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Abstract Open‐conduit conditions characterize several of the most hazardous and active volcanic systems
of basaltic composition worldwide, persistently refilled by magmatic inputs. Eruptive products with similar bulk
compositions, chemically buffered by continual mafic inputs, nevertheless exhibit heterogeneous glass
compositions in response to variable magma mixing, crystallization, and differentiation processes within
different parts of the plumbing system. Here, we document how multivariate statistics and magma
differentiation modeling based on a large data set of glass compositions can be combined to constrain magma
differentiation and plumbing system dynamics. Major and trace elements of matrix glasses erupted at Stromboli
volcano (Italy) over the last 20 years provide a benchmark against which to test our integrated petrological
approach. Principal component analysis, K‐means cluster analysis, and kernel density estimation reveal that
trace elements define a multivariate space whose eigenvectors are more readily interpretable in terms of
petrological processes than major elements, leading to improved clustering solutions. Comparison between
open‐ and closed‐system differentiation models outlines that steady state magma compositions at constantly
replenished and erupting magmatic systems approximate simple fractional crystallization trends, due to short
magma residence times. Open‐systemmagma evolution is associated with magma storage crystallinities that are
lower than those associated with closed‐system scenarios. Accordingly, open‐system dynamics determine the
efficient crystal‐melt separation toward the top of the reservoir, where eruptible melts continuously supply the
ordinary activity. Conversely, a mush‐like environment constitutes the bottom of the reservoir, where poorly
evolved magmas result from mixing events between mush residual melts and primitive magmas injected from
deeper crustal levels.

Plain Language Summary Volcanoes characterized by continuous eruptive activity are typified by
constant replenishment of new magma, rising from deeper regions of the crust. The volcanic glass (supercooled
silicate melt), represents the residual liquid of magma crystallization, and is found as the intracrystalline matrix
of eruptive products. The study of its chemical composition may provide insight into the processes occurring at
depths beneath the volcanic vent, where magma compositional changes result from crystallization and mixing
with new magma rising from depth. We combine statistical analyses and analytical equations based on the
chemical composition of the matrix glasses from Stromboli volcano, in order to constrain the processes which
produce their chemical variations, identifying different environments where magmas are stored at depth. Our
results also show that when magma is stored for a short period of time, the chemical changes to which the
magma is subjected in a constantly replenished system are similar to those occurring in a system which is closed
to new inputs of magma.

1. Introduction
Open‐system magma dynamics typically characterize shallow crustal reservoirs that are constantly refilled by
inputs of mafic magma over short temporal scales and where continuous magma ascent and degassing determine
persistent volcanic activity (Edmonds et al., 2022). This volcanic regime characterizes several of the most
hazardous volcanic areas worldwide, such as Fuego, Guatemala (Liu et al., 2020), Batu Tara, Indonesia (Spina
et al., 2021), Mt. Etna, Italy (Di Renzo et al., 2019; Mollo et al., 2022), Cumbre Vieja, Spain (Di Fiore, Vona,
Mollo, et al., 2023; Di Fiore, Vona, Scarani, et al., 2023; Taddeucci et al., 2023; Ubide et al., 2023). Quantitative
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modeling of magma differentiation in open‐systems highlights that the liquid lines of descent substantially depart
from standard fractional crystallization scenarios (Albarede, 1985; Lee et al., 2014; O’Hara, 1977; O’Hara &
Mathews, 1981; O’Hara & Herzberg, 2002; O’Neill & Jenner, 2012). As a consequence, interpreting magmatic
evolution and crystallization processes within open‐systems is particularly challenging but crucial, because the
steady state eruptive activity is punctuated by violent and threatening paroxysmal events, which are often related
to the arrival of mafic magma in shallow storage zones (e.g., Petrone et al., 2022; Ubide & Kamber, 2018). A
better definition of the geochemical evolution of such complex plumbing systems is also instrumental to
petrological monitoring practices, as it provides the framework required to correctly interpret present and future
eruptive scenarios (Blundy & Cashman, 2008; National Academy of Sciences, 2017).

Geochemical investigation of magmatic rocks classically involves bivariate representations of compositional data
sets, where the concentrations of single elements (and/or their ratios) are plotted in two spatial dimensions,
allowing the interpretation of magmatic processes at play as well as their magnitudes (e.g., Allègre &
Minster, 1978; Rollinson, 1993). Diagrams where chemical analyses are normalized to a reference composition
are also employed to simultaneously visualize multiple concentration patterns, but are less suited to represent
large data sets because compositional trends could be obscured (Rollinson, 1993). Unlike these more traditional
geochemical representations, multivariate statistics allows the treatment of large data sets and multiple elements
at once, through the derivation of a reduced number of transformed variables, whilst retaining the petrological
information contained therein (e.g., Davis, 2002; Joliffe, 2002; Le Maitre, 1982). Multivariate statistics have thus
increasingly been adopted in magmatic petrology as, by virtue of the reduced dimensionality of transformed data
sets, they provide convenient yet highly informative means of investigating geochemical data sets (e.g., Kuritani
et al., 2016; Ragland et al., 1997; Thy & Esbensen, 1993; Ubide et al., 2014; Ueki & Iwamori, 2017; Zieg &
Wallrich, 2018). However, their potential to successfully unfold the chief melt differentiation trends controlling
the geochemical evolution of a volcanic system is yet to be unlocked.

Stromboli volcano in Italy represents an ideal case study to test the potential of multivariate statistics to disen-
tangle magmatic processes determining melt differentiation, as the compositional spectrum of erupted products is
routinely documented (e.g., Bragagni et al., 2014; Di Stefano et al., 2020; Francalanci et al., 1989, 1999, 2012;
Landi et al., 2004, 2022; Petrone et al., 2022; Pontesilli et al., 2023; Schiavon et al., 2023). The Present‐Day
(<1.5 ky; Bertagnini et al., 2011; Francalanci et al., 2013; Rosi et al., 2000) activity at Stromboli is closely
associated with two main magma types, emitted as low‐porphyritic pumices (lp, crystallinity <10 vol%, mostly
olivine and clinopyroxene) and high‐porphyritic scoriae (hp, crystallinity ∼50 vol%, of which 30–35 vol%
plagioclase) (e.g., Francalanci et al., 2004, 2013; Landi et al., 2004). The bulk compositions of lp pumices and hp
scoriae closely resemble those of lpmatrix glasses, showing a tendency to cluster at high‐K to shoshonitic basalts
(49.2–51 wt.% SiO2, 1.7–2.4 wt.% K2O, 5.6–6.7 wt.% MgO, and 10.5–12.1 wt.% CaO; e.g., Francalanci
et al., 2004; Petrone et al., 2022). The compositions of hpmatrix glasses, however, are in the range of shoshonites
(51.1–54.5 wt.% SiO2, 3.5–5.2 wt.% K2O, 3–4.1 wt.%MgO, and 6.1–8.3 wt.% CaO; e.g., Francalanci et al., 1999,
2013; La Felice & Landi, 2011; Landi et al., 2004). Matrix glasses with compositions intermediate between hp
and lp melts, often characterized by mixing/mingling textures, have also been reported (49.8–53.3 wt.% SiO2,
2.3–3.7 wt.% K2O, 3.9–5.8 wt.%MgO, and 7.8–10.6 wt.% CaO; Andronico et al., 2008; Landi et al., 2008, 2022).
The ordinary eruptive activity at Stromboli taps differentiated hp magmas stored in a shallow reservoir
(P< 100MPa) and is characterized by low energy explosions with volumes of erupted products on the order of 1–
10 m3 (Rosi et al., 2013). Conversely, the more violent activity is fed by mafic lp magmas rising from deeper
storage levels (P > 190 MPa) and is associated with “major” and paroxysmal eruptions with volumes of erupted
products on the order of 104 m3 (Andronico et al., 2021; Di Stefano et al., 2020; Francalanci et al., 2004; Metrich
et al., 2001; Petrone et al., 2022). Major eruptions do not affect the settled areas but only the upper part of the
volcano, whereas paroxysms are a threat to the inhabitants and villages because of their higher eruptive volumes
(Barberi et al., 1993). Both major eruptions and paroxysms may also contain intermediate matrix glasses,
generally interpreted as melts from a transitional storage area located between the shallower and the deeper
reservoirs (Landi et al., 2008, 2022). Moreover, subtle chemical and thermal gradients in the hp reservoir are
responsible for compositional heterogeneities in the products of the ordinary activity of Stromboli (Pontesilli
et al., 2023).

In this study, we employ a statistical and geochemical modeling approach on a suite of matrix glass representative
of primitive melts to differentiate melts from normal, major and paroxysmal eruptions that occurred at Stromboli
over the last 20 years. A new extensive geochemical data set has been compiled for 24 eruptions, comprising
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1,365 major oxide and 984 trace element data points collected using the same analytical facilities in order to
eliminate, or minimize as far as possible, the source of uncertainties inherent in interlaboratory comparisons. The
data set was interrogated by principal component analysis (PCA), K‐means cluster analysis (KCA) and kernel
density estimation (KDE) conducted on log‐ratio transformed data. Magmatic processes responsible for the
clustering of melt compositions in the principal component space are quantified by iterative solutions of open‐ and
closed‐system geochemical modeling equations. This multifaceted approach shows that multivariate statistics are
a convenient and effective means to probe large analytical data sets and unfold subtle magma compositional
changes, and hence provide unbiased constraints on the plumbing system architecture and magma dynamics of
active basaltic volcanoes.

2. Methods
2.1. Analytical Methods

Major oxide analyses were carried out at the HP‐HT Laboratory of Experimental Volcanology and Geophysics of
the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy, with a Jeol‐JXA8200 electron probe
micro‐analyzer (EPMA) equipped with five spectrometers. A beam size of 10 μm was used, by applying a
counting time of 5 s on background and 15 s on peak. Corrections for inter‐elemental effects were made using a
ZAF (Z, atomic number; A, absorption; F, fluorescence) procedure. The following calibration standards were
adopted fromMicro‐Analysis Consultants (MAC; http://www.macstandards.co.uk): albite (Si‐PET, Al‐TAP, Na‐
TAP), forsterite (Mg‐TAP), augite (Fe‐LIF), apatite (Ca‐PET, P‐PET), orthoclase (K‐PET), rutile (Ti‐PET) and
rhodonite (Mn‐LIF). Sodium and potassium were analyzed first to minimize alkali migration effects. The ac-
curacy and precision of microprobe data was estimated through the analysis of well‐characterized minerals as
unknowns and is reported in Supporting Information S1. Based on the analysis of secondary standards, analytical
uncertainties relative to their reported concentrations indicated that precision was better than 5% for all cations
except for Na (∼7%) and Mn (∼10%). Backscattered electron (BSE) images were collected with a field emission
gun‐scanning electron microscopy (FEG‐SEM) Jeol 6500F equipped with an energy‐dispersive spectrometer
(EDS) detector, also installed at the HP‐HT Laboratory at INGV.

Trace element analyses were conducted at the Institute of Geochemistry and Petrology of the ETH Zürich
(Switzerland) by using a 193 nm excimer laser coupled with second generation two‐volume constant geometry
ablation cell (Resonetics S‐155LR) and a high‐sensitivity, sector‐field inductively coupled plasma mass spec-
trometer (ICP‐MS; Thermo:Element XR). Points with a spot size of 43 μm were set on optically homogeneous
portions of the material previously analyzed by EPMA and were ablated with a pulse rate of 10 Hz and an energy
density of 3.5 J/cm2 for 40 s. Ablated material was extracted in a stream of He (500 mL/min) and then mixed with
Ar (1 L/min) and N2 (2 mL/min) before entering the plasma. Isotopes were analyzed relative to an internal
standard of known composition (i.e., NIST612). A second reference material (i.e., GSD‐1G) was used as an
unknown to check data quality during each analytical run. 29Si and 43Ca were used as internal standards. Precision
estimates based on GSD‐1G reference material varied depending upon several factors (e.g., the element and
isotope analyzed, as well as the homogeneity of the ablated material) but was typically less than 6% for most trace
elements, except for Ni (∼7%) and Th (∼13%). Accuracy estimates indicate that on the average analytical results
are within 5% of reference values. Accuracy and precision estimates based on the secondary standard are fully
reported in Supporting Information S1. Long‐term performance based on repeated analyses over the past 8 years
indicates that trace element reproducibility is on the order of ∼6% (cf. Ellis et al., 2022) and in good agreement
with GeoReM preferred values (Jochum et al., 2005).

A complete list of analyzed samples, including eruption date for each sample, is reported in Table S1 in Sup-
porting Information S1. In conducting major and trace element analyses, only microlite‐poor glasses were
considered (less than 5 vol% microlites; cf. Pontesilli et al., 2023).

2.2. Statistical Approach

PCA is a well‐established procedure in statistics to reduce the dimensionality of a multivariate data set while
retaining the original amount of variance contained therein. It relies on the linear combination of a certain number
of measured variables, and the optimization of their variance distribution. Inherent correlations in the original data
set are thus transformed into a new set of orthogonal vectors, typically representing the eigenvectors of the
correlation matrix (e.g., Le Maitre, 1982). Accordingly, PCA employs a rigid rotation of axes, which results in
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transforming the original set of variables into principal components (from PC1 to PCk, where k represents the
number of original variables), which are uncorrelated between each other (orthogonal; Joliffe, 2002). PCA op-
timizes variance distribution, where PC1 collects most of the variance, whereas decreasing variance is assigned to
each subsequent PCk. This is illustrated in the so‐called Scree plots, corresponding to histograms of variance
distribution across principal components. Recasting the data through PCA provides some important benefits: (a) it
allows for an optimal visualization of data since the largest part of the variance in the original data set is now
expressed by a smaller number of variables, (b) it reduces the number of dimensions required to describe the data,
accounting for intrinsic correlations between variables, as for instance among major or trace elements with a
similar geochemical behavior, (c) it constitutes an unbiased method since it involves neither assumptions about
the original variables, nor hypotheses or models to be tested (Marriott, 1974). In synthesis, PCA provides a more
convenient means of expressing and interpreting the input data set, especially when principal components can be
interpreted in terms of the underlying processes which are producing such variations in the original data set, a
procedure known as “reification” (e.g., Davis, 2002; Joliffe, 2002). Reification can be performed by inspecting
the loadings, which range between − 1 and 1, and represent the contribution of each original variable on the
transformed variables. Once at least a principal component has been robustly interpreted, the other principal
components may be explored by investigating the existing relationships between their scores. Therefore, reifi-
cation represents a crucial step in PCA, as it requires the most care and deep understanding of the underlying data
(Davis, 2002).

In performing PCA, we avoid any potential spurious correlation between variables of the investigated data sets by
processing data through a log transformation followed by standardization. This procedure aims at minimizing
closure effects, which affect compositional data totaling a fixed sum (e.g., major element oxides totaling 100 in wt
%; Aitchison, 1999; Davis, 2002). The natural logarithm of the major oxide data is then standardized using the z‐
score, hence subtracting the mean and dividing by the standard deviation of the log‐transformed input. To
compare the results of multivariate analyses performed on major and trace elements, log‐transformation is also
applied to trace element data. Then, λj eigenvalues and vj eigenvectors are extracted from a symmetrical m × m
matrix of elements ai,j called Α, defined as

Α vj = λj vj (1)

A is the correlation matrix for the original variables. The principal component score zij represents the coordinates
of the ith original data point xik. Once projected onto the transformed PC space, zij is calculated as (Le
Maitre, 1982):

zij =∑
m

j=1
vjk
xik − xk
σxk

(2)

where xk is the mean value of the kth variable and σxk represents its standard deviation. In order to identify
compositional groups in the transformed data sets for major and trace elements, we employ KCA of principal
component scores. This approach follows the principle that PCA dimension reduction provides the best low‐
dimensional linear approximation of data to perform data clustering according to the K‐means objective func-
tion (Ding & He, 2004). In KCA, the data set is iteratively grouped into K clusters by assigning each data point to
one of the randomly selected initial cluster centroids. Cluster centroids are then recalculated as to progressively
decrease the total Euclidean distance between all data points and each κth cluster, as calculated by the K‐means
objective function that is expressed by error minimization:

JK =∑
K

κ=1
∑
i=1
(zi − cκ)2 (3)

where zi is the ith data point expressed as the principal component score (as above) and cκ represents the centroid
of the κth cluster. For each K, minimization of the function JK expressed by Equation 3 allows to determine the
optimal κth cluster to which each data point is assigned. This iterative procedure is repeated for an increasing
number K of initial cluster seeds, and the optimal solution is then chosen based on the inertia for each clustering
solution, which is represented by the sum of all Euclidean distances for a given K and the average Euclidean
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distance across clusters (Everitt et al., 2011). The best fit clustering solution is then based on the knee principle, by
identifying the value of K, which corresponds to a break in the slope of decreasing inertia with increasing K
(Figure S1 in Supporting Information S1; Everitt et al., 2011).

Probability density functions are employed to better compare variables for each cluster of the data set. For this
purpose, we used KDE, which is a non‐parametric method for estimating the probability distribution of a random
variable based on a random sample, adopting a Gaussian kernel and estimating the optimum bandwidth via the
criteria described by Silverman (1986). Calculations of PCA, KCA, and KDE presented in this work were per-
formed using the Real Statistics Resource Pack software® (Copyright 2013–2022: Zaiontz (2022); www.real‐
statistics.com; Release 8.0).

2.3. Petrological Modeling

Interpretation of geochemical data in magmatic systems is largely based on modeling the compositional vari-
ability of rock suites by means of analytical equations designed to quantify the geochemical consequences of the
main magma differentiation processes (e.g., Allègre & Minster, 1978; O’Hara & Herzberg, 2002; Roll-
inson, 1993). The simplest case of such geochemical equations is represented by fractional crystallization in a
closed‐system, which may be modeled by means of the Rayleigh Fractional Crystallization equation (here-
after, FC):

CL = C0 (1 − x)D− 1 (4)

where CL and C0 represent the concentrations of the element of interest in the derivative and parental liquids,
respectively. x represents the fraction of material crystallized and D represents the bulk partition coefficient:

Dk =∑pwp Dk,p (5)

wp is the weight fraction of the pth mineral phase andDk,p is the partition coefficient for the kth element of interest.
A comprehensive Dk,p list from partitioning studies on basaltic magmas is included in Table S4 in Supporting
Information S1. Equation 4 was slightly modified by Langmuir (1989) to account for a portion of the liquid
evolving not in the main reservoir, but in the more crystalline margins of the chamber before being returned to it
(e.g., Di Stefano et al., 2020; Pontesilli et al., 2022):

CL = C0 (1 − x) f (D− 1)/[D(1− f )+f ] (6)

where the parameter f is the fraction of material which is still liquid in the chamber margins at the time it returns to
the main reservoir. f ranges between 0, in case of complete solidification of the chamber margins with no dif-
ferentiation effect in the main reservoir, and 1 if all the material in the chamber margins returns to the main
reservoir. In the latter case, Equation 6 reduces to the simple case for FC, as reported in Equation 4.

On the other hand, magma differentiation occurring in open‐systems diverges from closed‐system scenarios, by
the effect of periodic injections of more mafic parental magma and continuous tapping of the reservoir. Such
open‐system dynamics may impart distinctive geochemical trends to the liquid lines of descent of magmas from
different tectonic settings, such as mid‐ocean ridges and arcs (Albarede, 1985; Lee et al., 2014; O’Hara, 1977;
O’Hara & Mathews, 1981; O’Neill & Jenner, 2012). O’Hara and Mathews (1981) proposed an equation for
constantly recharged, mixed, crystallized before tapped magma chambers (RMXTC; O’Hara & Herzberg, 2002):

CLn+1 =
(1 − xq)Dq − 1

Mn+1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M0∏
q=n
q=0 (1 − xq − yq) (1 − xq)Dq − 1 +∑

q=n

q=0
Czqz0

∏
q=n

q=0
(1 − xq − yq) (1 − xq)Dq − 1

∏
q=q

q=0
(1 − xq − yq) (1 − xq)Dq − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7)

where x and D are again the fraction of material crystallized and the bulk partition coefficient, respectively, while
y is the amount of material erupted, at each cycle q comprised between 0 and n.CLn+1 represents the composition of
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the erupted liquid at the end of the n+ 1th cycle. By assuming constant mass of the magma reservoir (M0=Mn+1),
x, y, D, and a constant composition for the recharging magma, the composition of the steady state liquid CLss after
a certain number of differentiation cycles is (O’Hara, 1977; O’Hara & Mathews, 1981):

CLss = C0
(x + y)(1 − x)D− 1

1 − (1 − x − y)(1 − x)D− 1
(8)

Because Equation 7 is derived by assuming melt evolution according to FC (Equation 4), at the end of each
n + 1th cycle, the composition of the residual liquid is

CLn+1 = CMn+1 (1 − x)D− 1 (9a)

CMn+1
is the bulk composition of the magma chamber at the n+ 1th cycle. The bulk composition of the crystallized

material (CSn+1) is calculated by mass balance arguments as follows:

CMn+1
= x CSn+1 + (1 − x)CLn+1

x CSn+1 = CMn+1
− (1 − x)D− 1(1 − x)CMn+1

CSn+1 = CMn+1

1 − (1 − x)D

x
(9b)

In analogy with Equation 9a, the exponent in Equation 6 accounts for the effect of in situ crystallization at the
chamber's margin during each nth cycle, by introducing the parameter f (Langmuir, 1989):

CLn+1 = CLn (1 − x) f (D− 1)/[D(1− f )+f ] (10a)

and the bulk composition of the crystallized material is derived as described above (Equation 9b):

CMn+1
= x CSn+1 + (1 − x)CLn+1

x CSn+1 = CMn+1
+ (1 − x) f (D− 1)/[D(1− f )+f ](1 − x)CMn+1

CSn+1 = CMn+1

1 − (1 − x)D/[D(1− f )+f ]

x
(10b)

Accordingly, Equation 8 becomes

CLss = C0
(x + y)(1 − x) f (D− 1)/[(D(1− f )+f ]

1 − (1 − x − y)(1 − x) f (D− 1)/[D(1− f )+f ]
(11)

Equations 8 and 11 apply when eruption occurs after magma recharge, mixing and subsequent fractionation at
each cycle (RMXTC), and CLn+1 approaches the steady state composition CLss. As pointed out by Albarede (1985),
if eruption follows magma recharge and mixing, but precedes fractionation (recharged, mixed before tapped,
crystallized magma chambers; RMTXC; O’Hara & Herzberg, 2002), then the composition of the liquid at each
n+ 1th differentiation cycle is now that of the liquid after mixing (CMn+1

). This can be calculated by mass balance,
since we assume no change in the mass of the magma reservoir:

(x + y)C0 = x CSn+1 + y CMn+1
(12a)

and by substituting Equation 9b into Equation 12a:

(x + y)C0 = x CMn+1

1 − (1 − x)D

x
+ y CMn+1

(12b)
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Under steady state conditions, Equation 12b becomes

CLss = CMn+1
= C0

(x + y)
1 + y − (1 − x)D

(12c)

the exponent is now the same as in Equation 9b. By considering the in situ crystallization effects during open‐
system evolution, the exponent corresponds to that of Equation 10b:

CLss = C0
(x + y)

1 + y − (1 − x)D/[D(1− f )+f ]
(13)

Our modeling approach is based on Equation 6 to track a closed‐system differentiation. Equations 11 and 13 are
used to model open‐system differentiation for hp and intermediate magma compositions, respectively. Calcu-
lations are performed iteratively for each data point, through a Monte Carlo procedure by randomly varying the
equation parameters (x, y, f, mineral relative proportions) as to minimize the root mean square error (RMSE)
between modeled and observed principal component scores. Calculations start either from parental melt com-
positions C0 or from the derivative liquid compositions CLss. lp matrix glass compositions are considered as
parental melts, representing the most primitive compositions erupting during the Present‐Day activity, also
closely resembling lp pumice whole‐rocks (e.g., Di Stefano et al., 2020; Métrich et al., 2001, 2010; Petrone
et al., 2022). Derivative melts are represented by hp and intermediate matrix glasses, resulting from variable
degrees of magma differentiation and mixing within the plumbing system (e.g., Francalanci et al., 1989, 2013;
Landi et al., 2008, 2022). Each calculated melt composition is compared with matrix glass compositions
randomly varied at each iteration in a range comprised between two standard deviations below and above the
average composition, as to avoid any bias in the calculations related to the assumption of a fixed composition to
which modeled melt compositions are compared. Calculations are performed on the basis of principal component
scores for each data point. The fitting procedure is based on the variance‐covariance structure instead of absolute
elemental abundances, in order to maximize the representativeness of modeling results. To ensure that the
principal component scores for the modeled data set are consistent with the scores of the initial data set, they are
standardized with the means and standard deviations of the log‐transformed elemental concentrations from the
initial data set and projected onto the same eigenvectors, according to Equation 2.

3. Results
3.1. Multivariate Statistics of Major and Trace Elements

The input data set comprises 10 major elements expressed as oxide components (SiO2, TiO2, Al2O3, FeO, MnO,
MgO, CaO, Na2O, K2O, and P2O5) and 32 trace elements (Li, Sc, V, Cr, Co, Ni, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, U) from Stromboli's matrix glasses. PCA
generates principal components (PC) equal to the number of major (from PC1ME to PC10ME) and trace (from
PC1TE to PC32TE) elements (Figure 1). Eigenvalues, eigenvectors, and system variance for each principal
component (together with the correlation matrix of the data set) are listed in Tables S2 and S3 in Supporting
Information S1 for major and trace elements, respectively. PCME and PCTE account for unique linear combi-
nations of the input variables expressed by the eigenvectors of their respective correlation matrices. The system
variance decreases with an increase in the number of principal components, but this trend is less pronounced for
major elements (Figure 1a) than for trace elements (Figure 1b).

For major elements, PC1ME describes 76% of the total variance (Figure 1a), displaying positive loadings for SiO2,
TiO2, MnO, FeO, Na2O, K2O, and P2O5, with a minor contribution of MnO (Figure 1c). Negative loadings on
PC1ME account for Al2O3, MgO, and CaO (Figure 1c). The remaining system variance is expressed by PC2ME

(9.5%), PC3ME (5.6%), and PC4ME (3.6%). The dimensionality of PC2ME and PC3ME is chiefly controlled by
MnO and Na2O, respectively. Loadings on PC4ME are always lower than 0.4 (Figure 1c).

For trace elements, PC1TE describes 86.3% of system variance, whereas PC2TE (4.5%), PC3TE (2.8%) and PC4TE
(1.3%) represent a minor contribution to the data set variance (Figure 1b). Loadings on PC1TE are high (>0.9 or
<− 0.6) for all trace elements, except for Li (<0.4). For Sc, Cr, Co, Ni, and Sr, PC1TE and PC2TE show negative
and positive loadings, respectively (Figure 1d). Along PC1TE, these loadings are anticorrelated with the largest
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group of trace elements (Li, V, Rb, Pb, rare earth elements, high field strength elements, and actinides), whereas
they show negligible loadings on PC2TE (Figure 1d). Most of the dimensionality of PC3TE and PC4TE is rep-
resented by the negative loadings for Li and Sr, respectively (Figure 1d).

In accordance with the inertia criteria and visual inspection (Figure S1 in Supporting Information S1), the best fit
number of clusters in the 10‐dimensional Euclidean space is found at three for major elements (i.e., 1ME, 2ME,
3ME), and at four for trace elements (i.e., 1TE, 2TE, 3TE, and 4TE). Centroid coordinates are reported in Tables S1
and S2 in Supporting Information S1 for major and trace elements, respectively. Euclidean distances and cluster
assignment of each data point to the respective clusters are reported in Supporting Information S1. Clustering
results are presented as major element bivariate plots for K2O versus CaO (Figure 2) and TiO2 versus Al2O3

(Figure S2 in Supporting Information S1), and trace element bivariate plots for Zr versus Ni (Figure 3) and Cr
versus Rb (Figure S3 in Supporting Information S1). These plots also show principal component scores derived
for PC1ME‐PC2ME and PC1TE‐PC2TE, together with probability density functions fromKDE. Cluster assignments
for PC1ME‐PC3ME, PC1ME‐PC4ME, PC1TE‐PC3TE and PC1TE‐PC4TE scores are illustrated in Figure 4. Proba-
bility density functions for PC3ME, PC4ME, PC3TE and PC4TE are also displayed in Figure S4 in Supporting
Information S1.

Clusters 1ME, 2ME, and 3ME closely overlap with the analyses of matrix glasses from literature, referring to the
compositions of lp, intermediate, and hp magmas, respectively (Figures S5a and S5b in Supporting Informa-
tion S1). Similarly, clusters 1TE and 2TE resemble the analytical ranges of lp and intermediate matrix glasses,
respectively (Figures S5c and S5d in Supporting Information S1). A more complex pattern is seen in the PC1TE‐
PC2TE space where the hpmatrix glasses can be subdivided into cluster 3TE and cluster 4TE (Figures S5c and S5d
in Supporting Information S1). This latter is characterized by lower PC1TE and PC2TE scores (Figure 3), and
higher PC3TE scores (Figure 4).

3.2. Open‐ Versus Closed‐System Magma Differentiation

Modeling predictions, based on the iterative solution of geochemical equations allow unbiased comparison of
results from the open‐ and closed‐system magma differentiation at Stromboli. In Figure S6 in Supporting
Information S1, probability density distributions of principal component scores for the original data are

Figure 1. Results of PCA carried out on matrix glass compositions. Scree plots show the decrease in variance (in blue) bars for the principal components of 10 major
oxides (a) and 32 trace elements (b) assumed as the system variables. The cumulative variance is also plotted as blue diamonds connected by a solid line. Loadings of
major oxides on PC1ME, PC2ME, PC3ME, and PC4ME (c) and of trace elements on PC1TE, PC2TE, PC3TE, and PC4TE (d) are also shown.
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juxtaposed to modeling results, showing that both open‐ and closed‐system processes reproduce well the
matrix glass compositions (see the low values of RMSE in Figure S7 in Supporting Information S1). The
main equation parameters refined using this method are reported in Figure 5 where open‐and closed‐system
modeling results are compared. The mineral relative proportions are plotted in Figure S8 in Supporting In-
formation S1, whereas the parameters y and z are plotted in Figure S9 in Supporting Information S1. The
fraction of crystallized material x plotted in Figure 5 represents the parameter diverging the most between
open‐ and closed‐system scenarios. As a consequence, the magnitude of x fundamentally controls the dif-
ferentiation trends plotted in Figure 6, when all other parameters are kept constant at best case modal values,
determined by probability density functions (Figure 5). However, by keeping constant the value of x and
reiterating magma differentiation models over the entire range of modeling parameters (i.e., y, f, starting melt
composition, and mineral relative proportions), the intrinsic variability of matrix glass compositions is also
reproduced. In Figure 6, modeled differentiation trends depart, for illustrative purposes, from a single cluster
1TE composition representing an lp composition from the 15 March 2007 paroxysm, whose principal
component scores approximate the mean value of cluster 1TE scores. For the modeling of trace elements, we
adopt partition coefficients from the literature reported in Table S4 in Supporting Information S1. Adopted
values for partition coefficients were based on literature values and apparent partition coefficients between
natural mineral phases and glasses from Stromboli eruptive products (Petrone et al., 2022; Pontesilli

Figure 2. Bivariate plots of CaO against K2O (in wt%) and principal component scores based on major elements (i.e., PC1ME
and PC2ME) integrated with kernel density estimates for each cluster.
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et al., 2023; Table S4 in Supporting Information S1). To safeguard our modeling results against mistakenly
chosen partition coefficients, their values are varied for an increasing number of randomly selected trace
elements. Moreover, possible bias in the screening of partitioning coefficients from literature is prevented by
using values over a broad range of physicochemical conditions (0.1–3,500 MPa, 1,000–1,350°C, and fO2

between air and QFM‐2; Supporting Information S1). Because PC1TE accounts for more than 86% of the
trace elements variance (Figure 1c), error in PC1TE is modeled by averaging 100 random selections of one to
five partition coefficients. As the number of randomly varied partition coefficients increases, the modal error
resulting from open‐ and closed‐system modeling increases from ≤0.5% to ≤2%, and the overall error range
is always ≤5% (Figure S10 in Supporting Information S1).

Modeling results show that melt differentiation in the closed‐system follows FC1, FC2 and FC3 trends, which
are based on Equation 6 and intersect compositions belonging to clusters 3TE, 4TE, and 2TE, respectively
(Figure 6a). FC1 and FC2 trends, intersecting clusters 3TE and 4TE, respectively, are reproduced by frac-
tionation of mineral assemblage consistent with phenocryst modal proportions observed in hp magmas at
40%–55% degree of crystallization (cf. Francalanci et al., 2012; Landi et al., 2004; Pontesilli et al., 2023).
The angular coefficients of FC trends for clusters 3TE and 4TE are constrained by the parameter f estimated at
0.8–0.9 (Figure 5a). Conversely, cluster 2TE is characterized by higher PC2TE/PC1TE ratios, reflecting a
crystallizing phase assemblage dominated by clinopyroxene and olivine, consistent with Landi et al. (2022),

Figure 3. Bivariate plots of Ni against Zr (in ppm) and principal component scores based on trace elements (i.e., PC1TE and
PC2TE) integrated with kernel density estimates for each cluster.
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which related these intermediate melt compositions to crystal fractionation processes dominated by mafic
phases. Lower f values of ∼0.25 (Figure 5a) indicate that in situ crystallization prevails over crystal frac-
tionation for cluster 2TE.

These results show that FC equations are overall successful in reproducing intermediate to more evolved
magma compositions. However, open‐system dynamics have been shown to control the textural evolution of
hp products (Armienti et al., 2007) and the variable crystallization state of magma, as preserved in zoned
crystals (Moschini et al., 2023; Petrone et al., 2022). In this scenario, closed‐system models may represent a
simplistic conceptualization of the plumbing system at Stromboli, as repeated lp magma inputs feed the
persistent volcanic activity (e.g., Francalanci et al., 1989; Landi et al., 2004). The Present‐day activity is also
characterized by a remarkable compositional homogeneity of the eruptive products during the last 1500 years
BP (Bertagnini et al., 2011; Rosi et al., 2000), suggesting that a condition of steady state is attained over time
(O’Hara & Mathews, 1981). Therefore, we employ the modeling approach developed for constantly refilled,

Figure 4. Bivariate plots of PC1ME‐PC3ME and PC1ME‐PC4ME scores based on major elements (a), and PC1TE‐PC3TE and PC1TE‐PC4TE scores based on trace
elements (b).
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mixed, crystallizing, and erupting magma chambers to constrain the open‐system evolution (Albarede, 1985;
O’Hara, 1977; O’Hara & Mathews, 1981; O’Hara & Herzberg, 2002; O’Neill & Jenner, 2012; Lee
et al., 2014; see Section 2 for further details). In particular, Equation 11 is adopted for our purposes
by assuming that the mixing and fractionation precede eruption at each cycle (i.e., RMXTC trends in
Figure 6b). The resulting RMXTC1 and RMXTC2 trends well reproduce the highly differentiated and
degassed hp magmas belonging to clusters 3TE and 4TE, respectively, mostly by varying the degree of
crystallization and, more specifically, the amount of plagioclase crystallized (Figure 6b). Indeed, composi-
tional variability within the hp reservoir may be reproduced by increasing the degree of plagioclase frac-
tionation (Figure S11 in Supporting Information S1).

On the other hand, the eruption of intermediate magmas (cluster 2TE) is restricted to a few paroxysms and major
eruptions, involving various degrees of interaction between the lp recharge and the hp reservoir (Landi
et al., 2022). For these matrix glass compositions, Equation 13 is employed by considering that each eruption
follows the lp‐hpmixing process but precedes crystal fractionation (RMTXC). Best‐fitting values for parameters
used in open‐system models are displayed in Figure 5b. It is important here to recall that, with respect to closed‐
system FC models, the parameters used for open‐system modeling (Figures 5 and 6) correspond to averaged
values calculated for multiple differentiation cycles (O’Hara & Mathews, 1981).

Figure 5. Kernel density estimates for the fraction of material crystallized (x), the fraction of liquid not involved in the
cumulate zone ( f ), and the ratio between plagioclase and clinopyroxene in the fractionating phase assemblages estimated on
the basis of Monte Carlo simulations for the closed‐system case (a), and the open‐system case (b). See Methods for further
details on the modeling approach.
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4. Discussions
4.1. Interpreting Principal Components and Clusters Through Magmatic Processes

Statistical principles behind PCA optimize the variance distribution by linearly combining the measured variables
and defining a set of new orthogonal dimensions (see Section 2 for further details). In this respect, our data set
provides the opportunity to integrate and compare multivariate statistics based separately on major and trace
elements, yet subjected to the same data transformation and standardization procedure. This allows better
interpretation of magma differentiation processes and addresses the merits and limitations of the two composi-
tional data sets. PCA shows a steeper decline in system variance for principal components based on trace ele-
ments, while KCA identifies a higher number of clusters for trace elements than for major elements. This apparent
dichotomy can be solved by performing a reification of the extracted principal components and interpreting the
principal component scores for each cluster.

Loadings on PC1ME show both positive and negative signs for major element enrichment (e.g., SiO2, FeO, Na2O,
and K2O) and depletion (i.e., Al2O3, MgO, and CaO) in magmas, thereby reflecting the main differentiation
processes controlling the Present‐Day activity at Stromboli. The differentiation of hp matrix glasses is mostly
governed by the crystallization of a phase assemblage dominated by plagioclase, whose stability is enhanced at
the expense of clinopyroxene and olivine due to extensive cooling and degassing phenomena taking place in the
shallower part of the hp reservoir (e.g., Di Stefano et al., 2020; Landi et al., 2004; Metrich et al., 2010). The hp
reservoir is generally conceptualized as a largely crystalline body of magma, located at∼1–4 km (e.g., Di Stefano
et al., 2020; Landi et al., 2004; Petrone et al., 2022). This crustal region is persistently fed by inputs of more mafic
and volatile‐rich lp‐magmas from a deeper (6 ∼ 9 km), dike‐like reservoir, characterized by the crystallization of
clinopyroxene and olivine (Di Stefano et al., 2020; Metrich et al., 2001; Petrone et al., 2022).

The highly incompatible character of K2O in the phase assemblage controlling the liquid line of descent of
magmas at Stromboli (e.g., Landi et al., 2022), coupled with its highest positive loading on PC1ME (Figure 2),
supports the interpretation of PC1ME as a proxy for magma differentiation (Figure 1). Conversely, MnO and Na2O
contribute to most of the variance represented by PC2ME and PC3ME, respectively (Figure 1c), but their isolated
variations are difficult to reconcile with magma differentiation. It is nonetheless possible that PC2ME and PC3ME

describe changing element partitioning during magma differentiation, driven by variable P‐T conditions and
mineral‐melt compositions. Matrix glass compositions reflect the prevalent incorporation of Mn in olivine and

Figure 6. Differentiation trends in the PC1TE‐PC2TE compositional space for closed‐system (a) and open‐system (b) conditions. Vectors are calculated for fractional
crystallization (FC; Equation 6), recharged, mixed, crystallized before tapped magma chambers (RMXTC; Equation 11) and recharged, mixed before tapped,
crystallized magma chambers (RMTXC; Equation 13). Parameters fixed for each model are reported in the figure legend and represent the best case values defined by
Monte Carlo simulations. Differentiation trends are shown for an increasing degree of crystallization (x). See Section 2 for further details on the modeling approach.
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clinopyroxene during magma differentiation (Dunn, 1987), whereas the Na content in the residual melts is
governed by plagioclase solid solution and its shifts toward the albite end‐member with decreasing temperature
and changing magma composition (e.g., Moschini et al., 2023). Nonetheless, the absence of detectable trends in
PC1ME‐PC2ME, PC1ME‐PC3ME, and PC1ME‐PC4ME plots (Figures 2 and 4) hinders any attempt at reification for
PC2ME, PC3ME, and PC4ME, and hence negate their relation with magma differentiation. This is also expressed by
probability density functions showing that PC2ME, PC3ME, and PC4ME scores display significant overlap between
the different clusters, whereas only PC1ME scores substantially help the discernment of compositional clusters
(Figure 2). This is a corollary of the principle that principal components cannot be a priori considered as
representative of the physicochemical processes controlling the compositional variation in the original data set,
and that reification is a prerequisite to obtain a meaningful PCA (Davis, 2002; Joliffe, 2002).

Loadings on PC1TE are, comparably to PC1ME, divided between highly positive and highly negative, in response to
the geochemical behavior of major and trace elements during the crystallization of the dominant phase assemblage.
For instance, elements exhibiting positive loadings on PC1TE are incompatible in olivine, clinopyroxene and
plagioclase, such as Rb and Zr (Figure 1d), with average partition coefficients comprised in the ranges of
Kcpx,ol,pl
Rb = 0.01 − 0.16 and Kcpx,ol,pl

Zr = 0.03 − 0.29 (Table S4 in Supporting Information S1). On the other hand,
the negative loadings for Cr, Ni, and Sr on PC1TE reflect their highly compatible behavior in clinopyroxene, olivine
and plagioclase crystals, respectively (Kcpx

Cr = 1.66 − 40.2, Kol
Ni = 0.94 − 39.5 and Kpl

Sr = 1.29 − 6.35). More
complex geochemical effects are observed for V and Y, as these elements are either compatible or incompatible in
the lattice site of clinopyroxene (Kcpx

V = 0.08 − 3.41; Kcpx
Y = 0.2 − 1.27), but invariably show positive loadings on

PC1TE. This is due to the fact that V and Y are highly incompatible in plagioclase (Kpl
V = 0.03 − 0.14;

Kpl
Y = 0 − 0.2), whose crystallization dominates the geochemical transition from lp to hpmagmas (e.g., Francalanci

et al., 1989, 1999, 2013; Landi et al., 2004, 2022). Therefore, both PC1TE and PC1ME successfully outline the overall
geochemical evolution of matrix glasses, ranging from negative to positive PC1ME and PC1TE scores as magma
differentiation proceeds from lp to hp compositions, and transition through intermediate magmas (Figures 2 and 3).

Trace elements compatible with mafic phases (i.e., Sc, V, Cr, Co, and Ni) display positive loadings on PC2TE
(Figure 1d), expressing its strong correlation with the crystallization of olivine and clinopyroxene. In contrast,
incompatible trace elements (e.g., Rb, Zr, Nb, La, Th) exhibit negligible loadings on PC2TE (Figure 1d), sug-
gesting a poor correlation with the extent of magma differentiation. The spatial distribution of PC1TE‐PC2TE
scores reflects changes in the ratio of compatible to incompatible elements, allowing better discrimination of
cluster 2TE from cluster 1TE and cluster 4TE from cluster 3TE (Figure 3). This variation may be assigned to variable
mineral proportions in the crystallizing phase assemblage, as the differentiation of clusters 2TE and 4TE is
characterized by higher clinopyroxene to plagioclase ratios in the fraction of crystalline residue, when compared
to cluster 3TE (Figure 5).

The observed relationship between PC2TE and PC1TE, sharing non‐zero loadings of the same trace elements,
epitomizes the concept that principal components represent a set of orthogonal axes in the multivariate
compositional space but are not strictly independent from one another as they incorporate the variance of multiple
original variables (Iwamori et al., 2017; Joliffe, 2002). Although distinct principal components may share
loadings from the same original variables, they may depict uncorrelated variations in the multicomponent space
(Joliffe, 2002). This property of principal components may explain the negligible effect of magma differentiation
on PC2TE, in spite of the loadings for compatible trace elements shared with PC1TE. A similar conclusion can be
drawn for PC4TE, whose scores exhibit significant variations between clusters, and correlate with PC1TE scores
(Figure 4). It is observed that PC4TE scores of cluster 2TE are lower than those of cluster 1TE, while they slightly
increase in the more differentiated clusters 3TE and 4TE. Since Sr constitutes the main loading on PC4TE, the
variation in Sr concentration along this principal component is orthogonal to PC1TE, the latter describing the
differentiation of magmas. Therefore, the score dispersion within the PC1TE‐PC4TE space may either reflect the
lower abundance of plagioclase in the phase assemblage determining the differentiation of cluster 2TE with
respect to clusters 3TE and 4TE (Figure 5), or the increased compatibility of Sr in plagioclase as magma differ-
entiation proceeds toward clusters 3TE and 4TE and the feldspar solid solution becomes more albitic (Bindeman
et al., 1998; Landi et al., 2004; Moschini et al., 2023; Pontesilli et al., 2023).

Principal component scores in the PC1TE‐PC3TE space also exhibited significant variability within and between
clusters (Figure 4). The only element that appreciably contributes to PC3TE is Li by virtue of its loading on this
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principal component that is much higher than those of other elements (Figure 1d). Li mostly behaves as an
incompatible element in the mineral assemblage of Stromboli magmas (Pontesilli et al., 2023), showing moder-
ately low mineral‐melt partition coefficients for clinopyroxene, olivine, and plagioclase (Kcpx,ol,pl

Li = 0.29 − 0.38
on average). The incompatible behavior of Li during magma differentiation is also highlighted by its positive
loading on PC1TE (Figure 1d). The increase in PC1TE and the decrease in PC3TE scores thus reflect increasing Li
contents in the residual melt and the corresponding matrix glass (Figure 4). On the other hand, the intra‐cluster
variation of PC3TE scores observed for cluster 3TE, and marginally by cluster 4TE, cannot be attributed to
magma differentiation, as no correlation holds with PC1TE (Figure 4). According to Pontesilli et al. (2023), small
amounts of microlite crystallization induced by the ascent and decompression of hp magmas determine a large
variability of Li in the groundmass glass, owing to its high cation mobility during degassing phenomena, thereby
explaining the dispersion of PC3TE scores observed for clusters 3TE and 4TE (Figure 4).

4.2. Implications for Plumbing System Architecture and Magma Dynamics

Despite the overall similarities between different modeling results (Figure 5), the fraction of crystalline residue x
estimated for open‐system conditions (30%–45%) is lower than that obtained for closed‐system conditions (40%–
55%) to attain comparable PC1TE scores for hpmagmas. This result agrees with the underlying principles of steady
statemagmatic systems,wherein incompatible elements increasemore rapidlywhen open‐system conditions occur
(Albarede, 1985; Lee et al., 2014; O’Hara, 1977). On the other hand, compatible elements are less influenced by
open‐system dynamics, as displayed by the substantial overlaps between trace element concentrations of clusters
3TE and 4TE (Figure 3 and Figure S3 in Supporting Information S1). The lower degree of crystallization through an
open‐system differentiation in the hp reservoir is consistent withmodels of magmamobility and hence eruptability
that predict a rheological threshold of∼50% crystallinity separating suspension‐like andmush‐like behaviors (e.g.,
Dufek & Bachmann, 2010; Ellis et al., 2023; Forni et al., 2018; Hildreth, 2004).

The degree of dissimilarity between results of open‐ and closed‐system melt differentiation scenarios may be
expressed by the sum of x and y, which corresponds to the fraction of magma recharged at each differentiation
cycle z (O’Hara &Mathews, 1981; see Section 2 for further details). This is estimated in the ranges 0.40–0.75 and
0.50–0.95 for clusters 4TE and 3TE, respectively (Figure S9 in Supporting Information S1). As z values approach
1, the maximum value this parameter can assume, complete turnover of the magmatic reservoir is predicted at
each differentiation cycle. As such, melt differentiation in the steady state system predicted by Equations 11 and
13 reduces to the simple FC case of Equation 6 (O’Hara & Mathews, 1981). In other words, as the volume of
magma replenishing the reservoir over the differentiation cycle approaches that of the whole reservoir, then an
open‐system magma differentiation approximates the closed‐system behavior. Accordingly, the close similarities
between melt compositions from open‐ and closed‐systemmodeling are expressed by the high values of z in open‐
system scenarios. The implication is that most of the hp reservoir is completely rejuvenated within an average of
1–2 differentiation cycles according to geochemical modeling results based on clusters 3TE and 4TE.

In order for this hypothesis to hold true, the frequency of magma recharge episodes to the hp reservoir needs to be
on the same timescales as those estimated for magma turnover in the shallow plumbing system. Average magma
residence times in the hp reservoir are estimated on the basis of 87Sr/86Sr systematics to range between 10 and
30 years, implying a converted reservoir volume of 0.04–0.3 km3 (Francalanci et al., 1999). Similar timescales are
provided by Bragagni et al. (2014) through U‐series disequilibria, with a best‐case residence time estimated at
5 years out of the larger range of 2–55 years, on which a magmatic reservoir of 0.02–0.09 km3 was estimated.
These relatively long residence times relate to the deepest part of the hp reservoir, where mixing between hp and
lpmagmas and the crystalline mush at depths of 2–4 km are proposed (Bragagni et al., 2014). Based on degassing‐
controlled 210Pb–226Ra disequilibria, shorter residence times of ∼0.7–3 years are instead estimated for the
shallower part of the hp reservoir (Gauthier & Condomines, 1999), also in agreement with timescales for
plagioclase growth and dissolution in the upper conduit at Stromboli (Agostini et al., 2013). Notably, historical
data and temporal models suggest that the average frequency for paroxysmal eruptions was of one event every
4 years, during the last 140 years (Bevilacqua et al., 2020). The ubiquitous eruption of mafic lp magma during
paroxysmal events indicates that 4 years actually represent the lower limit for the frequency of mafic recharge
episodes to the hp reservoir since lpmagma is also involved in some major eruptions and some recharge episodes
may not lead to violent explosive scenarios (e.g., Landi et al., 2022; Petrone et al., 2022; Voloschina et al., 2023).
Therefore, comparison of independent constraints on average residence times and recharge frequency indicates
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that timescales of lp recharges are on the same order of magnitude or slightly shorter than those of magma
rejuvenation in the hp reservoir. This observation is in agreement with the open‐system modeling results, indi-
cating that these recharge episodes set forth the consecution of differentiation cycles.

Furthermore, this implies that the volume of lp magma batches supplied in the months to days before each
paroxysmal event (Di Stefano et al., 2020; Petrone et al., 2018, 2022) is equal to or slightly lower than that
recharging the system over an entire differentiation cycle, estimated to represent 40%–95% of the eruptible
volume of the hp reservoir. Hence, an increase in magma residence time with depth in the hp reservoir corre-
sponds to a decrease in the fraction of magma replenished during a differentiation cycle because more cycles are
needed to completely rejuvenate the system. Modeling results based on hp compositions belonging to cluster 4TE
hints at a lower percentage of magma recharged over a differentiation cycle (40%–75%) when compared to those
based on cluster 3TE (45%–90%). Moreover, cluster 4TE results from a lower degree of crystallization and lower
plagioclase to clinopyroxene ratio, as supported by open‐ and closed‐systemmodeling results (Figure 5). It can be
concluded that the cluster 4TE represents slightly more primitive magmas originating from deeper regions of the
hp reservoir with respect to more evolved magmas represented by the cluster 3TE. This latter cluster illustrates the
transition toward a shallower and plagioclase‐rich part of the hp reservoir, where higher fractions of magma
renewed at each differentiation cycle are stored over shorter residence times (Figure 7).

Cluster 2TE brackets intermediate glass compositions, interpreted as the product of mixing and subsequent
crystallization between the ascending lpmagma and a least evolved hpmagma residing in a transitional magmatic
environment (Landi et al., 2008, 2022). Modeling results indicate that matrix glasses from cluster 2TE are

Figure 7. Schematic reconstruction of the shallow magma storage zone at Stromboli, as illustrated by multivariate statics and
open‐system differentiation modeling results. Cluster 2TE includes intermediate melt compositions, representing the residual
liquid of olivine‐clinopyroxene‐dominated crystalline mush located toward the bottom of the hp reservoir. In this region,
intermediate melts originate by mixing between the residual liquid of the crystalline mush and lpmelts. Cluster 1TE identifies
mafic and crystal‐poor lp magmas rising from depth and injecting into the more differentiated and crystal‐rich hp reservoir.
Both clusters 4TE and 3TE refer to hp melts that become more differentiated toward the top of the hp reservoir, where
residence timescales are estimated to decrease and magma differentiation is strongly dominated by plagioclase
crystallization. Here, a high fraction of magma recharged during each differentiation cycle determines the short residence
time of magma. The gray field indicates crystal accumulation from past to present differentiation cycles.
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produced by the crystallization of mafic phases (clinopyroxene and olivine) via in situ crystallization ( f < 0.5),
which is typical of highly crystalline environments such as the margins of convecting magma chambers, where
crystallization proceeds separately from the main reservoir (Langmuir, 1989). Intermediate magma compositions
are thus interpreted as the result of continued mixing and in situ crystallization in a mush‐like environment located
in close proximity to the bottom of the hp reservoir (∼4 km; Figure 7), where the continuous supply of mafic
magmas keeps the residual melt on the olivine‐clinopyroxene cotectic (Francalanci et al., 1999, 2012; Landi
et al., 2022; Pichavant et al., 2009). Interestingly, lower z values (10%–30%) from open‐system modeling of
cluster 2TE imply much longer residence times with respect to hpmagmas (clusters 3TE and 4TE), also explaining
the disagreement between open‐ and closed‐system modeling results for cluster 2TE (Figure 5). Different modal
abundances, degree of crystallization and fraction of liquid returning from the solidification front, estimated for
cluster 2TE with respect to clusters 3TE and 4TE, thus reflect the transition from a mush‐like environment to a
suspension‐like upper region of the hp reservoir (Figure 7). In such environment, efficient crystal‐melt separation
is also supported by the fact that f approaches 1 for clusters 3TE and 4TE, thereby approximating melt evolution
along closed‐system fractional crystallization trends (Figure 6).

5. Conclusions
In this study, a large compositional data set based on major and trace analyses of matrix glasses erupted at
Stromboli over the last 20 years has been interrogated through a multifaceted approach including principal
component analysis (PCA), K‐means cluster analysis (KCA) and kernel density estimation (KDE). Comparison
between open‐ and closed‐system differentiation models outlines that the short residence time of magmas within
the shallow reservoir of Stromboli determines variable degrees of melt differentiation that approximate simple
fractional crystallization trends for the most evolved melt compositions. This compositional effect is interpreted
as the transition from a mush‐like environment at the bottom of the plumbing system toward eruptible melts
stored in the upper part of the magmatic reservoir. The dichotomy of our modeling results shows that care should
be taken when applying geochemical modeling equations to volcanic systems without considering the spatial and
temporal evolution of erupted melts. The modeling approach should be based on the conceptual model of the
differentiation processes being investigated and be informed by other data such as crystal textures and magmatic
timescales. By combining an iterative modeling approach and multivariate statistical analyses, we can unbiasedly
constrain the most important parameters controlling magma differentiation and better interrogate large analytical
data sets and their subset compositional variations. Specifically, results from PCA indicate that changes in trace
elements in erupted matrix glasses are more informative than changes in major elements for defining compo-
sitional clusters and thus interpreting magmatic processes. Nonetheless, it is crucial that transformed variables can
be robustly interpreted in terms of the igneous processes at play to allow for a meaningful clustering solution. The
implementation of petrological monitoring practices and automatic samplers in areas of active volcanic output are
instrumental in the collection of large data bases and hence in constraining petrological models via multivariate
approaches.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Matrix glass compositions, including major and trace element concentrations, analytical precision and accuracy
based on secondary standards, as well as principal component scores, data clustering for each point analysis,
partition coefficient values from literature, including the complete reference list, and results of differentiation
modeling, are available in Supporting Information S1 (Pontesilli, 2023).

References
Agostini, C., Fortunati, A., Arzilli, F., Landi, P., & Carroll, M. R. (2013). Kinetics of crystal evolution as a probe to magmatism at Stromboli

(Aeolian Archipelago, Italy). Geochimica et Cosmochimica Acta, 110, 135–151. https://doi.org/10.1016/j.gca.2013.02.027
Aitchison, J. (1999). Logratios and natural laws in compositional data analysis. Mathematical Geology, 31(5), 563–580. https://doi.org/10.1023/

A:1007568008032
Albarede, F. (1985). Regime and trace‐element evolution of open magma chambers. Nature, 318(6044), 356–358. https://doi.org/10.1038/

318356a0

Acknowledgments
The authors are grateful to Patrizia Landi
and Claudia D'Oriano for the insightful
conversations on matrix glass
compositions at Stromboli. Thanks also go
to Marcel Guillong and Lorenzo Tavazzani
for assistance during LA‐ICPMS analyses.
The authors acknowledge the following
projects: IR0000025—“Monitoring Earth's
Evolution and Tectonics,” MEET—MUR
Grant: D53C22001400005 to AP, FDF and
PS; INGV Departmental Strategic Project
UNO to AP, PS, EDB, DA, JT and MN;
PRIN MUR Grant 2022N4FBAA to EDB
and SM; Swiss National Science
Foundation Grant 200020‐197040 to BE
and OB. MB is grateful for research and
study leave support from the Division of
Sciences, University of Otago. Editor
Marie Edmonds is acknowledged for the
careful editorial handling and for
reviewing the manuscript. The authors are
grateful to anonymous reviewers for
careful reading and the constructive
comments provided.

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011396

PONTESILLI ET AL. 17 of 20

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011396 by C

ochraneItalia, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.gca.2013.02.027
https://doi.org/10.1023/A:1007568008032
https://doi.org/10.1023/A:1007568008032
https://doi.org/10.1038/318356a0
https://doi.org/10.1038/318356a0


Allègre, C. J., &Minster, J. F. (1978). Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters,
38(1), 1–25. https://doi.org/10.1016/0012‐821X(78)90123‐1

Andronico, D., Corsaro, R. A., Cristaldi, A., & Polacci, M. (2008). Characterizing high energy explosive eruptions at Stromboli volcano using
multidisciplinary data: An example from the 9 January 2005 explosion. Journal of Volcanology and Geothermal Research, 176(4), 541–550.
https://doi.org/10.1016/j.jvolgeores.2008.05.011

Andronico, D., Del Bello, E., D’Oriano, C., Landi, P., Pardini, F., Scarlato, P., et al. (2021). Uncovering the eruptive patterns of the 2019 double
paroxysm eruption crisis of Stromboli volcano. Nature Communications, 12(1), 4213. https://doi.org/10.1038/s41467‐021‐24420‐1

Armienti, P., Francalanci, L., & Landi, P. (2007). Textural effects of steady state behaviour of the Stromboli feeding system. Journal of
Volcanology and Geothermal Research, 160(1), 86–98. https://doi.org/10.1016/j.jvolgeores.2006.05.004

Barberi, F., Rosi, M., & Sodi, A. (1993). Volcanic hazard assessment at Stromboli based on a review of historical data. Acta Vulcanologica, 3,
173–187.

Bertagnini, A., Di Roberto, A., & Pompilio, M. (2011). Paroxysmal activity at Stromboli: Lessons from the past. Bulletin of Volcanology, 73(9),
1229–1243. https://doi.org/10.1007/s00445‐011‐0470‐3

Bevilacqua, A., Bertagnini, A., Pompilio, M., Landi, P., Del Carlo, P., Di Roberto, A., et al. (2020). Major explosions and paroxysms at Stromboli
(Italy): A new historical catalog and temporal models of occurrence with uncertainty quantification. Scientific Reports, 10(1), 17357. https://
doi.org/10.1038/s41598‐020‐74301‐8

Bindeman, I. N., Davis, A. M., & Drake, M. J. (1998). Ion microprobe study of plagioclase‐basalt partition experiments at natural concentration
levels of trace elements. Geochimica et Cosmochimica Acta, 62(7), 1175–1193. https://doi.org/10.1016/S0016‐7037(98)00047‐7

Blundy, J., & Cashman, K. (2008). Petrologic reconstruction of magmatic system variables and processes. Reviews in Mineralogy and
Geochemistry, 69(1), 179–239. https://doi.org/10.2138/rmg.2008.69.6

Bragagni, A., Avanzinelli, R., Freymuth, H., & Francalanci, L. (2014). Recycling of crystal mush‐derived melts and short magma residence times
revealed by U‐series disequilibria at Stromboli volcano. Earth and Planetary Science Letters, 404, 206–219. https://doi.org/10.1016/j.epsl.
2014.07.028

Davis, J. C. (2002). Statistics and data analysis in geology (3rd ed.). Wiley. Retrieved from https://www.wiley.com /en‐br /
Statistics+and+Data+Analysis+in+Geology%2C+3rd+Edition‐p‐9780471172758

Di Fiore, F., Vona, A., Mollo, S., Nazzari, M., Giordano, G., & Romano, C. (2023). Experimental insights on the shear‐induced crystallization of a
phonotephrite magma. Chemical Geology, 637, 121682. https://doi.org/10.1016/j.chemgeo.2023.121682

Di Fiore, F., Vona, A., Scarani, A., Giordano, G., Romano, C., Giordano, D., et al. (2023). Experimental constraints on the rheology of lavas from
2021 Cumbre Vieja eruption (La Palma, Spain). Geophysical Research Letters, 50(4), e2022GL100970. https://doi.org/10.1029/
2022GL100970

Ding, C., & He, X. (2004). K‐means clustering via principal component analysis. In Proceedings of the twenty‐first international conference on
Machine learning (p. 29). Association for Computing Machinery. https://doi.org/10.1145/1015330.1015408

Di Renzo, V., Corsaro, R. A., Miraglia, L., Pompilio, M., & Civetta, L. (2019). Long and short‐term magma differentiation at Mt. Etna as revealed
by Sr‐Nd isotopes and geochemical data. Earth‐Science Reviews, 190, 112–130. https://doi.org/10.1016/j.earscirev.2018.12.008

Di Stefano, F., Mollo, S., Ubide, T., Petrone, C. M., Caulfield, J., Scarlato, P., et al. (2020). Mush cannibalism and disruption recorded by cli-
nopyroxene phenocrysts at Stromboli volcano: New insights from recent 2003–2017 activity. Lithos, 360–361, 105440. https://doi.org/10.
1016/j.lithos.2020.105440

Dufek, J., & Bachmann, O. (2010). Quantum magmatism: Magmatic compositional gaps generated by melt‐crystal dynamics. Geology, 38(8),
687–690. https://doi.org/10.1130/G30831.1

Dunn, T. (1987). Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contributions to Mineralogy and
Petrology, 96(4), 476–484. https://doi.org/10.1007/BF01166692

Edmonds, M., Liu, E. J., & Cashman, K. V. (2022). Open‐vent volcanoes fuelled by depth‐integrated magma degassing. Bulletin of Volcanology,
84(3), 28. https://doi.org/10.1007/s00445‐021‐01522‐8

Ellis, B. S., Szymanowski, D., Harris, C., Tollan, P. M. E., Neukampf, J., Guillong, M., et al. (2022). Evaluating the potential of rhyolitic glass as a
lithium source for brine deposits. Economic Geology, 117(1), 91–105. https://doi.org/10.5382/econgeo.4866

Ellis, B. S., Wolff, J. A., Szymanowski, D., Forni, F., Cortes‐Calderon, E. A., & Bachmann, O. (2023). Cumulate recycling in igneous systems:
The volcanic record. Lithos, 456–457, 107284. https://doi.org/10.1016/j.lithos.2023.107284

Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. John Wiley & Sons.
Forni, F., Petricca, E., Bachmann, O., Mollo, S., De Astis, G., & Piochi, M. (2018). The role of magma mixing/mingling and cumulate melting in

the Neapolitan Yellow Tuff caldera‐forming eruption (Campi Flegrei, Southern Italy). Contributions to Mineralogy and Petrology, 173(6), 45.
https://doi.org/10.1007/s00410‐018‐1471‐4

Francalanci, L., Avanzinelli, R., Nardini, I., Tiepolo, M., Davidson, J. P., & Vannucci, R. (2012). Crystal recycling in the steady‐state system of
the active Stromboli volcano: A 2.5‐ka story inferred from in situ Sr‐isotope and trace element data. Contributions to Mineralogy and
Petrology, 163(1), 109–131. https://doi.org/10.1007/s00410‐011‐0661‐0

Francalanci, L., Lucchi, F., Keller, J., De Astis, G., & Tranne, C. A. (2013). Chapter 13 Eruptive, volcano‐tectonic and magmatic history of the
Stromboli volcano (north‐eastern Aeolian archipelago). Geological Society, London, Memoirs, 37(1), 397–471. https://doi.org/10.1144/
M37.13

Francalanci, L., Manetti, P., & Peccerillo, A. (1989). Volcanological and magmatological evolution of Stromboli volcano (Aeolian Islands): The
roles of fractional crystallization, magma mixing, crustal contamination and source heterogeneity. Bulletin of Volcanology, 51(5), 355–378.
https://doi.org/10.1007/BF01056897

Francalanci, L., Tommasini, S., & Conticelli, S. (2004). The volcanic activity of Stromboli in the 1906–1998 AD period: Mineralogical,
geochemical and isotope data relevant to the understanding of the plumbing system. Journal of Volcanology and Geothermal Research, 131(1),
179–211. https://doi.org/10.1016/S0377‐0273(03)00362‐7

Francalanci, L., Tommasini, S., Conticelli, S., & Davies, G. R. (1999). Sr isotope evidence for short magma residence time for the 20th century
activity at Stromboli volcano, Italy. Earth and Planetary Science Letters, 167(1), 61–69. https://doi.org/10.1016/S0012‐821X(99)00013‐8

Gauthier, P.‐J., & Condomines, M. (1999). 210Pb–226Ra radioactive disequilibria in recent lavas and radon degassing: Inferences on the magma
chamber dynamics at Stromboli and Merapi volcanoes. Earth and Planetary Science Letters, 172(1), 111–126. https://doi.org/10.1016/S0012‐
821X(99)00195‐8

Hildreth, W. (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete
systems. Journal of Volcanology and Geothermal Research, 136(3), 169–198. https://doi.org/10.1016/j.jvolgeores.2004.05.019

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011396

PONTESILLI ET AL. 18 of 20

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011396 by C

ochraneItalia, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/0012-821X(78)90123-1
https://doi.org/10.1016/j.jvolgeores.2008.05.011
https://doi.org/10.1038/s41467-021-24420-1
https://doi.org/10.1016/j.jvolgeores.2006.05.004
https://doi.org/10.1007/s00445-011-0470-3
https://doi.org/10.1038/s41598-020-74301-8
https://doi.org/10.1038/s41598-020-74301-8
https://doi.org/10.1016/S0016-7037(98)00047-7
https://doi.org/10.2138/rmg.2008.69.6
https://doi.org/10.1016/j.epsl.2014.07.028
https://doi.org/10.1016/j.epsl.2014.07.028
https://www.wiley.com/en-br/Statistics&#x0002B;and&#x0002B;Data&#x0002B;Analysis&#x0002B;in&#x0002B;Geology%2C&#x0002B;3rd&#x0002B;Edition-p-9780471172758
https://www.wiley.com/en-br/Statistics&#x0002B;and&#x0002B;Data&#x0002B;Analysis&#x0002B;in&#x0002B;Geology%2C&#x0002B;3rd&#x0002B;Edition-p-9780471172758
https://doi.org/10.1016/j.chemgeo.2023.121682
https://doi.org/10.1029/2022GL100970
https://doi.org/10.1029/2022GL100970
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1016/j.earscirev.2018.12.008
https://doi.org/10.1016/j.lithos.2020.105440
https://doi.org/10.1016/j.lithos.2020.105440
https://doi.org/10.1130/G30831.1
https://doi.org/10.1007/BF01166692
https://doi.org/10.1007/s00445-021-01522-8
https://doi.org/10.5382/econgeo.4866
https://doi.org/10.1016/j.lithos.2023.107284
https://doi.org/10.1007/s00410-018-1471-4
https://doi.org/10.1007/s00410-011-0661-0
https://doi.org/10.1144/M37.13
https://doi.org/10.1144/M37.13
https://doi.org/10.1007/BF01056897
https://doi.org/10.1016/S0377-0273(03)00362-7
https://doi.org/10.1016/S0012-821X(99)00013-8
https://doi.org/10.1016/S0012-821X(99)00195-8
https://doi.org/10.1016/S0012-821X(99)00195-8
https://doi.org/10.1016/j.jvolgeores.2004.05.019


Iwamori, H., Yoshida, K., Nakamura, H., Kuwatani, T., Hamada, M., Haraguchi, S., & Ueki, K. (2017). Classification of geochemical data based
on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses.Geochemistry,
Geophysics, Geosystems, 18(3), 994–1012. https://doi.org/10.1002/2016GC006663

Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: A new geochemical database for reference
materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3), 333–338. https://doi.org/10.1111/j.1751‐908X.2005.
tb00904.x

Joliffe, I. T. (2002). Principal component analysis. Springer‐Verlag. https://doi.org/10.1007/b98835
Kuritani, T., Tanaka, M., Yokoyama, T., Nakagawa, M., & Matsumoto, A. (2016). Intensive hydration of the Wedge Mantle at the Kuril arc–NE

Japan arc Junction: Implications from mafic lavas from Usu Volcano, Northern Japan. Journal of Petrology, 57(6), 1223–1240. https://doi.org/
10.1093/petrology/egw038

La Felice, S., & Landi, P. (2011). A spatter‐forming, large‐scale paroxysm at Stromboli Volcano (Aeolian Islands, Italy): Insight into magma
evolution and eruption dynamics. Bulletin of Volcanology, 73(9), 1393–1406. https://doi.org/10.1007/s00445‐011‐0476‐x

Landi, P., D’Oriano, C., Petrelli, M., Nazzari, M., & Andronico, D. (2022). Inferences on the magmatic plumbing system at Stromboli volcano
(Italy) from trace element geochemistry of matrix glasses and minerals in different types of explosive eruptions. Contributions to Mineralogy
and Petrology, 177(10), 96. https://doi.org/10.1007/s00410‐022‐01962‐1

Landi, P., Métrich, N., Bertagnini, A., & Rosi, M. (2004). Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli
(Aeolian Archipelago, Italy). Contributions to Mineralogy and Petrology, 147(2), 213–227. https://doi.org/10.1007/s00410‐004‐0555‐5

Landi, P., Métrich, N., Bertagnini, A., & Rosi, M. (2008). Recycling and “re‐hydration” of degassed magma inducing transient dissolution/
crystallization events at Stromboli (Italy). Journal of Volcanology and Geothermal Research, 174(4), 325–336. https://doi.org/10.1016/j.
jvolgeores.2008.02.013

Langmuir, C. H. (1989). Geochemical consequences of in situ crystallization. Nature, 340(6230), 199–205. https://doi.org/10.1038/340199a0
Lee, C.‐T. A., Lee, T. C., &Wu, C.‐T. (2014). Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma

chambers: Implications for differentiation of arc magmas. Geochimica et Cosmochimica Acta, 143, 8–22. https://doi.org/10.1016/j.gca.2013.
08.009

Le Maitre, R. W. (1982). Numerical petrology: Statistical interpretation of geochemical data. Elsevier.
Liu, E. J., Cashman, K. V., Miller, E., Moore, H., Edmonds, M., Kunz, B. E., et al. (2020). Petrologic monitoring at Volcán de Fuego, Guatemala.

Journal of Volcanology and Geothermal Research, 405, 107044. https://doi.org/10.1016/j.jvolgeores.2020.107044
Marriott, F. H. C. (1974). The interpretation of multiple observations. Academic Press.
Métrich, N., Bertagnini, A., & Di Muro, A. (2010). Conditions of magma storage, degassing and ascent at Stromboli: New insights into the

volcano plumbing system with inferences on the eruptive dynamics. Journal of Petrology, 51(3), 603–626. https://doi.org/10.1093/petrology/
egp083

Métrich, N., Bertagnini, A., Landi, P., & Rosi, M. (2001). Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian
Islands, Italy). Journal of Petrology, 42(8), 1471–1490. https://doi.org/10.1093/petrology/42.8.1471

Mollo, S., Pontesilli, A., Moschini, P., Palummo, F., Taddeucci, J., Andronico, D., et al. (2022). Modeling the crystallization conditions of
clinopyroxene crystals erupted during February–April 2021 lava fountains at Mt. Etna: Implications for the dynamic transfer of magmas.
Lithos, 420–421, 106710. https://doi.org/10.1016/j.lithos.2022.106710

Moschini, P., Mollo, S., Pontesilli, A., Nazzari, M., Petrone, C. M., Fanara, S., et al. (2023). A review of plagioclase growth rate and compositional
evolution in mafic alkaline magmas: Guidelines for thermometry, hygrometry, and timescales of magma dynamics at Stromboli and Mt. Etna.
Earth‐Science Reviews, 240, 104399. https://doi.org/10.1016/j.earscirev.2023.104399

National Academies of Sciences, E. (2017). Volcanic eruptions and their repose, unrest, precursors, and timing. National Academies of Sciences.
https://doi.org/10.17226/24650

O’Hara, M. J. (1977). Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature, 266(5602),
503–507. https://doi.org/10.1038/266503a0

O’Hara, M. J., & Herzberg, C. (2002). Interpretation of trace element and isotope features of basalts: Relevance of field relations, petrology, major
element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochimica et Cosmochimica Acta, 66(12), 2167–2191.
https://doi.org/10.1016/S0016‐7037(02)00852‐9

O’Hara, M. J., & Mathews, R. E. (1981). Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously
fractionated magma chamber. Journal of the Geological Society, 138(3), 237–277. https://doi.org/10.1144/gsjgs.138.3.0237

Petrone, C. M., Braschi, E., Francalanci, L., Casalini, M., & Tommasini, S. (2018). Rapid mixing and short storage timescale in the magma
dynamics of a steady‐state volcano. Earth and Planetary Science Letters, 492, 206–221. https://doi.org/10.1016/j.epsl.2018.03.055

Petrone, C. M., Mollo, S., Gertisser, R., Buret, Y., Scarlato, P., Del Bello, E., et al. (2022). Magma recharge and mush rejuvenation drive
paroxysmal activity at Stromboli volcano. Nature Communications, 13(1), 7717. https://doi.org/10.1038/s41467‐022‐35405‐z

Pichavant, M., Di Carlo, I., Le Gac, Y., Rotolo, S. G., & Scaillet, B. (2009). Experimental constraints on the deep magma feeding system at
Stromboli volcano, Italy. Journal of Petrology, 50(4), 601–624. https://doi.org/10.1093/petrology/egp014

Pontesilli, A. (2023). Supplementary Data to Pontesilli et al 2023 manuscript [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10277932
Pontesilli, A., Brenna, M., Mollo, S., Masotta, M., Nazzari, M., Le Roux, P., & Scarlato, P. (2022). Trachyte‐phonolite transition at Dunedin

Volcano: Fingerprints of magma plumbing system maturity and mush evolution. Lithos, 408–409, 106545. https://doi.org/10.1016/j.lithos.
2021.106545

Pontesilli, A., Del Bello, E., Scarlato, P., Mollo, S., Ellis, B., Andronico, D., et al. (2023). The efficacy of high frequency petrological investigation
at open‐conduit volcanoes: The case of May 11 2019 explosions at southwestern and northeastern craters of Stromboli. Lithos, 454–455,
107255. https://doi.org/10.1016/j.lithos.2023.107255

Ragland, P. C., Conley, J. F., Parker, W. C., & Von Orman, J. A. (1997). Use of principal components analysis in petrology: An example from the
Martinsville igneous complex, Virginia, U.S.A. Mineralogy and Petrology, 60(3), 165–184. https://doi.org/10.1007/BF01173708

Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Routledge.
Rosi, M., Bertagnini, A., & Landi, P. (2000). Onset of the persistent activity at Stromboli Volcano (Italy). Bulletin of Volcanology, 62(4), 294–300.

https://doi.org/10.1007/s004450000098
Rosi, M., Pistolesi, M., Bertagnini, A., Landi, P., Pompilio, M., & Di Roberto, A. (2013). Chapter 14 Stromboli volcano, Aeolian Islands (Italy):

Present eruptive activity and hazards. Geological Society, London, Memoirs, 37(1), 473–490. https://doi.org/10.1144/M37.14
Schiavon, B., Mollo, S., Pontesilli, A., Del Bello, E., Nazzari, M., & Scarlato, P. (2023). Plagioclase crystal size distribution parameterization: A

tool for tracking magma dynamics at Stromboli. Lithos, 446–447, 107143. https://doi.org/10.1016/j.lithos.2023.107143
Silverman, B. W. (1986). Density estimation for statistics and data analysis. Routledge. https://doi.org/10.1201/9781315140919

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011396

PONTESILLI ET AL. 19 of 20

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011396 by C

ochraneItalia, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/2016GC006663
https://doi.org/10.1111/j.1751-908X.2005.tb00904.x
https://doi.org/10.1111/j.1751-908X.2005.tb00904.x
https://doi.org/10.1007/b98835
https://doi.org/10.1093/petrology/egw038
https://doi.org/10.1093/petrology/egw038
https://doi.org/10.1007/s00445-011-0476-x
https://doi.org/10.1007/s00410-022-01962-1
https://doi.org/10.1007/s00410-004-0555-5
https://doi.org/10.1016/j.jvolgeores.2008.02.013
https://doi.org/10.1016/j.jvolgeores.2008.02.013
https://doi.org/10.1038/340199a0
https://doi.org/10.1016/j.gca.2013.08.009
https://doi.org/10.1016/j.gca.2013.08.009
https://doi.org/10.1016/j.jvolgeores.2020.107044
https://doi.org/10.1093/petrology/egp083
https://doi.org/10.1093/petrology/egp083
https://doi.org/10.1093/petrology/42.8.1471
https://doi.org/10.1016/j.lithos.2022.106710
https://doi.org/10.1016/j.earscirev.2023.104399
https://doi.org/10.17226/24650
https://doi.org/10.1038/266503a0
https://doi.org/10.1016/S0016-7037(02)00852-9
https://doi.org/10.1144/gsjgs.138.3.0237
https://doi.org/10.1016/j.epsl.2018.03.055
https://doi.org/10.1038/s41467-022-35405-z
https://doi.org/10.1093/petrology/egp014
https://doi.org/10.5281/zenodo.10277932
https://doi.org/10.1016/j.lithos.2021.106545
https://doi.org/10.1016/j.lithos.2021.106545
https://doi.org/10.1016/j.lithos.2023.107255
https://doi.org/10.1007/BF01173708
https://doi.org/10.1007/s004450000098
https://doi.org/10.1144/M37.14
https://doi.org/10.1016/j.lithos.2023.107143
https://doi.org/10.1201/9781315140919


Spina, L., Del Bello, E., Ricci, T., Taddeucci, J., & Scarlato, P. (2021). Multi‐parametric characterization of explosive activity at Batu Tara
Volcano (Flores Sea, Indonesia). Journal of Volcanology and Geothermal Research, 413, 107199. https://doi.org/10.1016/j.jvolgeores.2021.
107199

St C. O’Neill, H., & Jenner, F. E. (2012). The global pattern of trace‐element distributions in ocean floor basalts. Nature, 491(7426), 698–704.
https://doi.org/10.1038/nature11678

Taddeucci, J., Scarlato, P., Andronico, D., Ricci, T., Civico, R., Del Bello, E., et al. (2023). The Explosive Activity of the 2021 Tajogaite Eruption
(La Palma, Canary Islands, Spain). Geochemistry, Geophysics, Geosystems, 24(6), e2023GC010946. https://doi.org/10.1029/2023GC010946

Thy, P., & Esbensen, K. H. (1993). Seafloor spreading and the ophiolitic sequences of the Troodos Complex: A principal component analysis of
lava and dike compositions. Journal of Geophysical Research, 98(B7), 11799–11805. https://doi.org/10.1029/93JB00695

Ubide, T., Galé, C., Arranz, E., Lago, M., & Larrea, P. (2014). Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the
Catalonian Coastal Ranges (NE Spain): A record of magma history and a window to mineral‐melt partitioning. Lithos, 184–187, 225–242.
https://doi.org/10.1016/j.lithos.2013.10.029

Ubide, T., & Kamber, B. S. (2018). Volcanic crystals as time capsules of eruption history. Nature Communications, 9(1), 326. https://doi.org/10.
1038/s41467‐017‐02274‐w

Ubide, T., Márquez, Á., Ancochea, E., Huertas, M. J., Herrera, R., Coello‐Bravo, J. J., et al. (2023). Discrete magma injections drive the 2021 La
Palma eruption. Science Advances, 9(27), eadg4813. https://doi.org/10.1126/sciadv.adg4813

Ueki, K., & Iwamori, H. (2017). Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan,
constrained from principal component analysis. Lithos, 290–291, 60–75. https://doi.org/10.1016/j.lithos.2017.08.001

Voloschina, M., Métrich, N., Bertagnini, A., Marianelli, P., Aiuppa, A., Ripepe, M., & Pistolesi, M. (2023). Explosive eruptions at Stromboli
volcano (Italy): A comprehensive geochemical view on magma sources and intensity range. Bulletin of Volcanology, 85(6), 34. https://doi.org/
10.1007/s00445‐023‐01647‐y

Zaiontz, C. (2022). Release 8.0. Retrieved from www.real‐statistics.com
Zieg, M. J., & Wallrich, B. M. (2018). Emplacement and differentiation of the Black Sturgeon Sill, Nipigon, Ontario: A principal component

analysis. Journal of Petrology, 59(12), 2385–2412. https://doi.org/10.1093/petrology/egy100

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011396

PONTESILLI ET AL. 20 of 20

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011396 by C

ochraneItalia, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jvolgeores.2021.107199
https://doi.org/10.1016/j.jvolgeores.2021.107199
https://doi.org/10.1038/nature11678
https://doi.org/10.1029/2023GC010946
https://doi.org/10.1029/93JB00695
https://doi.org/10.1016/j.lithos.2013.10.029
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1126/sciadv.adg4813
https://doi.org/10.1016/j.lithos.2017.08.001
https://doi.org/10.1007/s00445-023-01647-y
https://doi.org/10.1007/s00445-023-01647-y
http://www.real-statistics.com
https://doi.org/10.1093/petrology/egy100

	description
	Magma Differentiation in Dynamic Mush Domains From the Perspective of Multivariate Statistics: Open‐ Versus Closed‐System E ...
	1. Introduction
	2. Methods
	2.1. Analytical Methods
	2.2. Statistical Approach
	2.3. Petrological Modeling

	3. Results
	3.1. Multivariate Statistics of Major and Trace Elements
	3.2. Open‐ Versus Closed‐System Magma Differentiation

	4. Discussions
	4.1. Interpreting Principal Components and Clusters Through Magmatic Processes
	4.2. Implications for Plumbing System Architecture and Magma Dynamics

	5. Conclusions
	Conflict of Interest
	Data Availability Statement



