del Pezzo type, we have by

Theorem 4.10 that 4L|VK (B) ∼ 0. Therefore, 4L is linearly equivalent to a vertical divisor,

i.e. we have

4L ∼
r∑

i=1

`i Di ,

where `i ∈ Z and Di is a prime divisor such that π(Di ) is a closed point bi .
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Since ρ(V/B) = 1 and V is Q-factorial, all the fibres of π are irreducible. Hence, we

can write π∗(bi ) = ni Di for some ni ∈ Z>0. Let mi be the Cartier index of Di , i.e. the

minimum positive integer m such that m Di is Cartier. Since the divisor π∗(bi ) = ni Di is

Cartier, then there exists ri ∈ Z>0 such that ni = ri mi .

We now prove that ri is a divisor of 4. Since K (B) is a C1-field and the generic fibre is

a surface of del Pezzo type, we conclude by Theorem 6.12 that there exists a curve 0 on

V such that the degree d of the morphism 0→ B is a divisor of 4. By the equation

ri · (mi Di ) ·0 = ni Di ·0 = π
∗(bi ) ·0 = d,

ri is a divisor of 4.

Therefore, it holds that 4mi Di ∼π 0. On the other hand, the divisor 4L =
∑r

i=1 `i Di
is Cartier; hence, we have that `i = si mi for some si ∈ Z. Therefore, it holds that

16L ∼
r∑

i=1

4`i Di ∼

r∑
i=1

si (4mi Di ) ∼π 0,

as desired.

Acknowledgements. We would like to thank P. Cascini, S. Ejiri, A. Fanelli, S. Schröer,
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