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Abstract

Over the last decades the simulations of compressible flows featuring shocks have
been one of the major drivers for developing new computational algorithms and
tools able to compute also complex flow configurations. Nowadays, Computational
fluid dynamics (CFD) solvers are mainly based on shock capturing methods, which
rely on the integral form of the governing equations and can compute all type of
flows, including those with shocks, using the same discretization at all grid points.
Consequently, these methods can be implemented with ease and provide physically
meaningful solutions also for complex flow configurations, features particularly
attractive for CFD community. Although shock capturing methods have been the
subject of development and innovations for more than 40 years, they are plagued by
several numerical problems due to the shocks capture process, such as discontinuities
finite-width, numerical instabilities and reduction of accuracy order in the shock
downstream region, which are still unsolved and probably will never find a solution.
For this reason, there is a renewed interest in shock-fitting techniques: in particular,
these methods explicitly identify the discontinuities within the flow field and compute
them by enforcing the Rankine-Hugoniot jump relations. Because of this modelling,
shocks are represented by zero thickness discontinuities, so that significant advantages
can be gained in terms of solution quality and accuracy improvements. Furthermore,
this class of methods is immune to the numerical problems linked to shock capture
process. Following this research line, the presented Thesis proposes new developments
and advanced applications of shock-fitting techniques, which prove that these methods
are an effective option regarding shock capturing ones in simulating flows with shocks,
able to provide also a better understanding of all the phenomena linked to shock
waves.





vii

Contents

Introduction i

I Generalities 1

1 Mathematical models 3
1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Conservations laws and Navier-Stokes equations . . . . . . . 3
1.1.2 Rankine-Hugoniot relations . . . . . . . . . . . . . . . . . . . 6

2 Numerical models 9
2.1 Shock capturing methods . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Finite Volume schemes . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Fluctuation Splitting schemes . . . . . . . . . . . . . . . . . 16

2.2 Shock-fitting techniques . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 CFD grids and mesh generation 23
3.1 CFD meshes and grid generation methods . . . . . . . . . . . . . . . 23

3.1.1 Structured meshes . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Multiblock grids and overset methods . . . . . . . . . . . . . 26
3.1.3 Unstructured meshes . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Adaptive grids . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.5 Not body-fitted grids: immersed boundary methods analysis 32

3.2 Mesh refinement analysis to assess CFD solution accuracy . . . . . 35

II Recent developments of Shock Fitting techniques 39
UNstructured DIscontinuity FItting (UnDiFi)

4 UnDiFi-2D 41
4.1 UnDiFi-2D: a general description . . . . . . . . . . . . . . . . . . . . 42
4.2 UnDiFi-2D: algorithmic features . . . . . . . . . . . . . . . . . . . . 43
4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Shock formation due to the coalescence of compression waves 49
4.3.2 Steady Mach reflection . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Shock-vortex interaction . . . . . . . . . . . . . . . . . . . . 52

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



viii Contents

5 UnDiFi-3D 57
5.1 UnDiFi-3D: algorithmic features . . . . . . . . . . . . . . . . . . . . 58
5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Hypersonic flow past an hemisphere . . . . . . . . . . . . . . 63
5.2.2 Hypersonic laminar flow past a sphere . . . . . . . . . . . . . 66

5.3 Future Work: an example of shock-shock interaction. . . . . . . . . . 69
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Structured Extrapolated Shock-Fitting (SESF)

6 SESF for 2D high speed flows 73
6.1 SESF algorithm for 2D flows . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Regular shock reflection . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Mach reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 SESF for 3D high speed flows 87
7.1 SESF algorithm for 3D flows . . . . . . . . . . . . . . . . . . . . . . 88

7.1.1 Shock/shock interactions modelling . . . . . . . . . . . . . . . 93
7.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 Supersonic flow past a circular cylinder . . . . . . . . . . . . 95
7.2.2 Regular oblique-shock reflection . . . . . . . . . . . . . . . . . 98

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III Applications 103

8 Shock/boundary layer interactions 105
8.1 Shock/Boundary layer interactions modelling via shock-fitting . . . . 108
8.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.1 Regular oblique-shock reflection . . . . . . . . . . . . . . . . . 113
8.2.2 Hypersonic compression ramp . . . . . . . . . . . . . . . . . . 120
8.2.3 Transonic, turbulent flow past an airfoil . . . . . . . . . . . . 125

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Analysis of the transonic flow past a NACA0012 using a shock-
fitting technique 133
9.1 Transonic fishtail and the three-shock theory (3ST) . . . . . . . . . 135
9.2 Numerical simulations of the transonic fishtail: an unexpected failure 138
9.3 The reasons for the failure . . . . . . . . . . . . . . . . . . . . . . . . 140
9.4 Solutions to the von Neumann paradox . . . . . . . . . . . . . . . . 141

9.4.1 Analysis of the hybrid shock-fitting solutions . . . . . . . . . 144
9.4.2 Analysis of the full fitted shock-fitting solution . . . . . . . . 146

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Contents ix

10 Conclusions and future work 151

11 Appendices 155
11.1 Appendix A. Shock-tangent calculation . . . . . . . . . . . . . . . . . 155
11.2 Appendix B. Order of accuracy study of the SESF extrapolation

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.3 Appendix C. Boundaries in the (M1, σ12) plane. . . . . . . . . . . . . 159

Bibliography 165





i

Introduction

Computational fluid dynamics (CFD) is a branch of fluid mechanics that employs
numerical simulation to predict flows behaviour and solve problems regarding fluids
motion. Specifically, CFD study for high speed flows in aerospace engineering was
initiated in the early 1960s and nowadays aerospace industry is one of the most
prevalent user of CFD tools: as a matter of fact, these solvers are of paramount
importance for designing components and evaluating aerodynamic performance of
flight vehicles and re-entry capsules, such as the drag, lift, noise and thermal loads.
Flow simulation is a tough task, especially when dealing with high speed flows
featuring shocks: in this case, numerical computations demand particular attention
to asses their reliability. As an example, let us consider shock/boundary layer
interactions, which are commonplace in almost every supersonic viscous flow and
especially severe for space vehicles during re-entry manoeuvrers. These interactions
are often the cause of the presence of extended separation regions and localized
heating, thus becoming a critical factor in determining the design of vehicles or
propulsion systems since they could lead to unexpected components failures: such
was the experience on October 1967 of NASA’s X-15-2 research airplane, when flying
at Mach 6.7 [1, 2]. Therefore, it is evident that a correct numerical modelling of the
shock waves is of fundamental importance in order to obtain reliable CFD solutions,
especially when considering complex flow configurations.
Nowadays, CFD commercial solvers are generally based on the so-called shock cap-
turing methods, which rely on the integral form of the governing equations and are
capable of computing all type of flows, including those with shocks, using the same
algorithm at all grid points/cells. As a consequence, shock capturing schemes can
be implemented with ease, a feature particularly attractive for CFD community.
Actually, the widespread use of this class of solvers hides some unsolved problems [3],
especially when the computation of shocked flows is involved. First of all, captured
shocks are characterized by a numerical thickness, which generally spans two or three
computational cells: the width of a captured shock is therefore orders of magnitude
larger than the true physical shock-width. Not only this introduces an error in the
shock position, which is of the order of the local mesh spacing [4], but also the inter-
nal shock-structure is grossly mis-represented [5]: as a matter of fact, cells crossed
by captured shocks are characterized by intermediate states between upstream and
downstream ones, that are clearly unphysical. These states are supposed to be
the origin of numerical artefacts such as the carbuncle phenomenon [5, 3], which is
particularly severe when considering hypersonic flows around blunt bodies [6], or
the production of spurious perturbations. Generally, all these numerical problems
affect the flow field downstream of the shock, thus making the computed CFD
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solution unreliable. Even though many studies focused their attention on factors
that influence these phenomena and tried to find remedies, still no definitive cure
is available. Furthermore, among the shock capturing methods shortcomings, it is
worth mentioning the reduction of accuracy to first order of the shock capturing
scheme, regardless the design accuracy order. Specifically, the spatial order of accu-
racy of the discretisation scheme must be reduced to first order in the neighbourhood
of the discontinuity in order to avoid the appearance of unphysical oscillations of the
flow variables: this is typically achieved by the use of so called limiter functions [7],
non-linear devices that, when sensing the presence of a discontinuity, locally reduce
the design order of the discretisation to first order. However, the capturing scheme
accuracy order deteriorates to first order not only in the immediate neighbourhood
of the captured discontinuity, where limiters are switched on, but in the entire region
downstream of the captured discontinuity, as reported in Ref. [4, 8].
In the last decades, many attempts have been made to overcome shock capturing
drawbacks: some researchers [9, 10] focused on developing multi-dimensional upwind
shock capturing schemes, capable of making the computed solution not sensitive to
the orientation of the cell faces relative to the shock front, since the mis-alignment
between mesh faces and shock front generally causes artificial spurious waves to arise
and to propagate in the shock downstream region, worsening the solution quality.
Nevertheless, even this class of capturing schemes is not entirely exempt from the
problems which plagued the traditional shock capturing methods. A different way
to proceed that can help in improving the quality of shock capturing calculations
consists in coupling the flow solver with an a posteriori mesh adaptation algorithm,
as in Ref [11]. This option could be advantageous for two main reasons: not only
mesh adaptation allows to bring the captured shock width closer to its physical
value thanks to the cells clustering in the vicinity of the discontinuity, but it also
allows to improve the solution quality by aligning the faces of the grid cells with
the shock front, which aims to reduce the arise of spurious waves. However, these
solutions only alleviate the shock capturing problems by reducing their amplitude
and do not remove them completely.
Because of the aforementioned shock capturing troubles, it appears sensible to inves-
tigate a class of computational methods which are alternative to shock capturing,
the so-called shock fitting techniques: specifically, shock fitting methods are able to
overcome all the capturing drawbacks previously described, despite nowadays they
are less popular and used with respect to shock capturing ones. Historically, shock fit-
ting was proposed by Emmons [12] and further developed and made popular starting
from 1960s in the structured grid context by Moretti and co-workers [13]. Modelling
shock-waves via shock fitting consists in locating and tracking the motion of the
discontinuities which are treated as boundaries between regions where a smooth
solution to the governing equations exists. The appropriate jump relations (algebraic
equations connecting the states on either side of the discontinuity and its local speed)
are used to calculate the space–time evolution of the discontinuity, whereas the
flow in the smooth regions can be approximated using any available gas-dynamic
solver. Beside Moretti, other researchers applied this technique to 2D and 3D flows
in the 1970s and 1980s and in the early 1990s (see, for instance, Refs. [14, 15, 16]),
following two different approaches: the boundary shock fitting and the floating shock
fitting. In the first approach [17, 18], shocks are made to coincide with boundaries of
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the multi-block structured grids which compose the computational domain, so that
the enforcement of the jump relations amounts to prescribe a new set of boundary
conditions, but it poses strong limitations for modelling shocks interactions. The
floating shock-fitting version [14, 19] was developed to deal with more complex flow
configurations, including shock/shock and shock/boundary layer [20] interactions,
since in this approach, discontinuities can freely move over a background structured
mesh and the shock-fronts are described by their intersections with the grid-lines:
anyway, these methods are in general very complicated to implement because they
require massive changes within the gas-dynamic solver. In the last century, both
the aforementioned approaches used in association with structured grid solvers
based on the quasi-linear form of the equations, allowed to accurately compute flows
characterised by strong discontinuities using the modest computational resources
available at that time and to provide high quality numerical solutions. Indeed, in
this class of methods shock waves are represented as mathematical discontinuities
featuring null thickness, specifically poly-lines or surfaces, resp. in 2D and 3D space.
As a consequence, by explicitly identifying and computing discontinuities within
the flow field, the carbuncle phenomenon and the generation of spurious waves are
prevented [6] and the design accuracy order is recovered downstream the shocks [21].
Nevertheless, the price to pay is an increasing coding complexity, especially for
dealing with complicated shock patterns. However, in the past years the develop-
ment of shock fitting techniques was interrupted mainly for a reason: the tight link
between shock fitting algorithms and grid topology, that prevented the coding of
general proposed solvers able to compute all kinds of flows, including those featuring
complex shock configurations. Indeed, it must be noticed that, at the very beginning
of CFD, numerical computations were performed on structured grids: therefore, it is
clear that these shock fitting methods had faced the rigid topology of these grids,
which does not lend itself to model complex shock configurations. Moreover, shock
fitting methods were complex to code and required important modifications of the
computational kernel to handle the presence of a shock within the domain: for this
reason, they were progressively abandoned since 1990s.
A turning point in the development of shock fitting methods was marked in 2009,
when Paciorri and Bonfiglioli proposed a new shock fitting algorithm based on
unstructured grids [22], which allows to relieve most of the algorithmic difficulties
that have contributed to the dismissal of the shock fitting technique in favour of the
simpler shock-capturing methods: specifically, this novel technique breaks free from
the limitations imposed by structured grids framework, and it is able to compute
several 2D complex flow configurations by exploiting unstructured meshes flexibility,
also when involving shocks interactions [23] as well as 2D unsteady flows [24]. The
technique described in Ref [22] was further developed and extended to simulate
3D compressible flows with shocks [25], even if in this case some limitations in
shocks interactions modelling still existed. Indeed, in 3D space interacting shocks
are represented by several surfaces, anchored to a line (the interaction line) which
can move, therefore causing surfaces deformations. Consequently, the generation
of shocks surfaces grids and their insertion within the background volume mesh,
as described in Ref. [25], are not trivial tasks and require tailored softwares and
libraries to be coupled to shock fitting algorithms to identify and handle the shock
fronts intersections.
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Thanks to these new developments concerning unstructured shock-fitting techniques,
several research teams worldwide have applied shock-fitting in conjunction with
different discretization techniques including Finite Volume and Finite Element
methods. In particular, the modular approach adopted in the shock-fitting code
designed by Paciorri and Bonfiglioli [22] allows to plug in different gas-dynamic
solvers with a limited coding effort: for instance, a C++ version of the shock-fitting
algorithm proposed by these authors has been coupled to the public-domain CFD
code COOLFluiD [26, 27]. Moreover, in the past years, the shock-fitting technique in
Ref. [23] was coupled also with another gas-dynamic solver, namely NEO, developed
by Ricchiuto [28, 29], with the aim of improving the capability of the shock-fitting al-
gorithm to deal with unsteady flows [30]. More recent developments of the technique
described in Ref. [23] borrow ideas from Shifted Boundary Methods [31], which have
led to the so-called “Extrapolated Discontinuity Tracking” method. Specifically, by
using this technique [32, 33] the fitted (or tracked) discontinuity carves a mesh-less
hole in the computational domain over which it is floating and data transfer between
the discontinuity and the boundaries of the hole relies on extrapolation via truncated
Taylor series expansions. It allows to apply the shock fitting technique without
imposing any constraint on the topology of the mesh and on the data structure of the
underlying flow solver and without requiring complex mesh operations other than
flagging the cells crossed by the discontinuity. This approach was recently extended
also to the structured grids context and gave rise to the Structured Extrapolated
shock-fitting, that will be described in this Thesis.
At the same time, shock-fitting techniques for unstructured grids alternative to
the one proposed in Ref. [22] were developed. The group headed by Jun Liu at
Dalian University of Technology, China, developed the Mixed Capturing and Fitting
Solver by combining a shock-fitting algorithm with an existing shock-capturing,
cell-centered Finite Volume solver using triangular meshes [34, 35, 36, 37]. Shock-
fitting ideas made their way also through the Finite Element community. We refer
to the Streamline Upwind Petrov-Galerkin technique of [38] and the Discontinuous
Galerkin Finite Element methods independently developed by two different research
teams: [39, 40, 41, 42] and [43, 44, 45].
However, even if the introduction of unstructured shock fitting techniques allowed to
overcome the troubles associated to the structured grid context, this class of methods
can not still be considered general as shock capturing one to compute complex shock
patterns: besides the aforementioned limitations in simulating 3D shocks interactions,
there are still problems for handling changes in the shock topology that may occur
in unsteady flows, such as the disappearance of weakening fronts and the appearance
of new fronts at boundaries or the collisions of other fronts as summarized by Glimm
and co-workers [46].
In this Thesis some new developments of shock-fitting techniques will be presented.
Specifically, two parallel paths have been followed: the former covers new advance-
ments of shock-fitting methods in the unstructured grid context, by describing
algorithmic improvements of the shock fitting technique proposed in Ref. [23] for
computing 2D shocked flows and the recent developments of the shock fitting solver
for 3D flows described in Ref. [25]. Specifically, in this case will be emphasised the
implementation within the shock fitting algorithm of software tools based on the
GRUMMP library, developed some years ago by Zaide and Ollivier-Gooch [47], capa-
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ble of not only inserting surfaces describing the shocks fronts within the background
volume mesh, but also of handling these multiple interacting shocks surfaces during
their space/time evolution. The development of these tools represents therefore a
significant forward step for simulating also 3D shocks interactions, that historically
were considered a stumbling block for shock-fitting developments in 3D space.
At the same time, this Thesis proposes novel shock fitting techniques to be im-
plemented in conjunction with structured solvers. Because of the aforementioned
limitations due to the structured meshes topology, in the past years the development
of classical shock fitting techniques on structured grids was progressively abandoned.
Nevertheless, the aforementioned merging of the shock-fitting techniques with the
shifted boundary methods [31] has broken the strong link between computational grid
and fitted shocks and recently it has allowed the development of a new shock-fitting
technique for 2D/3D flows that will be presented in this Thesis. As a matter of fact,
the development of high order structured solvers based on shock fitting could be an
important achievement, since these solvers are the ones that most could take advan-
tage of shock fitting techniques: indeed, these methods allow to provide high-order
of accuracy solutions in the overall flow-field with low numerical error, even using
coarse grids, thus reducing the computational cost. This is of paramount importance
especially for the simulation of turbulent flows through DNS and LES techniques
or in the acoustic direct simulation, where gas-dynamic solvers for structured grids
are more computationally efficient and accurate than unstructured ones: therefore,
these simulations could really gain advantages by shock fitting, since it would avoid
the shortcomings due to the shock capture process.
Moreover, it is worth to underline that shock fitting methods allow not only to
improve solution quality and accuracy, but also to achieve a better understanding
of the physics behind complex shock patterns and interactions. For this reason,
in this Thesis some interesting applications fields of the proposed techniques will
be also provided, such as the investigation of different shock/boundary layer and
shock/shock interactions, to give proof of the understanding capabilities offered by
the shock-fitting techniques. As an example, the transonic flow past a NACA0012,
where shock pattern exhibits a fishtail configuration will be presented. By modelling
the interaction points via shock-fitting, for the first time it was possible to verify that
the conditions of the Von Neumann paradox [48] occur in this shock configuration
and to compute explicitly a solution based on the Guderley’s four-waves model [49].
In view of the advantages stated above, a reappraisal of shock fitting methods is
timely and the development of a new class of high accuracy solvers for both struc-
tured and unstructured grids based on these techniques certainly could represent a
step forward for CFD.

Objectives and Thesis outline

This study focuses on the developments and on the advanced applications of shock-
fitting techniques in order to make them an effective option for simulating compress-
ible flows with shocks with respect to the most popular shock capturing methods.
With this purpose, the presented Thesis illustrates and discusses the recent ad-
vancements of shock-fitting techniques both in structured and unstructured grids
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frameworks, which have been carried on during the PhD program.
Specifically, this Thesis is divided into three Parts. Generalities are provided in
Part I, which is composed of three Chapters: Chapter 1 presents an examination
of the compressible flows governing equations. Afterwards, numerical models for
compressible flows are presented in Chapter 2, where special attention is provided for
introducing shock capturing and shock fitting approaches. Specifically, the former
methods are described by referring to two main categories: finite volume (FV) and
fluctuation splitting (FS) schemes, that will find application in the following chapters.
Moreover, a brief history about the shock-fitting techniques is described in this
Chapter, highlighting also those factors which jeopardized in the past decades the
development of this approach. Since the development of shock fitting technique
has always been strictly linked to the grids used for computing compressible flows,
Chapter 3 gives an overview on the grids used in CFD and mesh generation methods
considered in this Thesis.
Part II presents the different shock fitting techniques developed during the PhD
program and is based on four Chapters. Unstructured shock-fitting techniques are
presented in Chapters 4 and 5, respectively dealing with compressible flows with
shocks in 2D and 3D space. This additional split is required since in the former
case fitted discontinuities are represented by poly-lines in the computational domain,
whereas shocks are modelled using zero thickness, triangulated surfaces for 3D
applications. In each Chapter, will be also included some examples of numerical
simulations performed using both shock capturing and shock fitting methods, in
order to compare the two different modelling approaches regarding solution quality,
accuracy and grid convergence properties.
A similar organization is proposed to present the new developments in the structured
grids framework. Chapter 6 examines a new shock-fitting technique for 2D structured
grids, able to overcome the limitations of the classical shock-fitting schemes in the
structured context. This novel method is extended also for 3D computations in
Chapter 7, where for the first time shock fitting is applied in full fitted mode for
simulating a 3D shock/shock interaction.
Applications of shock fitting techniques are presented in Part III. Specifically, in
Chapter 8 shock/boundary layer interactions computed for the first time by using the
shock fitting technique for unstructured grids described in Chapter 4 are presented:
in particular three different test-cases regarding laminar and turbulent flows are
analyzed and discussed. Chap. 9 provides instead an example of how shock-fitting
can be also considered as a tool to investigate complex shock patterns and shock
interactions topology, referring specifically to a transonic flow past a NACA0012
featuring a fishtail configuration, where conditions for the Von Neumann paradox
occur.
Finally, in Chap. 10 conclusions and future perspective are summarized.
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Part I

Generalities
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Chapter 1

Mathematical models

Contents
1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Conservations laws and Navier-Stokes equations . . . . . 3
1.1.2 Rankine-Hugoniot relations . . . . . . . . . . . . . . . . . 6

1.1 Governing equations

In this Chapter the mathematical models used in this Thesis will be described.
A particular relevance will be given to the conservation laws and the jump rela-
tions, which describe the thermodynamic and kinetic variables behaviour across a
discontinuity. For details, please refer to Ref. [50]

1.1.1 Conservations laws and Navier-Stokes equations

Conservation of mass Let consider a fixed volume V with boundary A and out-
ward normal n, as shown in Fig. 1.1. The volume contains fluid that at time
t and position x has density ρ(x, t) and velocity u(x, t): the integral form of
the conservation of mass states that the rate of change of the mass of fluid in
V equals the mass flux through A. In particular, the mass of fluid per unit
time leaving V through an element of surface area dA is ρu · dA, whereas the
mass of fluid in an element of volume dV is ρdV . Therefore, the integral form
of the mass conservation law is Eq.1.1:

d

dt

∫
V

ρdV = −
∫

A
ρu · n dA. (1.1)

Where the negative sign is due to the outward normal, and hence the integral
measures the outward flow of fluid.

Conservation of momentum Similarly, the integral form of the equation of mo-
mentum conservation asserts that the rate of change of the momentum of the
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Figure 1.1. Arbitrary control volume V

fluid in V , plus the momentum flux on A, equals the total body force f exerted
on the volume V, plus the total surface force T exerted on the surface A

d

dt

∫
V

ρudV +
∫

A
ρu(u · n) dA =

∫
V

ρfdV +
∫

A
TdA. (1.2)

where the dependency of T on n is expressed by means of the stress tensor
T, so that: T = T · n. It is worth to notice, that T takes into account both
the internal stresses due to the fluid pressure p in addition to the stress due to
viscous forces, modelled by the viscous stress tensor τ .

T = −pI + τ (1.3)

By adopting this notation, we obtain the integral form of the momentum
conservation law:

d

dt

∫
V

ρudV +
∫

A
ρu(u · n) dA =

∫
V

ρfdV −
∫

A
p · ndA +

∫
A

τ · ndA. (1.4)

Conservation of energy The equation of energy conservation asserts that the
rate of change of total energy E in V, plus energy flux on A, equals the work
of the body force in V, plus work done by the surface forces over A, plus the
heat flux on A. In particular, the specific total energy E is the sum of internal
energy e and the kinetic energy 1

2u2, thus E = e + 1
2u2. The integral form of

the conservation of energy is:

d

dt

∫
V

ρEdV +
∫

A
ρE(u · n) dA =

∫
V

ρu · fdV −
∫

A
u · (−pI+ τ)ndA −

∫
A

qdA.

(1.5)

The set of integral conservation equations Eqs. 1.1, 1.4, 1.5 represents the Navier-
Stokes (NS) equations, which describe the motion of viscous fluids from a macroscopic
point of view. It is worth to notice that, when dealing with viscous turbulent flows,
as referred in Sec.8, one approach to account for the effects of turbulence is to
time-average the unsteady Navier-Stokes (NS) equations on a time-scale larger than
the turbulence time-scale. Such averaging results in a new set of equations, the so
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called Favre-averaged NS (FANS) equations, which differs from the NS equations
for the presence of the Reynolds’ stress tensor, representing the effects of turbulence
on the averaged flow field. The appearance of this tensor yields a closure problem,
which is solved by adopting an algebraic or differential turbulence model. Making
use of the Boussinesq’s approximation and selecting a differential model, results
in the Favre-averaged equations becoming formally identical to the NS equations
except for two differences: i) the effective viscosity in the momentum and energy
equations, and the thermal conductivity in the energy equations is the sum of laminar
and turbulent contributions, and ii) the addition of one or more turbulence-related
differential equations in the system of conservations laws. In the present work,
the Spalart-Allmaras [51] (S-A) one-equation model for the turbulent viscosity is
considered. Referring to the control volume V, fixed in space and bounded by the
control surface A with inward normal n as shown in Fig. 1.1, the integral form of
the mass, momentum and energy conservation laws and the turbulence transport
equation take the following form:∫

V

∂U
∂t

dV =
∮

A
F · n dA −

∮
A

G · n dA +
∫

V
S dV (1.6)

where U is the vector of conserved variables and F and G represent the inviscid
and viscous fluxes, respectively:

U =


ρ

ρE
ρu
ν̃

 , F =


ρu

ρuH
ρ(u ⊗ u) + pI

ν̃u

 , G = 1
Re


0

u · τ + q
τ

1
σ [(ν + ν̃) ∇ν̃]

 (1.7a)

and ν is the kinematic viscosity. The source term S in Eq. (1.6) has a non-
zero entry only in the last row corresponding to the turbulence transport equation
proposed in Ref. [51]:

St =
(

0, 0, 0t, cb1 [1 − ft2] S̃ν̃ + 1
σ Re

[
cb2 (∇ν̃)2

]
− 1

Re

[
cw1fw − cb1

κ2 ft2

] [
ν̃

d

]2
)

.

(1.7b)
Where the following nomenclature proposed by the authors in Ref. [51] has been
used:

cb1, cb2, cw1 empirical constants in the turbulence model;

fv2, ft2, fw empirical functions in the turbulence model;

κ turbulent kinetic energy;

σ turbulent Prandtl number;

S̃ production term ;

d distance from the wall.
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Specifically, the stress tensor, T, and heat flux vector, q, that appear in the
viscous flux G include both the laminar and turbulent contributions. In particular,
the appearance of the Reynolds number:

Re =
|uref| L

ν
(
Tref

)
in Eqs. (1.7) is a consequence of making all variables dimensionless using a

suitable choice of reference variables. The turbulent variable ν̃ that appears in
Eqs. (1.7) is a scalar quantity related to the kinematic turbulent eddy viscosity νt

via a damping function [51]. As stated before, Eqs. (1.7) are the FANS equations,
whereas the NS equations are retrieved by removing the source term S, the differential
equation associated with the turbulence variable, and setting the effective viscosity
and thermal conductivity to their laminar values. Finally, the Euler equations are
instead recovered by additionally removing the flux vector G, so that:∫

V

∂U
∂t

dV =
∮

∂A
F · n dA (1.8)

The differential form of Eq. 1.8 is obtained by applying the divergence theorem:.

∂U
∂t

+ ∇ · F = 0 (1.9)

1.1.2 Rankine-Hugoniot relations

When a solution is characterized by discontinuities within the domain (weak solution),
the differential form in Eq. 1.9 can be applied to the discontinuity-free sub-domains
delimited by the discontinuities. These regions are connected by the Rankine
Hugoniot relations, which describe the conservation of energy, momentum and mass
across a discontinuity: [52, 53, 54]

wn [[U]] = [[F]] · n (1.10)

where [[·]] denotes the jump of a quantity, with n the normal vector to the dis-
continuity, and with wn the speed of the discontinuity along the direction n. The
Rankine-Hugoniot relations can be expressed also by introducing the velocity com-
ponents along the discontinuity tangential and normal directions, resp. ut and
un = u · n.

[ρun] = wn[ρ] (1.11)
[p + ρun

2] = wn[ρun] (1.12)
[ρunut] = wn[ρut] (1.13)

[Eun + pun] = wn[E] (1.14)

In particular, these relations model two different types of discontinuities:

• slip-lines (or slip-streams) with respect to which the (relative) normal flow
speed is zero and as a consequence, un − wn = 0. Moreover, in this case one
finds trivially that there is no jump in the pressure [p] = 0 and along the
normal direction [un] = 0.
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• shock waves for which the flow goes into the discontinuity. By assuming
un − wn ̸= 0, Eqs. 1.11- 1.14 are expressed by:

[ρun] = wn[ρ] (1.15)
[p + ρun

2] = wn[ρun] (1.16)
[ut] = 0 (1.17)

[Eun + pun] = wn[E] (1.18)

It is worth to underline that this treatment is exact if the flow is governed by the Euler
equations: when the effects of viscosity are accounted for, the transition between
the pre- and post-shock states takes place over a finite, albeit very thin, region of
space. However, in laminar high-speed flows, whenever the Reynolds number is
sufficiently high, “the shock thickness can be neglected and a sharp discontinuity,
satisfying the Rankine-Hugoniot conditions, can be assumed in a flow otherwise
satisfying the Navier-Stokes equations”[55]. The first two test-cases examined in
Sect. 8.2 fall into this regime and, therefore, the R-H jump conditions (1.10) will
be used across all shock-waves, without trying to resolve their internal structure.
Finally, when dealing with turbulent flows by solving the FANS equations, as in
Sect. 8.2.3, it would be necessary to take into account that: “the classical jump
conditions hold for the instantaneous flow and are no longer exact for the mean
flow” [56]. Indeed, as shown in [56], the jump relations that are derived from the
FANS equations, except for mass conservation, not only involve the jumps of the
mean flow quantities, as in Eq. (1.10), but also those of the turbulent fluxes, and
these latter require modelling. Although it may be possible to model at least some
of these extra-terms even using a 1-equation turbulence model, this is left for future
work and the simplified approach used here consists in neglecting the jumps of the
turbulent fluxes: indeed, as far as the turbulent variable used in the S-A model
is concerned, this Thesis adopt the simplified approach suggested by the model
developers [57], which consists in carrying the turbulent viscosity unchanged through
the shock. Therefore Eq. (1.10) is used also in the turbulent case by adding following
jump relation for the eddy viscosity, which amounts to set the shock-downstream
value of the turbulent kinematic viscosity equal to the corresponding shock-upstream
value:

[ν̃] = 0 (1.19)
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Chapter 2

Numerical models

High speed flows are often characterised by the presence of shock waves, which play
an important role that affects the overall flow behaviour: we could mention numerous
examples testifying the importance of shock waves and their effects. Among these
are: the flow around space vehicles re-entering the atmosphere at hypersonic speeds,
the buffeting phenomenon induced by oscillating shock waves on transonic wings
and turbo-machinery blades, shock-induced noise and shock-induced boundary-
layer separation that occur inside highly over-expanded nozzles. It is therefore
not surprising that computing shocks correctly has always been one of the most
important issues in the numerical simulation of compressible flows. More in general,
this task can be achieved using mainly two different approaches: shock-fitting (S-F)
and shock capturing (S-C). The former was developed inside gas-dynamic solvers
based on structured grids starting from the 1960s: it consists in identifying and
tracking the motion of the discontinuities, which are treated as internal boundaries
of zero thickness which bound regions of the flow-field where a continuous solution
of the governing governing partial differential equations (PDEs) exists. Until the
early 1990s, S-F techniques, used in conjunction with numerical schemes based
on the quasi-linear equations, allowed to accurately compute flows with strong
discontinuities using the modest computational resources available at that time(see,
for instance, Refs. [58, 14, 15, 16]. On the other hand, they required a significant
coding effort especially when dealing with shock-shock interactions. Furthermore,
in the 1990s the strong growth in computing resources promote the development
of modern S-C schemes, which are built upon the integral conservation law form
of the governing equations. Historically, S-C methods made their appearance in
1950s [59, 60]: in particular, in 1959 Godunov [61] proposed a monotone scheme
based on the assumption that the flow variables within each computing cell are
constant and on the solution of the Riemann problem as applied to flux calculations.
In later years, this scheme was further developed and gained particularly popularity
in the Soviet Union [62], whereas it became widely known in Western countries
with the appearance of its high-order extensions, as the one proposed by Van Leer
in Ref. [63]. The following years saw the active development of high order shock-
capturing methods based on Godunov approach [64, 65], which can be implemented
with ease and are able to provide physically meaningful solutions also for complex
flow configurations, features particularly appreciated by the CFD community. For
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this reason the interest in S-F techniques progressively diminished, since they were
considered too complex and not general enough as S-C schemes. Although S-C
methods have been the subject of development and innovations for more than 30
years, they are plagued by several numerical problems, especially around shocks.
Nevertheless, captured shocks always have a thickness of two or more mesh cells
which worsen the solution quality; it is important to underline that this thickness is
a product of the numerical method and has nothing to do with the physical thickness
of the shock wave. In order to bring the numerical thickness of the captured wave
closer to its physical size, mesh refinement in the shock normal direction is needed,
which inevitably causes an increase in computational cost. Also, the solution states
computed in the cells inside this region are unphysical, and this is believed to be the
origin [5] of some numerical artefacts such as the carbuncle phenomenon [6], which is
particularly severe when considering hypersonic flows around blunt bodies [6], or the
production of spurious perturbations. Moreover, numerical computations obtained
by means of S-C schemes are generally characterized by problems concerning the
stability, the accuracy and the quality of the captured solutions [3]. The efforts
of many researchers [9, 10] have been focussed on counteracting the flaws and
shortcomings of the S-C methods, which however have not been completely overcome
and probably will never find a definitive cure. S-F techniques, on the contrary, does
not suffer from these numerical problems due to the enforcement of the R-H relations
to compute discontinuities: for this reason, the developments of S-F techniques could
open up to several possibilities for CFD simulations regarding aerospace applications.

2.1 Shock capturing methods

As previously stated, S-C methods are based on the integral form of the governing
equations reported in Chap. 1: the computation of all flow types, including those
with shocks, is performed using the same discretization of the conservation law form
of the governing equations at all grid cells. This implies coding simplicity, since a
single numerical scheme is used and the same set of operations is repeated within
all control volumes of the mesh, also when dealing with complex flow configurations.
For this reason, nowadays S-C schemes enjoy great popularity among the CFD
community. In the proposed Thesis, mainly two classes of S-C schemes will be
considered and here briefly described: the Finite Volume (FV) and the Fluctuation
Splitting (FS) schemes.

2.1.1 Finite Volume schemes

In the finite volume method, the discretized unknowns are referred to the average
value in each cell. In order to illustrate the main features of the Finite Volume
method, we can consider a 1D system described by the Euler equations (Eq. 1.9).
We can now discretize the spatial domain into N computing cells Ij = [xj− 1

2
, xj+ 1

2
]

of size h = xj+ 1
2

− xj− 1
2
, with i = 1,....,N. We also define a control volume as

V = Ijx[tn, tn+1], as shown in Fig. 2.1. By integrating Eq. 1.9 over the space-time
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Figure 2.1. Finite volume methods: control volume example for a 1D spatial domain

rectangular domain Ij , we obtain:∫ tn+1

tn

∫ x
j+ 1

2

x
j− 1

2

∂U

∂t
+ ∂F

∂x
dxdt = 0 (2.1)

That can be rewritten as:∫ x
j+ 1

2

x
j− 1

2

[U(x, tn+1) − U(x, tn)]dx +
∫ tn+1

tn
[F (U(x

j+ 1
2

,t)) − F (U(x
j− 1

2
,t))]dt = 0 (2.2)

Eq. 2.2 represents the integral form of the Euler equations. At this point we define
the average integral values of U as:

Ūn
j = 1

h

∫ x
j+ 1

2

x
j− 1

2

U(x, tn)dx (2.3)

In a similar way, the time average value of the numerical flux is given by Eq. 2.4,
where the time step k is defined by k = tn+1 − tn

F̄ n
j± 1

2
= 1

k

∫ tn+1

tn
F (U(x

j± 1
2

,t))dt (2.4)

According to these new definitions, Eq. 2.2 becomes:

Ūn+1
j = Ūn

j − k

h
(F̄ n

j+ 1
2

− F̄ n
j− 1

2
) (2.5)

It is important to notice that no approximations have been made so far, indeed
Eq. 2.5 is not a numerical scheme. At this point, different numerical algorithms can
then be devised from Eq. 2.5 according to the method used to calculate the fluxes
F n

j+ 1
2

and F n
j− 1

2
at each interface. Anyway, the numerical flux evaluation in Eq. 2.4

involves the computation of the integral of Fj± 1
2

over the interfaces xj± 1
2
, so that the

knowledge of the solution U(x
j± 1

2
,t) is also required for each t ∈ [tn, tn+1]. Godunov

methods compute these fluxes by solving Riemann problems at the interfaces: indeed,
at the interface between adjacent cells the state variables Ūj manifest a jump as
highlighted in Fig. 2.2a, thus generating a sequence of local Riemann problems.
In particular, left (ŪL) and right (ŪR) states for each Riemann problem can be
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determined by defining the solution at the interface in each cell: the procedure that
allows to approximate the solution at the cell interfaces by knowing the solution
cell average value is referred as reconstruction. As an example, Godunov first
order method, which was introduce in 1959 [61], is based on a piecewise constant
reconstruction, so that the approximate solution at time tn is constant in each cell,
as shown in Fig. 2.2a.

(a) Finite volume methods: piecewise re-
construction in Godunov first order
method

(b) Finite volume methods: Riemann
problem solution at interface xj+ 1

2
and time tn

Figure 2.2. Finite Volume methods: Godunov scheme

Moreover, since the solution to the Riemann problem is self-similar (i.e. it does
not depend on x and t separately but only on

x−x
j± 1

2
t−tn ), the solution for U at xj± 1

2
is

time independent, so that:

Ū(x
j± 1

2
,t) = U(x

j± 1
2

,tn)

It is no longer true whether the waves originating from the adjacent interfaces reaches
the interface. Waves interactions within cell Ij is therefore avoided by imposing the
following limitation on the time step k:

k ≤ h

λmax
(2.6)

where λmax is the maximum wave speed: specifically, Eq. 2.6 represents the so called
Courant, Friedrichs, Lewy condition, also known as CFL condition.
As a consequence of the Riemann self similarity property, the integral in Eq. 2.4 is
drastically simplified:

F̄ n
j± 1

2
= F̄ (U(xj± 1

2
, tn)

For this reason, the evaluation of the numerical flux at the interfaces requires only
the knowledge of the solution at the interfaces. This task can be achieved by using
two different methods for solving each local Riemann problem: the former regards
the use of the exact Riemann solver, such as the one preposed by Gottlieb and
Groth [66], that however requires computationally expensive iterative processes when
the Euler governing equations are considered. An alternative is the approximated
Riemann solver, as proposed by Roe [67], where the governing equations are locally
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linearized and then the associated Riemann problem is solved exactly. Once the
boundary fluxes are evaluated, it is possible to advance the solution to the next time
step according to Eq. 2.5.
As stated before, the aforementioned Godunov scheme, based on piece wise constant
reconstruction, is only first order accurate. The extension to higher order of accuracy
is achieved by replacing piecewise constant with piecewise polynomial reconstructions:
as an example, Van Leer [63] obtained second order accuracy by using monotonic
piecewise linear slopes for cell reconstruction, whereas the the piecewise parabolic
method (PPM) of Colella and Woodward [68] provides third-order accuracy. More
in general, the major steps of a generic Finite Volume method can be summarized
as follows:

1. Reconstruction process for evaluating the solution at cell interfaces

2. Solution of the local Riemann problem at each cell interfaces

3. March the solution in time from time t to time t + kt

It is worth to provide some details regarding how higher order of accuracy
Godunov schemes are developed. As previously stated, for instance second order of
accuracy is achieved when using a piecewise linear reconstruction, such as:

U(x,tn) = Ūn
j + sn

j (x − xj) where x ∈ [xj− 1
2
, xj+ 1

2
] (2.7)

where sn
j represents the slope of the piecewise linear reconstruction in Ij . Since

by using the reconstruction process in Eq. 2.7, the solution at the interface is time
dependent, the Riemann problem left and right states are no more uniform and
therefore in this case a generalized Riemann problem must be solved. Multiple
choices are available for defining sn

j , so that the formula used to compute this
parameter characterizes different numerical schemes: in particular, the choice sn

j = 0
provides the previously described Godunov first order scheme. Possible alternatives
can be based on:

forward differences formula: sn
j = Ūn

j+1−Ūn
j

h

backward differences formula: sn
j = Ūn

j −Ūn
j−1

h

centred differences formula: sn
j = Ūn

j+1−Ūn
j−1

2h

However, whether the solution features a discontinuity, the aforementioned expres-
sions can lead to oscillations around the discontinuity. For this reasons, in general
sn

j is defined by using functions, namely slope limiter functions [7], able to prevent
spurious oscillations at discontinuities by avoiding cells crossed by shocks for evalu-
ating sn

j . One of the simplest choices is given by the use of the minmod function as
in Eq. 2.8, which is able to switch between a forward and a backward formula in
order to employ the slope having a smaller magnitude:

sn
j = 1

h
minmod(Ūn

j+1 − Ūn
j , Ūn

j − Ūn
j−1) (2.8)
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where:

minmod(x, y) =


x if |x| ≤ |y| for xy ≥ 0
y if |x| > |y| for xy > 0
0 for xy < 0

(2.9)

Specifically, the choice based on the minmod slope limiter has been implemented
within the AFFS gas-dynamic solver [69, 70] for 2D/3D flows on structured grids,
an in-house shock capturing code that will be widely applied for computing different
high speed shocked flows configurations in Chapter 6 and 7.
Anyway, whether the two slopes in Eq. 2.8 have opposite signs, as occur while
crossing discontinuities or sharp gradients, sn

j is set equal to zero, so that the order
of the spatial accuracy is locally reduced to first order. In order to overcome this
drawback, different alternatives for constructing uniformly high-order accurate shock-
capturing schemes have been developed. As an example, the family of essentially non
oscillatory (ENO) schemes [64] employs polynomials with adaptive stencils in order
to achieve high-order reconstruction: specifically, since different stencils are available
for reconstructing the solution at the interfaces, ENO schemes select that one which
avoids as much as possible interpolation across discontinuities, thus minimizing
spurious oscillations [71]. Specifically, the selection criterion is to compare the local
smoothness of the reconstruction polynomials, measured by divided differences: as a
consequence, ENO schemes rely on several logical operations, which in general imply
an higher computational cost. An alternative is provided by the class of the weighted
essentially-non-oscillatory (WENO) schemes, which were first introduced by Liu
[65] and further generalized and improved by Jiang and Shu [72]. The basic idea of
WENO approximation is the following: instead of using only one of the candidate
stencils to form the reconstruction, as using the ENO approach, one uses a convex
combination of all of them to form a large stencil [73]. Specifically, the available
stencils are combined using weights selected to achieve maximum formal order of
accuracy in smooth regions, and assign (nearly) zero weight to reconstructions on
stencils crossed by discontinuities, as described in Ref. [71]. WENO schemes are in
general characterized by high accuracy and robustness, even if the large number
floating point operations required for the evaluation of the smoothness measurements
makes WENO schemes computationally expensive.

Finite volume methods previously described can be extended with ease to higher
dimensionality. As an example, let us consider a 2D case. For the sake of simplicity,
we can consider a Cartesian computational grid characterized by uniform spacing ∆x
and ∆y, as proposed in Ref. [74]. Elementary computational cells of rectangular shape
centred on xi = i∆x and yj = j∆y are referred as Ci,j = (xi− 1

2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
),

an example of which is provided by Fig. 2.3.

Therefore, in this case the integral of the Euler equations (Eq. 1.9) over the
domain Ci,j × (tn, tn+1) is given by Eq. 2.10, where the numerical flux F components
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Figure 2.3. Cartesian control volume Ci,j

f and g along the Cartesian axis have been used, so that ∇F = ∂f
∂x + ∂g

∂y :∫
Ci,j

U(x, y, tn+1) − U(x, y, tn)dxdy =
∫ tn+1

tn
(
∫ y

j+ 1
2

y
j− 1

2

f(U(x
i− 1

2
,y,t)) − f(U(x

i+ 1
2

,y,t)) dy +

∫ x
i+ 1

2

x
i− 1

2

g(U(x,y
j− 1

2
,t)) − g(U(x,y

j+ 1
2

,t)) dx) dt

(2.10)
Let us introduce the cell average values of U(x,y,t), where ACi,j = ∆x∆y is the

area of the elementary cell Ci,j . In particular, at time level tn, it amounts to say:

Ūn
i,j = 1

ACi,j

∫
Ci,j

U(x, y, tn)dxdy (2.11)

And the time average values for the numerical flux components, which are defined
as follows:

F̄ n
i± 1

2 ,j
= 1

k∆y

∫ tn+1

tn

∫ y
j+ 1

2

y
j− 1

2

f(U(x
i± 1

2
,y,t))dt

Ḡn
i,j± 1

2
= 1

k∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

g(U(x,y
j± 1

2
,t))dt

By doing so, the fully discrete scheme for the updating of the average vector of
conserved variables at the new time level tn+1 becomes:

Ūn+1
i,j = Ūn

i,j − k

∆x
(F̄ n

i+ 1
2 ,j

− F̄ n
i− 1

2 ,j
) − k

∆y
(Ḡn

i,j+ 1
2

− Ḡn
i,j− 1

2
) (2.12)

As stated for the 1D case, in order to advance the solution in time, the compu-
tation of the integrals of F̄ n

i± 1
2 ,j

and Ḡn
i,j± 1

2
is required. Also in this case, it can be
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achieved by solving the Riemann problems occurring at each corner of cell Ci,j , as
described in Ref. [74, 75].

2.1.2 Fluctuation Splitting schemes

A different class of numerical methods considers Residual Distribution (RD) or
Fluctuation Splitting (FS) schemes [76, 77]: in its most classical formulation, the
RD approach provides discrete approximations of the compressible Euler equations
on simplicial grids, starting from values of the dependent variables stored at the
vertices of the mesh. The second order variant of the methods exploits a classical
continuous piece-wise linear finite element interpolation of the unknowns. The main
idea behind these methods is summarized in Fig. 2.4: discrete equations for the
steady state values of the unknowns are assembled over each element. The steady
solution can be obtained as the limit of the (pseudo-)time iteration:

|Ci|
Un+1 − Un

∆t
+
∑
T ∋i

ΦT
i = B.C.s (2.13)

with ∆t a (pseudo-)time step, and |Ci| usually taken as the area of the median dual
obtained joining the gravity centres of the cells surrounding i to the mid-points of
the edges running into the node (the polygonal-shaped boundaries in Fig. 2.4). The
nodal fluctuations (or nodal residuals) verify in each triangle, T the consistency
constraint: ∑

j∈T

ΦT
j = ΦT :=

∫
T

∇ · F (Uh) dV (2.14)

In Eq. (2.13) the right hand side represents the boundary condition terms, which are
left out of the discussion. Several design criteria exist for (2.13)-(2.14), impacting
both the practical evaluation of the element fluctuation (or residual) ΦT , as well as
the definition of the nodal residuals (2.13). Among the most important we mention:

Φ
3

Φ
2

Φ
1

(a) The flux balance (or cell residual)
of triangle T is scattered among its
vertices.

Φ
i

Φ
i

Φ
i

Φ
i

Φ
i

T
1

T
2

T
3

T
4

T
5

(b) Grid-point i gathers the fractions of
cell residuals from the surrounding
triangles.

Figure 2.4. Residual distribution concept.
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Conservation The consistency condition (2.14) implies conservation if the evalua-
tion of the element residual is such that the equality:

ΦT =
∮

∂T

F
(
Uh
)

· n dS (2.15)

holds for some continuous approximation of the normal flux. The condition
above can be shown to be essential for solutions of scheme (2.13)-(2.14) to
converge to weak solutions [78, 79]. In practice there exist two approaches to
fulfill this condition. The first is to introduce a local conservative linearization
of the equations. For the Euler equations with perfect gas equation of state,
this can be achieved by means of a multi-dimensional extension of Roe’s lin-
earization [67, 80]. This is the approach used in EulFS [81], which also uses
the conservative linearization to evaluate all quantities necessary for the split-
ting. In alternative, one can compute the element residual by approximating
directly the contour integral on ∂T by some quadrature formula, and with
some assumption on the (continuous) polynomial interpolation used to perform
the flux evaluation in quadrature points [82, 83]. This is the formulation
implemented in NEO [84, 85], which makes use of a set of physical variables
(pressure, density, velocity) for both the interpolation, and the averaging of
the flux Jacobians where necessary.

Accuracy The consistency/truncation error condition originally introduced in [86]
(see also [77, 76]) provides a necessary condition for second order of accuracy.
Schemes verifying this condition at steady state can be generally cast in a
FEM like form:

ΦT
i =

∫
Ω

ωωωi∇ · F
(
Uh
)

dV
∑
j∈T

ωωωj

∣∣
T

= III (2.16)

where ωωωi is a bounded test function, and the second relation equivalent to the
consistency condition (2.14).

Monotonicity The theory of positive coefficient schemes has been used systemati-
cally to study these schemes in the scalar case, proving a discrete maximum
principle equivalent to the preservation in time of the initial bounds on the
discrete solution (cf. [77] and references therein). Formal matrix generaliza-
tions of this condition have been considered in several works [87, 88]. Linear
monotone schemes are only first order accurate, and several different non-
linear approaches exist to combine second (or higher) order of accuracy with a
monotonicity preserving property.

Upwinding and multidimensional upwinding A bias of the residual distribu-
tion in the direction of propagation of the information is often present. This
notion is clear in one space dimension [67], and a geometrical generalization to
the multi-dimensional case can be provided for scalar problems on linear finite
elements [89, 90, 91], see also [77]. For multidimensional systems, this notion
becomes less clear, unless one focuses on steady two-dimensional supersonic
flows for which exact decompositions in scalar waves exist [81, 92].
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The aforementioned FS approach lies behind the gas-dynamic solvers EulFS and
NEO, which will be widely used in conjunction with the unstructured S-F technique
proposed in Sec. 4 and that are briefly described below:

EulFS

The EULFS code is an in-house, unstructured CFD solver that has been developed
over the last 20 years by Aldo Bonfiglioli (see [81] for a detailed description). This
tool is able to work in both 2D and 3D space and stores the solution at the vertices
of triangles, in 2D, and tetrahedra, in 3D. In both cases, the solution is assumed to
vary linearly and continuously in space. The inviscid cell fluctuation ϕe is evaluated
over each triangular/tetrahedral element e by means of a conservative linearization
[93, 67] based on the parameter vector Z = (√ρ,

√
ρH,

√
ρu,

√
ρv)T and scattered

to the element vertices using signals ϕe
i . Within a cell e, the signals have to sum up

to the net flux for conservation,
∑

i∈e ϕe
i = ϕe. The different Fluctuation Splitting

schemes proposed in the literature differ by the way cell residuals are split into
signals. The schemes that may used are several and based on the different features
that they present. Starting from a monotonicity preserving but first-order-accurate
scheme, named N scheme, and a second-order accurate, which may lead to unphysical
oscillations in the neighbourhood of a captured discontinuity, called LDA scheme;
EULFS is also provided with a non-linear scheme, which captures discontinuities
monotically and preserves second order of accuracy in smooth regions, that blends
the linear N and LDA schemes in such a way that the former is activated only where
discontinuities occur. The blend is based on a smoothness sensor that makes the
new scheme non-linear.

NEO

The NEO code has been developed by Mario Ricchiuto [28] and has been mainly used
to study time-dependent problems. It is based on a different formulation aimed at
designing explicit Runge-Kutta residual distribution schemes exhaustively described
in [28]. This explicit approach is based on three main ingredients: first recast the RD
discretization as a stabilized Galerkin scheme, then use a shifted time discretization
in the stabilization operator, and lastly apply high order mass lumping on the
Galerkin component of the discretization. In particular, this approach turned out to
be very useful in simulating unsteady flows by coupling NEO with the presented
shock-fitting technique. Some of the results obtained from this work have been
published in the chapter [24], whose contributions showed very promising results in
the development of the unsteady shock-fitting version. The computations shown in
the chapter show the possibility of using the aforementioned linear first-(monotone)
and second-order N and LDA schemes, which are based on a multidimensional
upwind distribution of the cell residual, their non-linear blend (B scheme), and two
non-upwind methods. In particular, the explicit predictor-corrector formulation of
the second order linear Streamline-Upwind (SU) method proposed in [28] and the
nonlinear blended central (Bc) discretization obtained when blending the SU method
with a limited Lax-Friedrich’s distribution.
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2.2 Shock-fitting techniques
S-F techniques, as conceived by Gino Moretti and his collaborators starting in the
1960s, have been originally developed within the structured-grid framework with two
different variants blossoming over the years: “boundary” [13] and “floating” [14, 19]
S-F. In the first approach, the shock is made to coincide with one of the boundaries of
the computational domain so that the enforcement of the R-H jump relations amounts
to prescribe boundary conditions. When the shock moves, it causes a deformation
of the entire block grid, which can be remeshed by modifying the nodal distribution
along the coordinate line in the shock normal direction, as highlighted in Fig. 2.5. It

Figure 2.5. Boundary S-F: grid deformation during shock motion.

is evident that the boundary S-F technique is quite simple to implement in existing
gas-dynamic solvers, since it only requires the coding of a boundary condition that
accounts for the presence of the fitted shock and no other change is necessary inside
the computational kernel of the solver. For this reason, the application of boundary
S-F techniques was particularly appreciated to compute high speed flows around
blunt bodies [17, 18, 94]. Over the years, some researchers applied boundary S-F
techniques also to different flow configurations [95, 96]. However, boundary S-F has
clearly strong topological limitations inherent in the use of structured multi-block
grids, especially when shocks interactions occur within the flow-field: moreover, it is
not possible to model those discontinuities which arise when the solution advances in
time. The floating S-F version [14, 19] was developed to deal with more complex flow
configurations, including shock/shock and shock/boundary layer [20] interactions.
In this approach, discontinuities can freely move over a background structured
mesh and the shock-fronts are described by their intersections with the grid-lines,
as illustrated in Fig. 2.6. Specific procedures are required to move shock-points
along the grid according to computed shock velocity, detect the formation of new
shocks [97, 98] and the disappearance of shocks as they weaken. Even though the
floating S-F approach allows to overcome most of the limitations incurred by the
boundary S-F, it is very complex to code as it requires to modify the computational
stencil in the neighbourhood of the floating discontinuities to avoid taking differences
across the discontinuity, see e.g.[99]. Front-tracking (F-T) methods [100, 101, 102],
as conceived by James Glimm and collaborators, have some similarities with floating
S-F. The F-T approach of Klingenberg et al. [103] involved solving the flow equations
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Figure 2.6. Floating S-F: shock fronts and interaction point description.

on both sides of the discontinuity never using the data on the front, and use ghost
states at intersections to obtain finite difference expressions to evolve the closest
points. This approach has many common points with classical well known cut cell
approaches, and introduces small cells which may degrade the accuracy and stability
(CFL condition) of the method (cf. e.g. [104] and references therein). Similar
approaches had also been followed by other researchers [105, 106, 107]. All these
techniques require quite extensive local geometrical operations to side step the small
cut cell issue. In 2009 Paciorri and Bonfiglioli [22] introduced a new, unstructured-
grid S-F technique that takes advantage of the geometrical flexibility offered by
unstructured meshes and combines features of both the boundary and floating S-F
algorithms developed in the structured-grid setting. This new unstructured-grid
S-F technique, which allows to overcome at least some of the difficulties incurred
by the traditional S-F/F-T methods, has been further improved in recent years by
making it capable of dealing with multiple interacting discontinuities [23], unsteady
2-D flows [30, 24] and shock/boundary-layer interactions [108], as will be widely
discuss in Sec. 8. Most of the aforementioned developments have also been included
in an open-source platform [109] that will be presented in Chapter 4, whereas the
extension of this technique to 3D flows will be subject of Chapter 5. In recent years
the spreading of the unstructured S-F methods sparked a renewed interest towards
S-F/F-T techniques, which have been applied by several research teams worldwide
in conjunction with different discretization techniques including Finite Volume
(FV) and Finite Element (FE) methods. The group headed by Jun Liu at Dalian
University of Technology, China, developed the Mixed Capturing and Fitting Solver
(MCFS) by combining a shock-fitting algorithm with an existing shock-capturing,
cell-centered FV solver using triangular meshes [34, 35, 36, 37]. S-F/F-T ideas made
their way also through the FE community, as proposed by the Streamline Upwind
Petrov-Galerkin (SUPG) technique of [38] and the Discontinuous Galerkin (DG) FE
methods independently developed by two different research teams: [39, 40, 41, 42]
and [43, 44, 45]. All three aforementioned techniques simultaneously solve for the
location of the grid-points, in addition to the flow variables, to constrain certain edges
of the tessellation to be aligned with the discontinuities. The use of shape-functions
that are continuous across the element interfaces, which is the case with SUPG,
or discontinuous, such as in DG, has implications on how discontinuities are fitted.
In the SUPG-FE algorithm of [38] the discontinuities are internal boundaries of
zero thickness: by doing so, a finite jump in the dependent variables takes place
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while crossing the discontinuity. On the other hand, numerical methods that employ
a data representation which is discontinuous across the cell interfaces, which is
the case with DG-FEM [110, 111, 112], but also with cell-centred FV methods,
allow to fit discontinuities as a collection of edges of the mesh, without introducing
internal boundaries. Regardless of the chosen approach, in all the aforementioned
unstructured-grid S-F/F-T techniques the mesh has to be modified, either locally
or globally and in a (pseudo) time-dependent fashion, to follow the motion of the
discontinuities. This may not always be an easy task from the meshing view-point,
especially when dealing with complicated shock interactions and/or 3D flows, in
which case it may also be computationally costly. For these reasons, Ciallella et al.
have recently developed the extrapolated DIscontinuity Tracking (eDIT) technique,
which combines the unstructured S-F technique developed by [22] with the shifted
boundary method by [31]. In eDIT [32, 33] the fitted (or tracked) discontinuity
carves a mesh-less hole in the computational domain over which it is floating and
data transfer between the discontinuity and the boundaries of the hole relies on
extrapolation via truncated Taylor series expansions. This approach allows to
retain high-order convergence properties without imposing any constraint on the
topology of the mesh, and on the data structure of the underlying flow solver and
without requiring complex mesh operations other than flagging the cells crossed by
the discontinuity. This technique was extended also to structured grids and gave
rise to the Structured Extrapolated S-F (SESF), that will be described in detail
in Chapters 6 and 7, and was recently applied to compute 2D/3D high speed
flows with shocks [113, 114]: as a matter of fact, one of the main advantages of
this new technique is the capability to compute shock waves and the adjacent flow
areas without re-meshing around the shock, breaking the strong link between grid
topology and shock position that prevented the development of S-F techniques in
the structured grid framework. Indeed, for boundary S-F, the fitted shocks must
always be part of the computational grid, limiting the application of S-F only to
simple flows and structured solvers. Moreover, in the floating SF schemes is required
a change of stencil in the gas-dynamic solver to avoid that cells crossed by the shock
waves are involved in the computation. On the other hand, it should be noticed that
for implementing SESF almost no extra coding is needed in the gas-dynamic solver:
indeed, if the solver is able to treat cell blanking, it can be considered as a black-box
by the S-F algorithm, which only takes care of giving an input solution and the
blanked elements that must be excluded from the computation. This algorithmic
flexibility greatly simplifies the coding effort that characterized the floating S-F,
and allows to handle flows with complex shock patterns. Therefore, the structured
extrapolated S-F technique can be considered as an important achievement since
structured solvers are the ones that most can take advantage of S-F techniques.
Indeed, these solvers are still very much in use today for simulations of turbulent
flows (through DNS and LES) and acoustics since they are more computationally
efficient and accurate than the unstructured ones: therefore, these simulations could
really benefit from a more accurate and efficient shock modelling free of all those
problems associated to the capturing process.
Thank to these recent developments, some of which will be presented in the following
Chapters, S-F techniques are bidding to be an effective option regarding the S-C
methods in simulating flows with shocks.
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Chapter 3

CFD grids and mesh generation
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A preliminary step for performing CFD numerical simulations is the discretization
of the domain of interest: in particular, we define a mesh as a subdivision of the
geometric domain into smaller simple shapes, such as quadrilaterals and triangles in
2D space or hexahedra and tetrahedra for 3D applications. Anyway, when complex
geometries are considered, domain decomposition process is not trivial, and several
challenges must be faced to achieve this goal: as noticed by Baker in Ref. [115], due
to these implications, mesh generation became progressively a discipline in its own,
borrowing ideas from several fields, as mathematics and computer science. Indeed,
over the last 50 years many studies have been led regarding the development of
new methods for generating grids [116, 117, 118, 119] as well as the effects of the
computational mesh on CFD solutions quality and accuracy [115, 120, 121] and
nowadays it is still a very active area of research and development. This Chapter
aims to provide a summary regarding the types of grids commonly used for CFD
computations, paying also particular attention on the most popular mesh generation
techniques. At the very least, this Chapter provides a theoretical framework that
allows to evaluate how mesh refinement is related to CFD solution error, in order to
further investigate the relationship between solution accuracy and grid properties.

3.1 CFD meshes and grid generation methods

A basic classification for the grids used for CFD applications is based on the topology
of the elements that fill the computational domain and the mesh data organization.
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According to this sorting, mainly two categories can be defined: structured and
unstructured meshes. The former are composed by cells which are well ordered,
and a simple scheme (e.g., I,J,K indices) can be used to label elements and identify
neighbouring cells. An alternative is represented by unstructured grids, where the
elements structure is arbitrary and therefore cells connectivity must be defined and
stored. In the following subsections these two classes of grids are widely discussed,
specifically referring to their advantages and disadvantages, and an overview about
the grids generation methods commonly use is also provided.

3.1.1 Structured meshes

Structured grids are characterized by elements (quadrilaterals for a surface grid,
hexahedra for a volume grid) are arranged in an IxJ (or IxJxK in 3D space) array
where I, J, and K refer to the grid’s dimensions, as shown in Fig. 3.1. Because of their
structure, it was possible to easily identify the neighbouring cells adjacent to each
element by increasing or diminishing the indices values: consequently, structured
CFD solvers are characterized by less memory usage, since they have no need to
store the neighbour connectivity information. This feature was well suited to the
modest computing resources available at dawn of CFD, therefore originally numerical
simulations were performed on structured grids.
Since then, several algorithms have been developed for generating structured grids,

Figure 3.1. Example of structured grid on a 2D rectangular domain. Re-printed from
Ref. [122], with permission

even if they can be cast mainly into two categories: algebraic methods and differ-
ential equations techniques, based on numerically solving PDEs [117]. Algebraic
methods [123, 124] are particularly appreciated for the ease of implementation: this
class of methods is based on the use of mathematical interpolation functions to
interpolate between some known grid points (usually on the boundaries, but they
can also belong to a specific line which one desires that the grid lines pass), in
order to generate the grid in between these points. The interpolation method or
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technique depend on the algebraic method that is taken into account, but the idea
behind is more or less the same. By doing so, users have explicit control of the
physical grid shape and spacing, and the implementation of these methods is in
general simple [123]. Anyway, the major drawback of algebraic grid generation is
the determination of the interpolation functions which control a grid.
Like algebraic methods, differential equation methods are also used to generate
meshes by solving PDEs, that can be cast into three types: elliptic, parabolic, and
hyperbolic. Elliptic schemes became popular in the 1970s and 1980s [125, 126]
and are based on either the Laplace equations or the Poisson equations, obtained
by adding functions that control the spacing of the coordinate lines. By doing so,
elliptic methods generate very smooth grids, while requiring as input prescribed
boundary points: anyway, the choice of the control functions may become not
trivial when dealing with complex boundaries of the computational domain and
moreover, the solution of the elliptic system can consume a large amount of compu-
tational time. A different class of methods is given by the hyperbolic grid generation
schemes [127, 118], generally applied to problems with open domains: in this case,
grids are generated by marching from an initial curve or surface in the normal
direction, respectively for 2D and 3D space, as illustrated in Fig. 3.2. Additional grid
nodes are placed by numerically solving hyperbolic governing equations, that are
derived from orthogonality relations and cell area/volume constraints and using both
a marching step size and final distance set the user. When exact control of all the
mesh boundaries is not needed, less work is required using hyperbolic methods since
only one boundary has to be prescribed instead of four, as for elliptic methods: this
advantage is particularly appreciated when 3D grids are considered, because only
one surface is required as input. Finally, parabolic schemes proposed in Ref. [128] try

Initial
boundary

Figure 3.2. Example of 2D hyperbolic structured grid.

to combine the smoothing properties of elliptic methods with the hyperbolic schemes
efficiency: they are similar to the hyperbolic ones, since internal grid points are
placed by advancing from the initial curve or surface, but they allow outer boundary
grid points distribution to be prescribed.
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3.1.2 Multiblock grids and overset methods

Regardless the mesh generation method used, it must be noticed that the generation
of structured grids is often difficult or impossible when concerning complex geometries.
However, this drawback can be alleviate by using a multi-block strategy: it consists
in breaking up the domain into several smaller blocks, where separate meshes are
generated using the aforementioned methods and then assembled and connected,
as illustrated in Fig. 3.3. Specifically, the different grids could be connected by

Figure 3.3. Multi-block 2D structured grid around an airfoil.

requiring continuity among the mesh lines across the block interfaces (composite
multiblock) or not, as done for patched multiblock [115]. Both the strategies are
proposed in Fig. 3.4. Overset methods can be considered an extreme variant of the
latter multiblock strategy, since in this case a complex geometry is decomposed into
different geometrically simple overlapping grids, which exchange information via
interpolation processes: specifically, multiblock structured grids with overlapping
blocks are also referred in literature as Chimera grids. The advantages of employing
such grids are that complex domains are treated with ease, due to the lack of any
constraint at the block boundaries, which greatly simplifies the individual blocks
generation. Furthermore, overset grids methodology can also be used to simulate the
unsteady flows around moving rigid bodies in relative motion [129], such as a store
releasing from a wing [130, 131], the space launchers stage separation [132] or an
airfoil-flap configuration, which is described in Fig. 3.5. This flexibility has a price
to pay: as stated before, it is required to transfer information between overlapping
meshes, so that interpolation formulae must be determined to provide an accurate
data transfer.

Anyway, blocks definition within the computational domain is not an automated
process, which becomes not trivial when complex geometries are taken into account:
blocks position and their discretizations at the interfaces must be manually defined
even if many grid generation softwares have been developed for simplifying this
task, so that the final multiblock decomposition is strictly dependent on the user
capability and experience in grids generation field.
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Figure 3.4. Multiblock 2D structured mesh with matching and nonmatching cell faces.

Figure 3.5. Example of overset grids around an airfoil with flap.

3.1.3 Unstructured meshes

Last decades were marked by the widespread of unstructured grids, so that nowadays
the majority of the CFD commercial solvers are based on these meshes, aided also
by the progressive increase of computational resources. Indeed, even if unstructured
grids require higher memory usage with respect to structured grids to store con-
nectivity information, the use of this kind of grids offers several advantages: just
to name a few, the ability of handling arbitrary complex geometries as well as the
possibility of locally adapting the grid to follow the flow features. The most typical
shape of an unstructured element is a triangle in 2D or a tetrahedron in 3D space.
Nonetheless, any other shape including quadrilateral or hexahedral cells is also
possible. Several algorithms can be taken into account for generating unstructured
grids using triangles/tetrahedra. As an example, in the advancing-front techniques,
some of which are proposed in Ref. [133, 134], an unstructured mesh is generated by
adding individual elements one at a time to an existing front of generated elements.
Generation of a 2D grid starts with a discretization of the geometry boundaries as a
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set of edges, which form the initial front that must be advanced out into the field
until the entire domain has been covered with elements. In order to clarify how
these algorithm works, let us consider the 2D domain shown Fig. 3.6a, where the
front is depicted using a dashed line. As described in Ref. [119], a particular edge
of this front is selected, and a new triangle is formed with this edge as its base by
joining the two ends of the current edge either to an existing point on the front
or to newly created point, namely points P and Q in Fig. 3.6 b. Specifically, new
vertices are placed according different criteria, such as the quality of the resulting
element and the desired mesh spacing imposed by the user: most important, it must
be ensure that the new triangle created using this node do not cross other edges
of the triangulation. Then, the current edge is removed from the front, since it is
now obscured by the new triangle. Similarly, the remaining two edges of the new
triangle are either assigned to the front or removed from the front, depending on
their visibility, as illustrated in Fig. 3.6.

Figure 3.6. Advancing front methods: initial front (a) and the new front obtained by
connecting vertices P and Q (b). Re-printed from Ref. [119], with permission

Advancing front methods can be also applied to 3D grid generation: in this case,
a surface grid is first constructed by creating a 2D triangular mesh on the surface
boundaries of the domain. This triangular mesh forms the initial front, which is then
advanced into the flow field by placing new points ahead of the front and forming
tetrahedral cells. The required intersection checking now involves triangular front
faces rather than edges as in the 2D space. Advancing front methods generally
provide smooth high quality grids, but difficulties may arise in regions where multiple
fronts must be merged, so that the procedure is not trivial.
Delaunay methods are an alternative to advance front techniques, particularly ap-
preciated for their algorithmic simplicity: a 2D Delaunay triangulation (DT) for
given a set of discrete points is a triangulation such that no point falls within the
circumcircle of any triangle of the tessellation, as shown in Fig. 3.7. When 3D
grids are considered, Delaunay criterion still applies by considering the circumsphere
(circumscribing sphere) associated with a tetrahedron instead of circumcircles. In
general, several algorithms have been developed in order to compute Delaunay
triangulations. In general, Delaunay algorithm starts with an initial set of points,
as the one illustrated in Fig. 3.8a: triangles are created by imposing the empty
circumcircles condition, which generate elements as the one in Fig. 3.8b, so that the
final tessellation is similar to the one in Fig. 3.8d.
There exists a Delaunay triangulation for any set of points in 2D and in particular,

it is always unique as long as no four nodes in the point set are co-circular. Anyway,
it must be notice that in 3D space it is not always possible to construct a Delaunay
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Figure 3.7. Empty circumcircle property for Delaunay triangulations

Figure 3.8. Example of Delaunay triangulation in 2D space.

tetrahelization for a given set points, so that the addition of further vertices, referred
as Steiner points, is required for generating volume meshes which conform to the
Delaunay criterion. The main disadvantages of Delaunay techniques is related to
inability to guarantee boundary integrity if not convex domain are involved, as
reported in Ref. [119]: in order to overcome this drawback, Chew [135] proposed
a Constrained Delaunay Triangulation (CDT), that relaxes the "empty-circle" con-
dition in order to preserve the boundaries. In particular, CDT constraints are
mainly two: some pre-specified edges must be included in the triangulation, thus
respecting the given boundary discretization, and the final tessellation must be as
close as possible to a Delaunay triangulation. An example of how this algorithm
work is provided in Fig. 3.9: red edges in Fig. 3.9a represent boundary edges that
must be constrained to be a part of the final triangulation, illustrated in Fig. 3.9b.
It is worth to notice that even if domain boundaries are maintained, some of the
generated triangles may not verify the empty circumcircle property. This require-
ment is satisfied by adding further vertices to the initial point set, as proposed by
the Conforming Constrained Delaunay triangulation (CCDT) algorithms [136]: in
this case, a constrained Delaunay tessellation is performed as previously described,
moreover edges are split into smaller edges by inserting additional points until the
Delaunay empty circumcircles condition is verified in the overall domain. Alterna-
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Figure 3.9. Example of Constrained Delaunay triangulation for a 2D domain. Re-printed
from Ref. [137], with permission

tively to Delaunay methods, quadtree/octree techinques generate an unstructured
mesh through a recursive subdivision of the domain down to a prescribed resolution.
The vertices of the resulting quadtree or octree structure are used as grid points, and
the tree quadrants or octants are divided up into triangular or tetrahedral elements,
respectively when considering 2D or 3D space. It must be underlined that the
vertices of the quadtree/octree cells intersecting the boundary edges/surfaces must
somehow be displaced or wrapped in order to coincide with the domain boundaries.
These methods are relatively simple and inexpensive and are capable of producing
good quality mesh in interior regions of the domain. Anyway, one drawback of the
method is that it has a tendency of generating an irregular cell distribution near
boundaries, as reported in Ref. [122].

3.1.4 Adaptive grids

An adaptive mesh is a grid network that automatically or dynamically clusters the
grid points in regions where steep gradients exist in the computed solution flow field.
The idea behind adaptive methods is to use an error estimate to assess the quality
of a numerical solution and systematically modify the mesh to improve the solution
quality by clustering grid points in regions where large gradients occur. Historically,
adaptive techniques were developed in the structured grids framework [138], but
nowadays are also applied to unstructured meshes, since here cells and grid points
do not follow any kind of global structure, so that it is also possible to add or remove
mesh cells and points with ease [139]. Specifically, adaptive gridding techniques
can be generally subdivided into two main classes: adaptive mesh redistribution
and adaptive mesh refinement. The former methods continuously reposition a fixed
number of points so that they improve the resolution in particular locations of the
flow domain featuring large gradients. However, with a fixed number of points,
a better local resolution is achieved at the expense of depreciating the resolution
in other regions, where the grid becomes coarser: in many cases the depreciation
is quite minor because the other regions often have an overabundance of points
that would not significantly alter the accuracy of the simulation. Problems linked
to use a fixed number of points then only occurs when there are not enough grid
nodes to well resolve both the local phenomena and the other regions. For this
reason, sometimes is preferred to adopt a different way to proceed, such as the
one used by the adaptive mesh refinement (AMR) techniques [140, 138]: in these
methods, further nodes are added to regions where higher accuracy of the solution



3.1 CFD meshes and grid generation methods 31

is desired. Nodes can also be removed from locations where the solution is smooth
and therefore requires less grid resolution. Anyway, due to node addition/removal,
the grid connectivity changes from one adaptation cycle to another, so that data
interpolation is required to transfer the solution among the consecutive grids. These
methods are particularly attractive for their flexibility, especially when applied on
unstructured grids, as in Ref. [139]. In particular, AMR techniques modify the grid
nodes number according two main approaches: grid subdivision and grid remeshing.
When using grid subdivision, new nodes are added to the edges of the cells identified
for refinement: as a result, these elements are divided into smaller cells, so that the
data transfer between the "old" and the "new" grid is also simplified. This method is
particularly known to be efficient and fast, but several subdivision can also cause
grid distortion, especially when tetrahedral grids are taken into account [139]. An
alternative approach is proposed by the adaptive grid refinement methods, which
feature high flexibility and generate good quality grids during the adaptation process:
nevertheless, grid generation in these methods is in general computational expensive
and the cost of solution interpolations between subsequent meshes is higher with
respect to the grid subdivision approach.
As state before, grid adaptation methods are based on the knowledge of the CFD
solution as it evolves in time, in order to identify the regions which require better
resolution and dynamically modify the computational mesh. Specifically, adaptive
gridding techniques are used in conjunction with an error estimate, which determines
refinement required, so that regions with higher error will end up accumulating more
mesh cells, as described in Ref. [141]. Indeed, grid adaptation is an iterative process:
as the solution marches in time, the numerical error is estimated and the grid points
are moved to adapt to the evolution of the large flow gradients, which are in general
linked to the presence of discontinuities such as shocks, until steady state is reached.
Adaptive grids are considered particularly attractive by the S-C methods [142, 143],
which have been presented in Chap. 2.1, especially when high speed flows featuring
shocks are computed. Indeed, particular attention was posed in the previous Chapter
to describe the S-C numerical problems linked to the shock capture process, such
as the discontinuity finite thickness, the spurious disturbances and the accuracy
order degradation in the shock downstream regions [144, 4]. A way to alleviate
these drawbacks is the use of S-C methods in conjunction with an a posteriori mesh
adaption technique [11], since by reducing the size of cells in the vicinity of the
discontinuity, the shock width is reduced and brought closer to its physical value.
Anyway, not only the cluster of grid nodes near the shock is necessary, but also the
alignment of the mesh elements with the shock wave is important, otherwise the
captured shock results to be smeared over some mesh intervals and thus the S-C
scheme accuracy order deteriorate to first order, regardless of the design accuracy
of the discretization used. In order to provide an example of the benefits that can
be obtained by coupling S-C methods and adaptive grids methods, let us consider
Fig. 3.10 and Fig. 3.11, which show the numerical computation of a transonic
flow past a NACA0012 (M∞ = 0.95) using the EulFS in-house code introduced in
Chap. 2.1 on two different unstructured grids, where the one in Fig. 3.11 is generated
using an AMR technique. Specifically, this test case is characterized by a complex
shock pattern, referred as fishtail configuration (please refer to Chap. 9 for details).
The availability of both the solutions allow to compare the Mach flow-fields computed
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using the same S-C solver on the two meshes: the one in Fig. 3.11 is obtained using
an AMR technique, so that it is locally refined and, most importantly, aligned to the
shocks, as highlighted by Fig. 3.12, whereas the grid in Fig. 3.10 is generated with
a priori refinement around the airfoil, so that no dynamically adaption has been
performed during the computation. By evaluating the computed Mach flow-fields, it
can be seen that simulation performed on the adapted grid exhibits a higher quality
with respect to Fig. 3.10, also using a third of the grid nodes and cells.

Interaction region enlargement

Nodes: 23732

Cells: 47100

Figure 3.10. Transonic flow past a NACA0012: computational grid (left) and Mach
flow-field computed using a S-C solver (right)

3.1.5 Not body-fitted grids: immersed boundary methods analysis

The necessity to compute flows past complicated shapes is one of the main reasons
to prefer unstructured grids with respect to structured meshes. Nevertheless, the
increasing complexity in the geometry may deteriorate the grid quality also when
unstructured grids are considered, so that numerical solutions computed on these
meshes can be affected by high numerical errors. Because of this drawback, in the
past years different approaches were developed both regarding grid generation and
CFD algorithms in order to simplify the computation of these flows: among the
different solutions that have been proposed by the CFD community, the class of
immersed boundary methods (IBMs) deserves particular attention. These techniques
were first introduced by Peskin to simulate the blood flow in the heart [145]: the
main innovation of this study was that the numerical computation was carried out
on a Cartesian grid, which did not conform to the geometry of the heart, and as a
consequence, a novel procedure was formulated for imposing the effect of the heart
immersed boundary (IB) on the flow. Specifically, these methods mark a turning
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Interaction region enlargement

Nodes: 7792

Cells: 15263

Figure 3.11. Transonic flow past a NACA0012: computational grid generated by AMR
(left) and Mach flow-field computed using a S-C solver (right)

Interaction region enlargement

Figure 3.12. Transonic flow past a NACA0012: detail of the computational grid generated
by AMR around the interaction region
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point for computational techniques: indeed, in the former techniques, first the body
geometry is specified and then a structured/unstructured mesh, which include the
body boundaries, is generated. Immersed boundary methods use instead a fixed
grid, in general a Cartesian mesh, where body boundaries are not constrained to be
a part of the mesh, as illustrated in Fig. 3.13, so that the solid boundary cuts some
computational cells. Moreover, due to the fact that the grid does not conform to the
body, the boundary conditions imposition is achieved using some modifications of
the governing equations near to the boundary [141, 146]: specifically, the way these
modifications are implemented is the key factor in developing the different immersed
boundary algorithms. Let us provide a brief overview of the main IB approaches,

Figure 3.13. Difference between a body-fitted (left) non body fitted (right) 2D grids for
blunt body, boundaries of which are depicted in red.

underlining also the advantages and drawbacks of these promising methods. As
described in Ref. [146], in order to reproduce the effect of the body boundaries source
terms, also referred as forcing functions, can be added in the governing equations:
many methods have been designed depending on the forcing function expression.
However, mainly two alternatives exist, namely the "continuous" and the "discrete"
forcing approach [146]. The former is based on including the forcing function into the
continuous governing equations, which are then discretized and applied to the entire
domain: for this reason, it can be considered independent of the spatial discretization.
In the latter, the forcing is introduced after the equations are discretized on the grid,
without regard to the IB: in particular, the discretization is adjusted to account for
the boundary presence only in the cells near of the IB. As a consequence, the discrete
forcing procedure is strictly linked to the discretization approach so that it is not as
practical as the continuous forcing approach, but it enables a sharp representation
of the IB, which is especially desirable for high Reynolds number flows [146].
As previously stated, one of the advantages of using an immersed boundary method
is that grid generation is much easier, because the grid must not conform to the
body boundaries. Also, it implies that immersed boundary method can handle
moving bodies, since their boundaries are able to move on a background fixed mesh
as the solution advances in time. Because of these interesting advantages, the
popularity of immersed boundary methods is increasing especially during the last
decades. Indeed, these techniques has been widely used to simulate different kinds of
problems, such as fluid/structure interactions fluid [147, 148] as well as compressible
flows past moving solid boundaries [149, 150]. Anyway, these methods are not free
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from drawbacks: the main disadvantage of IBMs is that imposing of the boundary
conditions is not straightforward compared to the traditional methods. In addition,
it is worth to underline that the alignment between the grid lines and the body
surface in body-fitted grids allows better control of the grid resolution in the vicinity
of the body, which enhances the solution quality.

3.2 Mesh refinement analysis to assess CFD solution
accuracy

CFD has been one of the major drivers for developing mesh generation algorithms to
discretize the computational domain. As a consequence, a need arose to investigate
the close link between the accuracy of the CFD solution computed on a given mesh
and the grid properties, with particular interest on the influence of mesh refinement
on the behaviour of the solution numerical error. For this purpose, grid convergence
analysis are the most common and reliable techniques for the quantification of
numerical uncertainty and play an important role also for CFD codes validation,
as reported in Ref. [144, 151, 115]: specifically, since in this Thesis it is of relevant
interest to evaluate the solution accuracy provided by the recent developed S-F
techniques with respect to the one obtained using S-C methods, it is worth to
describe in detail how these analysis will be carried out in the following Chapters.
According to Ref. [115, 144], a grid convergence study is based on the availability
of solutions computed on at least two meshes, that can be generally obtained by
coarsening the finest one or by subsequently refining the finest grid. As an example,
let us consider the 2D computational domain Ω in Fig. 3.14, which was discretized
by using three nested meshes M1, M2, M3 containing N1, N2, N3 nodes respectively,
such that N3 > N2 > N1, which have been obtained using the former approach.
By doing so, the grid nodes of the coarsest mesh also belong to the finest grid, as
highlighted by Fig. 3.14. Specifically, the availability of the solution on different

Figure 3.14. Example three nested structured grid levels on a 2D domain

grid levels is useful to perform a posteriori analysis that allows to verify whether
the effective order of convergence of the numerical method is equal to the design
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(formal) order n, which thus must be known a priori. More in general, whether there
is a good agreement of the observed order of accuracy ñ with the formal order of the
numerical method, grids are saying to be in the asymptotic range of convergence.
When the solution is computed on three nested grids, as those in Fig. 3.14, the
observed order of accuracy ñ can be calculated as follows [152, 144]:

ñ = log R−1

log r
(3.1)

where:
R = u2 − u3

u1 − u2
(3.2)

is the so called convergence monitor. In particular, ui in Eq. 3.2 denotes the flow
variable used for evaluating the convergence order computed on the i-th grid level,
where the subscript i = 1, 2, 3 refers to the coarse, intermediate and fine grid
levels, respectively. Moreover, r is the grid refinement ratio, which needs to be
constant in order to apply Eq. 3.1: for the computational domain in Fig. 3.14,
r is taken equal to r = 2. The analysis can be further expanded by computing
the Richardson Extrapolated (RE) solution ũRE and the Grid Convergence Index
(GCI) [144, 152, 153], which represents a bandwidth error of the numerical solution.
In particular, the GCI is defined as the difference between the numerical u and the
extrapolated solution ũRE computed assuming n = ñ, multiplied for a safety factor
Fs. For instance, referring to the i-th grid level:

GCIi = Fs |ui − ũRE | (3.3)

where the Richardson extrapolated value ũRE is provided by:

ũRE = u3 − u2 − u3
rñ − 1 . (3.4)

The factor of safety is recommended to be Fs=3 for comparisons of two grids and
Fs=1.25 for comparisons over three or more grids [144, 154].
Furthermore, whenever an exact solution to the set of governing PDEs is available,
grid convergence can be also evaluated using two grid levels. In this case, we define
the local discretization error ϵi on the i-th grid as the difference between the solution
ui and the exact solution uexact:

ϵi(x) = ui(x) − uexact(x) (3.5)

with subscript i = 1, 2. Consequently, the observed order of accuracy can be
computed as in Eq. 3.1, where the convergence monitor R is given by [21]:

R = u2 − u0
u1 − u0

= ϵ2
ϵ1

(3.6)

As previously stated, the aforementioned analysis requires the knowledge of the exact
solution, which is not always available. When the exact solution is not known, the
discretization error of a numerical solution as well as the convergence properties of a
numerical scheme can be evaluated using the Generalized Richardson Extrapolation
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(RE) techniques. In particular, it amounts to compute an approximation of uexact(x)
by using the design order of convergence n, which is assumed to be known a priori,
as follows:

ũexact = u2 − u1 − u2
rn − 1 (3.7)

Eq. 3.7 can be used to provide an estimate of the exact solution in those situations
in which an exact solution of the governing PDEs is not known, as described in
Ref. [21]. It must be noticed that this approximation is only available pointwise
within the N1 nodes of the coarser grid level M1, where it allows to evaluate also
the Lq norm of the discretization error according to:

Lq(ϵ1) = (
∑N

j=1 |u1 − ũexact|q

N1
)

1
q (3.8)
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Part II

Recent developments of Shock
Fitting techniques
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Chapter 4

UnDiFi-2D
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In Chap. 2 an overview of the numerical models commonly used for computing
compressible flows featuring shock waves was presented. In particular, attention was
drawn on S-C methods and S-F techniques by placing emphasis on the drawbacks
and advantages of both the approaches.
Despite CFD computations are nowadays performed using predominantly S-C solvers,
in last decades the interest in S-F methods has been renewed, since in 2009 Paciorri
and Bonfiglioli [22] developed an unstructured S-F technique, by taking advantage
of the gradual shift that has taken place in the CFD community from structured
towards unstructured grids. Indeed, this novel method inherits features of Moretti’s
techniques for structured solvers while exploiting the geometrical flexibility offered by
the use of unstructured triangular meshes. The algorithm proposed in Ref. [22] was
capable of simulating steady, 2D flows featuring only one fitted shock-wave: multiple
shocks could be handled using a hybrid approach, whereby only one shock was fitted,
whereas all other discontinuities and their mutual interactions were captured. Later
developments [23] made the algorithm capable of fitting also contact discontinuities,
shock/shock and shock/wall interactions. An order of accuracy analysis of the steady,
2D scheme has been conducted in [21] highlighting one of the major strength points
of S-F: indeed, by using S-F techniques it is possible to preserve the design order of
the spatial discretization scheme within the entire shock downstream region, whereas
S-C schemes drops to first order. In recent years, the unstructured S-F algorithm
of Paciorri and Bonfiglioli was further developed to compute also time-accurate
simulations of 2D unsteady flows, as reported in [30, 24]. These encouraging results
gave rise to the idea of combining these contributions from different research teams
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in order to release a S-F solver for 2D unstructured grids, which is publicly accessible
to further promote collaborations and developments. This new open-source CFD
code, referred hereafter as UnDiFi-2D, is presented in this Chapter, where will be
also provided a detailed description the algorithmic steps of the code and few results
focusing on the test-cases that better represent all the implemented features.

4.1 UnDiFi-2D: a general description

UnDiFi-2D is an open source (free software) Unstructured-grid, Discontinuity Fitting
code [109]. The aim of UnDiFi-2D is to model gas-dynamic discontinuities in 2D
flows as if they were true discontinuities of null thickness that bound regions of
the flow-field where a smooth solution to the governing PDEs exists. UnDiFi-
2D therefore needs to be coupled with an unstructured CFD solver that is used
to discretize the PDEs within the smooth regions of the flow-field: specifically,
two different codes, EulFS and NEO, described in Sec. 2.1.2, have been included in
the current distribution. Specifically, the present and future versions of the code
UnFiDi-2D can be downloaded in the open-source repository made available at
https://github.com/UnDiFi/UnDiFi-2D. As shown in Fig. 4.1, the main directory
UnFiDi-2D contains the following sub-directories:

1. bin: where all the executables are installed;

2. lib: where various libraries and their source codes are stored;

3. doc: which contains the documentation;

4. source: where the source files of the UnDiFi-2D code are stored;

5. source_utils: contains

• the source files of various I/O format converters;
• the Triangle [155, 156] mesh-generator;

6. tests: contains various test-cases, some of which are described in Sect.4.3;

7. tools: contains the source code of the f77split and f90split programs [157];

8. EulFS.3.7: where the source files of the EulFS [81, 158] gas-dynamic solver
are stored.

9. NEO: where the source files of the NEO solver [159, 28, 29] are stored;

In addition to these sub-directories, the main directory contains the script (compile_all.sh)
which compiles all the software packages. Full description on how to download,
compile and run the code can be found at the documentation page https://github.
com/UnDiFi/UnDiFi-2D.

The directory tree highlights the fact that the software is made up of three key
components:

https://github.com/UnDiFi/UnDiFi-2D
https://github.com/UnDiFi/UnDiFi-2D
https://github.com/UnDiFi/UnDiFi-2D
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1. the shock-fitting module UnDiFi-2D which handles the motion of the disconti-
nuities and their interactions (if any), but also drives the other two components,
i.e.

2. the gas-dynamic solver, either EulFS or NEO, which is used to discretize the
governing PDEs in smooth regions of the flow-field;

3. the meshing software Triangle, which is used to locally re-mesh while the
discontinuities move throughout the computational domain.

Communication among the driver UnDiFi-2D, the gas-dynamic solver and the mesh-
ing software is handled using format converters (to be found in the source_utils
folder) that rely on disk I/O. This programming approach is certainly not the best
from the standpoint of computational efficiency, one of the reasons being that one
has to switch among the different data-structures used by the three different modules.
However, this approach is very convenient, since it allows us to use off-the-shelf
gas-dynamic solvers and mesh generation tools that are treated as black boxes and
can be replaced by similar ones only by changing the format converters, with a
modest coding effort.

Figure 4.1. UnDiFi-2D project directory tree.

4.2 UnDiFi-2D: algorithmic features
In this Section, a brief description of the data storage and key algorithmic ingredients
of the S-F algorithm is presented. Regardless of whether steady or time-accurate
simulations are performed, the approach is inherently time-dependent, because both
the solution and the grid change with time, due to the displacement of the fitted
discontinuities. When a steady solution exists, the shock speed will asymptotically
vanish and the tessellation of the flow domain will not any longer change. As
far as data storage is concerned, the dependent variables and grid velocity vector
are available within all grid-points of a 2D triangulation that covers the entire
computational domain; this is what we call the background mesh. In addition to the
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background mesh, the fitted discontinuities (either shocks or slip-lines) are discretized
using a collection of grid-points (the shock-points) which are mutually joined to
form a connected series of line segments (the shock-edges), as described in Fig. 4.2a;
shock-points and shock-edges make up what we call the shock-mesh. In contrast to
the grid-points of the background mesh, where a single set of dependent variables
is stored, the shock-points are duplicated items that share the same geometrical
location, but store two different sets of dependent variables, corresponding to the
two sides of the discontinuity. This is schematically shown in Fig. 4.2d. In particular,
shock-edges, which connect the shock-points on both sides of the discontinuity
(see Fig. 4.2d where the width of the discontinuity has been increased to improve
readability) also overlap, so that each fitted discontinuity behaves like a double-sided
internal boundary of zero thickness. It is important to notice that the spatial location
of the fitted discontinuities is independent of the location of the grid-points that
make up the background grid, as shown in Fig. 4.2a. The sequence of operations
that leads from the available mesh and solution at time t to an updated mesh and
solution at time t + ∆t can be split into the seven steps that will be described
hereafter.

Step 1: cell removal around the shock front

The first step consists in removing those triangles of the background mesh which
are crossed by the discontinuity, and also the triangular cells that have at least one
of their vertices that are too close to the shock-front. By doing so, a mesh-less hole,
which contains the discontinuity, is carved within the background mesh, as shown in
Figs. 4.2a, 4.2b and 4.2c. We shall hereafter call phantom-points those grid-points
of the background mesh that have been removed in this first step.

Step 2: local re-meshing around the shock front

Following the cell removal step, the hole dug by the fitted front is then re-meshed
using a Constrained Delaunay Tessellation (CDT): the edges that make up the fitted
discontinuity and the boundary of the hole are both constrained to be part of the
final tessellation. The computational mesh, see Fig. 4.2d, that is used to advance
the solution in time from t to t + ∆t is made up of the two different grids that have
been generated in the previous and the current step: the background mesh with the
hole and the CDT that fills the hole.

Step 3: calculation of the tangent and normal unit vectors to the
shock front

In order to apply the R-H jump relations, the tangent, τ , and normal, n, unit
vectors have to be calculated within each shock-point. The computation of τ i, where
the subscript i refers to the numbering of shock-points, relies on finite difference
formulae which involve the coordinates of shock-point i and those of its neighbouring
shock-points. By reference to Fig. 4.3, ri denotes the position of shock-point i at
time level t. Shock-points i − 1 and i + 1 are located on the two sides of shock-point
i and their position ri−1 and ri+1 at time level t will be used to compute the tangent
and normal unit vectors in shock-point i. Depending on the local flow regime, it may
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Figure 4.2. Sequence of steps needed to generate the computational mesh at time t

be necessary to use upwind-biased formulae to avoid the appearance of geometrical
instabilities along the fitted discontinuities. The criterion used to assess which of
the shock-points neighboring i falls in its range of influence is described in [22]. In
this respect, three different situations may arise:

1. both shock-points i − 1 and i + 1 are in the range of influence of shock-point i;

2. shock-point i + 1 is outside the range of influence of shock-point i;

3. shock-point i − 1 is outside the range of influence of shock-point i;



46 4. UnDiFi-2D

Figure 4.3. Details of the shock-front geometry used in the tangent vector calculation at
shock-point i.

When case 1 applies, the computation of τ i must involve the shock-points on both
sides; therefore:

τ i =
li+ 1
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(4.1a)

where li− 1
2

= |∆ri− 1
2
|.

When case 2 applies, shock-point i + 1 must not be used in the computation of the
tangent vector τ , and the upwind-biased formula (4.1b), which involves shock-point
i − 2, instead of i + 1, is used:
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(4.1b)

Both approximations (4.1a) and (4.1b)can be shown to be second-order-accurate
even if the shock-points are un-evenly spaced (in terms of the curvilinear abscissa)
along the fitted shock-front. Further details are given in Appendix A 11.1. The
third case is specular to the second one, but the corresponding formula involves
shock-points i, i + 1 and i + 2.

The grid-convergence properties of the Finite Difference (FD) formulae (4.1) have
been analyzed in [108]. Finally, the normal unit vector ni, which is perpendicular to
τ i, is chosen such that it points towards the shock-upstream region, i.e. u · n < 0.

Step 4: solution update using a shock-capturing code

Using the computational grid in input, a single time-step calculation is performed
using one of the unstructured, vertex-centered, shock-capturing solvers described in
Sect.2.1.2, which returns updated nodal values at time t + ∆t within all grid-points
of the computational mesh. Since the discontinuities are seen by the S-C code as
internal boundaries (of zero thickness) moving with the velocity of the discontinuity,
there is no need to modify the spatial discretization scheme already implemented in



4.2 UnDiFi-2D: algorithmic features 47

the PDEs solver to account for the presence of the fitted discontinuities. In practice,
the S-C solver is used as a black-box: it receives in input the computational grid,
the nodal values of the solution and grid velocity at time t and returns the updated
solution at time t + ∆t.
The solution returned by the S-C solver at time t + ∆t is however missing some
boundary conditions. If we consider the upstream state of a shock wave, the update
provided by the shock-capturing solver at time level t+∆t is entirely correct. Indeed,
within the supersonic, upstream (low-pressure) region, all waves (acoustic, entropy
and vorticity) propagate towards the shock so that no boundary condition is required
on this internal boundary. The situation is different within the subsonic region
attached to the downstream (high-pressure) side of the shock. Here the entropy,
vorticity and forward moving acoustic wave propagate away from the discontinuity.
Therefore, the provisional values computed by the shock-capturing code within the
grid-points located on the downstream side of the shock are wrong, since three (in
2D space) boundary conditions, corresponding to the aforementioned waves, are
missing on the shock-downstream internal boundary. Since the downstream region
is subsonic in the shock-normal direction, however, the backward moving acoustic
wave carries the following signal:

Rd
t+∆t = ãt+∆t

d + γ − 1
2 ũt+∆t

d · n (4.2)

from the shock-downstream region towards the downstream side of the shock. Due
to the upwind nature of the spatial discretization, one can therefore assume that
the Riemann variable defined by Eq. 4.2 is correctly computed by the S-C code. In
Eq. 4.2 the quantities ãt+∆t

d and ũt+∆t
d are the values of the sound speed and flow

velocity of the downstream state of the shock nodes computed by the S-C solver.
These flow variables have been marked with a “tilde” to underline the fact that
these are the provisional (incorrect) values computed at time t + ∆t by the S-C code
before enforcing the jump relation across the discontinuity in the following step.

Step 5: enforcement of the R-H relations
As explained in details elsewhere [22], the shock-downstream values of the dependent
variables within the shock-points need to be corrected by enforcing the R-H relations
across each pair of shock-points. This amounts to solve using Newton’s root-
finding algorithm the following system of five (in the 2D space) non-linear algebraic
equations within each pair of shock-points, which also supplies the local velocity of
the discontinuity, ws, along its normal.

ρt+∆t
d

[
(un)t+∆t

d − wt+∆t
s

]
= ρt+∆t

u

[
(un)t+∆t

u − wt+∆t
s

]
(4.3a)
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(uτ )t+∆t
d = (uτ )t+∆t

u (4.3d)

at+∆t
d + γ − 1

2 (un)t+∆t
d = Rt+∆t

d (4.3e)

Equations (4.3a)-(4.3d) are the R-H jump relations and Eq. (4.3e) accounts for the
characteristic variable that is conveyed towards the shock from the shock-downstream
region (see the discussion already made by reference to Eq. (4.2)). Observe that in
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writing Eqs. (4.3) the fluid velocity has been written using its components in the
(n, τ ) reference frame defined in step 2. The five unknowns in Eqs. (4.3) are the
four shock-downstream values of the primitive variables (ρd, und

, uτd
, pd) and the

component of the shock-speed, ws, in the shock-normal direction. This will be used
in step 6 to move the shock-front. The same approach is used when dealing with
contact discontinuities, except that the jump relations must be modified accordingly,
see [23] for details.

Step 6: shock displacement

The enforcement of the jump relations provides the speed, ws, at which each pair
of grid-points located on the discontinuity move along its local normal unit vector,
n. The position of the discontinuity at time t + ∆t is computed in a Lagrangian
manner by displacing all its grid-points, as shown in Fig. 4.2f where the dashed
and solid lines represent the discontinuity at time t, resp. t + ∆t. When simulating
steady flows, this can be accomplished using the following first-order-accurate (in
time) integration formula :

ri (t + ∆t) = ri (t) + wt
si

nt
i ∆t (4.4)

where the (pseudo)-time step ∆t is taken small enough to ensure that at time t + ∆t
the shock-front still lies within the hole that has been carved in the mesh in Step
1. The low temporal accuracy of Eq. 4.4 does not affect the spatial accuracy of the
steady state solution which only depends on the spatial accuracy of the gas-dynamic
solver and that of the tangent and normal unit vectors in Eqs. (4.1).
On the contrary, when dealing with unsteady flows, as in Sec. 4.3.3, the temporal
accuracy of the shock motion has to be the same as that of the spatial discretiza-
tion, i.e. second order accurate in our case. This can be accomplished using a
predictor-corrector type temporal integration scheme [30, 24], or a Runge-Kutta
multi-step scheme. In the former case, the predictor step estimates the position of
the discontinuity at time level t + ∆t

2 using the explicit Euler scheme:

ri
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2

)
= ri (t) + wt

si
nt

i

∆t

2 (4.5)

The speed of the discontinuity w
t+ ∆t

2
si and the normal unit vector nt+ ∆t

2
i at time

level t + ∆t
2 are then computed using the intermediate position of the discontinuity

ri

(
t + ∆t

2

)
and, finally, the position of each shock-point is updated at time level

t + ∆t in the corrector step:

ri (t + ∆t) = ri (t) + w
t+ ∆t

2
si nt+ ∆t

2
i ∆t (4.6)

One further observations is concerning the discontinuity displacement step. Fig. 4.2f
shows that even when the background mesh is fixed in space, the triangular cells
that have one of their edges on the discontinuity are constrained to move with it,
thus these elements are deformed. This implies that the S-C solver used in Step 4
must be capable of handling moving meshes, i.e. it must be capable of solving the
governing PDEs written using an Arbitrary Eulerian Lagrangian (ALE) formulation.
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Step 7: interpolation of the phantom points

Upon completion of step 6, nodal values of the dependent variables at time-level
t + ∆t are available within all grid-points of the computational mesh. To be able
to compute the subsequent time-step, nodal values of the dependent variables are
required within all grid-points of the background mesh, including the so-called
phantom-points. The phantom-points are the grid-points of the background mesh
that have been temporarily removed in step 1 because of their proximity to the
fitted shock-front. Therefore, phantom-points do not belong to the computational
mesh and their nodal values have not been updated to time level t + ∆t in step 4.
Due to the shock-displacement, however, the current phantom-points may re-appear
at the subsequent time step and it is therefore necessary that meaningful values
of the dependent variables are available also within the phantom-points. This is
accomplished by first locating the phantom-points inside the current computational
mesh and then using linear interpolation.

Upon completion of step 7, the computational mesh can be discarded, and the
solution can be advanced over the next time-interval by repeating steps 1 through
7.

4.3 Numerical results

4.3.1 Shock formation due to the coalescence of compression waves

Figure 4.4a shows a supersonic stream (M∞ = 2.3) being deflected by a convex wall.
The wall is straight up to point A and beyond point B, whereas the shape of the
wall smoothly changes between A and B according to the following cubic polynomial
law:

y = 0.039923 x3 + 0.25144 x2 + 0.46928 x − 0.52683 − 1.4 ≤ x ≤ 0.044 (4.7)

As sketched in Fig. 4.4a, the Mach waves that originate in A and B bound a simple-
wave compression region made of straight characteristic lines that merge into a
shock-wave at some distance from the wall. Figure 4.4b shows the computational
domain and the boundary conditions. The background mesh, which is made of
25531 triangles and 12965 grid-points, has been generated using the delaundo mesh
generator by specifying a uniform distribution of the boundary nodes with spacing
h = 0.025.

Figure 4.5 compares the Mach iso-contour lines computed with the shock-
capturing and shock-fitting approaches using the eulfs CFD solver.

Inspection of Fig.4.5b, which refers to the shock-fitting calculation, clearly reveals
that the fitted shock-mesh (shown using a white solid line) starts well ahead of the
point where the characteristics merge into the shock. This is because, in Moretti’s
words [160]: “Premature fitting of the shock in the region where compression waves
tend to coalesce is not harmful at all, provided that the shock behaves as one of
the characteristic surfaces coalescing into a finite discontinuity”. Modeling shock-
formation as described by Moretti requires an ad-hoc calculation of the normal to
the shock within the end-point of the shock-mesh, so that the present test-case
checks that this functionality works correctly.
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(a) Flow sketch (b) Computational domain

Figure 4.4. Shock formation due to the coalescence of compression waves.

4.3.2 Steady Mach reflection

Whenever the flow deflection imposed by a solid surface on an impinging weak
oblique shock is larger than the maximum allowable deflection for the downstream
Mach number, a so-called Mach reflection takes place. This is schematically shown in
Fig. 4.6: a uniform, supersonic (M∞ = 2) stream of air undergoes a Θ = 14◦ deflection
through the incident shock, I1. Regular reflection of I1 is however impossible for the
chosen pair of M∞, Θ parameters, so that a steady triple-point (TP) arises which
joins I1, the reflected shock (R1), the Mach stem (MS) and the slip-stream (SS).

This test-case has been split into two different simulations: the MachReflection-1
directory contains the hybrid simulation, whereas a fully-fitted simulation can be run
in the MachReflection-2 directory. In the former case the incident shock and the
slip-stream are captured, whereas the reflected shock and the Mach stem are fitted
as a single shock. In the latter case all discontinuities, as well as the triple-point, are
fitted. From the viewpoint of code-checking the two simulations are very different.
The hybrid simulation only demonstrates the capability of the algorithm to run
in hybrid mode, but tests the same functionalities already checked in the circular
cylinder simulation described in Ref. [109], with the only addition of the interaction
between a normal shock (the MS) and a flat wall. On the contrary, the fully fitted
simulation tests the capability of the UnDiFi-2D code to fit the triple point.

The computational domain used for both simulations has been marked in green
in Fig. 4.6. Inside this area a background grid of almost equilateral triangles has
been generated using the delaundo [161] mesh generator by specifying a uniform
distribution of grid-points along the domain boundaries with spacing h = 0.0167 L,
see Fig. 4.6. Table 1 reports the number of triangles and grid-points of the background
mesh along with those of the computational meshes at steady-state for both the
hybrid and the fully-fitted simulations; the corresponding number of shock-points is
also shown.
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(a) Shock-capturing. (b) Shock-fitting.

Figure 4.5. Shock formation due to the coalescence of compression waves: Mach iso-contour
lines.

Figure 4.6. Steady Mach reflection: flow configuration.

Table 1. Grid-points and triangles of the background and computational meshes.

Background Computational meshes at steady-state
Mesh Hybrid simulation Fully fitted simulation

Cells Nodes Cells Nodes Shock-points Cells Nodes Shock-points
29214 14833 29292 17633 142 29365 19633 294

Shock-capturing, hybrid and fully-fitted calculations obtained using the two different
Residual Distribution codes, NEO and eulfs, are compared in Fig. 4.7.

Even though the two solvers use very similar numerical recipes, as explained in
Sect. 2.1.2, it can be seen that the two shock-capturing solutions, Figs. 4.7a and 4.7d,
exhibit non-negligible differences, in particular downstream of the Mach stem. These
differences are significantly reduced in the hybrid simulations, Figs. 4.7b and 4.7e,
and have almost disappeared in the fully fitted ones, Figs. 4.7c and 4.7f.

Further analyses about these numerical solutions can be found in [22, 23], whereas
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(a) eulfs shock-capturing (b) eulfs hybrid (c) eulfs fully fitted

(d) NEO shock-capturing (e) NEO hybrid (f) NEO fully fitted

Figure 4.7. Mach reflection: Mach number iso-contour lines computed using three different
shock-modeling options and the two different shock-capturing codes.

the algorithmic details concerning the treatment of the triple point are reported
in [162].

4.3.3 Shock-vortex interaction

This last test-case, which is used to verify that UnDiFi-2D works correctly also
when dealing with unsteady flows, features the interaction between a moving vortex
and a standing shock.

Figure 4.8 shows the computational domain along with the boundary and initial
conditions.

The flow-field is initialized by adding the perturbation velocity field induced by
the vortex to the uniform flow past a steady normal shock. As shown in Fig. 4.8,
at the initial time t = 0, the vortex is located 0.2 unit lengths L ahead of the
standing shock. Using a cylindrical reference frame attached to the vortex core, the
perturbation velocity field reads:

ũθ = −ϵ|u∞|τ expα(1−τ2) (4.8a)
ũr = 0 (4.8b)
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Figure 4.8. Shock–vortex interaction: computational domain and initial condition.

where the dimensionless radial distance from the vortex core, τ= r
rc

, has been used
in Eq. (4.8a), with rc = 0.05 L. The two dimensionless parameters α and ϵ, which
respectively control the width and magnitude of the velocity perturbation, are
mutually related via the shock and vortex Mach numbers:

ϵ = Mv

Ms

√
2α

exp(α− 1
2 ) (4.9)

where:
Ms = |u∞|

a∞
Mv = max |uθ|

a∞
(4.10)

For the chosen pair of shock and vortex Mach numbers: Ms = 2, Mv = 0.2, which
gives rise to a weak shock-vortex interaction, according to the nomenclature of [163],
the vortex strength ϵ ≈ 8.6 10−2 follows from Eq. (4.9), having set α = 0.204.

The Delaunay triangulation of the computational domain was generated using
Triangle; it features 217569 grid-points and 433664 triangles and a mesh spacing
along the boundaries equal to h/L = 0.00375. The shock-capturing and shock-fitting
simulations were performed using the NEO solver. A qualitative comparison between
the two shock-modeling options is given in Fig. 4.9, where total enthalpy iso-contour
lines at three subsequent time instants are shown: shock-capturing on the top row
and shock-fitting on the bottom row. In particular, besides the oscillations related to
the approximation of the shock, it can be clearly seen that the contours downstream
of the discontinuity are much less smooth in the captured solution.

The fitted computations, on the other hand, show very nice and smooth contours.
Further details about this test-case and further simulations dealing with shock-vortex
interactions can be found in [30, 24].

4.4 Summary

In this Chapter the state-of-the-art of a 10-year-long development of a S-F technique
for unstructured meshes was presented: specifically, an overview was provided on
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Figure 4.9. Shock-vortex interaction: total enthalpy contours at times t = 0.3 (left), t = 0.4
(centre) and t = 0.5 (right) using the LDA scheme; shock-capturing in the upper row of
frames and shock-fitting in the lower row.

the key algorithmic features of the technique, which has been implemented in an
open-source code, available in a dedicated repository. A selection of ready-to-run
test-cases demonstrates the features and current capabilities of the code, which is
able to deal with compressible flows featuring either isolated or mutually interacting
discontinuities. The superior quality of fitted shock-waves over captured ones has
also been emphasized.
However, some issues require particular attention, as detailed hereafter. In the
presented test-cases the effects of viscosity have been neglected. When dealing
with viscous flow, shocks cease to be discontinuities in a mathematical sense, and
have a finite thickness. At high Reynolds number, however, the width of a shock
is comparable to the microscopic length-scales, hence orders of magnitude smaller
than any macroscopic length scale, such as Kolmogorov’s, for instance. Under this
circumstances, it is still appropriate to ignore the inner shock-structure and consider
shock-waves as having zero thickness. The capability of dealing with shock/boundary-
layer interactions will be addressed in Chapter 8.
Furthermore, when dealing with complex shock-shock and/or shock-boundary in-
teractions in steady flows, a preliminary S-C calculation, followed by an automatic



4.4 Summary 55

shock-detection and shock-pattern identification strategy [164], is capable of supply-
ing a reasonably good initial guess of the shock position to the S-F algorithm. When
dealing with unsteady flows, however, things get much harder and the currently
unsolved issues that remain to be addressed are well summarized in a 1986 paper by
Glimm and co-workers [46]:

1. Treating changes of the topology of regions bounded by fronts from
simply connected to multiply connected regions.

2. Treating the disappearance of weakening fronts and the appearance
of new fronts at boundaries or at collisions of other fronts

As far as the first issue is concerned, changes in the shock topology may occur in
unsteady flows for several reasons. For example, new discontinuities may appear
when a shock wave moving along a wall encounters an abrupt change in the slope
of the wall or when two discontinuities begin to interact. Regarding the second
issue, beside the formation of a shock due to the steepening of compression waves,
as examined in Sect. 4.3.1, an existing shock may progressively weaken and finally
disappear. In order to be able to manage all these topological changes it will be
necessary to develop new algorithmic tools capable of detecting the occurrence of
a change in the shock-topology and modify accordingly the fitted discontinuities
and their mutual interactions. However, the development of a general purpose tool
will not be trivial and will probably require the use of advanced, multi-disciplinary
techniques such as those used in [164]. The effort which will be necessary to complete
the development of the unstructured S-F technique and bring it to full maturity, is
not modest and probably requires the merging of different skills and expertise. In
order to be successful, it will be necessary to broaden the audience of developers
and technical expertise involved. This is the reason behind the launch of the present
project. Indeed, UnDiFi-2D has clearly some important limitations, as stated before:
nevertheless, the software platform presented in this Chapter represents a solid
starting point for developments to overcome these limitations in a collaborative
framework.
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Chapter 5

UnDiFi-3D
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Recently hypersonic flows computations around re-entry vehicles have experienced
a growing interest among the CFD community due to the difficulties for reproducing
the re-entry conditions in ground-based experiments. The major challenge for
numerical simulations is a more reliable prediction of the wall heating, which can be
obtained with a more accurate modelling of shock waves. As stated before in Chap. 2,
this task can be achieved using two different approaches: shock-capturing (S-C) and
shock-fitting (S-F). The S-F techniques were originally developed in the structured
grids framework. The reliance on these types of grids made the development of a
S-F solver able to solve flows with shock interactions very difficult and complex [165].
Over the last decade, however, some researchers [22] have been developing a novel
S-F technique for unstructured grids which allows to relieve much of the algorithmic
complexity that plagued the traditional structured S-F techniques. In later years,
this technique was further developed in order to be applied for the first time on
3D unstructured grids [25] even if limited to the computation of inviscid flows.
In this preliminary version of the 3D S-F solver, the mesh generation and shock
surface handling relied on general propose codes (Tetgen [166] and Yams [167]).
Nevertheless, since these mesh generation codes were not specifically designed for
unstructured S-F, this S-F solver for 3D flows had strong limitations. Some years
ago, Zaide and Ollivier-Gooch [47] developed software tools based on the GRUMMP
library for inserting lines/surfaces into existing unstructured 2D/3D meshes: their
software represented a good starting point for the development of a mesh generator
and handling kernel for the 3D unstructured S-F technique able i) to join together
multiple shock surfaces at reflection/interaction lines, ii) to re-mesh shock surfaces
and iii) to move shock surfaces through the volume mesh. This Chapter describes
recent development of the version of the 3D unstructured S-F based on the GRUMMP
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library and provides also some details about the shock surface extraction process from
a S-C solution, which is a preliminary action of every S-F computation. Moreover,
different test-cases will be also presented in Sec.5.2.

5.1 UnDiFi-3D: algorithmic features
The main steps of the S-F algorithm for 3D compressible flows are briefly described
below. The S-F technique models shock waves in 3D space as zero-thickness, double-
sided, triangulated surface. An initial surface that approximates the position of
the shock wave has to be given as input to start the S-F simulation, as well as the
background grid and the computed S-C solution, which is used as an initial condition
by the proposed S-F algorithm, providing also the upstream states for each point on
the shock mesh. Specifically, a simple approach to extract the shock surface starting
from an S-C solution are provided in step 0.

Step 0: Shock surface extraction and insertion in the background
volume mesh

Let us consider a hypersonic flow past a generic blunt body. Figure 5.1a highlights a
portion of the volume mesh that surrounds the blunt body, while Fig. 5.1b displays
the normalized pressure flow field computed using a S-C solver on the mesh shown
in Fig. 5.1a. A first attempt shock surface, close to the actual shock position, could
be extracted by the S-C solution by means of a specific detection technique, such as
the one described in Ref. [164] for 2D applications. However, a shock surface can be
also obtained using the shock feature of the commercial software TECPLOT [168].
Figure 5.1c shows the result provided by this software tool.

(a) S-C computational mesh (b) Normalized pressure
field computed by the
S-C solver

(c) Extracted shock surface
from S-C solution

Figure 5.1. Example of shock surface extraction process

Indeed, as you can observe in Fig. 5.1c, the surface extracted using TECPLOT
is very irregular and, moreover, it is characterized by many spurious points. For
this reason, this surface must be processed before considering it as an input for the
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S-F solver. Figure 5.2 shows the steps of the post extraction process that can be
achieved using different commercial and open source softwares, for instance MeshLab
and ANSA. The first step is the removal of all the artefacts (see fig. 5.2a). Then
the shock surface is cut in order to remove its side regions where the shock is very
weak (see Fig. 5.2b). The resulting shock surface can still be very irregular or its
triangulation provides low mesh quality. Using specific tools for mesh smoothing and
mesh reconstruction, the shock surface is smoothed and re-meshed to obtain a smooth
shock surface composed of triangles whose sizes ranging within an assigned range,
as highlighted by Fig. 5.2c. The final result of these alterations, shown in Fig. 5.2c,
is ready to be provided as input to the S-F procedure and to be inserted in the
background grid, as shown by the nosetip detail in Fig. 5.4. This surface represents
the initial position of the shock wave in the computing process: subsequently this
surface is deformed and moved by the S-F technique until the correct position is
reached.

(a) Artifacts and spurious
points removal from the
original surface.

(b) side region removal (c) Surface meshing and
smoothing

Figure 5.2. Example of shock surface meshing process

At this point, this surface, which represents the initial position of the shock
wave, must be inserted within the background volume mesh, in order to generate
the computational grid used by the gas-dynamic solver for advancing the solution in
time. The insertion of the shock surface into the background grid [47] is based on
two stages: the former re-discretizes the shock surface according to the length scale
of the existing volume mesh. Specifically, the input triangulated shock surfaces are
converted to interpolated spline surfaces using CGM [169]: the shock surface final
discretization is obtained by sampling each smooth surface [170], starting with the
perimeter of the shock surface, then sampling the interior of the surface to ensure
topological correctness, geometric fidelity, and mesh quality. Once that the new
surface triangulation is generated, it is inserted within the volume mesh. First of
all, a cavity is carved in the volume mesh around the surface, by removing those
elements which have at least a vertex too close to the shock surface: in particular, all
vertices in the volume mesh that are closer than half of the local length scale to any
points on the re-discretized surface are removed. This condition avoids the creation
of short edges in the computational grid: anyway, an additional criterion is used for
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removing the vertices of the background mesh, in order to ensure that all the triangles
of the discretized surface can be recovered after insertion: therefore, any volume
mesh points that fall inside a sphere whose equator is the circumcircle of a surface
triangle is also removed. The deleted vertices will be hereafter called "phantom
points", whereas the removed elements of the background grid are defined "ghost
cells". This procedure is shown in Fig. 5.3a. Then, these elements are removed from
the volume mesh (see Fig. 5.3b). Finally, the surface points are inserted, the surface
triangles are recovered and the shock surface is duplicated to produce upstream and
downstream shock points (Fig. 5.3c): in particular, this is achieved by replacing
each shock point by two superimposed mesh points, respectively belonging to the
downstream and upstream region, so that the downstream and upstream states are
correspondingly assigned. By doing so, the so called computational volume mesh
is generated, which is therefore cut into non-communicating parts by the doubled
shock surface: it must be noted that the aforementioned procedure modifies the
background volume mesh only around the inserted surface, so that the final grid is
nearly identical to the background tetrahedral mesh. At this time, the iterative S-F
procedure for computing the solution gets start until the steady state is reached.

(a) Identification of the
phantom nodes and
ghost cells of the back-
ground mesh

(b) Elements tagged as ghost
cells are removed

(c) Generation of the modi-
fied mesh

Figure 5.3. Inserting a shock surface in the mesh

Step 1: Computation of the tangent and normal unit vectors

The normal unit vectors n on the shock surface at each shock point are required to
compute the jump relations, as described in step 3. The computation of these vectors
at a generic shock point is carried out by averaging the face normals of the shock
faces that share that given shock point and that fall inside the range of influence of
the shock point itself, as in Ref. [25]. Indeed, when the shock-downstream region is
subsonic, all shock points that surround a given shock point belong to its range of
influence, since the speed of sound is always larger that the flow speed. On the other
hand, in a supersonic region, only a subset of the shock points that surround the
test point belong to its range of influence. In order to illustrate how which criterion
is used fo establishing which of the shock faces that surround a given shock point
fall into its range of influence, the shock point J depicted in Fig. 5.5 is considered,
and two points connected to J such as A and B: moreover, let ∆t be a testing time
increment, which is fixed smaller than the physical time step. At time t + ∆t the
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Figure 5.4. Example of the merging between the shock surface and the background mesh

fluid particles that at time t were at A and B have moved to points A′′ and B′′,
according to the values of their flow velocity uA and uB: in particular, a generic
shock point belongs to the dependence domain of point J if a sound signal emitted
from it at time t will eventually reach point J . This is equivalent to require that the
distance between the acoustic front emitted from that point at time t + ∆t and the
shock point J must be smaller than the distance separating the two shock points:
for this reason, referring to Fig. 5.5, point A falls in the range of influence of point
J , but B does not.
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Figure 5.5. Shock-point normal vector computation: definition of the dependence domain.

Step 2: Solution update using a shock-capturing code

Using the computational grid as input, a single time-step calculation is performed
using an unstructured, vertex-centered, S-C solver, obtaining nodal values updated
at time t + ∆t at all grid-points of the computational mesh generated in step 0,
before the iterative S-F procedure. The gas-dynamic solver used in the present
implementation is EulFS [81], the in-house code based on the Fluctuation Splitting
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approach previously described in Sec. 2.1.2. The solution returned by the S-C solver
at time t + ∆t is however missing some boundary conditions, as previously discussed
regarding step 4 of the UnDiFi-2D algorithm in Sec.4.2. These missing pieces of
information will be therefore determined in the following step.

Step 3: Shock nodes calculation

As explained in detail elsewhere [25], the shock-downstream values of the dependent
variables within the shock-points need to be corrected by enforcing the jump relations
across the upstream and downstream states of each pair of shock-points. This
amounts to solving the following system of six non-linear algebraic equations (in the
3D space) at each pair of shock-points:

ρd
t+∆t(udn − w) = ρu

t+∆t(uun − w) (5.1)
ρd

t+∆t(udn − w)2 + pd
t+∆t = ρu

t+∆t(uun − w)2 + pu
t+∆t (5.2)

γ

γ − 1
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t+∆t

ρd
t+∆t

+ (udn − w)2

2 = γ

γ − 1
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t+∆t
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t+∆t

+ (uun − w)2

2 (5.3)

ud
t+∆t − udnn = uu

t+∆t − uunn (5.4)√
γ · pd

t+∆t

ρd
t+∆t

+ γ − 1
2 udn = Rd

t+∆t (5.5)

Eqs. 5.1- 5.4 are the R-H jump relations. The last equation is referred to the
Riemann variable associated with the acoustic wave which moves upstream towards
the shock, which was already discussed in Eq. (4.2)) in the previous Chapter. The
aforementioned system is therefore solved using a Newton–Raphson algorithm and
supplies also the local shock speed w.

Step 4: Shock displacement and solution interpolation at the phan-
tom nodes

The position of the shock at time-level t + ∆t is computed by moving all shock
points according to the shock speed (wt+∆t) obtained in the previous step. If ∆t
is kept sufficiently small, the shock surface will overtake only phantom nodes but
none of the active points of the computational mesh. All phantom vertices are
checked to determine if they are far enough from the shock that they should be
re-inserted into the active mesh. Those that will be re-activated must have their
solution state updated. This is done by identifying the volume cell they fall within.
The solution at all active vertices in the mesh has already been updated to t + ∆t,
and this solution is linearly interpolated to the phantom vertices. These phantoms
are then re-inserted into the mesh, taking care to preserve triangles on the shock.
Non-phantom vertices near the shock are checked to see if they are too close to the
shock. Those that verify this condition are removed from the mesh topology and
tagged as phantoms: thus the computational grid is locally remeshed around the
shock front, to take into account of the newly add/removed phantom points. After
these updates to the computational mesh and solution, the solution at new time
step t + 2∆t can be computed repeating the computing procedure from the step 1.
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5.2 Numerical results
In the following subsections the results obtained in the simulation of high-speed flows
past two different blunt bodies using both S-C and S-F solver will be analysed and
discussed in order to highlight the differences between these two shock-modelling
options. Specifically, the former test-case regards the hypersonic flow past an hemi-
sphere and allows to perform a quantitative assessment of the order of convergence of
the two techniques: an hypersonic viscous flow past a sphere has been also computed
by considering the Blottner flow configuration [171] in the second test case, in order
to provide also comparison between the experimental data and the results obtained
using both the shock modelling approaches.

5.2.1 Hypersonic flow past an hemisphere

The hypersonic flow (M∞ = 10) past an hemisphere has been numerically computed
using the computational domain shown in Fig. 5.6: the hemisphere has been carved
within an orthogonal parallelepiped, half of which is shown in Fig. 5.6; R is radius
of the hemisphere and the triangulated surface of the bow-shock is shown in blue.
Specifically, this test case has been computed using both S-F and S-C, where the
S-C solution has been obtained using EulFS code described in Sec. 2.1.2. Moreover
S-C and S-F calculations have been performed on nearly identical tetrahedral grids,
since the modified S-F mesh differs from the background tessellation only in the
neighbourhood of the fitted shock-surface (compare Figs. 5.7a and 5.7b) where it
has been locally modified by the GRUMMP library to give room to the triangulated
shock surface. In order to evaluate the grid-convergence properties of the two
different shock-modeling options, calculations have been performed using two nested
grid levels, the finest one obtained by splitting each cell of the coarser mesh into
eight tetrahedra.

Figure 5.6. Computational domain

The superior performance of the S-F technique is evident in Fig. 5.8, which
compares the dimensionless pressure field within the XZ plane computed using both
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(a) S-C mesh side view (b) S-F mesh side view

Figure 5.7. Hypersonic flow past a hemisphere: grid detail (plane XZ view)

S-C and S-F on the coarsest grid. The S-C calculation (see Fig. 5.8a) features a
shock-thickness which is comparable to the shock stand-off distance and is char-
acterized by the presence of spurious disturbances within the entire shock layer,
due to the mis-alignment between the shock-surface and the triangular faces of the
grid. On the contrary, the S-F calculation, Fig. 5.8b, features a discontinuity of zero
thickness and a smooth pressure-field downstream of the bow shock.

(a) S-C computation (b) S-F computation

Figure 5.8. Hypersonic flow past a hemisphere: dimensionless pressure field in the XZ
plane.)

The S-F improvements are further confirmed by the comparison of the dimen-
sionless density distributions over the body surface, which is shown in Figs. 5.9a
and 5.9b for the coarse and fine grid levels. Indeed, in the S-C calculations shown in
the two frames on the left of Fig. 5.9, the density iso-contour lines are characterized
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by severe oscillations that pollute the solution, in particular close to the stagnation
point. In contrast, the S-F calculation reveals a reasonably good circumferential
symmetry (particularly on the finer mesh) despite the use of a fully unstructured
tetrahedralization.

(a) Coarse grid level

(b) Fine grid level

Figure 5.9. Hypersonic flow past a hemisphere: dimensionless density field over the body
surface.

The two nested meshes also allow to assess the observed order of accuracy, ñ,
and discretization error, ϵh to estimate the difference between the numerical solution
uh computed on a mesh of spacing h and the exact solution, u0: in particular, the
exact solution u0 is the exact stagnation point value of either pressure or density,
which can be analytically determined because the bow shock is a normal shock at
the point where it is crossed by the stagnation streamline. Specifically, the observed
order of accuracy has been calculated according to Eq. 3.1, where the grid refinement
ratio is equal to r = 2 for nested meshes, whereas the convergence monitor R is
computed following Eq. 3.6.
Table 2, which shows the numerically and analytically computed values of pressure
and density at stagnation point clearly reveals that S-F provides values much closer
to the exact value than S-C.

The results of the grid-convergence analysis are reported in Tab. 3: on both grid
levels the discretization error incurred by S-F is one order of magnitude smaller
than that of S-C. In particular, this observation holds true for both pressure and
density. Furthermore, the comparison between the pressure and density computed
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Table 2. Inviscid flow past a hemisphere: stagnation point data.

Shock capturing Shock fitting Analytical
Quantity fine grid fine grid

P/P∞ 125.04 128.93 129.21
ρ/ρ∞ 5.80 6.13 6.15

values highligths that S-F solutions are characterized by a convergence trend which
is better that the S-C one. By evaluating the data in Table. 3,is clear that S-F
exhibits an observed order closer to the designed order ñ = 2 with respect to S-C,
especially when considering the density analysis.

Table 3. Inviscid flow past an hemisphere: convergence analysis.

Pressure analysis Density analysis
ϵ2h ϵh R−1 ñ ϵ2h ϵh R−1 ñ

S-C 11.76 4.16 2.82 1.49 0.698 0.357 1.96 0.97
S-F 1.07 0.29 3.73 1.90 0.06 0.02 3.00 1.59

5.2.2 Hypersonic laminar flow past a sphere

To evaluate the quality of the numerical solutions that the S-F technique is able
to offer, also the well known benchmark proposed by Blottner [171] was calculated
and the numerical solutions analyzed. The hypersonic laminar flow (M∞ = 5,
Re=1.88 · 106) past a sphere has been numerically computed in a tetrahedral
computational domain. Some mesh statistics are given in Tab. 4; Figure 5.10 shows
the surface of the sphere in red, and the triangulated surface of the bow shock wave
(composed of 2615 nodes and 5175 elements) in blue.

The superior performance of the S-F technique is revealed by Fig. 5.11, which
compares the Mach flow-field in the symmetry XZ plane computed using both
S-C and S-F on nearly identical tetrahedral grids. Indeed, it is worth to remind
that the S-C mesh coincides in general with the background mesh used in the S-F
calculation since the computational S-F grid differs from the background tessellation
only in the neighbourhood of the fitted shock-surface, as previously discussed. Also
in this case the S-C solution (see Fig. 5.11a) features a shock-thickness which is
comparable to the shock stand-off distance and is characterized by the presence
of spurious disturbances within the entire shock layer. On the contrary, the S-F
solution (Fig. 5.11b) features a discontinuity of zero thickness and provides smoother
Mach iso-contours distribution downstream of the bow shock.

The improved solution quality offered by S-F is further confirmed by the dimen-
sionless pressure distribution over the body surface, which is shown in Fig. 5.12.
Indeed, in the S-C calculations shown in Fig. 5.12a, the pressure iso-contour lines
are characterized by severe oscillations that pollute the solution, especially near
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Table 4. Computational domain features

N◦ nodes N◦ elements First cell height
93309 542160 4.9 · 10−6

Figure 5.10. Hypersonic
flow past a sphere (M∞=5,
Re∞=1.88 · 106): computa-
tional domain

(a) S-C computation
(b) S-F computation: fitted shock is depicted

using a white solid line.

Figure 5.11. Hypersonic flow past a sphere (M=5): Mach flow-field.

the stagnation point. In contrast, the S-F calculation reveals iso-contours without
oscillations and with reasonably good circumferential symmetry (see Fig. 5.12b). A
further comparison between the two shock modeling approaches can be carried out
comparing these results with the data available in Ref. [171]. The surface pressure
distribution computed by the S-F technique is confronted in fig. 5.13a with the
Blottner data and with the one computed using the S-C solver (EulFS), which is
the same solver used for the smooth regions calculation by the S-F technique (see
step 3). Both the solutions are in good agreement with the Blottner pressure data
except in the stagnation region, where the S-F technique continues to provide a good
agreement, whereas the S-C technique shows results significantly different from the
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(a) S-C computation. (b) S-F computation

Figure 5.12. Hypersonic flow past a sphere (M=5): normalized wall pressure distribution

reference ones.

(a) Surface pressure distribution along the
reference line shown in fig. 5.13b.

(b) Surface pressure distribution and reference
line (marked in white)

Figure 5.13. Hypersonic flow past a sphere (M=5): comparison between pressure reference
data [171] and numerical simulations
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5.3 Future Work: an example of shock-shock interac-
tion.

Results obtained in the previous section and in Ref. [172] using the unstructured S-F
approach, encourage a further development of the proposed technique. Up to date,
the GRUMMP library routines implemented in the S-F code do not handle multiple
shocks. For this reason, high speed flows characterized by shock-shock interaction
can be calculated by the present 3D S-F technique only in a hybrid mode, where the
strongest shock is fitted, while the remaining discontinuities and their interactions
are captured. A new version of the code require to be developed that can handle
multiple shock surfaces and manage shock interactions. To test the new features that
must be included in new version of the code, a new specific test case is considered.
The test case considers a supersonic flow past a blunt-nosed body, featured by the
presence of interacting discontinuities. The body geometry consists of a cylinder
with a hemispherical nose, a conical flare making an angle of 30◦ w.r.t. the body
axis and a cylindrical tail, as described by Fig. 5.14a, whereas Fig. 5.14b shows a
portion of the volume mesh used for performing the numerical computation using
both S-F and S-C solvers. The free-stream Mach number is M∞ = 4.04 and the
angle of attack α = 20◦, as reported in Fig. 5.14c. This test case was experimentally
studied in Ref. [173]. As stated before, the flow-field is characterized not only by a
bow shock, but also by an embedded shock which originates at the cylinder-cone
junction. These two shocks interact giving rise to a type VI shock-shock interaction,
as classified by Edney [174]. As explained before, the embedded shock surface is not

(a) Computational domain (b) Background mesh (c) Bow shock surface

Figure 5.14. Hypersonic flow past a flare: computational domain and mesh details

visible in Fig. 5.14c, because the S-F technique has been used in an hybrid manner,
whereby only the bow shock has been fitted, whereas the embedded one has been
captured.
A qualitative comparison between the S-C and the S-F solutions is available in
Figs. 5.15, which show the dimensionless pressure field computed using the two shock-
modeling options respectively on the symmetry plane XZ, close to the hemispherical
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nose and in the region where the shock-shock interaction takes place. By comparing
the left and right frames of these figures, it is clear that significant differences exist
between the pressure field computed by S-C and S-F downstream of the bow shock,
both in the symmetry plane and over the body surface. Indeed, S-C solutions are
characterized by finite shock thickness, which spans a few cells, the size of which
is comparable to the shock stand-off distance. By modelling shocks using the S-F
technique, the shock thickness is brought near to its physical size, that is an order
of magnitude greater than the gas mean free path, therefore it allows to obtain
high quality solutions on a nearly identical grid to the one used by S-C solver. In
particular, Fig. 5.15 highlights the future capabilities of the new code: it shows
a zoom of the region where the shock-shock interaction takes place in the hybrid
simulation. Due to the numerical thickness of the embedded shock that is captured
by the gas-dynamic solver the interaction point is smeared in a region. This region
has no physical meaning and is only a numerical artifact. It is evident that the use
of a fully S-F technique where all the shocks and interactions are fitted may further
improve the solution quality with respect to the hybrid solution if the embedded
shock and the shock-shock interaction were also fitted, rather than being captured as
in Fig. 5.15. This requires an improvement of the capabilities in the mesh generation
and handling of the S-F solver currently under development using the GRUMMP
library.

(a) S-C solution (b) S-F solution

Figure 5.15. Hypersonic flow past a flare: computed pressure field in the XZ plane
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5.4 Summary
The diffusion of S-F techniques in the CFD world is severely limited by the great
difficulty of developing sufficiently general S-F solvers able to handle 3D flows
with interacting shock waves. Past experience has shown that these difficulties are
insurmountable if the S-F technique is implemented in a gas-dynamic solver for
structured grids. However, the development of S-F techniques for unstructured
grids has shown that most of these difficulties can be removed by having suitable
software procedures capable of inserting line/surface grids within a background
grid and subsequently moving these lines/surfaces inside the mesh. For some years
now, a collaboration has been underway between three different universities for the
development of a 3D S-F solver for unstructured grids that uses the GRUMMP
library for the mesh generation and handling [175, 172]. This collaboration produced
a first S-F solver capable of fitting single shock surfaces whose qualitative and
quantitative results are shown in this Chapter. Efforts must be still concentrated
on the development of an improved version of the unstructured S-F solver capable
of dealing with 3D flows with interacting shock waves since it would represent a
significant step in the development of S-F techniques for unstructured grids and
could crack the barrier that has hitherto precluded the wide use of S-F methods in
the world of CFD.
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Chapter 6

SESF for 2D high speed flows
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One of the aims of this Thesis was the development of a S-F technique able to
overcome the limits of the previously designed S-F approaches for structured solvers:
the boundary S-F and the floating S-F (see Sec. 2.2 for details). A good starting
point for achieving this task was the extrapolated DIscontinuity Tracking (eDIT)
technique developed by Ciallella et al. [32] for unstructured grids, which combines
the unstructured-grid S-F technique developed in Ref. [22] with the shifted boundary
method in Ref. [31]. In eDIT [32, 33] the fitted (or tracked) discontinuity carves
a mesh-less hole in the computational domain over which it is floating and data
transfer between the discontinuity and the boundaries of the hole is carried out
through interpolation/extrapolation via truncated Taylor series expansions. This
approach allows to retain high-order convergence properties without imposing any
constraint on the topology of the mesh, and on the data structure of the underlying
flow solver and without requiring complex mesh operations other than blanking
the cells crossed by the discontinuity. The eDIT’s features lend themselves well
also to the structured-grid framework. Using this feature, it is proposed a new
S-F approach called Structured Extrapolated S-F (SESF), that will be described
and discussed in this Chapter. One of the key features of SESF is its capability to
keep track of the discontinuities and compute the surrounding smooth-flow areas
without re-meshing around the discontinuity; by doing so, SESF breaks the tight
link between grid topology and shock topology which troubled for many years the
development of S-F methods for structured grids. Moreover, a very limited amount
of extra coding is required to couple SESF with virtually any existing structured-grid
CFD code as long as the latter is capable of handling cell blanking, which amounts
to disable the computation within a given set of cells. CFD codes dealing with
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overset meshes typically posses this capability. Taking advantage of cell-blanking,
the CFD code can be seen as a black-box by the SESF algorithm, which only takes
care of supplying an input solution and the list of blanked cells. This algorithmic
flexibility greatly simplifies the coding effort compared to the traditional floating
S-F technique, while retaining the capability to handle flows featuring complex
shock patterns. Therefore, the SESF technique can be considered as an important
achievement because structured-grid solvers are the ones that can take the greatest
advantage of S-F modeling. Indeed, this class of solvers is still very much in use
today for simulating turbulent and aero-acoustic flows (via DNS or LES) because
they are computationally more efficient and accurate than the unstructured-grid ones.
Therefore, these simulations could really benefit from a more accurate and efficient
shock-modeling, free of all those problems associated with the shock-capturing
process.

6.1 SESF algorithm for 2D flows

To illustrate the algorithmic features of the SESF (see Fig.6.1), a 2D computational
domain and a compressible flow-field featuring shocks and contact discontinuities are
considered. For the purpose of illustrating the algorithm, reference will be made to a
shock-wave, but contact-discontinuities can also be handled by using the appropriate
jump relations and a simulation involving a contact discontinuity will be presented
in Sect. 6.2.3. The example of Fig. 6.2a shows the Cartesian grid used to simulate a
regular shock reflection from a flat plate. Firstly, a S-C calculation is run, since it
supplies the initial solution and approximate shock location to the SESF simulation.
SESF makes use of both a background mesh, which coincides with the grid used
in the S-C calculation, and a shock-mesh. In 2D the shock-mesh is made up of a
collection of points, the shock-points, marked with triangles in Fig. 6.2a, which are
mutually joined to form an ordered sequence of connected straight segments, the
shock-edges. In 3D, see the next Chapter, the shock-mesh is instead a triangulated
surface. Regardless of the dimensionality of the physical space, a single set of
dependent variables is associated with each cell of the background mesh, whereas two
sets of values, corresponding to the upstream and downstream states, are assigned to
each shock-point. The initial shape of the shock-front is obtained by post-processing
the S-C solution by means of an automatic shock-detection technique, such as the
ones described in [27, 164] or [36]. Contact discontinuities can also be detected by
choosing the appropriate sensor, which for instance can be based on entropy or
vorticity. When dealing with steady flows, it is not important that the initial shock-
shape and the initial values of the dependent variables within the shock-points are
accurately computed, because by enforcing the R-H jump relation across each pair
of shock-points the algorithm is capable of driving the shock towards its steady-state
location. The flowchart in Fig. 6.1 shows the seven algorithmic steps that allow to
advance the solution and shock position from time t to t + ∆t. By assuming the
the dependent variables knowledge that at time t within all cells of the background
mesh and all shock-points of the shock-mesh. A detailed description of each step
will be given in the following paragraphs.
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Figure 6.1. SESF algorithm flowchart

Step 1: Cell removal around the shock-front

The first step consists in removing all those cells of the background mesh that are
crossed by the discontinuity. More precisely, the algorithm checks for intersections
between the edges of the background mesh and the shock-edges. Wherever this
occurs, the two cells sharing the edge are blanked. By doing so, a hole enclosing
the discontinuity is carved within the background mesh, as shown in Fig. 6.2b.
The background grid with the blanked cells removed will be hereafter referred
as computational mesh . Figure 6.2b also points out two important features of
the proposed SESF technique: i) the cells marked by red squares represent the
adjoining boundary, which is the collection of cells that have at least an adjacent
blanked cell, and ii) the cells marked with green circles form the surrogate boundary,
which is made up of those cells sharing at least one vertex with the cells on the
adjoining boundary. Some further geometrical processing might be required to build
the computational mesh from the background one. This is because, to be able to
perform the extrapolation described in steps 5 and 7, the cells on the adjoining
boundary need to be adjacent to at least one cell on the surrogate boundary. This
may not be the case, however, in regions where different shocks mutually interact or
a shock reaches a boundary: for example, the red cell highlighted by the dashed line
in Fig. 6.2c has no neighbours belonging to the surrogate boundary and is therefore
flagged for removal.
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M=2.2

(a) Regular reflection on a plate: background
Cartesian grid and shocks (marked by tri-
angular points).

(b) Regular reflection on a plate: an example
of
computational mesh definition.

(c) Regular reflection on a plate: check on cavity boundary.

Figure 6.2. Regular reflection on a flat plate (M=2.2): creation of the computational grid.

Step 2: Computation of tangent and normal vectors

The procedure to compute both the tangent and normal vectors in each discontinuity
point is the same described in Step 3 of the UnDiFi-2D algorithm, therefore please
refer to Sec. 4.2.

Step 3: Solution update to time t + ∆t using a gas-dynamic solver

The solution within the computational mesh is advanced in time from t to t + ∆t
using a CFD solver, without imposing any boundary condition on the adjoining
boundary. In the present algorithm, the gas-dynamic code AFFS introduced in
Sec. 2.1.1 and described in Ref. [69, 176, 70]) was used: it is a second-order-accurate
FV solver based on Godunov’s scheme, capable of simulating inviscid and viscous
2D/3D flows using structured, multi-block meshes. The choice of the structured-grid
CFD solver is independent of the SESF algorithm described in this Section, as long
as it is capable of dealing with blanked cells.

Step 4: Solution transfer from the surrogate boundaries to the
discontinuities

The first transfer performed by the algorithm is required to update both the shock-
upstream and shock-downstream values of the dependent variables at all shock-
points. It is important to underline that data transfer towards the discontinuities is
different depending on whether the upstream or the downstream side of the shock
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is considered. The shock-upstream surrogate boundary behaves like a supersonic
outflow: even though no boundary conditions are applied, the update to time t + ∆t
performed by the gas-dynamic solver is correct and, therefore, extrapolation of
all dependent variables from the shock-upstream surrogate boundary towards the
shock-upstream side of the shock-mesh is used. On the shock-downstream surrogate
boundary, however, three (in the 2D space) out of the four characteristic variables are
convected downstream and away from the shock and only the Riemann variable (6.1)
associated with the slow acoustic wave:

Rd
t+∆t = ãt+∆t

d + γ − 1
2 ũt+∆t

d · n (6.1)

moves upstream towards the shock. The shock-downstream surrogate boundary
behaves like a subsonic inflow boundary and three boundary conditions would be
required. Since no boundary conditions are applied along the surrogate boundaries,
the updated values computed by the CFD solver at time t + ∆t within the cells
belonging to the shock-downstream surrogate boundary are incorrect (or provisional,
hence the tilde in Eq. (6.1)), because of the three missing boundary conditions.
However, due to the upwind nature of the discretization used in the CFD code,
the Riemann variable (6.1), whose domain of dependence lies within the shock-
downstream region, is correctly computed by the CFD code, even though the
individual quantities ãt+∆t

d and ũt+∆t
d may be wrong. It follows that on the shock-

downstream side only the Riemann variable (6.1) is extrapolated from the shock-
downstream surrogate boundary towards the downstream side of the shock. The
values of the dependent variables on the downstream side of the shock-points will be
subsequently corrected by enforcing the R-H jump relations, as described in step 5.
The extrapolation process for both transfers is based on a Taylor series expansion
truncated to the second term. By reference to Fig. 6.3, it follows:

ϕj = ϕA + (∇ϕ)A · (rj − rA) (6.2)

to compute the dependent variable, ϕj , in shock-point j using the cell-averaged value,
ϕA, of a reference cell A that belongs to the surrogate boundary. In Eq. (6.2) rA is
the position vector of the centroid of cell A and ∇ϕ is the gradient computed in cell
A; to achieve second-order of accuracy in the calculation of ϕj , the approximation of
the gradient in Eq. (6.2) only needs to be consistent, i.e. first-order accurate. In order
to select the reference cell, firstly the cell on the adjoining boundary is identified as
the closer element to shock-point j; this is cell 4 in the example of Fig. 6.3. Then,
cell A is chosen among the cells sharing a vertex with cell 4, which also belong to the
surrogate boundary; when multiple choices for A are available, the cell that is closer
to the line passing through shock-point j and parallel to the shock-normal vector nj

is selected. Finally, gradient reconstruction in cell A is performed by means of the
cell-based Green-Gauss formula, which reads:

∇ϕ = 1
ΩA

4∑
i=1

ϕei ℓi ni (6.3)

In Eq. (6.3) the summation ranges over the four quadrilateral cells neighbouring
cell A, ni is the unit vector normal to the edge shared by cells A and i, and ϕei
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the solution at the edge, which is computed using the arithmetic mean of the
cell-averaged values of cells A and i:

ϕei = ϕA + ϕi

2 . (6.4)

Whenever the i-th cell in Eq. (6.4) lies on the adjoining boundary, its ϕi value must
be replaced using an alternative extrapolation, because the cells on the adjoining
boundary will only be updated in step 7. This is the case, for instance, of cells 3
and 4 in Fig. 6.3 in which case ϕ3 is extrapolated along the x-axis using values ϕA

and ϕ2, and ϕ4 along the y-axis using ϕA and ϕ1. In both cases the interpolation
involves the cell-averaged value in A.

Figure 6.3. Extrapolation from the surrogate boundary to shock-point j.

In order to analyze the main properties of the gradient reconstruction, a grid-
convergence analysis has been carried out and reported in the Appendix B 11.2.

Step 5: Shock computation enforcing the Rankine-Hugoniot jump
relations

As stated before, the shock-downstream values of the dependent variables within
the shock-points need to be corrected by enforcing the R-H relations. This amounts
to solve a system of five (in the 2D space) non-linear algebraic equations for each
shock point, which also supplies the local shock-speed, ws. Specifically, the R-H
jump relations are applied to all the shock points as previously described in step 5
of the UnDiFi-2D algorithm (please refer to Sec. 4.2 for further details).

Step 6: Shock displacement

The new shock position at time t + ∆t is obtained by displacing all shock-points
using the local shock speed, ws, computed in step 5 and the shock-normal unit
vector, n, computed in step 2. Also in this case, the same procedure for displacing
shock points in step 6 of the UnDiFi-2D algorithm has been adopted, so that the
reader is invited to refer to Sec. 4.2 for further details.

Step 7: Solution transfer from the shocks to the adjoining boundary

Once the dependent variables on the shock-downstream side of the shock-mesh have
been correctly updated by enforcing the R-H jump relations, they can be used to
update the cell-averaged values of those cells that belong to the adjoining boundaries,
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as shown in Fig. 6.4. Once again, a generic cell A on the adjoining boundary is
updated by means of a Taylor series expansion truncated to the second term using
the closest shock-point, j, which reads:

ϕA = ϕj + (∇ϕ)j · (rA − rj) (6.5)

Although Eq. (6.5) looks specular to Eq. (6.2), it is important to highlight some

Figure 6.4. Adjoining boundary update using data computed in step 4 along the shock-
downstream side of the shock-mesh

.

differences with respect to the data transfer described in step 4. First of all, in the
current step data transfer only takes place on the downstream side of the shock,
because the upstream side has already been updated in step 3. Secondly, the gradient
reconstruction in shock-point j does not rely on the Green-Gauss formula, but it
is instead computed along two (not mutually orthogonal) directions, τ and eJB,
shown in Fig. 6.4. The unit vector τ is tangent to the discontinuity and has already
been computed in step 2. The unit vector eJB is parallel to the direction linking
shock-point j to one of the cells on the surrogate boundary sharing a vertex with
cell A. Also in this case, when multiple choices are available, the algorithm considers
the cell that is closer to the line passing through shock-point j and parallel to
the shock-normal vector nj ; in the example shown in Fig. 6.4 this is cell B. The
component of the gradient along the discontinuity uses a stencil of shock-points that
belong to the range of influence of shock-point j:

∇ϕ·τ =


ϕj+1−ϕj−1

|∆rj+1/2+∆rj−1/2| if both j + 1 and j − 1 are in the range of influence of j
ϕj−ϕj−1
|∆rj−1/2| if only j − 1 is in the range of influence of j
ϕj+1−ϕj

|∆rj+1/2| if only j + 1 is in the range of influence of j

(6.6)
The gradient along eJB, is instead calculated using the following finite difference
formula:

∇ϕ · eJB = ϕB − ϕJ

|rB − rj |
. (6.7)

Finally, the yet unknown Cartesian components of the gradient are obtained by
solving a 2 × 2 linear system using the two known components computed using
Eqs. (6.6) and (6.7).

A similar procedure has been used for updating the blanked cells. This is
necessary because, as long as the shock keeps moving, those cells that have been
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blanked during the current time step may be re-inserted into the computational
mesh at a later time when they are not any longer crossed by the shock-mesh.

Upon completion of step 7, the dependent variables of all cells of the background
mesh and of all shock-points of the shock-mesh have been updated to time t + ∆t,
the computational mesh can be discarded and the algorithm is restarted from step 1.

6.2 Numerical results

In the following sections the results obtained for three inviscid simulations of high-
speed flows using both the S-C and SESF approaches will be analyzed and discussed.
All numerical simulations have been run using the in-house S-C code described
in Step 3, which has also been used in the smooth regions of the flow-field in the
SESF simulations. The comparison of the results allows to highlight the differences
between these two shock-modeling options by studying solution quality and order-
of-convergence properties.

6.2.1 Circular cylinder

The first test-case consists in the supersonic flow (M∞ = 4) past a circular cylinder.
Despite its simplicity, it represents an important benchmark for the proposed tech-
nique, because the presence of a not uniform subsonic region around the stagnation
point and the transition to supersonic flow across the sonic line may be particu-
larly challenging for the extrapolation procedures employed in the SESF algorithm.
This test-case has been simulated using three nested structured grids obtained by
recursively coarsening the finest one to evaluate the qualitative and quantitative
convergence properties of both the S-C and SESF techniques. The advantages of
the SESF technique are clearly highlighted by Fig. 6.5, which shows the density
flow-field computed using both the S-C and SESF approaches on all grid levels: the
fitted bow shock is shown using a pink solid line in all three SESF solutions. By
looking at the computed flow-fields, it is clear that the S-C solution on the coarsest
grid is plagued by the carbuncle phenomenon [6], a numerical instability that affects
captured shock waves and is probably due to the unphysical states that arise inside
the captured shock [5, 177]. By modeling the bow shock as a true discontinuity,
the SESF technique is not affected by this kind of numerical anomaly and provides
high quality solutions even on coarse grids. Moreover, it can be seen that on all
grid levels SESF provides a much cleaner density distribution within the shock-layer,
compared to S-C.
A grid-convergence analysis of the two shock-modeling techniques is also presented

by analyzing the global total temperature error. Indeed, since the flow is steady and
the free-stream flow uniform, total temperature, T0, should be preserved throughout
the whole computational domain. Table 5 presents the L1 norm of the global error
ϵ computed on all pairs of grid levels according to Eq. 3.5 and the corresponding
order-of-convergence, calculated as in Ref. [144]:

ñi,i+1 = log(ϵi/ϵi+1)
log(r) (6.8)
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Figure 6.5. Supersonic flow past a circular cylinder (M = 4): comparison between the
density flow-field computed on all the grid levels using the two different shock-modeling
approaches.

In Eq. (6.8) the subscript i = 0, 1, 2 refers to the coarse, intermediate and fine grids,
respectively, and the grid-refinement-ratio is constant and equal to r = 2. The
computation of the global discretization error involves a summation over all cells
of the computational mesh, i.e. excluding the blanked cells. This has been done
not only for the SESF solution, but also for the S-C one because the hypotheses
leading from a truncated Taylor series expansion to Eq. (6.8) do not hold close to
a discontinuity. By looking at the data collected in Tab. 5 and shown in Fig.6.6,
it can be seen that the numerical error of the S-C calculation is larger than that
obtained with SESF on the same grid level and, maybe more importantly, the SESF
results are characterized by a second-order convergence trend, whereas S-C drops
slightly below first order.

Figure 6.6. Convergence
trend of L1 norm.

Table 5. Supersonic flow past a circular
cylinder: convergence analysis.

Mesh SESF S-C
Grid level h L1 ñ L1 ñ

0 0.032 3.10 · 10−2 - 8.61 · 10−2 -
1 0.016 8.2 · 10−3 1.91 1.7 · 10−2 -
2 0.008 2.25 · 10−3 1.86 1.0 · 10−2 0.96
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A local grid convergence analysis has also been performed at stagnation point,
where pressure and density, beside total temperature, can be analytically computed.
This is because the bow shock is a normal shock at the point where it is crossed by
the stagnation streamline. Using the results provided by both the SESF technique
and the S-C approach on all three grid levels, and listed in Tab. 6, it is possible
to estimate the observed order of accuracy [144, 152, 21], ñ, which is computed
according to Eq. 3.1. Furthermore, the analysis can be further detailed by relying
on the Grid Convergence Index (GCI) and the Richardson Extrapolated (RE) value
ũRE , which are computed according respectively Eq. 3.3 and Eq. 3.4. For the finest
grid level, GCI can be therefore evaluated as follows [144]:

GCI2 = 3 |u2 − u1|
1 − rp

. (6.9)

where p is the formal order of accuracy equal to 2. Specifically, GCI values referred
to the coarser grid levels, can be recursively computed from the GCI on the finest
level according to Eq. 6.10, as defined in Ref. [144]:

GCIi = rp GCIi+1 for i = 0, 1 (6.10)

In particular, GCI values, which play the role of a numerical uncertainty, are reported
in Tab. 6 with respect to each simulated value (simulated value ± GCI). Furthermore,
this table collects also the measured order of accuracy, the Richardson Extrapolated
solution and the analytical values referred to the normalized pressure, density and
total temperature. It is important to notice that the calculation of both the observed
order of accuracy and the RE values cannot be carried out for the normalized
pressure and density computed by the S-C method, because of their non monotonic
convergence. This trend is due to the carbuncle which plagues the coarsest grid
solution, especially regarding the pressure and density flow-field.
By comparing the data in Tab. 6, it is evident that the agreement between the SESF
results on the finest grid and the analytical values is excellent and, for all three
quantities, the exact solution falls within the uncertainty band defined by the GCI.
As can be seen, the GCI data in Tab. 6 show that all GCI values are significantly
smaller for the SESF solutions than the corresponding ones for S-C. This feature is
particularly relevant when considering the solutions on the finest grid level, where
for instance, the ratio between the S-F and S-C GCI values regarding the normalized
total temperature is one-seventh. Table 6 also shows that the measured order of
the SESF technique is close to design (second) order, which allows to reliably use
the RE value as a close approximation of the corresponding analytical quantity,
which is indeed confirmed when comparing values in the two bottom rows of Tab. 6.
On the contrary, S-C observed order of accuracy computed with respect to the
total temperature values is close to first order, as highlighted also by the global
convergence analysis previously discussed.

6.2.2 Regular shock reflection

The proposed SESF technique has also been used to compute flows featuring shock-
wall interactions, which is the case, for example, of the regular reflection of an
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Table 6. Supersonic flow past a circular cylinder: local grid-convergence study.

SESF S-C
Grid P/P∞ ρ/ρ∞ T0/T P/P∞ ρ/ρ∞ T0/T

coarse 20.669± 0.301 4.971± 0.088 4.156± 0.013 22.719± 1.25 5.451± 0.419 4.168± 0.024
intermediate 20.74± 0.075 4.992± 0.022 4.153± 0.003 20.662± 0.313 4.961± 0.105 4.159± 0.013

fine 20.759± 0.019 4.997±0.005 4.152± 0.001 20.741± 0.078 4.987±0.026 4.155± 0.007
ñ 1.93 1.91 1.86 - - 0.94

ũRE 20.767 5.002 4.151 - - 4.149
analytical values 20.765 5.000 4.152 20.765 5.000 4.152

oblique shock that impinges on a flat plate. In the chosen flow configuration the
Mach number ahead of the incident shock is M∞ = 2.2 and the flow undergoes
a deflection α = 3.75◦ through the incident shock. Despite the simplicity of this
test-case, which is characterized by three regions of uniform flow properties bounded
by the incident and reflected shocks, it is impossible to recover the exact solution by
modeling the shock-waves using S-C.

The computational grid is an H-grid made of 200 × 80 cells evenly spaced along
each coordinate line in both directions, as shown in Fig. 6.7.

Figure 6.7. Regular reflection: free-stream conditions, domain and background grid
(200 × 80 cells).

As already shown in previous publications [23, 36, 109, 33], S-F simulations can
be performed in two different ways: fully-fitted or hybrid. In fully-fitted mode all
discontinuities are fitted and the point(s) where different discontinuities mutually
interact or interact with a solid boundary must also be modeled. In hybrid mode
only some of the discontinuities are fitted and it is left to the S-C solver to capture
all the other discontinuities as well as the interaction between fitted and captured
discontinuities. Figures 6.8, 6.9 and 6.10 allow to compare the differences among
S-C, hybrid and fully-fitted SESF. First of all, Fig. 6.8b clearly reveals that the
corner of the upper wall, where the incident shock originates, is a large source of
error in the S-C calculation. This anomaly is absent in the SESF simulations. Not
surprisingly, solution quality improves as the number of fitted shocks increases. In
the hybrid SESF simulation shown in Fig. 6.9 the incident shock has been fitted and
the reflected one captured, which is sufficient to significantly reduce the (un-physical)
width of the captured reflected shock with respect to the S-C calculation: compare
Fig. 6.9a with 6.8a. As shown in Fig. 6.10a, solution quality further improves when
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both shocks are fitted and their interaction point at the wall is modeled as described
in [23]. In particular, the fully-fitted solution of Fig. 6.10a allows to recover the
uniform, analytical solution, within the two regions downstream of the incident
and reflected shocks. It may be argued that this is of little practical use given the
simplicity of the shock-interaction pattern that is being analyzed. The test-case
to be presented in Sect. 6.2.3 demonstrates that SESF outperforms S-C also when
dealing with more complex shock-interaction topologies.
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(b) Entropy flow-field.

Figure 6.8. Regular shock reflection: S-C computation.
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(b) Entropy flow-field.

Figure 6.9. Regular shock reflection: hybrid S-F computations, fitted shock is depicted
using pink solid line.
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Figure 6.10. Regular shock reflection: full S-F computation, fitted shocks are depicted
using pink solid lines.
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6.2.3 Mach reflection

This last test-case has been included in order to show that SESF is capable of dealing
with complex shock-patterns, such as the triple-point that arises in a Mach reflection.
The free-stream conditions and the computational domain are reported in Fig. 6.11:
the computational mesh is a H-grid made of 232×102 cells evenly spaced, along each
coordinate line, in both directions. The SESF simulation has been run in fully-fitted

Figure 6.11. Mach reflection: free-stream conditions, domain and background grid
(232 × 102 cells).

mode: all four discontinuities that meet at the triple-point, i.e. three shocks (the
incident and reflected shocks and the Mach stem) and the contact discontinuity,
have been fitted and the triple-point has been modelled as described in [178].

The Mach number flow-field computed with both S-C and SESF are displayed
in Figs. 6.12a and 6.12b, respectively. It is clearly shown that the SESF solution
exhibits a better quality with respect to the S-C simulation: the Mach-number
distribution is smoother, especially downstream of the Mach stem and the reflected
shock. This is evident when looking at the Mach distribution along the x = 6.85 line:
Fig. 6.12c shows that the captured Mach stem gives rise to unphysical oscillations
in the entire region downstream of the Mach stem, which are absent in the SESF
calculation.

(a) S-C computation. (b) S-F computation. (c) Mach distribution along x =
6.85.

Figure 6.12. Mach reflection: Mach flow-field (fitted shocks are depicted using pink bold
lines) and Mach distribution along the line x = 6.85 (orange dashes).
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6.3 Summary
A new computational technique has been proposed for simulating high-speed com-
pressible flows featuring discontinuous solutions (both shock-waves and contact
discontinuities) using structured-grid solvers. The so-called Structured Extrapolated
S-F (SESF), has been described in detail, highlighting its algorithmic features, novel
features and its key advantages over the two S-F approaches, namely boundary
and floating S-F, that had been developed for structured-grid solvers starting in
the 1960s. SESF has been used to simulate three different inviscid 2D flows: the
supersonic flow past a circular cylinder and both a regular and Mach reflection. The
blunt-body flow has also been used to evaluate the local and global grid-convergence
properties of the new technique, which shows an observed order-of-convergence very
close to the theoretical one, both globally and at stagnation point. Moreover, the
SESF solution is immune to the carbuncle phenomenon, that instead plagued the
S-C solution on the coarsest mesh. Last but not least, the SESF algorithm has been
designed with the aim of developing a technique that [165] “could be used as a black
box in a variety of complicated problems”. This is accomplished by treating as a
black-box the structured-grid CFD solver which is used to discretize the governing
PDEs in smooth regions of the flow-field, the only requirement being that the CFD
code is capable of dealing with blanked cells. To summarize, the technique has
been shown to be able to overcome typical problems encountered by S-C solvers
(order-of-accuracy degradation and anomalous solutions) and to compute flows with
shock-wall and shock-shock interaction, providing high quality solutions also on
coarse meshes.
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Chapter 7

SESF for 3D high speed flows
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Over the last decades the simulations of compressible flows, especially those fea-
tured by shocks, have been one of the major driver for developing new computational
algorithms and tools. However, the development of S-F techniques for computing 3D
flows was held back by a main obstacle: the insertion and handling of shock surfaces
mutually interacting within the background volume mesh. Even if these problems
have been partially overcome using the S-F technique described in Chapter 5, S-F is
still not able to deal with interacting discontinuities. It is worth to point out that
these problems become even more complicated when structured grids are considered,
because of their rigid topology. In these cases, it is not possible to directly transport
the S-F technique described in Chapter 5, since it is strongly linked to the world
of unstructured grids: the reason lies in the libraries used by the UnDiFi-3D code
which are tailored for generating these types of grids. An alternative is proposed by
the embedded approach for computing 2D flows on structured grids described in
the Chapter 6, that allows the calculation of the shock-wave and the adjacent flow
areas without the need of regenerating a computational grid around the shock. The
high quality results obtained in Sec. 6.2 by the SESF techniques for computing 2D
complex flows proves that it is possible to open a new path in the S-F techniques
development and to break the strong link between meshes and solvers that has
existed so far in all the S-F methods developed in the past. The extension of the
SESF technique to 3D flows is therefore an obliged step of this new development.
In this Chapter, the newly developed SESF technique for 3D flows and some of its
applications will be presented: specifically, a particular attention will be paid to
describe the methodological developments with respect to the algorithm presented in
Chapter 6 since, in the 3D space, shock fronts are modelled by zero-thickness, double-
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sided, triangulated surfaces instead of poly-lines. It is important to underline that
the proposed technique is capable of computing for the first time 3D flows featuring
shock-shock and shock-wall interactions thanks to the coupling with the MMG mesh
generator [179], which is able to stitch together multiple shock/wall/discontinuity
surfaces at the reflection/interaction lines, which can move during the computation,
and to eventually re-mesh the different surfaces. Furthermore, the results obtained
using both S-C and S-F in the simulations of several significant flows will be com-
pared in order to highlight the differences between these two shock-modelling options
and to provide a quantitative assessment of the order-of-convergence of the two
techniques will also be presented.

7.1 SESF algorithm for 3D flows

The algorithmic features of the SESF technique for 2D applications have been
deeply described in Chapter 6: the extension of the SESF technique to 3D cases
requires some modifications especially regarding the extrapolation/interpolation
processes between the shock surface and the background volume mesh. To illustrate
the newly implemented features of the SESF , the algorithm steps listed in Fig. 6.1
will be described, by considering as an example the 3D supersonic flow past a wedge,
as described in Figs. 7.1a and 7.1b. It is worth to notice that the S-F technique
allows to represent the oblique shock originated at the compression corner as a
triangulated surface, as pointed out by Fig. 7.1a. The initial shock position can be
determined by evaluating a preliminary S-C calculation, which also provide the initial
condition for the S-F computation: specifically, the extraction of a first attempt
shock surface has been widely discussed in Chapter 5. Then, each shock front is
evolved in time by the SESF algorithm until the correct steady position is reached:
the procedure employed to evolve the solution from t to t + ∆t will be described in
detail in the following sub-sections.

Step 1: Cell removal around the shock surface

The first step consists in removing all the elements of the volume mesh that are
crossed by the shock surface: the removed elements of the background grid are
identified as “ghost cells” whenever the distance d between one of their vertices and
the nearest shock point P is lower than the characteristic grid size of the volume
mesh. By doing so, a hole containing the shock front is carved within the background
grid, as shown in Fig. 7.1b. Hereafter, the mesh without the blanked elements will
be referred as computational grid: as in the 2D case, the collection of cells that have
at least an adjacent blanked cell represent the adjoining boundary, as highlighted
in Fig. 7.1b, whereas the surrogate boundary is made up of those cells sharing at
least one vertex with the cells on the adjoining boundary. Some further geometrical
processing might be required to build the computational mesh from the background
one. As a matter of fact, to be able to perform the extrapolations described in
steps 5 and 7, elements on the adjoining boundary require to be adjacent to at least
one cell on the surrogate boundary. This may not be the case, however, in regions
where different shocks mutually interact or whether a shock reaches a boundary:
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for this reason, cavity boundaries need to be checked and those cells which have no
neighbours belonging to the surrogate boundary are therefore flagged for removal.

X

Y

Z

Shock surface

20°

M=4

(a) Shock surface and domain boundaries
(b) Computational grid example: cavity

generation within the volume mesh.

Figure 7.1. Supersonic flow past a compression corner (M=4)

Step 2: Computation of tangent and normal vectors

In order to apply the R-H jump relations the normal n unit vector have to be
calculated within each shock-point. This task is achieved by adopting the same
procedure described in step 1 of the UnDiFi-3D algorithm (refer to Sec. 5.1 for
details).

Step 3: Solution update to time t + ∆t using a gas-dynamic solver

The solution within the computational mesh is advanced in time from t to t + ∆t
using the AFFS solver, which was coupled also with the 2D SESF technique, in 3D
mode without imposing any boundary condition on the adjoining boundary.

Step 4: Solution transfer from the surrogate boundaries to the shock
front

As in step 4 of Sec. 6.1, the first transfer performed by the algorithm is required
to update both the shock-upstream and shock-downstream values of the dependent
variables at all shock-points. It is important to underline that data transfer towards
the discontinuities is different depending on whether the upstream or the downstream
side of the shock is considered. The shock-upstream surrogate boundary behaves
like a supersonic outflow: even though no boundary conditions are applied, the
update to time t + ∆t performed by the gas-dynamic solver is correct and, therefore,
extrapolation of all dependent variables from the shock-upstream surrogate boundary
towards the shock-upstream side of the shock-mesh is used. On the contrary, the
flow on the shock-downstream surrogate boundary has missing boundary conditions
corresponding to the slow acoustic wave. For this reason, on the shock-upstream
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side, all conserved variables are extrapolated from the surrogate boundary to the
shock, whereas, on the shock-downstream side, only the Riemann variable in Eq. 6.1
is extrapolated.
The extrapolation process for both transfers is based on the truncated Taylor series
expansion in Eq. 7.1. To provide an example, the updating process of shock-point J ,
according to the notation described in Fig. 7.2, is considered. Thus, the state vector
associated to shock-point J , ϕJ , is updated using the state stored in a reference
element A, ϕA, which belongs to the surrogate boundary:

ϕJ = ϕA + ∇ϕ · d (7.1)

where d is the distance vector between shock-point J and cell A, and ∇ϕ is the
gradient computed on the correspondent surrogate boundary: it must be noticed,
that Eq. 7.1 only needs to be consistent, i.e. first-order accurate. In order to select
the reference cell, firstly the closest element to shock-point J is identified, so that it
lies on the adjoining boundary (cell 3): in particular, the distance is computed with
respect to the line corresponding to shock point J normal vector nj (the dashed line
in Fig. 7.2). Then, cell A is chosen among its adjacent elements which are also on
the surrogate boundary. Specifically, when multiple choices for A are available, the
algorithm takes the cell closer to shock point J normal vector. Finally, the gradient
∇ϕ is evaluated by means of the cell-based Green-Gauss formula, which reads:

∇ϕ = 1
V olA

6∑
i=1

ΩAi ϕfi
· ni (7.2)

where ϕfi
is the solution at the interface between cell A and the i-th adjacent element,

and it is computed with an arithmetic mean between the two states:

ϕfi
= ϕA + ϕi

2 (7.3)

if the i-th element lies on the adjoining boundary, its value must be replaced by
a secondary extrapolation process, since those cells are not correctly updated: for
example, in Fig. 7.2, the state of cell 3 has to be extrapolated along the k coordinate
lines using both cells A and 1.

Step 5: Shock computation enforcing the Rankine-Hugoniot jump
relations

In this step, shock-downstream values of the dependent variables are corrected by
enforcing the jump relations across each pair of shock-points according the same
procedure described in step 3 of Sec. 5.1.

Step 6: Shock displacement

The new shock position at time t + ∆t is obtained by displacing all shock-points
using the local shock speed, ws, computed in step 5 and the shock-normal unit
vector, n, computed in step 2, as described by step 4 of Sec. 5.1.
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Figure 7.2. Solution transfer from the surrogate boundary to the shock front

Step 7: Solution transfer from the shock surface to the adjoining
boundary

Once the shock states are correctly computed by enforcing the R-H jump relations,
they can be used to update the elements belonging to the adjoining boundaries,
as shown in Fig. 7.3. Once again, cell A on the adjoining boundary is updated by
means of a Taylor series expansion truncated to the second term using the closest
shock-point J , which contains A within its dependence domain. It reads:

ϕA = ϕJ + ∇ϕJ · d (7.4)

the gradient is computed on a reference frame defined on J, which consists of the
shock-point normal vector nJ and of two tangents (τ 1 and τ 2) to the shock surface
in J, as described in Fig. 7.3.
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Figure 7.3. Solution transfer from the shock front to the adjoining boundary
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In particular, the gradient ∇ϕJ in shock point J can be split into two components:

∇ϕ = ∇shϕJ + ∇nϕJ (7.5)

Where ∇shϕJ is defined locally tangent to the shock surface, whereas the component
∇nϕJ is parallel the shock point J normal vector nJ .
At this stage, ∇shϕ is obtained by means of an area-weighted average of the fractions
of the cell-wise constant gradients of all the shock cells that surround the shock
point J according to:

∇shϕJ = 1∑
J∋T AT

∑
J∋T

AT ∇shϕT (7.6)

where AT is the area of each triangle which has J among its vertices. Moreover, the
gradient ∇shϕT on the triangle T belonging to the shock surface is calculated using
the values of ϕ stored in each vertex of the triangles T and the inward unit normals
to the triangle edges as stated below:

∇shϕT
j = 1

2 · AT

3∑
i=1

ϕj ni (7.7)
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Figure 7.4. Gradient associated to the shock point J on the tangential directions.

At this point, the gradient normal component ∇nϕ is still an unknown. It can
be evaluated using the derivative along the direction that links shock-point J to
one of the adjacent elements of cell A (called B in Fig. 7.3) that belongs to the
surrogate boundary, which is denoted by the unit vector η. In particular, this is
computed using the finite difference formula in Eq. 7.8, which allows to solve the
scalar equation defined in Eq. 7.9, where the unknown term is marked in red.

∇ϕ · η = δϕ

δη
= ϕB − ϕJ

dJB
(7.8)

δϕ

δη
= (∇shϕ · τ1)(τ1 · η) + (∇shϕ · τ2)(τ2 · η) + ∇nϕ · η (7.9)

Once the gradient reconstruction is completed, it is possible to compute the
gradient vector components δϕ

δx , δϕ
δy , δϕ

δz along the x, y and z axes, by solving the
following system: 

∇ϕτ1τ1x + ∇ϕτ2τ2x + ∇ϕnnx = δϕ
δx

∇ϕτ1τ1y + ∇ϕτ2τ2y + ∇ϕnny = δϕ
δy

∇ϕτ1τ1z + ∇ϕτ2τ2z + ∇ϕnnz = δϕ
δz

(7.10)
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Where in particular:
∇ϕτ1 = ∇shϕ · τ1

,
∇ϕτ1 = ∇shϕ · τ1

and
∇ϕn = ∇ϕ · n

A similar procedure has been implemented also for blanked cells, so that all elements
are updated at time t + ∆t and the algorithm can then restart from step 1.

7.1.1 Shock/shock interactions modelling

As mentioned earlier, in the past years the calculation of 3D flow configurations
featuring interacting shocks using a full fitted approach, where all the shock surfaces
and interaction lines are fitted, was hindered by the stumbling block of the generation
and handling of multiple interacting shocks surfaces, which can move within the
computational mesh. This obstacle has been easily overcome by coupling the SESF
technique with the MMG mesh generator [179], which is able to stitch together
multiple shock surfaces at the reflection/interaction lines, and to eventually re-
mesh the shock fronts during their motion, until the final position is reached. To
illustrate the important role of this software, now embedded in the SESF algorithm,
let consider the four surfaces in Fig. 7.5a, that interact along the red line. This
example can be seen as a prototype of a complex shock-shock interaction, such as a
Mach reflection: in order to simulate what happens when the interaction line nodes
are displaced, the interaction points have been randomly moved along the plane
defined by the surface 1, as displayed in Fig. 7.5b. By doing so, the surfaces need
to be re-meshed, without changing the node distribution along the interaction line.
Fig. 7.5b shows that the MMG software is able to perform this task, by keeping
stitched together the different shock fronts, therefore fulfilling the S-F technique
requirements for computing 3D shock-shock interactions.

Moreover, when an interaction occurs within the flow-field, it is necessary to
model the interaction line in order to determine the motion of these points. In the
last decade, Paciorri and Bonfiglioli [23] have described how to model 2D interactions
using an unstructured S-F technique , where shock-waves and discontinuity lines
are represented by poly-lines and interactions are defined by points where the
various discontinuities meet. Recently, the same interaction models have been used
also in the SESF algorithm described in the previous Chapter to compute 2D
interactions. The interaction models illustrated in Ref. [23] can be applied also to 3D
compressible flows with some modifications: in 3D case, shock fronts are described
using zero-thickness triangulated surfaces, so that their intersection results in a
curve (see Fig. 7.6a), the points of which must be correctly modelled according to
the interaction type. Specifically, the model described in Ref. [23] has been extended
in 3D space, by drawing simple geometrical considerations. For instance, the case of
a regular oblique shock reflection can be considered, which will be also analyzed in
detail in Subsec. 7.2.2: the interaction line is highlighted by Fig. 7.6a, a detail of
which is also shown by Fig. 7.6b. As can be seen, the interaction line consists of a
list of special shock points: specifically, a generic special point IP belonging to this
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(a) Initial shocks surfaces (b) Interaction line random displacement
and shock surfaces remeshing

Figure 7.5. Shock-shock interaction example: role of the MMG software

line is computed on a plane α, which is locally orthogonal to the interaction line in
IP. Once the velocity vectors are projected on this plane, it is possible to apply the
same treatment proposed in Ref. [23] for the 2D shock-wall interaction case, which
is solved on plane α as illustrated by the sketch in Fig. 7.7. In order to explain the
reasons behind the plane α choice, it is worth to notice that this plane is normal to
all the interacting shocks. As a matter of fact, let us consider the vectors τ and µ
defined on Fig. 7.6b: the former is considered parallel to the vector tangent to the
interaction curve in IP, whereas the latter is identified by the intersection between
the incident shock surface and the plane α. The cross product between the two
aforementioned vectors defines a vector η which is orthogonal to both µ and τ : in
particular, since τ is also normal to plane α, it follows that η lies on plane α. At the
same time, η is orthogonal to the incident shock surface, so it can be considered as
the normal vector of the incident shock in IP. Similar considerations can be drawn
for each special point and also for the reflected shock surface when considering the
vector ξ instead of µ (see Fig. 7.6b), and therefore the plane α is locally normal to
all the interacting shocks.
Because of this geometrical consideration, the solution of the shock-wall interaction
on plane α as a 2D problem is correct: indeed, the R-H jump relations are applied
along the shock normal vector, which lies on plane α, as proved before. Moreover,
it should be noted that the aforementioned procedure can be applied to model all
the special points analyzed in Ref. [23] for 2D shocks interactions. Thank to the
MMG software and to the modelling of the interaction lines previously described,
the SESF technique is capable of performing a full fitted computation of the regular
reflection test-case discussed in Subsec. 7.2.2.
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(a) S-F density flow-field (b) Regular oblique shock reflection on a plate
(M=4): interaction region detail.

Figure 7.6. Regular oblique shock reflection on a plate (M=4): interaction modelling.

Figure 7.7. Regular oblique shock reflection on a plate: flow-field sketch

7.2 Numerical results

In the following sections the results obtained for inviscid simulations using both
S-C and the SESF approach will be analyzed and discussed: it is worth to notice
that all the numerical simulations have been performed using the in-house second-
order S-C gasdynamic solver described in [69]: the same solver is also used in the
smooth regions by the SESF technique. In particular, two different test cases will be
proposed in the following subsections to highlight the differences between these two
shock-modelling options in terms of solution quality and grid convergence properties:
a supersonic flow past a circular cylinder and regular shock reflection on a plate.

7.2.1 Supersonic flow past a circular cylinder

In this section, a supersonic flow (M∞ = 3) past a circular cylinder is taken into
account: this flow configuration has been numerically computed on two nested
volume meshes shown in Fig. 7.8, whose features are also reported in Table 7. Both
meshes are hyperbolic structured grids, composed by evenly spaced points along the
cylinder surface, whereas the nodes in the radial direction are distributed according
to an exponential spacing varying from ∆minS to ∆maxS . In order to compare the
solution quality provided by both approaches, it is worth to notice the differences
between the density flow field computed on the coarse and fine grid levels, pointed
out in Fig. 7.9a and 7.9b, with respect to the symmetry plane xz. For each grid,
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Table 7. Nested structured grids features: number of
nodes along the cylinder surface (I-lines), the radial
direction (J-lines) and the cylinder axis (K-lines)
and grid spacing size ∆S

Grid level I J K ∆SI ∆SK ∆minSJ ∆maxSJ

coarse 33 17 17 0.098 0.036 0.098 0.24
fine 65 33 33 0.046 0.018 0.046 0.12

X

Y

Z

Fine grid 

Coarse grid 

Figure 7.8. Supersonic flow
past a cylinder (M=3): do-
main boundaries

the SESF solution is displayed in the upper side, whereas the S-C one is shown in
the lower side. By fitting the bow shock, the spurious disturbances downstream
the discontinuity are removed and the S-F solution exhibits a higher quality and a
smoother density distribution within the shock layer. The availability of the exact
solution allows to assess the grid convergence properties of the two methods. In
particular, it is possible to evaluate the global error ϵ computed with respect to
the total temperature T0, since it should be constant in the whole computational
domain and equal to its inlet value. Table 8 collects the discretization error L1 norm
computed on all grid levels and the measured order of convergence ñ [144, 152, 21]
evaluated according to Eq. 3.1. It is important to underline that all those cells
crossed by the bow shock have been neglected for the global error measure: blanked
cells are excluded from the computation of the discretization error for both S-C
and S-F solutions. The convergence analysis confirms the results obtained in the
2D case. Specifically, in Table 8, the S-C discretization error is always larger than
that obtained with SESF on the same grid level. Moreover, SESF computations are
characterized by a convergence trend which is close to the designed order, ñ = 2,
whereas S-C drops slightly below first order, as shown in Fig. 7.10. In order to analyze
the 3D effects linked to this flow configuration, the nodes of the finest mesh level
have been randomly displaced: in particular, those belonging to the cylinder have
been only shifted along the z-axis to preserve the body surface (see Fig. 7.11a). Also
in this case, numerical computations were run using both approaches: nevertheless,
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(a) Coarse grid (b) Fine grid

Figure 7.9. Supersonic flow past a cylinder (M=3): density iso-countours

it was possible to perform only a first order accurate S-C simulation using this
particular volume mesh (see Fig. 7.12a), since the second order solution featured a
carbuncle, as highlighted in Fig. 7.12b. The origin of this numerical artefact appears
to be related to the captured shocks thickness [5], due to the unphysical states that
take place within the captured shock. By modelling shocks as discontinuities, S-F
techniques avoid the presence of these unphysical states, so that they are immune to
the carbuncle phenomenon.
Regarding the solution quality, which is possible to achieve using both the numerical
approaches, the same considerations previously stated apply also in this case. By
comparing the density flow field shown in Fig. 7.12, it is clear the positive effect of
modelling the shocks via S-F.
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Table 8. Global error L1 norm

Grid level S-C S-F
0 5.83 · 10−2 4.48 · 10−2

1 3.61 · 10−2 1.4 · 10−2

Observed order ñ 0.69 1.75

Figure 7.10. Convergence be-
haviour of L1 norm

(a) Difference between the reg-
ular (blue dashed) and the
randomly modified grids

X

Y

Z

Fitted shock

  202  Nodes
 305  Triangles

(b) Shock surface

X

Y

Z

Fitted shock

(c) Shock surface within
the background volume
mesh

Figure 7.11. Supersonic flow past a cylinder (M=3): domain boundaries and shock surface

7.2.2 Regular oblique-shock reflection

The SESF technique has been applied also to the case of a regular shock reflection on
a plate (M∞ = 4), located over a compression ramp (δ = 20◦). The computational
grid, which is the same used for both S-F and S-C computations, is a h-grid of
77 × 35 × 35 points distributed following an exponential law along the I and J
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Figure 7.12. Supersonic flow past a cylinder (M=3): density iso-contour lines on the
randomly modified grid

directions, as reported in Table 9 in order to cluster the cells around the corner
region (see Fig. 7.13). This test case has been computed performing second-order-

Table 9. Compression corner structured grid features

I J K ∆minSI ∆maxSI ∆minSJ ∆maxSJ ∆SK

76 34 34 0.1 0.93 0.05 0.5 0.43

accurate simulations using both the S-C and the S-F approach. In particular, the
S-F technique has been applied to both the incident and the reflected shock, which
are modelled using the surfaces shown in Fig. 7.14: the two surfaces are stitched
together along the interaction line that can float along the upper horizontal wall.

Moreover, the presented test case represents an important achievement for the
development of the S-F techniques, since for the first time it was possible to perform
a full fitted simulation of a 3D shock-shock interaction. A qualitative comparison
between the S-C and S-F solutions is presented in Figs. 7.15 and 7.16, which
respectively show the Mach number and the entropy flow-field provided by both
techniques. Moreover, Table 10 reports also the amount of cells which were blanked



100 7. SESF for 3D high speed flows

 M = 48 cm

1
5
 c

m

16 cm

K J

I

Figure 7.13. Regular oblique shock reflection on a plate (M=4). Domain boundaries and
volume mesh.

Table 10. Blanked cells percentage

N◦ elements Blanked cells % Blanked cells
94325 12870 13,5%

due to the shock surface insertions within the volume mesh and the percentage with
respect to the total number of cells.

As in the previous test-case, by comparing the numerical solutions it is clearly
pointed out the superior performance of the S-F approach. It is evident that the
captured discontinuities spoil the quality of the final solution, due to their artificial
thickness and because of the spurious disturbances that they generate. To improve
the S-C computation quality, a finer and adapted mesh is required, but this also
increase significantly the computational cost. Because of the shock modelling, the S-F
solution exhibits a higher quality with respect to the S-C one computed on the same
grid. Indeed, for this particular case, the numerical computation provided by SESF
is equal to the analytical solution and therefore the entropy flow-field is significantly
different from the one provided using a S-C approach, as displayed in Fig. 7.16. As
it can be noticed by looking at the entropy flow-field in Figs. 7.16a and 7.16b, the
S-F solution is able to remove the spurious disturbances which characterize the S-C
computation, especially the high entropy production around the corner where the
captured incident shock originates and downstream the interaction region.

7.3 Summary
A new structured shock-fitting technique for computing 3D high speed flows on
structured meshes has been presented: this approach derives from the one proposed
in Chapter 6 for 2D structured meshes and is able to overcome the main limitations
of the previously developed S-F approaches in the structured grids framework,
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M = 4
Reflected shock
 1677  points
 3164  triangles

Incident shock
 3474  points
 6746  triangles

Interaction line

Figure 7.14. Regular oblique shock reflection on a plate (M=4). Shock surfaces.

namely boundary and floating S-F, that had been developed for structured-grid
solvers starting in the 1960s. In particular, the capabilities of the novel structured
shock-fitting have been highlighted by presenting two different test cases. The
former describes a supersonic flow past a cylinder, which allowed to test the gradient
reconstruction process described in Sec. 7.1. This flow configuration was analysed
also to evaluate the global grid-convergence properties of the proposed technique,
which shows an observed order-of-convergence very close to the theoretical one.
Furthermore, this test case also proves that the SESF solution is immune to the
carbuncle phenomenon, that instead plagued the S-C solution. The last test case
considers a regular reflection on a plate, which was computed using both the shock
modelling approaches. It is important to notice, that the SESF technique was applied
for the first time to compute a shock-shock interaction in 3D space. This task has
been achieved by coupling the SESF technique with the surface mesh generator
MMG, able to handle mutually interacting surfaces which evolve in time until the
steady state. The analysis of the solutions computed by both the SESF and the S-C
method on the same volume mesh shows the significant improvements that can be
achieved by fitting the discontinuities and it encourages a further development of
the this technique.
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(a) S-C computation

Y X
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(b) S-F computation

Figure 7.15. Regular oblique shock reflection on a plate (M=4): Mach flow-field
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(a) S-C computation
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(b) S-F computation

Figure 7.16. Regular oblique shock reflection on a plate (M=4): Entropy flow-field
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Chapter 8

Shock/boundary layer
interactions
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In this Chapter some examples of 2D shock waves/boundary layer interactions
(SWBLIs) will be computed on unstructured grids using the S-F technique widely
described in Sec. 4.2. Anyway, even though S-F techniques has already been
used [180, 27] to simulate hypersonic viscous flows, those flow-cases did not involve
SWBLIs, which require some algorithmic addiction with respect to what described in
Chapter 4. Nevertheless, before considering the new algorithmic features that have
been introduced to deal with SWBLIs, it is appropriate to briefly spend some words
regarding the application of S-F techniques to viscous flows. From a mathematical
modelling point of view, S-F treats shocks as zero thickness discontinuities and
uses the Rankine-Hugoniot (R-H) jump relations to connect the flow states located
on two sides of the discontinuity and compute its dynamics. In the real world,
however, flows are viscous and the transition between the shock-upstream and
shock-downstream states is continuous, even though it takes place over a distance
(hereafter called the shock-width or shock-thickness) which in most cases is very
small. Inside the shock the flow is dominated by viscous effects and only when the
Reynolds number tends to infinity the shock wave becomes a true discontinuity, in
the mathematical sense. For this reason, the application of the S-F technique to
viscous flows may seem to be precluded on physical grounds, but it is not so. The
S-F techniques can be used with great advantage with respect to S-C ones in the
simulation of high-Reynolds number flows, as demonstrated by several examples, see
e.g. [97, 95, 181, 182, 96, 183, 184]. Indeed, even when the effects of viscosity are
accounted for, the R-H jump relations return the correct pre- and post-shock state,
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see e.g. [185, 186, 56, 2]. Therefore, the errors incurred by S-F methods are due to:
i) setting the shock-width to zero and ii) ignoring the [46] “physics at subgrid levels”,
i.e. the flow structure within the shock-width. This length-scale, however, is typically
orders of magnitude smaller than any macroscopic fluid-dynamic length-scale [187]
(such as the thickness of the boundary layer or the size of the eddies in a turbulent
flow), and also much smaller than any “computationally affordable” mesh length.
Two alternative possibilities therefore arise: either the flow physics inside the shock
can be ignored, in which case S-F is adequate for shock-modeling, or [46] “subgrid
physics cannot be ignored, and local mesh refinement must be used to resolve the
internal structure of the discontinuity”. This more complex scenario is however
encountered only in fairly specific circumstances, one such example being weak
steady Mach reflections [188, 189] in which case the local curvature of the shock
near the triple-point becomes comparable to the shock-thickness. For most flows
of practical engineering interest, such as those examined in this Chapter, the first
scenario applies and according to Moretti and Salas [55]: “for Reynolds numbers
of the order of 1000 or higher, the shock thickness can be neglected and a sharp
discontinuity, satisfying the Rankine-Hugoniot conditions, can be assumed in a flow
otherwise satisfying the Navier-Stokes equations”. If, on the other hand, the shock
is captured, rather than being fitted, it features a finite width which spans two or
more computational cells, depending on the numerical details of the discretization
scheme. When using “computationally affordable” mesh spacings, the width of a
captured shock is therefore orders of magnitude larger than the “true” (physical)
shock-width. Not only this introduces an error in the shock position which is of
the order of the local mesh spacing [190], but also the internal shock-structure is
grossly mis-represented [5]. The idea here is that it is better to neglect the shock-
thickness and the internal shock-structure altogether, rather than compute those
inaccurately. The alternative, which consists in bringing [165] “computational fluid
dynamics to a molecular scale, where shocks will cease to be discontinuities and have
a real thickness, full of viscous and thermodynamical effects” requires the ability
to build a mesh capable of resolving the shock-width. This, in turn, requires the
precise knowledge of the shock-location which is tantamount to tracking the shock
anyway. Two such examples, spaced apart by fifty years of CFD developments, can
be found in [55, 44]; as mentioned earlier, however, in the majority of cases this is
an un-necessary and computationally unfeasible option. With regard to the validity
of the jump relations and the applicability of the S-F technique to viscous flows, it
is also possible to establish a parallelism with the upwind numerical schemes that
are nowadays largely used in modern CFD solvers to simulate compressible viscous
flows. Indeed, upwind schemes are built upon the theory of characteristics which
applies to the case of inviscid flows, but in the case of viscous flows the characteristic
curves/surfaces do not exist [191]. However, upwind schemes are used with great
advantage also in the case of high-Reynolds number viscous flows, because the
presence of the viscous terms in the governing PDEs does not suppress the wave
propagation phenomena in the flow and, therefore, the Euler equations can be seen
as a first order approximation of the Navier-Stokes equations. These considerations
allow to construct numerical schemes and numerical boundary conditions [192] built
upon the characteristic theory to be used also in the simulation of viscous flows.
Using S-F techniques in the simulation of viscous flows is not only legitimate, for
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the reasons that have been stated above, but it has undoubted advantages compared
to S-C techniques in terms of computational efficiency and quality of the numerical
solutions. As mentioned earlier, both S-F and S-C schemes produce numerical
artefacts when used in the simulation of high-Reynolds number viscous flows: when
the shock is “fitted”, its width and internal structure are ignored; when the shock
is “captured”, its width is exaggerated and the internal structure mis-represented.
Which of these two numerical shock models is closer to reality is the key question
to be addressed in this paper. The comparative analysis of the numerical results
and their comparison with the experimental data show that the error induced by
the excessive thickness of a captured shock has a negative impact on the quality
of the S-C solution, in particular its order-of-convergence, which is degraded below
design-order. Before concluding this introductory assessment concerning the use
of S-F and S-C techniques in the simulation of viscous, high-Reynolds number
flows, it is worth mentioning two issues related to the simulation of turbulent flows.
In reference [56] Lele showed that the jump relations derived from the Reynolds-
Averaged Navier-Stokes (RANS) equations are formally different from those that
apply to the instantaneous Navier-Stokes equations, i.e. the equations that would
be used in a Direct Numerical Simulation (DNS). The jump relations that apply
to the RANS equations involve the Reynolds-averaged (or Favre-averaged) flow
quantities, rather than the instantaneous ones, and include additional terms that
must be modelled in order to close the problem. In this study the modeling of these
extra terms will not be addressed and the closure of the jump relations will be done
in a simplified way; it is however important to stress that using S-F it might be
possible to model the extra terms in the jump relations for the RANS equations. S-C
techniques apparently circumvent the problem, because they do not make use of the
jump relations. However, also for these techniques the correctness of the numerical
solution in the downstream side of the shock remains an open question and, unlike
S-F, S-C does not easily allow to introduce extra-terms that should only affect the
shock-wave. A similar problem arises in the Large Eddy Simulation (LES) by means
of S-C schemes of a turbulent flow passing through a strong shock wave. Here, the
numerical dissipation introduced by the upwind S-C scheme in the proximity of the
shock wave can be higher than the turbulent dissipation modelled by the Sub-Grid
Scale (SGS) model and this represents a source of inaccuracy which cannot be easily
controlled [193]. Moreover, it is known [190, 99, 21] that the order-of-accuracy of a
S-C calculation degrades to first order within the entire shock-downstream region,
even if high-order-accurate schemes are used. In contrast, when all shocks are fitted,
the discretization schemes are only used in smooth regions of the flow-field (provided
that all discontinuities have been fitted) so that high-order-accurate schemes can be
used without incurring into wiggles and retaining their formal order-of-convergence
also downstream of the shock. These features make S-F an ideal candidate for
simulating turbulent flow via DNS and LES, which typically rely on high-order-
accurate discretization schemes, so that a further development of these techniques is
highly encouraged.
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8.1 Shock/Boundary layer interactions modelling via
shock-fitting

In order to correctly compute SWBLIs in laminar/turbulent regime using the S-F
technique presented in Chapter 4, some adaptations are required to the algorithm
currently included in the repository on GitHub and detailed in Sec. 4.2. In particular,
two major features were implemented: the modelling of the interaction points and
the enforcement of suitable jump relations for the turbulent variables, in order
to model their behaviour across the discontinuity. First of all, the new features
concerning the modelling of the shock end-points within the boundary layer are
described. As a matter of fact, Equations (4.1a) and (4.1b) in algorithm Step 3
(please refer to Sec. 4.2) can be used at the interior shock-points of a fitted-shock,
but special provisions have to be made at the end-points of the fitted-shock, where
the use of one-sided formulae may violate the domain of dependence. Moreover, the
flow behaviour close to an impermeable boundary is different, depending on whether
an in-viscid or viscous fluid is being simulated. Indeed, in the inviscid case, the flow
tangent to a solid surface can be supersonic, so that shock waves may reach the wall,
and eventually be reflected off the wall. However, this is not any longer true for a
viscous fluid, because the no-slip condition implies that the near-wall boundary layer
is subsonic, which prevents the shock wave from reaching the wall. Therefore, the
two fundamental interactions that may occur in the case of an in-viscid fluid, i.e. the
wall reflection of a weak oblique shock-wave and the strong shock-wave that becomes
a normal shock at the wall, are replaced by slightly more complex flow configurations
in which the shock-wave either forms or terminates at a certain distance from the
wall, within the supersonic part of the boundary layer. By analysing the different
cases that may occur, see [194], the more common are essentially two:

1. The coalescence of compression waves in the supersonic part of the
boundary layer, leading to the formation of a shock-wave.

2. The impingement of a weak oblique shock-wave on a wall, which
penetrates the supersonic boundary layer, where it progressively
bends because of the local Mach number decrease: correspondingly,
its intensity weakens and it vanishes altogether when it reaches the
boundary layer sonic line.

These two mechanism are also the only two encountered in the numerical examples
proposed in this Chapter, so that their modelling will be clarified hereafter. Shock
formation due to the steepening of compression waves also occurs in inviscid flows
and therefore the inviscid test-case also used by Moretti [195, Fig. 9] is considered to
describe how the formation of an embedded shock is handled using our S-F technique.
Figure 8.1 shows a uniform, supersonic (M∞ = 2.3) stream of air being deflected as
it flows over a smooth convex wall: the coalescence of the compression waves leads
to the formation of an embedded shock wave at a certain distance above the wall.
The steady, supersonic Euler equations can be re-cast, see e.g. [196], into a set of
characteristic compatibility equations whose characteristic curves are the streamlines
and two different sets of curves having slope:
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(a) Pressure (p/p∞) field and C+ characteris-
tic curve passing through the SP.

(b) Entropy (S/S∞) field and C+ character-
istic curves.

Figure 8.1. A shock embedded in a steady, supersonic flow.

(dy

dx

)
C±

= tan (θ ± µ) = β v ± u

β u ∓ v
(8.1)

θ being the flow angle, µ the Mach angle and β =
√

M2 − 1. The compression
region shown in Fig. 8.1 is made up of C+ characteristic curves, which are plotted in
Fig. 8.1b on top of the entropy field. Even though the characteristic curves do not
meet at a single focal point, the entropy field reveals that the shock forms near the
origin of the reference frame in Fig. 8.1. The reader should not be surprised by the
fact that the fitted shock-front (shown using a white solid line in Figs. 8.1a and 8.1b)
starts from a starting point (SP) well ahead of the region where the characteristics
merge because, in Moretti’s words [160]: “Premature fitting of the shock in the
region where compression waves tend to coalesce is not harmful at all, provided
that the shock behaves as one of the characteristic surfaces coalescing into a finite
discontinuity.” Figure 8.2a shows a zoom of the first few shock-points along the
fitted discontinuity and Fig. 8.2b schematically reproduces Fig. 8.2a by magnifying
the width of the fitted discontinuity. Shock-points along the fitted discontinuity
have been numbered as shown in Fig. 8.2. The role of shock-point 0, i.e. the SP,
consists in opening up the fitted discontinuity, so that a single set of dependent
variables is stored in the SP; all other shock-points store both the shock-upstream
and shock-downstream values of the dependent variables. Figure 8.2a clearly reveals
that the first shock-points lie along a steady C+ characteristic-curve within a region
of supersonic flow. Since the air stream flows from the left to the right of Fig. 8.1,
the computation of the tangent vector τ within these shock-points should be upwind-
biased and rely on Eq. (4.1b). The three-points formula (4.1b) cannot, however, be
used in shock-points 0 and 1, so that a different approach is required. Since the first
shock-points are located in a smooth-flow region and lie along a characteristic curve,
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(a) Mach iso-contour lines around the
“origin” of the fitted shock.
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(b) The fitted shock is an interior boundary;
the smaller frame shows how the normal
unit vector is computed at shock-point
i = 1.

Figure 8.2. A shock embedded in a steady, supersonic flow: the “fitted” shock originates
along a characteristic-curve.

it is required that τ is tangent to the C+ characteristic curve that goes through
shock-point 1:

τ 1 = 1
a M2 [(u β − v) ex + (v β + u) ey] (8.2)

where a is the acoustic speed. The unit normal vector n1 is perpendicular to τ 1
and such that u · n < 0, which gives:

n±
1 = 1

a M2 [(∓v β − u) ex + (±u β − v) ey] (8.3)

where the ± notation used in Eq. (8.3) allows to also account for the possibility
of characteristic curves of the C− family. Concerning shock-point 0, there is no need
to compute the unit normal vector there, because a single set of dependent variables
is stored and, therefore, the R-H jump relations are not applicable. However, the
location r0 of shock-point 0 is needed to compute the tangent vector in shock-point
2 using the upwind-biased formula (4.1b). Shock-point 0 is placed on the same
characteristic curve passing through shock-point 1, which leads to:

r0 = r1 − τ 1 l 1
2

(8.4)

It is worth mentioning that the location of the SP point has some impact on the
computed solution. As long as SP lies within the region where the characteristics
merge, differences are minimal, because the entire shock is going to be fitted: com-
pare Figs 8.1a and 8.3a, which correspond to different locations of the SP, both inside
the compression region. If, on the contrary, the SP lies outside the compression
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region, which is the case of Fig. 8.3b, the shock will be captured, rather than being
fitted, up to the location where the characteristic curve passing through SP joins
the shock.

(a) The SP is inside the compression
region.

(b) The SP is outside the compression
region.

Figure 8.3. A shock embedded in a steady, supersonic flow. Pressure (p/p∞) field and C+

characteristic curve passing through the SP: comparison between different starting point
locations.

The case of the weak (hence supersonic downstream flow) oblique shock-wave
impinging on a boundary-layer may look similar to the previous case, but it is actually
simpler. As shown in Fig. 8.4, the shock penetrates the supersonic boundary layer
and weakens because the shock-upstream Mach number decreases as it approaches
the sonic line. This second case does not require any ad-hoc treatment for calculating
the shock-tangent vector τ within the last two shock-points, because the one-sided
FD formula (4.1b) can be used without violating the domain of dependence. Similarly
to the previous case, end-point N , see Fig. 8.4, closes the fitted discontinuity, thus it
is described using a single set of dependent variables, which are updated by the gas-
dynamic solver and do not require to be corrected by enforcing the jump relations.
This same algorithmic treatment has also been used in all test-cases addressed
in Sect. 8.2 to model those end-points that terminate a fitted-shock outside the
boundary layer.
Finally, when dealing with turbulent SWBLIs, some considerations are required
regarding the modelling of the turbulent variables across the shock wave. Specifically,
the Spalart-Allmaras (S-A) model [51] has been implemented within the EulFS solver
used by the UnDiFi-2D code to perform computations in turbulent regime: thus,
as far as the turbulent variable used in this model is concerned, in this Thesis it
is followed the simplified approach suggested by the model developers [57], which
consists in carrying the turbulent viscosity unchanged through the shock. In terms
of jump relations, this amounts to set the shock-downstream value of the turbulent
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kinematic viscosity equal to the corresponding shock-upstream value.

(a) Mach iso-contour lines around the end of
the fitted shock.

(b) The fitted shock is an interior boundary.

Figure 8.4. S-F modeling of an oblique shock-wave impinging on a boundary-layer.

8.2 Numerical results

SWBLIs turn out to be an important test-bench to evaluate the ability of the proposed
unstructured S-F technique to deal with viscous flows featuring shock-waves. This
assessment will also be done by comparison with state-of-the-art S-C discretization.
This kind of comparison is not new: figure 8.5, which is taken from a 1992 technical
report by Marconi and Moretti [197], see also [20], shows the interaction between
an oblique shock and a laminar boundary layer computed on structured grids using
both S-F and S-C. Nearly thirty years later, and despite the enormous advances in

Figure 8.5. Interaction between an oblique shock and a laminar boundary-layer: iso-
bars computed using S-F (left) and S-C calculation (right); re-printed from [197], with
permission.
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computing power that have meanwhile taken place, the predictive capabilities of the
two different shock-modeling techniques have remained the same. In particular, as
observed by Marconi and Moretti [197], the comparison between the two frames of
Fig. 8.5 clearly “ indicates the amount of shock spreading in the capturing result”.
In the following sections, in addition to a qualitative comparison between the two
shock-modeling options, the computed results will be compared against the available
experimental data and a quantitative assessment of the order-of-convergence of the
two techniques will be made, using Richardson Extrapolation (RE) techniques.

8.2.1 Regular oblique-shock reflection

The interaction between an oblique shock and a boundary-layer, see Fig. 8.6, is
labeled strong [198] whenever it causes boundary-layer separation. This is the case
of the experimental and numerical study conducted by Degrez et al. [199], whose
free-stream flow conditions are reported in Tab. 11.

Parameter value
Mach 2.2
Re∞ 1.2 106

Total temperature 293 K
Table 11. Oblique-shock reflection: free-stream conditions.

A sketch of the flow pattern is shown in Fig. 8.6: the region of recirculating flow
extends from the separation point, S, to the re-attachment point, R.

Figure 8.6. Schematic of the flow-field arising from the interaction between an oblique-shock
and a boundary-layer. Re-printed from [199], with permission.

The incident shock, after crossing the leading edge (L.E.) shock, hits the boundary
layer at x = Xsh and is reflected as an expansion wave, because of the nearly
constant pressure level within the bubble [198]. The flow deflection caused by the
recirculating bubble leads to the formation of compression waves, both upstream
of S and downstream of R. These compression waves coalesce at some distance
from the flat plate to form the separation and re-attachment shocks. As far as
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the computational setting is concerned, Fig. 8.7 shows the computational domain,
the boundary conditions that have been prescribed along its boundaries in order
to match the experimental setting and the coarsest mesh that has been used. In

(a) Computational domain geometry.

(b) Coarse mesh and labeling of the boundary patches.

Figure 8.7. Oblique-shock reflection: coarse mesh and numerical boundary conditions.

order to compare the grid-convergence properties of the S-C and S-F solutions,
three nested grid levels have been obtained by recursively coarsening the finest
one; their characteristic are summarized in Tab. 12. The column labeled “No. of
quadrilateral cells“ refers to the number of quadrilateral cells in the stream-wise and
wall-normal directions. The unstructured triangular grids have been obtained by
splitting each quadrilateral cell into two rectangular triangles, so that the overall
number of triangles is twice the number of cells in Tab. 12. In order to adequately
resolve the boundary-layer, the cells are stretched in the wall-normal direction
(see Fig. 8.7b): the wall normal spacing of the first cell adjacent to the flat plate
ranges between ∆ymin and ∆ymax, whereas ∆x is the constant mesh spacing in the
stream-wise direction normalized using the channel height (H=0.09 m).

The S-C calculations have been run first, using the three grids listed in Tab. 13.
Then, a shock-detection algorithm, such as the one described in [164], has been
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Table 12. Oblique-shock reflection: features of the three nested grid levels.

Grid level
No. of

∆ymin
H

∆ymax

H
∆x
H

quadrilateral
cells

coarse 100×50 1.1 · 10−3 7.9 · 10−2 2.2 · 10−2

intermediate 200×100 5.5 · 10−4 3.9 · 10−2 1.1 · 10−2

fine 400×200 2.7 · 10−4 1.9 · 10−2 5.5 · 10−3

used to extract from the S-C calculation the approximate shape and location of the
fitted discontinuities. The fitted discontinuities, and the flow solution computed
by means of S-C, supply the initial condition to the S-F calculations. Table 13
allows to draw a comparison between the grids used in the S-C calculations (also
used as background triangulation in the corresponding S-F calculation) and the S-F
“computational” meshes. These latter feature a larger number of grid-points and
triangles w.r.t. the corresponding S-C mesh, due to the addition of the shock-points1,
which is only partly compensated by the removal of the phantom points, and because
local re-meshing around the fitted shock-front increases the number of triangles.
The percentage increase in both the number of triangles and grid-points is lower on
the finer meshes; this is a consequence of the fact that the shock-mesh has a lower
dimensionality (d − 1 in the d-dimensional space) than the computational mesh and
re-meshing is limited to the neighbourhood of the fitted discontinuities.

Table 13. Oblique-shock reflection: comparison between the S-C meshes (also used as back-
ground triangulation in the corresponding S-F calculation) and the S-F “computational”
meshes.

Grid S-C S-F % Nof.
level mesh mesh increase shock-points

coarse triangles 10000 11004 10.04 592grid-points 5151 5650 9.69

intermediate triangles 40000 42132 5.33 1253grid-points 20301 21364 5.24

fine triangles 160000 164260 2.66 2495grid-points 80601 82729 2.64

The S-F technique has been used in an hybrid manner, whereby only the strongest
discontinuities have been fitted, whereas the remaining ones have been captured. This
is shown in Fig. 8.8, which shows the dimensionless density (ρ/ρ∞) field computed
by S-F on the coarsest mesh.

The fitted discontinuities, which have been highlighted using a white solid line,
include the incident and leading edge (L.E.) shocks. The L.E. shock becomes a Mach-
wave as soon as it moves away from the L.E.: its slope, which can be computed along
the fitted shock-front using Eqs. (4.1), is very close to the free-stream Mach angle

1In Tab. 13 the shock-points are a subset of the grid-points.
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µ∞ = sin−1 M−1
∞ = 27◦. As shown in the sketch of Fig. 8.6, the two compression

regions that originate close to the separation and re-attachment points coalesce into
the compression and re-attachment shock at some distance from the plate, outside
the boundaries of the computational domain. Therefore, the fitted re-attachment
shock that appears in Fig. 8.8a is actually one of the C+ characteristic curves (or
Mach lines) that will merge into the re-attachment shock. As explained in Sect. 4.2
it is not harmful to fit a characteristic curve upstream of point where it actually
runs into the shock. Finally, the discontinuities that have not been fitted are the
shock and the slip-stream that arise at the point where the L.E. and incident shocks
cross each other, see Fig. 8.6.

(a) Full computational domain (b) Recirculation region

Figure 8.8. Oblique-shock reflection: dimensionless density (ρ/ρ∞) field computed using
S-F on the coarsest mesh. Fitted shocks are shown using solid white lines.

A preliminary and qualitative grid-convergence study has been performed by
analyzing the behavior of both the skin friction (Fig. 8.9) and wall pressure (Fig. 8.10)
distributions computed on all grid levels using the two different shock-modeling
options. Figures 8.9a and 8.10a respectively show the skin-friction and wall-pressure
distributions computed using S-C on all three grid levels. The same quantities
computed using S-F are displayed in Figs. 8.9b and 8.10b. When looking at the S-C
and S-F calculations, both are seen to converge towards the fine-grid solution as
the mesh is refined, but S-F appears to be converging faster. For instance, the S-F
simulation already reveals on the coarsest grid level the skin friction and pressure
plateau within the separation region. In the S-C calculations this same feature only
becomes visible on the intermediate grid level. Figures 8.9c and 8.10c compare the
skin-friction and wall-pressure distributions computed on the fine grid-level using S-C
and S-F. As far as the wall pressure distribution is concerned, the agreement between
the two shock-modeling options, and also with the experimental data available
in [199], is good. Larger differences can be seen in the skin-friction distribution, and
are more pronounced downstream of the point where the incident shock impinges on
the boundary-layer, i.e. at X/Xsh ≈ 1.

The comparison between the dimensionless density flow-field computed on all
three grid levels using both S-C and S-F, see Fig. 8.11, clearly reveals the superior
performance of the S-F technique: due to the finite width of the captured shocks,
the SWBLI region is poorly resolved in the S-C calculations, particularly when the
coarse and intermediate grid levels are used, see Figs. 8.11a and 8.11c. In contrast,
S-F allows to represent the incident shock as a true discontinuity on all grid levels,
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(a) S-C on all grid levels. (b) S-F on all grid levels.

(c) S-C vs. S-F on the finest grid.

Figure 8.9. Oblique-shock reflection: skin friction distribution.

see Figs. 8.11b, 8.11d and 8.11f. Figure 8.11 is the unstructured-grid counterpart of
Fig. 8.5: shock-smearing is further exacerbated, in the unstructured grid context of
Fig. 8.11, by the use of highly elongated triangular cells and the fact that none of
their edges is aligned with the incident shock.

A quantitative assessment of the grid-convergence properties of the two different
shock-modeling options is presented in Tab. 14, which shows the location of the
separation and re-attachment points and the size of the recirculation bubble computed
using S-C and S-F on all three mesh levels. The separation and re-attachment points
are identified as those points where the skin friction vanishes; their abscissae are
measured relative to the L.E. and have been normalized by the distance, Xsh =
80 mm, also measured from the L.E., where the shock wave impinges on the plate,
see Fig. 8.7a. The bubble size is the difference between the abscissae of the re-
attachment and separation points. Using the results computed on all three grid
levels, it is possible to determine the observed order of accuracy, ñ according to
Eq. 3.1. Moreover, by evaluating the convergence monitor R (see Eq. 3.2), it can
be noticed that both the S-C and S-F results exhibit monotone convergence, since
0 < R < 1 for all three quantities [21].

In particular, the observed order-of-accuracy of the S-F solutions is very close to
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(a) S-C on all grid levels. (b) S-F on all grid levels.

(c) S-C vs. S-F on the finest grid.

Figure 8.10. Oblique-shock reflection: wall pressure distribution.

Shock capturing Shock fitting
Grid (Xsep/Xsh) (Xre/Xsh) Bubble size/Xsh (Xsep/Xsh) (Xre/Xsh) Bubble size/Xsh

coarse 0.87±(0.13) 1.22±(0.12) 0.34 ±(0.25) 0.86±(0.11) 1.21±(0.09) 0.35 ±(0.20)
intermediate 0.80±(0.04) 1.27±(0.05) 0.47 ±(0.08) 0.80±(0.03) 1.26±(0.02) 0.46 ±(0.05)

fine 0.78±(0.01) 1.30±(0.02) 0.52 ±(0.03) 0.78±(0.01) 1.28±(0.01) 0.49 ±(0.01)
ñ 1.79 1.30 1.55 1.86 1.99 1.92

ũRE 0.77 1.31 0.54 0.78 1.28 0.50
experimental values 0.78±(0.01) 1.28±(0.02) 0.5 ± (0.04) 0.78 ±(0.01) 1.28±(0.02) 0.5 ± (0.04)

Table 14. Oblique-shock reflection: grid-convergence study and RE in the separation
region.

the design order (n = 2) of the discretization scheme, which is an indication [144, 152,
153] that the S-F solutions are in the asymptotic range of convergence. The analysis
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(a) S-C computation: coarse grid. (b) S-F computation: coarse grid.

(c) S-C computation: intermediate grid. (d) S-F computation: intermediate grid.

(e) S-C computation: fine grid. (f) S-F computation: fine grid.

Figure 8.11. Oblique shock reflection dimensionless density (ρ/ρ∞) field: zoom of the
SWBLI region using the three grid levels and shock-modeling options.

can be further expanded by computing the Grid Convergence Index (GCI) [144,
152, 153] using Eq. 3.3 with a factor of safety Fs=1.25, as well as the Richardson
Extrapolated (RE) value, defined in and Eq. 3.4.

It is worth to underline that the GCI is a measure of the numerical error, just
like the experimental uncertainty. GCI values of the bubble size, separation and
re-attachment locations are reported between brackets alongside each numerical
value in Tab. 14; bracketed values beside the measured data refer to the experimental
uncertainty [199]. The GCI data in Tab. 14 show that the S-F technique exhibits
faster convergence than S-C: almost all GCI values are smaller for the S-F solutions
than the corresponding ones for S-C. On the finest grid level, for instance, S-F returns
GCI values that are half of the corresponding S-C values for both the re-attachment
location and bubble size, whereas the GCI values of the separation location are
equal.

Table 14 also includes the “Richardson-extrapolated” (RE) values of all three
quantities computed using Eq. (3.4). The separation location and bubble size
computed using the two different shock-modeling options fall within the experimental
uncertainty; this observation also applies to the re-attachment location computed
by S-F. In contrast, the “extrapolated” value of the separation location computed
by means of S-C falls outside the experimental uncertainty. This is likely to be
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explained by the fact that, for this particular quantity and shock-modeling option,
the observed order is way below design order: 1.3 vs. 2. It is indeed known [152, 153],
that the asymptotic solution can be reliably computed by means of RE only if the
observed order is close to its theoretical value.

8.2.2 Hypersonic compression ramp

When an uniform hypersonic stream is deflected due to a geometrical discontinuity
of the wetted surface (the ramp or corner in Fig. 8.12), a SWBLI takes place, which
may eventually lead to boundary-layer separation. Among the several experimental
setups studied by Holden [200, 201], the two flow configurations listed in Tab. 15
have been numerically reproduced, which only differ in the ramp deflection angle,
θw. Both flows are assumed to be laminar, in agreement with the experimental
evidence [200]. The computational domain and numerical boundary conditions are
shown in Fig. 8.12.

Parameter
Mach 14.1
Re∞ 236200
T∞ 88.88 K
Tw 297.2 K
θw 15◦, 24◦

Distance between 0.4389 mL.E. and ramp corner (L)

Table 15. Ramp flow: free-stream conditions

Figure 8.12. Ramp flow: computational domain and boundary conditions.

Before analyzing the numerical results, it is instructive to examine how the
shock pattern is affected by the selected ramp deflection angle. This will be done
by reference to the pressure fields computed by means of S-F, which are shown in
Fig. 8.13a, resp. Fig. 8.13b, for the θw = 15◦, resp. θw = 24◦, ramp deflection angle.
In both cases, a relatively weak shock is formed at the L.E.. In the θw = 15◦ case,
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the boundary-layer remains attached. The flow deflection induced by the ramp gives
rise to compression waves which merge into the “coalescence” shock of Fig. 8.13a at
some distance above the wall and just downstream of the wall corner. The L.E. and
“coalescence” shocks meet at an interaction point (I.P.); a “transmitted” shock, an
expansion fan and a shear layer emerge from the I.P. but only the shock is clearly
identifiable in Fig. 8.13a.

X

Y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

p: 0.004 0.008 0.017 0.037 0.078

L.E. shock

Coalescence shock

Transmitted shock

(a) θw = 15◦.

(b) θw = 24◦.

Figure 8.13. Ramp flow: pressure iso-contours in logarithmic scale.

Flow separation occurs when the ramp deflection angle is increased to θw = 24◦,
which is the case shown in Fig. 8.13b. The presence of the separation bubble causes a
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deviation of the streamlines both upstream of the separation point (which is located
along the flat wall, upstream of the corner) and downstream of the re-attachment
point (which is located along the ramp). The coalescence of these compression waves
leads to the formation of a separation and a re-attachment shock, both clearly visible
in Fig. 8.13b. The L.E. shock joins the separation shock upstream of the I.P. where
the separation and re-attachment shocks merge, see also Fig. 8.14a. Similarly to the
θw = 15◦ case, a “transmitted” shock, an expansion fan and a shear layer emerge
from the I.P. The two different flow configurations have been computed using both
the S-C and S-F approaches. A grid-convergence study, not reported here for brevity,
allowed us to identify the grids listed in Tab. 16 as adequate to obtain grid-converged
wall quantities. The nomenclature used in Tab. 16 is the same as that of Tab. 12.

θw

No. of cells
∆ymin ∆ymax ∆xquadrilateral

cells
15◦ 140×180 2 · 10−4 1 · 10−2 6.1 · 10−3

24◦ 180×200 2 · 10−4 1 · 10−2 4.7 · 10−3

Table 16. Ramp flow: characteristics of the grids.

S-F calculations have been run in the so-called hybrid-mode, whereby most part
of the various discontinuities has been fitted, but their mutual interaction has been
captured. In the attached flow case (θw = 15◦) shown in Fig. 8.13a both the L.E. and
the coalescence shocks have been fitted, but their mutual interaction has has been
captured. In the separated flow case (θw = 24◦) shown in Fig. 8.14a the separation
and transmitted shocks have been fitted as a single discontinuity and also the L.E.
and the re-attachment shocks have been fitted. However, the L.E. shock has been
fitted up to a point just upstream of where it impinges on the separation shock.
Similarly, the re-attachment shock ceases to be a fitted discontinuity immediately
upstream of the I.P.. It follows that both the interaction between the L.E. and the
separation shocks and that between the separation and re-attachment shocks, have
been captured, rather than fitted. All the aforementioned features are clearly visible
in Fig. 8.14a.

Figure 8.14b shows these same flow features obtained using a S-C simulation.
The most striking difference between the two different shock-modeling options is in
the shock-width. Observe, in particular, that in the S-F simulation the L.E. and
separation shocks are two distinct discontinuities up to about x = 0.55, whereas in
the S-C calculation these two shocks have already merged ahead of x = 0.45.

The dimensionless wall pressure and skin friction distributions corresponding to
the different ramp deflection angles are plotted in Figs. 8.15a and 8.15b along with
the experimental data measured by Holden [200]. The two frames of Fig. 8.15 show
the results obtained using both S-C and S-F on nearly identical grids, as explained
in Sect. 8.2.1.

In the attached flow case, the wall pressure distributions obtained by means of
S-C and S-F are superimposed and both numerical results are also in fairly good
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(a) S-F.

(b) S-C.

Figure 8.14. θw = 24◦ ramp-flow: pressure iso-contour lines in the region surrounding the
I.P.

agreement with the data supplied by Holden [200], even though the computed values
are slightly higher than those found in the experiment. This discrepancy could be
due, however, to three-dimensional effects related to the finite span of the ramp,
which cannot be accounted for in a two-dimensional simulation. Also the skin friction
distributions computed using the two different shock-modeling options are mutually
superimposed, see the circles in Fig. 8.15b.

The negative skin friction values in Fig. 8.15b reveal that flow separation takes
place when the wedge angle is increased to θw = 24◦. The extent of the separation
bubble is well predicted by the S-F technique, whereas the S-C calculation features
a much larger bubble. Figure 8.14b highlights the reason behind the overestimate:
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(a) Wall pressure distribution.

(b) Skin friction distribution.

Figure 8.15. Ramp-flow: comparison between experimental and numerical data at the
wall.

when the separation shock is captured, its thickness is comparable to the distance
between the I.P. and the wall. This causes a significant widening of the interaction
region, that affects the position of the re-attachment point and, consequently, also
the position of the separation point. It follows that the size of the separation bubble
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in the S-C simulation is much larger than the one predicted by S-F or experimentally
measured. Moreover, the pressure peak, due to the shocks interaction, is slightly
shifted with respect to the experimental datum. The S-F technique predicts well
also the extent of the high-pressure region. To summarize, the quality of the S-F
solution is improved because, by reducing to zero the thickness of the separation
shock, the extent of the interaction region is brought closer to its “true” (physical)
size. It would be interesting to see if an even better result were obtained, if also the
interaction points were fitted, as done in [23]. This is left for future work.

8.2.3 Transonic, turbulent flow past an airfoil

The transonic flow over a 18%-thick biconvex circular-arc airfoil has been computed
to include a test-case where the SWBLI leads to fully turbulent, separated flow. The
flow configuration experimentally studied by McDevitt et al. in [202, 203, 204, 205]
has been reproduced; Tab. 17 shows the free-stream conditions and reference length.

The computational domain and the numerical boundary conditions are shown in
Fig. 8.16b: the channel width, h, has been chosen following Mcdevitt et al. [202], who
state that blockage effects are negligible as long as the shock-height, z, to channel
width ratio verifies: z/h < 2/3. Figure 8.16a shows the background triangulation,

Parameter
α∞ 0◦

M∞ 0.783
Re∞/c 107 m−1

T∞ 290 K
c 20.3 cm

Table 17. Transonic, turbulent flow past an airfoil: free-stream flow conditions.

which is made of 17563 grid-points and 34646 triangles; 145 equally spaced grid-
points have been placed along the airfoil’s profile, whereas downstream of the TE
the stream-wise spacing increases according to an hyperbolic tangent distribution.
The smaller frame of Fig. 8.16a clearly reveals that the background triangulation
has been built by merging a mesh made of rectangular triangles, which covers the
near-wall and wake regions, with a fully unstructured triangulation. The height of
the near-wall triangles is such that y+ is around unity along the entire airfoil surface
and exponential mesh-stretching has been used in the cross-flow direction to ensure
adequate resolution both within the boundary layer and the wake.

Figure 8.17 shows the Mach contours computed by means of S-F; the flow-field is
characterized by the presence of a supersonic pocket, which is bounded by the sonic
line (shown using a dashed red line) on its upstream side and within the boundary
layer and is terminated by a curved shock-wave. The smaller frames of Fig. 8.17
show a zoom of the tip (Fig. 8.17a) and the foot (Fig. 8.17b) of the fitted shock-wave,
which is shown using a white solid line. C− characteristic lines, drawn using orange
lines in Fig. 8.17a are seen to be running into the shock from both of its sides.
Similarly, C+ characteristic lines, drawn using blue lines in Fig. 8.17b, also run into
the shock from both of its sides. This is because the shock-downstream flow around
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(a) Computational mesh.

(b) Boundary conditions.

Figure 8.16. Transonic, turbulent flow past an airfoil: computational domain.

the foot and the tip of the shock is supersonic, as shown in the smaller frames of
Figs. 8.17 and also in Fig. 8.18. This mechanism, and its numerical treatment, is
identical to that already described in Sect. 4.2, see Fig. 8.1b.

The availability of the pair of shock-upstream and shock-downstream flow states
within each shock-point of the fitted discontinuity allows to perform analyses which
would not possible when the shock-wave is captured. For example, Fig. 8.18 shows
a flow-deflection, δ, versus shock-angle, σ, diagram. Symbols denote (σ, δ) values
computed using all pairs of shock-upstream and shock-downstream flow-states,
whereas the solid curves have been computed using the analytical oblique-shock
relation, see e.g. [206, Eq. (138)], for selected values of the shock-upstream Mach
number. Figure 8.18 allows to examine the features of the curved shock-wave while
it is traversed from the foot to the tip. Close to the airfoil’s surface, the shock is an
oblique-shock of the weak type; in particular it is a Mach line at its foot, i.e. δ ≈ 0
and σ ≈ µ. Moving away from the airfoil, the shock-upstream Mach number remains
nearly constant (M1 ≈ 1.41) at first, then starts decreasing and the transition from
a weak to a strong shock occurs in the region indicated by the orange square, where
M1 ≈ 1.33 and the downstream flow becomes subsonic. The shock-upstream Mach
number further decreases and the shock becomes a normal shock , i.e. σ = π/2, when
M1 ≈ 1.17 (see the circle in the Mach field). Finally, the flow deviation through the
shock increases, the transition from a strong to a weak shock takes place and close
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Figure 8.17. Transonic, turbulent flow past an airfoil: S-F calculation with detail of the
foot and the tip of the shock. C+, resp. C− characteristic curves are drawn using blue,
resp. orange, solid lines; the fitted-shock is the white solid line.

to the tip the shock “dies” as a Mach line.

Figure 8.18. Transonic, turbulent flow past an airfoil: flow-deflection, δ, versus shock-angle,
σ computed along the fitted-shock; detail of the Mach iso-contour lines within the
supersonic pocket.

The comparison between the dimensionless density field (ρ/ρ0
∞) computed using

the two different shock-modeling options is reported in Figs. 8.19 and 8.21. Fig-
ure 8.19 shows the entire computational domain and a zoom centered around the
supersonic pocket and Fig. 8.21 shows a detail of the region surrounding the foot of
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the shock.

(a) S-C computation

(b) S-F computation. The fitted shock is shown using a white line.

Figure 8.19. Transonic, turbulent flow past an airfoil: dimensionless (ρ/ρ0
∞) density field.

The smaller frames of Figs. 8.20a and 8.20b allow to compare the different
triangulation in the vicinity of the shock: it can be seen that the computational grid
used in the S-F calculation is identical to the grid used in the S-C calculation (the
background triangulation) except around the fitted shock, where local re-meshing
has been used to accommodate the shock-mesh. Indeed the computational and
background grids differ by less than 1% in terms of number of grid-points and
triangles. The comparison between the smaller frames of Figs. 8.19 and 8.21 clearly
shows the improvement in shock resolution provided by S-F. A more quantitative
comparison between the S-C and S-F calculations is shown in Fig. 8.22, where the
pressure coefficient distribution is plotted along the airfoil’s surface. Also shown
are the experimental data measured by McDevitt et al. [202, 203, 204, 205]. The
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(a) S-C computation (b) S-F computation. The fitted shock is
shown using a white line.

Figure 8.21. Transonic, turbulent flow past an airfoil: dimensionless (ρ/ρ0
∞) density field

and underlying triangulation around the shock wave.

two different shock-modeling options show nearly identical distributions of the
pressure coefficient, both of which are in fair agreement with the experimental data.
A visible difference between the experimental and computational data has to do
with the location of the shock wave, which is predicted a little bit downstream
of the experimental location in both the S-C and S-F simulations. The origin of
the discrepancy between simulations and experiments appears to be rooted in the
turbulence model being used. This has been assessed by running two additional
S-C calculations on the background mesh using the CFD++ commercial software
and both the S-A and k-ϵ models. These results have also been plotted in Fig. 8.22
and show that the CFD++ calculation with the S-A model predicts the same shock
position also found in our calculations, whereas the k-ϵ turbulence model locates the
shock even further downstream.
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Figure 8.22. Transonic, turbulent flow past an airfoil: pressure coefficient distribution

8.3 Summary

The S-F technique for unstructured meshes presented in Chapter 4 has been
successfully extended to laminar and turbulent viscous flows featuring SWBLIs.
Compared to the technique originally developed for inviscid flows, the required
changes are algorithmically simple and computationally inexpensive. The technique
has been applied to three flow configurations representative of different SWBLI
patterns, two laminar and one turbulent. Comparisons have been made, using
nearly identical grids, between S-C and S-F; in all cases the computed results have
also been compared against the available experimental data. A grid-convergence
analysis, using Richardson Extrapolation, has been conducted for one of the laminar
test-cases: it reveals that S-F features a measured order-of-convergence which is
closer to design order than that observed in the S-C calculations. Shock resolution
is also clearly enhanced in the S-F calculations as long as the comparison with S-C
is made on meshes of nearly identical resolution.
In the laminar flow cases the comparison between the experimental data and the
grid-independent S-F solutions shows very good agreement between simulations and
measurements.
In the turbulent case the wall pressure distribution computed using the same
turbulence model and the two different shock-modeling options shows negligible
differences; indeed, numerical tests using different turbulence models seem to indicate
that, at least for the selected test-case, turbulence modeling has a larger impact
than shock-modeling on the computed wall pressure distributions, in particular the
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shock-location. Two final comments are in order concerning turbulent flows. The
first one has to do with shock-topology: even if the algorithmic ingredients described
in this Chapter may be adequate for modeling most 2D SWBLIs, additional modeling
might be required to cope with some more peculiar SWBLIs, such as those described
in [207]. In certain circumstances, which depend upon the Mach and Reynolds
numbers, the shock may exhibit ripplings, or even holes, and these features would
certainly represent a challenging task for the S-F technique described here. In the
context of RANS modeling, it would also be interesting to assess the impact of using
the “true” jump relations [56], rather than the simplified approach followed in this
Chapter.
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Slender profiles flying at nearly sonic speed exhibit a peculiar shock-pattern
which is commonly referred to in the literature as the “fishtail” shock-structure. This
can be clearly seen in Fig. 9.1, which has not been taken from a scientific paper, but
from a 1950s documentary, titled “Transonic flight” [208]. Fishtail consists in two
oblique shock waves that originate at the trailing edge (TE) and a nearly normal
shock wave standing at some distance behind the TE: the nearly normal shock joins
the two oblique shocks in two interaction points, each of these hereafter referred to
as a “triple-point”, because of the confluence of three different shock waves, as also
shown in the sketch of Fig. 9.2.

The formation of a triple-point is more often associated with the reflection of
a shock wave from a solid surface, a phenomenon that can be viewed under two
different perspectives: either i) as a steady phenomenon, whereby an oblique shock
wave impinges on a wall or as ii) an unsteady phenomenon, whereby a moving
normal shock wave encounters a wedge. Although these two phenomena may seem
very different, they are in fact quite similar, because it can be shown [210] that
using a change of variables the unsteady problem can be turned into a pseudo-
stationary one. Over 140 years ago, Ernst Mach, see the review by [211] on his
and related experiments, showed that in the unsteady reflection of a shock wave



134
9. Analysis of the transonic flow past a NACA0012 using a shock-fitting

technique

Figure 9.1. Transonic fishtail: experimental visualization re-printed from [208].

Figure 9.2. Transonic fishtail: sketch of the flow pattern and definition of test case
AGARD03, reprinted from [209], with permission.

from a wedge there exist two different types of reflections: one regular and one
irregular. In regular reflection, the oblique incident shock is reflected as an oblique
shock wave of the opposite family, and the incident and reflected shocks share an
interaction point located on the wall. On the contrary, the irregular reflection is
characterized by a triple-point located close to (but not on) the wall where three
different shock waves meet: the incident shock, the reflected shock and a strong
shock, called the Mach stem, which reaches the solid surface. Von Neumann[212],
see also [213], proposed an analytical model, hereafter referred to as the three-shock
theory (3ST) to compute the flow around the triple-point. However, von Neumann’s
model is not able to explain some cases of weak1 reflections where the presence
of the triple-point is observed experimentally and numerically, but the 3ST fails
to predict; this inconsistency has given rise in the literature to the so-called “von
Neumann paradox”, which has been the subject of several theoretical, experimental

1in the present context the term “weak”refers to the strength of the I-shock, see [50, § 11.11] for
a more precise taxonomy.
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and numerical studies that will be recalled in Sect. 9.4. The aim of this Chapter is to
show that the conditions of the Von Neumann paradox also occur at the triple points
of the transonic fishtail and to provide an accurate modelling of the interaction
region using the S.F technique presented in Chapter 4.

9.1 Transonic fishtail and the three-shock theory (3ST)

Despite the fact that then fishtail shock-pattern is frequently encountered in transonic
flows, only a limited number of experimental and numerical studies on the subject
can be found in the literature. This is confirmed by the fact that it is not easy to
find clean experimental pictures of the fishtail and Fig. 9.1 is several decades old.
As far as computational studies are concerned, the transonic flow past a NACA0012
profile at free-stream conditions M∞ = 0.95 and AoA = 0◦, which gives rise to
a fishtail shock-pattern, has been included as test-case AGARD03 among those
proposed on the occasion of the ICASE/LaRC Workshop on Adaptive Grid Methods
in 1995 [209]. Figure 9.2, which has been re-printed from the Workshop proceeding,
shows a sketch of the flow-field. It is worth underlining that what is indicated in
Fig. 9.2 as a “normal shock” cannot be a normal shock along its entire length and,
therefore, it will be hereafter referred to as a “nearly normal” shock. The reason
will be clarified in Sect. 9.4.1. Among the workshop contributors who engaged in
test-case AGARD03, Richter and Leyland [214] examined the effect of the far-field
location on the aerodynamic forces and the position, Xs, of the nearly normal
shock. Maybe surprisingly, they found that even using feature-adapted meshes, the
shock-induced drag was converged to four significant digits when the far-field is
300 chords away from the profile, but Xs keeps changing by almost 2% when the
far-field is moved further away to 10,000 chords. Since then, because of its fairly
complex shock-interaction pattern, test-case AGARD03 has been the subject of a
number of computational studies, see e.g. [215], in particular those dealing with
mesh adaptation. Since it can be proved that “Three shocks separating three zones
of different continuous states are impossible” [185, § 129], in von Neumann’s 3ST
not only three shock-waves, but also a contact discontinuity, meet at the triple-point.
This is schematically shown in Fig. 9.3, where the nomenclature is inspired by the
Mach reflection: I and R are the incident and reflected shocks, respectively, M is
the Mach stem and the dashed line is the contact-discontinuity, or slip-stream (SS).
The same nomenclature is retained here, but the reader should be aware that the
problem investigated in this Chapter does not deal with Mach reflections, but with
the three-shocks confluence and triple-point sketched in Fig. 9.2.

The non-linear algebraic equations governing the 3ST, which can be found in
either [185, § 135] or [216, § 1.3.2], consist in the Rankine-Hugoniot (R-H) jump
relations for all three shocks, supplemented with the condition of parallel streams
and equal pressure across the contact discontinuity. It is found that the number of
unknowns matches that of the available equations once three parameters are given;
these are: i) the adiabatic index, γ, of the gas (which is assumed hereafter to behave
like a perfect gas); ii) the Mach number, M1, ahead of the I-shock and iii) a measure
of the I-shock strength, such as the I-shock angle, σ12. A powerful graphical tool for
finding solutions to von Neumann’s 3ST consists in looking for intersections between
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Figure 9.3. Flow in the neighborhood of a triple-point according to von Neumann’s 3ST;
all angles are relative to the direction of the shock-upstream flow.

the I- and R-shock polars in the pressure-deflection (p, θ) plane; this has been shown
in the four insets of Fig. 9.4 for four different pairs of (M1, σ12) values. The two
parameters γ and M1 define the shape of the I-polar (shown using a dashed line
in Fig. 9.4), whereas σ12 fixes the position along the I-polar where the knot of the
R-polar (shown using a solid line in Fig. 9.4) has to be drawn. This is because there
is a one-to-one correspondence between the shock-angle, σ, and the flow deflection
through the shock, θ, see [206, Eq. (138)]. The point(s), if any, of mutual intersection
between the two polars (marked using a square symbol in Fig. 9.4) identifies both
state 3 and 4, see the sketch in Fig. 9.3, because it fulfils the conditions of equal
pressure and parallel streams that hold across the slip-stream.

Even if graphical methods are very useful, they may not be quantitatively very
accurate. Fortunately, Henderson [217] has shown that finding the intersection(s)
between the I- and R-shock polars amounts to compute the real roots of a tenth-
degree polynomial in the unknown pressure ratio ξ41 = p4/p1 = p3/p1 across the
M-shock, i.e. the ordinate of the points marked with a square in the (p, θ) plane of
the four insets of Fig. 9.4. Since two real roots are known and have multiplicity two,
the polynomial order can be reduced to six. Moreover, not all real roots correspond
to flow patterns that can be accepted on physical grounds and the number, m, of
physically admissible solutions depends upon the aforementioned three parameters:
γ, M1 and σ12. If a diatomic gas, i.e. γ = 7/5, is chosen, as done here, Henderson
[217] has shown that m = 0, 1, 2, 3, depending on the values taken by the remaining
two parameters: M1 and σ12. Therefore, a convenient way to look at the existence
and features of the solutions to the 3ST consists in using the (M1, σ12)-plane. This
has been done in Fig. 9.4 where the abscissae are restricted to the M1-range that is
relevant to the current application and only a subset of the various curves has been
drawn that mark the boundaries between regions where different shock-interaction
patterns are observed. The features of the 3ST solution along the four lines drawn in
Fig. 9.4, and inside the regions they bound, will now be briefly summarized, whereas
the equations needed to draw the lines are given in Appendix C 11.3. The labelling
of the various lines and regions follows [50, § 11]. On line 1 the I-shock is a Mach
wave and, therefore, there can be no I-shock for points below line 1. On line 8a, the
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Figure 9.4. Domain of existence of solutions to the 3ST and transition boundaries between
various shock-wave configurations in the (M1, σ12) plane; also shown are pressure-
deflection diagrams corresponding to four different pairs of (M1, σ12) values; (a) on
line 8a: the R-shock is a Mach wave; (b) inside the first Henderson region: the flow
downstream of the R-shock is supersonic; (c) on the first Henderson line: the flow
downstream of the R-shock is exactly sonic; (d) to the right of the first Henderson line:
the flow downstream of the R-shock is subsonic.

intersection between the two polars takes place at the knot of the R-shock polar,
see Fig. 9.4a. As M1 increases, line 8a asymptotically approaches line 2, which is
where the flow behind the I-shock is sonic. Therefore, shock-reflection is impossible
above line 2. On line 7a, which is called the first Henderson line, the flow behind
the R-shock is exactly sonic; see Fig. 9.4c. Henderson [217] has shown, see also [50,
§ 11.11], that there are no solutions to the 3ST, i.e. m = 0, inside the so-called von
Neumann region, which is the region above line 1, below line 2 and bounded to the
right by line 8a. Lines 1, 8a and 7a bound the first Henderson region, where m = 1
and the flow behind the R-shock is supersonic, see Fig. 9.4b; to the right of line 7a:
m = 1 and the flow behind the R-shock is subsonic, see Fig. 9.4d. The case when
there is more that one solution to the 3ST, i.e. m > 1, will not be discussed because
it occurs when M1 takes values larger than those of interest here. As mentioned
earlier, the confluence of three shock-waves in a triple-point has been observed
experimentally, see e.g. [218, 219], also for values of (M1, σ12) that fall inside the
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von Neumann region. This contradiction between experimental evidence and von
Neumann’s 3ST is referred to in the literature as the von Neumann paradox [48].

9.2 Numerical simulations of the transonic fishtail: an
unexpected failure

The original goal of the present study consisted in simulating the transonic fishtail
flow by means of the unstructured S-F technique described in Chapter 4, which allows
also to employ a hybrid operational mode whereby only some of the discontinuities are
fitted, while all others are captured. Even if hybrid simulations are not as accurate
as the fully-fitted ones, see [36, 109], they turned out to be very useful for gaining a
better understanding of the fishtail phenomenon, as will be explained in Sects. 9.3
and 9.4. In contrast with the hybrid S-F simulation, the term fully-fitted refers to a
simulation whereby not only all discontinuities, but also the point singularities formed
by the intersection of discontinuities, or where discontinuities meet a boundary, are
fitted. Modelling the point of interaction amounts to define 2D Riemann problems
with constant states within a finite number of wedges surrounding the point, see
the sketch in Fig. 9.3. Different models need to be implemented to handle different
topologies, such as the regular reflection from a wall, the collision between shocks of
the same or different families, etc. In particular, for computing the AGARD03 test
case was used the von Neumann’s 3ST to model the triple-point arising in Mach
reflections: examples and algorithmic details are given in [178, 23, 109]. Moreover,
an approach similar the one proposed in the aforementioned studies for dealing
with the triple-point arising in Mach reflections had long ago been proposed in the
front-tracking community by [220].

For comparison purposes, the AGARD03 test-case was computed using both
the S-F and S-C approaches. Figure 9.5 shows the computational domain and the
triangular mesh. The leading edge (LE) of the NACA0012 airfoil is made to coincide
with the origin of a Cartesian reference frame and the reference length is set equal
to the chord, c, of the profile. The outer boundary is a circle of radius R/c = 100
centered at the origin; R was chosen based on the computations performed in [214]
with the aim of finding a compromise between keeping a reasonable computational
cost and obtaining an almost mesh-independent location of the nearly normal shock.
As shown in the three frames of Fig. 9.5, three levels of decreasing mesh spacing have
been used over the computational domain. The finest mesh spacing (h/c = 0.0421),
see Figs. 9.5c and 9.5b, covers the region surrounding the airfoil and inside the
supersonic pocket, whereas a coarser mesh spacing (h/c = 0.6285) has been used
within the elliptical region of Fig. 9.5b. The Triangle code [221] has been used to
create the triangulation shown in Figs. 9.5c and 9.5b, whereas the frontal/Delaunay
mesh generator described in [222] has been used to bridge the boundary of the
elliptical region with the far-field boundary, see Fig. 9.5a. The overall mesh is made
of 139570 grid-points and 278753 triangles.

Three different sets of simulations were run using the UnDiFi-2D code: S-C,
hybrid and fully-fitted S-F. The grids used in the three sets of calculations are nearly
identical, differences being limited to the neighbourhood of the fitted discontinuities.

In the S-C calculation none of the shocks is fitted, but all shocks are captured.
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(a) Full computational domain. (b) Mesh inside the ellip-
tical region.

(c) Mesh around the
airfoil.

Figure 9.5. Triangular mesh used for the AGARD03 test-case.

In the hybrid S-F calculation the two oblique shocks (each corresponds to both the I-
and M-shocks of Fig. 9.3) originating at the TE are fitted, whereas the nearly normal
shock (which corresponds to the R-shock of Fig. 9.3) are captured. It is important
to emphasize that in the hybrid simulation von Neumann’s 3ST is not used to model
the triple-point; it is instead left to the CFD solver to “capture” the interaction
between the nearly normal shock and the two “fitted” oblique shocks. This implies
that the triple-point is not a geometrical point, but rather a region whose size is
comparable to the numerical thickness of the nearly normal shock. The pressure
field computed in the hybrid simulation is shown in Figs. 9.6a and 9.6b: to improve
readability, the two fitted oblique shocks are marked using a solid (red) line even if
their numerical thickness is zero. In contrast, the nearly normal shock downstream
of the TE can be identified in Fig. 9.6d by the build-up of iso-pressure contour
lines, which reveal that the numerical thickness of the captured shock is finite,
spanning two to three cells. The comparison between the S-C (dashed lines) and
hybrid S-F (solid lines) calculations is shown in Figs. 9.6c and 9.6d: it clearly reveals
that the pressure iso-contour lines obtained from the two different simulations are
superimposed, except along the oblique shock, because of its very different thickness
in the two sets of calculations. Finally, in the fully-fitted S-F calculation, none of the
discontinuities is captured, but all three shocks and the contact discontinuity that
meet at each triple-point are fitted and the motion of the triple-points is modelled
Since the fish-tail structure is a steady pattern, it is expected that the triple-point
velocity computed by the model asymptotically vanishes and a steady configuration
is reached, similar to those computed by either S-C or hybrid S-F. Despite numerous
attempts, however, no stationary solution was obtained using the fully-fitted mode:
when re-starting the calculation from the hybrid S-F solution, the two triple-points
start moving along the two oblique shocks towards the TE without ever stopping.
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(a) Hybrid S-F: overall view. (b) Hybrid S-F: close-up around the air-
foil.
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(c) Hybrid S-F vs. S-C: close-up around
the airfoil.
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(d) Hybrid S-F vs. S-C: close-up around
the triple-point.

Figure 9.6. AGARD03 test-case: pressure field computed by S-C and hybrid S-F.

9.3 The reasons for the failure

The reasons behind the S-F technique failure to perform a full-fitted computation
become clear by evaluating intersections in the (p, θ) plane between the polars of the
oblique shock and the nearly normal shock in the neighbourhood of the triple-point,
using data obtained from the hybrid S-F calculation. As already mentioned in
Sect. 9.2, in the hybrid S-F simulation the triple-point is not a geometrical point
modelled using von Neumann’s 3ST, but rather a region of finite width resulting from
the interaction between the fitted oblique shock and the captured nearly normal
shock, respectively labelled I- and R-shock in Fig. 9.7a. Figure 9.7a shows the
computed pressure field in the vicinity of the triple-point; square symbols mark the
location of the grid-points inside the computational domain and on the fitted shock.
This is because in the unstructured S-F algorithm (see Sect. 4.2) the discontinuities
are made up of pairs of grid-points that share the same geometrical location, but
store different values of the dependent variables, corresponding to the upstream
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and downstream side. On each of the two sides of a discontinuity, grid-points are
connected by straight edges, thus forming an internal boundary of zero thickness: the
solid red line in Fig. 9.7a. Within each pair of grid-points along a fitted discontinuity
the unit normal vector is computed using finite difference formulae [108] and the
upstream and downstream values of the dependent variables satisfy the R-H jump
relations. Therefore, all shock-related quantities, such as upstream and downstream
Mach numbers, flow deflection through the shock and shock slope, are readily
available along a fitted discontinuity. Since the location of the triple-point cannot be
unambiguously defined in the hybrid S-F simulation, two grid-points are picked up
(1 and 2 in Figs. 9.7a) along the fitted I-shock that are close to (and upstream of)
the location where the captured quasi-normal R-shock (which can be identified by
the black iso-pressure lines in Fig. 9.7a) joins the I-shock. Inspection of the I- and
R-shock polars in both grid-points, shown in Figs. 9.7b and 9.7c, reveals that there is
no intersection between the two curves, despite the fact that both the S-C and hybrid
S-F simulations feature a shock-interaction pattern that resembles the confluence of
three shock-waves. This is the same situation leading to the von Neumann paradox
in the case of shock reflection problems. Lack of a point of intersection will be
further confirmed in Sect. 9.4.1 by looking at the location within the (M1, σ12) plane
of those grid-points that are located along the fitted oblique shock.
The anomalous behaviour of the fully fitted solution is also understandable. Since
there is no steady solution to von Neumann’s 3ST, when operating in fully fitted
mode the UnDiFi-2D code finds an unsteady solution characterized by a non-zero
triple-point velocity, wTP, which moves the triple-point along the oblique shock
towards the TE. Consequently, the relative Mach number:

M1 = |u1 − wTP|
a1

increases, thus moving the point representative of the flow conditions in 1 into a
region of the (M1, σ12) plane where a solution to the 3ST exists.

9.4 Solutions to the von Neumann paradox

Over the past 60 years, various researchers have proposed explanations of the von
Neumann paradox and possible solutions to solve it. For instance, Sternberg [188]
suggested that in the parameter range where the von Neumann paradox occurs,
the effects of viscosity cannot be neglected around the triple-point and, therefore,
the shock waves and the mixing layer that forms between the M- and R-shocks
cannot be treated as discontinuities of negligible thickness. Other researchers, see
e.g. [223, 224, 225] proposed, giving different motivations, to relax the conditions
of parallel flow and identical pressure that hold across the slipstream in the 3ST.
However, all the aforementioned solutions are anchored with the topology proposed
by von Neumann which foresees the presence of three shock waves and one slip-
stream branching at the triple-point. As mentioned in Ref. [226], Bargmann and
Montgomery [227] were the first to propose the addition of an isentropic expansion at
the triple-point to obtain a solution to those cases not covered by the 3ST. Two years
later, the four-waves theory (4WT, the fourth wave being the centred expansion fan)
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Figure 9.7. AGARD03 case: hybrid S-F calculation; pressure field and shock polars close
to the triple-point.

was further elaborated in Ref. [49]. Unfortunately, the two aforementioned technical
reports seem to be unavailable nowadays, but the four-waves model re-surfaced years
later in Guderley’s book on transonic flow [228, pag. 147], where it is suggested
that a complex supersonic patch develops behind the R-shock, originating from the
expansion fan centered at the triple-point. Guderley’s homentropic model did not
include the contact discontinuity which was added, fifteen years later, in Ref. [229].
This is the earliest occurrence that was found in the literature where the modified
Guderley’s model (i.e. the non-homentropic 4WT including the contact discontinuity)
is described. As far as the conditions prevailing ahead of the expansion fan are
concerned, it is stated in [229] that “We may therefore conclude, with some confidence,
that the tail2 shock flow will be sonic at the triple-point.” Therefore, the flow-pattern
at the triple-point according to the modified Guderley’s 4WT can be sketched as in
Fig. 9.8b and 9.8d: the slope of the R-shock is such that the downstream flow is
exactly sonic and an expansion fan centred at the triple-point accelerates the flow
from sonic to supersonic speed on one side of the contact discontinuity. On the
other side of the contact discontinuity the flow can be either subsonic or supersonic;
in the former case the flow pattern is referred in Ref. [216] as a Vasil’ev reflection
(VR), whereas in the latter as a Guderley reflection (GR). The non-linear algebraic
equations governing the 4WT are reported in Appendix 11.3, where the two sets of
data used to draw the sample VR and GR of Fig. 9.8 are listed and it is also described
how to compute the boundary between the GR and VR. The two shock-patterns
drawn in Figs. 9.8b and 9.8d reproduce the actual slopes computed using the 4WT;

2the tail shock corresponds to the R-shock of Fig. 9.3.
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Figure 9.8. Vasil’ev and Guderley reflection: shock polars in the (p, θ) plane and shock
pattern in the (x, y) plane.

observe that the head and the tail of the expansion fan (EF) cannot be distinguished,
because the flow undergoes a tiny deviation across the EF and that the head of the
EF is perpendicular to the streamlines in region 3, because the flow is sonic behind
the R-shock. In the (p, θ) plane the 4WT amounts to connect the sonic point of the
R-shock polar with the I-shock polar using a Prandtl-Mayer expansion; this is shown
in Figs. 9.8a and 9.8c for the VR and GR, respectively. According to [216] and [230],
the transition between the 3ST and 4WT takes place along the first Henderson line,
or line 7a in Fig. 9.4, where the Mach number behind the R-shock in the 3ST is sonic.
Inside the first Henderson region, where the flow behind the R-shock is supersonic,
both 3ST and 4WT solutions are possible; an example is shown in Fig. 9.8a, which
refers to point b in Fig. 9.4. According to the same authors [216, 230], however, the
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3ST solutions inside the first Henderson region should be discarded as un-physical,
because of the supersonic Mach number behind the R-shock, and should be replaced
by the 4WT. Therefore, the 3ST applies to the right of the first Henderson line
and the 4WT to its left. Moreover, solutions to the 4WT also exist to the left of
line 8a, i.e. inside the von Neumann region, which implies that the 4WT offers a
solution to the von Neumann paradox. Wind-tunnel visualizations obtained by [231],
see also [232, 233], using an ad-hoc designed experimental facility seem to confirm
the complex flow structure of Guderley’s model, in particular the existence of the
expansion fan. The earliest calculations showing a Guderley-type reflection pattern
are those performed by [234, 235] solving the Euler equations. Similar results were
obtained for the Euler equations in [236, 237] and calculations showing an interaction
pattern compatible with Guderley’s model have also been obtained when numerically
solving the unsteady transonic small disturbance equations, see [238], the nonlinear
wave system (a simplified version of the isentropic Euler equations), see [239], and
the shallow waters equations, see [240, 241]. Two remarkable features of Guderley’s
solution are the smallness of the supersonic patch, which possibly explains why it
has for long gone unnoticed both in experiments and simulations, and the apparent
existence of not a single, but rather an array of supersonic patches of decreasing
size, see [240, 237]. These features make the numerical simulation of the GR/VR
very challenging and it is therefore not surprising that some of the aforementioned
authors choose shock-fitting/front-tracking algorithms, rather than shock-capturing,
to handle some of the discontinuities involved in the Guderley-type reflection.

9.4.1 Analysis of the hybrid shock-fitting solutions

Making use of the taxonomy previously discussed, the positioning of the hybrid
S-F solutions of the fishtail problem within the (M1, σ12) plane can be evaluated.
By extracting the (M1, σ12) values along the I-shock (the oblique shock), starting
near the TE of the airfoil and up to a location (labelled 151 in Fig. 9.9a) close
to where the captured R-shock (the nearly normal shock) joins the fitted I-shock
(the oblique shock). The numbering of the grid-points along the I-shock is shown
in Fig. 9.9a on top of the computed pressure field. Also shown in Fig. 9.9b is the
first Henderson line, which marks the boundary between the 3ST (to its right)
and the 4WT (to its left) and the boundary separating the Vasil’ev (M4 < 1) and
Guderley (M4 > 1) solutions to the 4WT. Inspection of Fig. 9.9b clearly reveals
that the 3ST cannot be applied to describe the three-shocks confluence taking place
at the triple-point of the fishtail. Indeed, those points along the I-shock that are
closer to the triple-point (e.g. grid-point 151 in Fig. 9.9a) are those further away
from the first Henderson line, the leftmost boundary of the (M1, σ12) plane where
(physically plausible) solutions to the 3ST exists. Figure 9.9b suggests that the
three shock confluence that characterizes the fishtail structure should instead be
modeled using the 4WT. Therefore, the solution to the 4WT was computed using
the (M1, σ12) values at point 151 of Fig. 9.9a; the results are reported in Appendix
B 11.3, as well as in Fig. 9.8c, where the 4WT solution in shown in the (p, θ)-plane.
The same analysis described so far for the AGARD03 test-case has been repeated
for decreasing values of the free-stream Mach number down to M∞ = 0.91. The
corresponding Mach iso-lines computed using the hybrid S-F approach are shown
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Figure 9.9. AGARD03 test-case: position in the (x, y) and (M1, σ12) planes of the points
located along the fitted I-shock.

in the five frames of Fig. 9.10: it can be seen that the nearly normal shock moves
upstream towards the TE of the airfoil when the free-stream Mach number decrease.
Similarly to Fig. 9.9b, Fig. 9.10f shows the position within the (M1, σ12) plane of
only one grid-point, picked-up along the I-shock and close to the triple-point, for
each of the five different free-stream Mach numbers examined Figure 9.10f reveals
that by decreasing the free-stream Mach number the point on the I-shock close to
the triple-point approaches, but never reaches line 8a, always remaining inside the
von Neumann region. It follows that regardless of the free-stream Mach number,
the triple-point of the fishtail cannot be described using the 3ST, but the 4WT
should be used instead. Figure 9.10f also shows that four out of the five points
corresponding to different values of the free-stream Mach number fall inside the GR
and only the one corresponding to M∞ = 0.91 inside the VR region. However, this
does not allow to draw definitive conclusions about the type of reflection taking
place at the triple-point, because its location is only approximate in the hybrid S-F
simulation and a fully-fitted calculation (implementing the 4WT) would be needed
to gain further insight. Furthermore, it is possible to provide explanations on why
the R-shock is referred as a nearly normal shock, rather than “normal shock”, as
it is done in Fig. 9.2. Using the 4WT, the slope of the R-shock is such that the
downstream flow is exactly sonic; when M2 is slightly larger than one, as it happens
to be the case here, σ23 ≈ π/2 −

√(
M2

2 − 1
)

/2, see [50, Eq. (6.4.38)], and [235] has
shown that σ23 increases very rapidly near the triple-point. Moreover, as long as the
airfoil is symmetric and at zero angle-of-attack, the R-shock must be a normal shock
on the x-axis. It follows that moving along the R-shock, starting at the triple-point
towards the symmetry axis, the corresponding point on the shock-polar moves from
the sonic point towards the normal shock point. All these observations point to the
fact that the normal shock of Fig. 9.2 is close to being a normal shock along most of
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(c) M∞ = 0.93.
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Figure 9.10. Hybrid SF solutions for different free-stream Mach numbers and position
in the (M1, σ12) plane of the point along the oblique shock closest to the triple-point;
fitted shocks are marked using red solid lines.

its length, except close to the triple-point.

9.4.2 Analysis of the full fitted shock-fitting solution

By analysing the Chapman plane and the shock polars it was possible to investigate
the nature of the interaction point between the oblique shocks and the quasi-normal
shock wave in the fishtail configurations previously described. Specifically, reasons
behind the S-F failure to perform a full fitted simulation as done in Ref. [23] were
also clarified: indeed, no steady solution can be provided by the S-F technique using
the triple point modelling implemented in the UnDiFi-2D code, since it is based
on the 3ST and it does not correctly represent the Guderley interaction, which is
described by the 4WT.
For this reason, to compute the AGARD03 case using the S-F technique presented
in Chapter 4, a new interaction point model was added with respect to those
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described in Ref. [23] and included in the UnDiFi-2D public repository. Basically,
the modelling is similar to the one implemented in the UnDiFi-2D solver for dealing
with the interaction between two shocks of the same family [23]. In particular, the
new modelling approach is similar to the one adopted for describing the quadruple
point (QP) and it includes the presence of a sonic state upstream the expansion
fan: specifically, by referring to Fig. 9.8d, the model involves a total amount of 26
unknowns, which are reported hereafter.

• State 1,2,3,4,5 20 variables

• Slopes of I/R/M/EF3 shocks 4 variables

• Quadrupole point velocity components 2 variables

However, by knowing the upstream state (1) and the I-shock slope, the problems
unknowns are reduce to 21 variables, which are computed using a two step procedure.
The first stage consists of computing state (2) and the R-shock by applying the
R-H relations, considering state (1) as the upstream region and state (2) as the
downstream one: by doing so, it is possible to partially determine also the QP velocity
vector. Indeed, the QP velocity vector wQP can be decomposed into two components,
resp. normal and tangential to the I shock: this particular choice allows to evaluate
the normal component wQPn applying the R-H relations between state (1) and (2),
since it is posed equal to I-shock local speed, whereas the tangential component is
left unknown. In particular, some consideration can be drawn regarding the R-shock
slope: indeed, it is determined when computing the state and the position of the
nearest R-shock point to the QP and since state (3) is sonic, this geometrical slope
cannot be modified without violating the dependence domain. Therefore, R-shock
slope is assigned. By doing so, the effective number of unknowns in the QP model
is 15: in detail, the states 3, 4 and 5 (12 unknowns), the slopes of the EF and M
shock (2 unknowns) and the QP tangential velocity (1 unknown) computations are
required.
At this stage, the QP problem can be solved by applying the following relations:

1. R-H jump relations (4 eqs.) between state 1 and 5

2. R-H jump relations (4 eqs.) between state 2 and 3

3. R-H jump relations (4 eqs.) between state 3 and 4

4. Imposition of M3 = 1 (1 eq.)

5. Jump relations for the slip-stream (2 eqs.) between state 4 and 5, so
that p4 = p5 and |u4 × u5| = 0

The aforementioned modelling approach allowed to perform a full fitted com-
putation of the AGARD03 test case and to obtain a steady solution for this flow
configuration. The Mach flow field provided by the S-F solution is illustrated in
Fig. 9.10, where the fitted discontinuities are depicted using a black solid line. Fur-
thermore, the sonic line is also shown using the white colour. As can be seen in

3The expansion fan is modelled as a nearly negligible strength shock (expansion shock)
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the enlargement around the upper interaction point, the S-F technique is able to
reproduce the physical behaviour of the Guderley reflection, whose sketch in also
available in Fig. 9.12c, with both the supersonic pockets up and down the slip line.
Furthermore, full fitted simulation availability allows to draw final considerations
about the type of reflection which occurs the AGARD03 fishtail configuration, by
evaluating exactly the QP position within the (M1, σ12) plane. Indeed, the hybrid
S-F computation (see Sec. 9.4.1) provided only an estimation of the interaction point
position in the Chapman plane by considering a I-shock point near to the QP, since
the R-shock was captured and, as a consequence, the interaction was spread over a
region instead of being a point. Anyway, by plotting the QP data computed by the
full S-F simulation, it is evident the good agreement with the estimation provided
by the hybrid one, as shown in Fig. 9.11b

(a) S-F full fitted solution. Mach field and
detail around an interaction region)

(b) Chapman plane analysis

Figure 9.11. AGARD03 test-case: S-F full fitted solution and Chapman plane analysis

9.5 Summary

This analysis was motivated by a seemingly incomprehensible failure of the unstruc-
tured S-F CFD code (UnDiFi-2D) to computing the transonic flow past a NACA0012
airfoil. In previous publications, see [178, 23], UnDiFi-2D code successfully used the
to simulate triple points of Mach reflections using von Neumann’s 3ST. However,
UnDiFi-2D code, equipped with the same triple-point model, was not able to simulate
the two interaction points occurring in the M∞ = 0.95 flow past a NACA0012 profile.
On the contrary, solutions of the same test-case are obtained when all three shocks
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(a) vNR reflection (3ST) (b) Vasil’ev reflection (c) Guderley reflection

Figure 9.12. Reflections’ sketches (Re-printed from Ref. [216], with permission): grey
regions denotes subsonic flow

were captured, but also when two shocks are fitted and the third one is captured.
In these latter two calculations, however, the triple-point was not modelled, but
captured. Shock-polar analysis revealed that von Neumann’s three-shocks theory
does not admit solution in the parameter range characterizing the triple-points,
whereas the Guderley’s four-waves model, which includes a centred expansion fan
in addition to these shock waves, is able to provide a solution. Indeed, the model
based on the Guderley’s 4WT, described in this Chapter and implemented in the
UnDiFi-2D, allowed to obtain a full fitted simulation of the transonic flow past a
NACA0012. It is worth underling that the comparison with the S-C and the hybrid
S-F calculations shows almost identical solutions: nevertheless, only the fully S-F
computation reveals the presence of a weak expansion fan in the interaction region.
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Chapter 10

Conclusions and future work

The primary purpose of this study is to contribute to the development of a new
class of gas-dynamic solvers based on shock fitting techniques, able to be an effective
option with regards to the shock capturing methods for computing flows featuring
shocks.
A part of this Thesis is dedicated to the presentation of different shock fitting tech-
niques, developed and implemented during the PhD program: specifically, different
shock-fitting algorithms were described and used in conjunction with unstructured
or structured gas-dynamic solvers. As a matter of fact, one of the main features
of the shock fitting approaches is the need of a data transfer between the fitted
discontinuities and the computational grid, so that the shock-fitting algorithms must
be generally tailored on the basis of the grid topology. In the unstructured grids
context, analysed in Chapters 4 and 5, the flexibility of these meshes allows to
easily constrain fitted discontinuities to be a part of the computational triangula-
tion/tethraelization, so that shocks/contact discontinuities act as special boundary
conditions between the smooth regions of the computational domain. This procedure
is no longer practicable when structured grid are considered and therefore, in order
to design novel shock fitting techniques for structured solvers a different approach
was proposed in the present Thesis. This new shock-fitting technique for 2D/3D
structured grids, inspired by the shifted boundary methods [31], is widely explained
in Chapters 6 and 7. According to this approach, the fitted discontinuity carves
a mesh-less hole in the computational domain over which it is floating and data
transfer between the discontinuity and the boundaries of the hole and vice-versa
relies on extrapolation/interpolation via truncated Taylor series expansions. The
main advantage of these new technique is the capability of tracking the discontinu-
ities and computing the surrounding smooth-flow areas without re-meshing around
the discontinuity, as required by the shock-fitting schemes for unstructured grids
described in Chapters 4 and 5. By doing so, it was possible to compute numerical
simulations involving also complex shock interactions both in 2D and 3D space,
where for the first time a full fitted computation of a regular oblique shock reflection
has been performed.
Furthermore, these advancements in shock fitting methods open up possibilities
to simulate several fluid dynamic phenomena by applying the shock-fitting tech-
niques, such as turbulent flows and acoustic sound propagation. In addition to
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the advantages highlighted in this Thesis with respect to shock capturing methods
in terms of solution quality and accuracy, it is worth to underline that in gen-
eral shock-fitting allows to achieve a better understanding of the physics behind
shock-shock or shock/boundary layer interactions. Specifically, this study collects
two particular applications of the unstructured shock fitting technique reported
in Chap. 4: the former considers 2D shock/boundary layer interactions both in
laminar and turbulent regime, which have been computed for the first time on
unstructured grids using a shock fitting technique. In particular, the test cases
in Chapter 8 underline that shock fitting is able to provide high quality solutions
also on coarse grid levels: moreover, qualitative and quantitative grid convergence
analyses performed in this Chapter show the significant achievements in terms of
reduced discretization error and improved order of convergence that shock fitting
delivers, compared to shock-capturing.
The latter application field regards a deep investigation of a shock/shock interaction
characterized by the Von Neumann paradox, where the presence of the triple points
is observed experimentally and numerically, even if the three shocks theory fails to
predict them. In this regard, Chapter 9 reports an analysis about the transonic
flow past a NACA0012, where shocks pattern exhibits a fishtail configuration. By
modelling the interaction points via shock fitting, it was possible to verify that the
conditions of the Von Neumann paradox occur at the triple points of the transonic
fishtail and to compute explicitly for the first time a solution using shock-fitting
technique based on the Guderley’s four-waves model.
Despite these undoubted steps forward, an issue remains unsolved that still pre-
vents the use of shock fitting solvers as an alternative to shock capturing ones: the
capability of treating changes of shocks configuration topology. As pointed out
in the previous Chapters, all the shock fitting techniques described in this Thesis
require as input the a-priori knowledge of the discontinuity configuration topology,
including the discontinuities and shocks interactions types within the flow field.
Nevertheless, when dealing with unsteady flows, one must consider possible changes
of both the shocks interactions topology and the number of discontinuities, due
to the disappearance of weakening fronts and the appearance of new shock fronts.
In order to be able to manage all these topological changes it will be necessary to
develop new algorithmic tools capable of detecting the occurrence of a change in the
shock topology and modify accordingly the fitted discontinuities and their mutual
interactions. However, the design of this kind of tool is not trivial and will require
to merge different skills and expertise field, as done for the 2D detection technique
proposed in the past years by Paciorri and Bonfiglioli in Ref. [164]. Although this
problem, several applications of different shock fitting methods developed during this
PhD program have been presented in this Thesis, demonstrating that these methods
can be effectively used to simulate complex 2D and 3D shocked flows. Specifically,
shock fitting techniques have shown to be able to overcome typical problems encoun-
tered by shock capturing solvers both in the structured and unstructured context:
for instance, the order of accuracy degradation and the presence of spurious waves
in the shock downstream regions, as well as the numerical problems linked to the
shock capture process. Moreover, the shock fitting techniques described in this
Thesis were able to compute numerous inviscid/viscous and laminar/turbulent flows
with shock-wall and shock-shock interactions, ensuring results that are qualitatively
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superior to those that shock capturing methods deliver, especially when using coarse
grids. Therefore, the benefits stated above highly encourage a revival of shock fitting
methods and further advancements of these techniques. Moreover, the interesting
results, together with the algorithmic development proposed in this Thesis, suggest
that the shock fitting approach could become in a short time a viable option to shock
capturing one for the simulation of complex shocked flows of aerospace interest.
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Chapter 11

Appendices

11.1 Appendix A. Shock-tangent calculation

Derivation of the finite difference approximations

Using a parametric description of the shock-front:

x = x (s)
y = y (s)

where s is the curvilinear abscissa (or arc-length) of the curve, the unit tangent
vector can be computed as:

τ =
[
x′ (s) ex + y′ (s) ey

]
(11.1)

Equations (4.1) are obtained by approximating the first derivatives in Eq. (11.1)
using FD formulae. Taylor-expanding about shock-point i and taking into account
that:

si − si−1 = li−1/2 (11.2a)
si − si−2 = li−1/2 + li−3/2 (11.2b)
si+1 − si = li+1/2 (11.2c)

one obtains:

xi − xi−1 = x′
i li−1/2 − 1

2! x′′
i l2i−1/2 + 1

3! x′′′
i l3i−1/2 + HOT (11.3a)

xi − xi−2 = x′
i

(
li−1/2 + li−3/2

)
− 1

2! x′′
i

(
li−1/2 + li−3/2

)2

+ 1
3! x′′′

i

(
li−1/2 + li−3/2

)3
+ HOT (11.3b)

xi+1 − xi = x′
i li+1/2 + 1

2! x′′
i l2i+1/2 + 1

3! x′′′
i l3i+1/2 + HOT (11.3c)
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where HOT denotes the high order terms. The following shorthand notation has
also been used:

xi = x (si) x′
i = x′ (si) x′′

i = x′′ (si) x′′′
i = x′′′ (si)

By combining Eqs. (11.3a) and (11.3c) one obtains the centered approximation:

τ i =
li+1/2

li−1/2
(
li−1/2 + li+1/2

) ∆ri− 1
2

+
li−1/2

li+1/2
(
li−1/2 + li+1/2

) ∆ri+ 1
2

− 1
3!
(
x′′′

i ex + y′′′
i ey

)
li−1/2 li+1/2 + HOT (11.4)

whereas Eqs. (11.3a) and (11.3b) provide the one-sided approximation:

τ i =
li−1/2 + li−3/2
li−1/2 li−3/2

∆ri− 1
2

−
li−1/2

li−3/2
(
li−1/2 + li−3/2

) (∆ri− 1
2

+ ∆ri− 3
2

)
+ 1

3!
(
x′′′

i ex + y′′′
i ey

)
li−1/2

(
li−1/2 + li−3/2

)
+ HOT (11.5)

Equations (11.4) and (11.5) reveal that the truncation error of the two FD
approximations is proportional to l2, l being the curvilinear mesh spacing along the
shock front, regardless of whether l is constant or not.

Results

We have performed a grid-convergence study using an analytical curve, the Cissoid
of Diocles (see fig. 11.1): (

x2 + y2
)

x = 2ay2 a = 2 (11.6)

The reason for choosing this particular curve is that it resembles a fishtail shock,
but also because it features a cusp in the origin, which means that the second and
higher derivatives of its parametric representation are un-bounded in the origin.
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Figure 11.1. The cissoid of Diocles when a = 2.
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We have performed a mesh-convergence study using a sequence of ten nested
grid levels: the coarsest one is made of N1 = 30 shock-edges and the finest grid level
has N10 = 15360 edges. The grid-refinement-ratio, r = Nk+1/Nk, is constant and
equal to r = 2.

Grid-points along the curve have been generated by subdividing the [x0, x1] range
of the x axis into Nk intervals with constant ∆x = (x1 − x0) /Nk spacing; we then
compute the location of the shock-points as:

ri = xi ex + y (xi) ey

where:

y (x) = ±

√
x3

2a − x

easily follows from (11.6)1. Even if ∆x is constant the grid-points along the
curve are not equally spaced in the curvilinear abscissa s.

The L2-norm of the error on grid level k is computed as follows:

ek =

√∑imax
i=2 |ni − nk

i |2
Nk + 1 . (11.7)

In Eq. (11.7) nk
i is the numerical approximation of the normal vector to the

curve in grid-point i of grid level k, computed using either Eq. (11.4) or (11.5) and
ni is the analytically computed normal unit vector. Depending on whether we use
the one-sided or the centered approximation, imax = Nk or imax = Nk−1.

Once the L2-norm of the error has been computed on all grid levels, the measured
order ñ can be estimated globally, for each pair of grid levels, as follows:

ñ = log (ek−1/ek)
log r

(11.8)

The results are summarized in Tab. 18. When the cusp is not included in the
grid convergence study, i.e. we use x0 = 0.1, design order is recovered, see Tab. 18a.
When the cusp is included in the grid convergence study, i.e. we use x0 = 0, the
discretization error “globally” exhibits only first order convergence, see Tab. 18b.
This is because, close to the origin, the higher order derivatives of the parametric
description of this particular curve grow unbounded. This pathologic behavior is
however localized close to the cusp and shows up in Tab. 18b, because the error
norm measured with Eq. (11.7) has a global nature. If a local grid convergence
analysis is performed in x = 0.2, which is the shock-point closer to the cusp that
exists on all grid levels, design order is recovered. Moreover, it is not at all obvious
that a cusp-like shape may ever been found in a real shock-wave.

1In the grid-convergence study we have only considered the branch of the curve with positive y
values.
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(a) x0 = 0.1; x1 = 3

one-sided centered
k ek ek−1/ek ñ ek ek−1/ek ñ

1 .17176 10−2 .97105 10−3

2 .52368 10−3 3.280 1.714 .28366 10−3 3.423 1.775
3 .14830 10−3 3.531 1.820 .77714 10−4 3.650 1.868
4 .39807 10−4 3.726 1.897 .20420 10−4 3.806 1.928
5 .10339 10−4 3.850 1.945 .52390 10−5 3.898 1.963
6 .26363 10−5 3.922 1.971 .13272 10−5 3.947 1.981
7 .66574 10−6 3.960 1.985 .33403 10−6 3.973 1.990
8 .16728 10−6 3.980 1.993 .83788 10−7 3.987 1.995
9 .41928 10−7 3.990 1.996 .20982 10−7 3.993 1.998
10 .10495 10−7 3.995 1.998 .52500 10−8 3.997 1.999

(b) x0 = 0; x1 = 3

one-sided centered
k ek ek−1/ek ñ ek ek−1/ek ñ

1 .39480 10−2 0.000 .27329 10−2 0.000
2 .19297 10−2 2.046 1.033 .13345 10−2 2.048 1.034
3 .95603 10−3 2.018 1.013 .66019 10−3 2.021 1.015
4 .47617 10−3 2.008 1.006 .32846 10−3 2.010 1.007
5 .23767 10−3 2.003 1.002 .16384 10−3 2.005 1.003
6 .11874 10−3 2.002 1.001 .81828 10−4 2.002 1.002
7 .59348 10−4 2.001 1.001 .40891 10−4 2.001 1.001
8 .29668 10−4 2.000 1.000 .20440 10−4 2.001 1.000
9 .14833 10−4 2.000 1.000 .10218 10−4 2.000 1.000
10 .74161 10−5 2.000 1.000 .51088 10−5 2.000 1.000

Table 18. Grid convergence study using both the centered and one-sided approximations.

11.2 Appendix B. Order of accuracy study of the SESF
extrapolation process

In order to analyze the order-of-accuracy of the truncated Taylor series expansion( 6.2)
described in step 4 of Sec. 6.1 a simple test-case has been set-up. It consists in
extrapolating the following analytical function:

u0(x, y) = − cos(4π(
√

3x − y)) e0.7e(−x2−4y2) cos(7πxy) (11.9)

from the surrogate boundaries to three different curves, which play the role of
the shock-fronts in the SESF simulations. In order to perform a grid-convergence
analysis, three nested grid levels have been used; the coarsest one and the three
curves, marked using solid lines, are shown in Fig. 11.2a, whereas the carpet plot
of the analytical function is shown in Fig. 11.2b. We studied the grid-convergence
trend of the discretization error, ϵh, which is the difference between the extrapolated
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Figure 11.2. Convergence test: computational domain and exact solution.

solution uh and the exact solution (11.9):

ϵh = uh − u0. (11.10)

The grid-convergence properties of Eq. (7.1) are shown in Tab. 19, which collects
the L1-norm (computed at all points along each curve) of the discretization error
on all grid levels and the measured order-of-convergence ñi,i+1 for each pair of grid
levels, computed using Eq. (3.1). All three tests confirm that the discretization error
decays at design (second) order, as also clearly highlighted by the plot in Fig. 11.3.

Table 19. Convergence analysis for each curve in Fig. 11.2a

Curve 1 Curve 2 Curve 3
Grid level h L1 ñ L1 ñ L1 ñ

0 0.032 1.54 - 3.56 - 4.92 -
1 0.016 3.92 · 10−1 1.98 0.81 2.1 1.18 2.05
2 0.008 1.08 · 10−1 1.95 0.21 1.95 0.30 1.94

11.3 Appendix C. Boundaries in the (M1, σ12) plane.

We list here the equations required to draw those lines in the (M1, σ12) plane, see
Fig., which we referred to throughout the paper. This is only a small subset of the
numerous lines that bound regions of the (M1, σ12) where different shock-interaction
patterns are observed. The interested reader is referred to [210, 50, 242] for a more
extensive discussion. See also [217] and [229] where these same boundaries are
drawn in the (M1, θ12) and (M1, ξ21) planes. The labelling of the lines used here
follows [50].
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Figure 11.3. Convergence behavior of the L1-norm for each of the three curves shown in
Fig. 11.2a.

Source codes for computing the various boundaries in the 3ST will be made
available on a public repository at the time of publication.

• Line 1: the incident shock (IS) is a Mach wave

On line 1 the I-shock has zero strength. i.e. it is a Mach wave; therefore, the
I-shock angle is the Mach angle:

σ12 = sin−1
( 1

M1

)
(11.11)

• Line 2: Sonic flow behind I-shock

Shock-shock interaction is possible only as long as the flow behind the I-shock is
supersonic, i.e. M2 > 1. The I-shock angle corresponding to the limit condition
of sonic flow behind the I-shock can be computed from [206, Eq.(167)] using
the given value of M1.

• Line 7a (the first Henderson line): sonic flow behind the R-shock in the 3ST.

The flow behind the R-shock in the 3ST is sonic along two distinct lines (the
first and second Henderson line) of the (M1, σ12) plane, but only the first
Henderson line is of interest when the I-shock is weak. Points on line 7a are
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solutions to the following 4x4 non-linear system of algebraic equations:

sin2 σ14 = (γ − 1) (γ + 1) + 4
[
γ M2

1 sin2 σ12 − δ
] [

γ M2
2 sin2 σ23 − δ

]
2 γ (γ + 1) M2

1
(11.12a)

θ (M1, σ14) = θ (M1, σ12) + θ (M2, σ23) (11.12b)

M2
2 =

(
1 + δ M2

1 sin2 σ12
)2 +

(
1
2 (γ + 1) M2

1 sin σ12 cos σ12
)2(

1 + δ M2
1 sin2 σ12

) (
γ M2

1 sin2 σ12 − δ
) (11.12c)

sin2 σ23 =
(γ − 3) + (γ + 1) M2

2 +
√

(γ + 1)
[
(γ + 9) + 2 (γ − 3) M2

2 + (γ + 1) M4
2
]

4 γ M2
2

(11.12d)

Equations (11.12a) and (11.12b) respectively translate the conditions of equal
pressure and flow direction across the SS. Equation (11.12c) is [206, Eq. (132)]
and gives the Mach number behind the I-shock as a function of M1 and the
I-shock angle. Equation (11.12d) is [206, Eq. (167)] and gives the R-shock
angle corresponding to sonic flow behind the R-shock, i.e. M3 = 1. The flow
deflection θ in Eqs. (11.12b) is computed from [206, Eq. (138)]. The four
unknowns in the system (11.12) are: M2, σ12, σ23, σ14, whereas M1 is given.
The (M1, σ12) coordinates of the point where the first Henderson line joins line
1 can be computed as described in [242].

• Line 8a: branch I of the backward limit in the 3ST.
Physically, the backward limit corresponds to a three-shocks-system in which
the RS is a Mach wave, which implies that the IS and MS form a unique shock.
A simple closed-form expression that allows to draw the backward limit is
attributed by [217, Eqs. (15-16)] to [243] and it is repeated here:

M2
1 = 1 + ξi/c

ξi U±
− 2

γ − 1 c = γ − 1
γ + 1 (11.13a)

where:

U± = 1 + 2 c ξi

1 + ξi ±
√

(1 + c ξi) (1 + ξi/c)
(11.13b)

In Eqs. (11.13) ξi = ξ−1
12 i.e. the inverse pressure ratio across the I-shock. There

are two branches of the backward limit, but only branch I, which corresponds
to the plus sign in Eq. (11.13b), is of interest in the range of Mach number
considered here. Line 8a is drawn by taking values of ξi ranging between 1
(which corresponds to the point where line 8a joins line 1) and a pre-set value
smaller than 1. M1 is then computed from Eq. (11.13a) and the I-shock angle,
σ12, follows from [206, Eq. (128)].

Four waves theory (4WT).
The set of non-linear algebraic equations governing the 4WT can be found in [230].
It is however worth recalling it here. Given the free-stream Mach number, M1 and
I-shock angle, σ12, which are the same two input parameters also used in the 3ST, the
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following quantities behind the I-shock can be easily computed: the flow deflection,
θ12, and pressure ratio, ξ21, across the I-shock and the Mach number, M2, in the
region bounded by the I- and R-shocks. Since the flow behind the R-shock is sonic
in the 4WT, i.e. M3 = 1, see Figs. 9.8b and 9.8d, the R-shock angle, σ23, can be
computed from [206, Eq. (167)] using the known value of M2. The pressure ratio
across the R-shock, ξ32, follows from [206, Eq. (128)] using the known values of M2
and σ23. The flow across the EF is isentropic, therefore:

p5
p3

=
[

1 + δ M2
5

(γ + 1) /2

]− γ
γ−1

δ = γ − 1
2

The two conditions that hold across the SS, i.e. equal flow direction and equal
pressure, can be translated into the following two by two non-linear system of
algebraic equations:

θ14 (M1, σ14) − ν (M5) = θ12 + θ23 (11.14a)

ξ41 (M1, σ14)
[

1 + δ M2
5

(γ + 1) /2

] γ
γ−1

= ξ32 ξ21 (11.14b)

where terms on the r.h.s. are known and the only two unknowns appear on the l.h.s.
These are: the (supersonic) Mach number, M5, in the region bounded by the tail
of the EF and the SS and the M-shock angle, σ14. In Eqs. (11.14) θ and ξ are the
flow deflection and pressure ratio through an oblique shock, which can be computed
using [206, Eq. (138)] and [206, Eq. (128)], respectively; ν (M) is the Prandtl-Meyer
function [206, Eq. (171c)].

Two sample applications of the 4WT are listed in Tab. 20. The left column
of Table 20, which refers to Fig. 9.8a, shows both the 3ST and 4WT solutions for
point b in Fig. 9.4. According to [216], it is the 4WT solution which should be
chosen inside the first Henderson region. The right column of Tab. 20, which refers
to Fig. 9.8c, lists the 4WT solution at point 151 of Fig. 9.9a, which is the point
along the fitted I-shock that is closest to the triple-point region of the fishtail in the
AGARD03 test-case.

The boundary between the VR and GR in the 4WT

The boundary between the Vasilev (M4 < 1) and Guderley (M4 > 1) reflection
corresponds to the condition of sonic flow behind the M-shock in the 4WT. i.e.
M4 = 1. Using M1 as the free parameter, the shock-angle, σ14, and flow deflection
across the M-shock, θ14, must be those corresponding to sonic flow behind an oblique
shock and can be readily computed from [206, Eq. (167)] and [206, Eq. (138)].
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Table 20. Features of the VR and GR shown in Fig. 9.8; input data are M1 and σ12.

Vasilev reflection
of Fig. 9.8a

3ST 4WT
ξ53 - 0.99532
M5 - 1.00401
ν (M5) - 1.14187 10−2

ξ41 1.59762 1.81053
σ14 57.335 63.02324
M4 1.1052 0.99229
θ14 9.10869 10.73184
ξ21 1.5 1.5
σ12 54.9069 54.90695
M2 1.1581 1.15810
θ12 8.03923 8.03923
ξ32 1.06508 1.21269
σ23 62.5286 69.86787
M3 1.10812 1.00000
θ23 1.06946 0.04680
M1 1.46077 1.46077

Guderley reflection
of Fig. 9.8c

4WT
ξ53 0.99006
M5 1.00854
ν (M5) .03531
ξ41 1.34599
σ14 66.04472
M4 1.00727
θ3 4.80818
ξ21 1.24948
σ12 62.15677
M2 1.07076
θ1 3.91812
ξ32 1.08805
σ23 75.58431
M3 1.00000
θ12 0.01492
M1 1.24600

The system on non-linear algebraic equations to be solved is the following:

θ14 = θ12 (M1, σ12) + θ23 (M2, σ23) + ν (M5) (11.15a)

ξ41 = ξ21 (M1, σ12) ξ32 (M2, σ23)
[

1 + δ M2
5

(γ + 1) /2

]− γ
γ−1

(11.15b)

sin2 σ23 =
(γ − 3) + (γ + 1) M2

2 +
√

(γ + 1)
[
(γ + 9) + 2 (γ − 3) M2

2 + (γ + 1) M4
2
]

4 γ M2
2

(11.15c)

M2
2 =

(
1 + δ M2

1 sin2 σ12
)2 +

(
1
2 (γ + 1) M2

1 sin σ12 cos σ12
)2(

1 + δ M2
1 sin2 σ12

) (
γ M2

1 sin2 σ12 − δ
) (11.15d)

Equations (11.15a) and (11.15b) translate the conditions of parallel streams and
equal pressure across the SS; the various functions involved have already been defined
by reference to Eq. (11.14). Equations (11.15c) and (11.15d) have also been already
introduced by reference to Eq. (11.12).

The l.h.s. of Eqs.( 11.15a) and( 11.15b) is known for the reasons stated above,
so that the four unknowns in( 11.15) are: M2, M5, σ12, σ23.
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