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Development of the cerebellum is characterized by rapid proliferation of cerebellar
granule cell precursors (GCPs) induced by paracrine stimulation of Sonic hedgehog
(Shh) signaling from Purkinje cells, in the external granular layer (EGL). Then, granule
cell precursors differentiate and migrate into the inner granular layer (IGL) of the
cerebellum to form a terminally differentiated cell compartment. Aberrant activation
of Sonic hedgehog signaling leads to granule cell precursors hyperproliferation and
the onset of Sonic hedgehog medulloblastoma (MB), the most common embryonal
brain tumor. β-arrestin1 (ARRB1) protein plays an important role downstream of
Smoothened, a component of the Sonic hedgehog pathway. In the
medulloblastoma context, β-arrestin1 is involved in a regulatory axis in association
with the acetyltransferase P300, leading to the acetylated form of the transcription
factor E2F1 (E2F1-ac) and redirecting its activity toward pro-apoptotic gene targets.
This axis in the granule cell precursors physiological context has not been
investigated yet. In this study, we demonstrate that β-arrestin1 has
antiproliferative and pro-apoptotic functions in cerebellar development. β-
arrestin1 silencing increases proliferation of Sonic hedgehog treated-cerebellar
precursor cells while decreases the transcription of E2F1-ac pro-apoptotic targets
genes, thus impairing apoptosis. Indeed, chromatin immunoprecipitation
experiments show a direct interaction between β-arrestin1 and the promoter
regions of the pro-apoptotic E2F1 target gene and P27, indicating the double
role of β-arrestin1 in controlling apoptosis and cell cycle exit in a physiological
context. Our data elucidate the role of β-arrestin1 in the early postnatal stages of
cerebellar development, in those cell compartments that give rise to
medulloblastoma. This series of experiments suggests that the physiological
function of β-arrestin1 in neuronal progenitors is to directly control, cooperating
with E2F1 acetylated form, transcription of pro-apoptotic genes.
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1 Introduction

Medulloblastoma (MB) is the most common malignant brain
tumor of childhood arising in the cerebellum. By large-scale omic
studies conducted in the recent decades, four molecular subgroups
have been universally recognized, termed WNT, Sonic hedgehog
(SHH), Group 3 and Group 4. The different epigenetic and
transcriptional profiles, as well as the specific genetic alterations,
suggest that MB subgroups arise from distinct cell-of-origin or
developmental lineages (Hovestadt et al., 2020).

In particular, two cell populations are known to give rise to SHH
MB: granule cell precursors (GCPs) populations (ATOH1+) for the
SHH MB subgroups and stem/progenitor cell populations for the
MYCN- driven SHH MB (Hovestadt et al., 2020).

GCPs born in the rhombic lip (RL) of cerebellum at embryonic
day 13 in mice migrate from the RL into the posterior dorsal region
of RL, forming the external granular layer (EGL). After birth, for
up to approximately 2 weeks, GCPs in the EGL continue to
proliferate, in response to paracrine stimulation with Sonic
Hedgehog (Shh) ligand from the underlying layer of Purkinje
cells. Following the Shh proliferation-induced phase, GCPs
differentiate, migrate to the internal granular layer (IGL) of the
cerebellum to form a terminally differentiated granule layer,
unresponsive to Shh stimuli (Ruiz i Altaba et al., 2002). This
evidence suggests a regulatory mechanism that controls the
response to Shh and cell cycle exit. Indeed, physiological
widespread apoptosis characterizes GCPs when they exit the
cell cycle during postnatal development (Ahlgren and Bronner-
Fraser, 1999; Charrier et al., 2001).

The second MB cell-of-origin is the cerebellar neural stem cell
(NSC) residing in the subventricular zone (Yang et al., 2008;
Northcott et al., 2012), with a stem cell phenotype. NSCs can be
derived from both cerebellum during development and in adulthood
(Swartling et al., 2012). It is known that neuronal precursors death
during differentiation is apoptotic in physiological development
(Contestabile, 2002; Yeo and Gautier, 2004; Argenti et al., 2005;
Allais et al., 2010) and that this process is regulated by signaling
pathways rather than by the apoptotic machinery (Desagher et al.,
2005). Recently, various mouse models (orthotopic, transgenic, and
somatic gene transfer animals) have been used to demonstrate that
stem/progenitor cells can be successfully transformed recapitulating
the molecular and phenotypic characteristics of MYCN-driven SHH
MB orMYCN- orMYC-driven Group 3MB (Hovestadt et al., 2020).

β-arrestins proteins are the major transducers of G protein-
coupled receptors (GPCRs) (Crépieux et al., 2017); they act by
scaffolding proteins that can be activated independently, or in
conjunction with G proteins, in both cytosol and nucleus.
Moreover, in response to Shh stimuli, β-arrestin 1 (ARRB1)
changes its subcellular localization and moves to a specialized
structure required to Shh response, the primary cilium (Kovacs
et al., 2008). In cerebellar NSCs, ARRB1 is epigenetically silenced to
maintain stem cell features. The re-expression of ARRB1 enhances
the cell cycle inhibitor P27 while inhibiting proliferative signaling,
thus resulting in stem cell differentiation and growth arrest (Po et al.,
2017). Moreover, in GCPs in which ARRB1 moved to the nucleus, it
forms a complex with cofactors (P300 and CREB) increasing the
transcription of p27, a differentiation marker of GCPs (Ma and Pei,
2007). Parathath and colleagues described a negative feedback

mediated by Shh-stimulated ARRB1 driving to cell cycle exit
through transcription enhance of P27 (Parathath et al., 2010).

E2F1 is a transcription factor implicated in the control of GCPs
cell fate in the postnatal cerebellum (Wang et al., 2007). E2F1 has a
central role in cell cycle progression interacting with retinoblastoma
protein (pRB), but it is now clear that its function is not limited to
cell cycle regulation, but also for tuning apoptosis, senescence and
DNA-damage response (Denechaud et al., 2017). Depending on the
interactors which it partners with, E2F1 can direct the GCPs towards
cell proliferation and differentiation (RB/E2F1 complex) or towards
apoptosis at the end of postnatal development of cerebellum (Suzuki
et al., 2011). Moreover, an aberrant expression of E2F1 on GCPs has
also been implicated in cerebellar neoplastic transformation (Suzuki
et al., 2011) and its acetylation was increased when GCPs were
stimulated with Shh (Miele et al., 2021).

Notably, in a recent study, we reported a new regulatory axis in
which ARRB1 and E2F1 are critical for MB progression. Specifically,
low expression of ARRB1 promotes tumor growth enhancing the
E2F1 survival function, while high expression of ARRB1 triggers
E2F1 acetylation switching E2F1 function from pro-survival into
pro-apoptotic (Miele et al., 2021). However, the physiological
mechanism of action of ARRB1 and E2F1 in regulating the two
SHH MB cell-of-origin remains elusive.

In the present work, we identified a new crucial axis in two
physiological neuronal cell models, in which ARRB1 works in
partnership with acetylated E2F1 to guide the physiological
apoptosis and growth arrest in GCPs and NSCs.

2 Materials and methods

2.1 Mice

Mice were purchased from Charles River Laboratories and
maintained in the Animal Facility at Sapienza University of
Rome. All procedures were performed in accordance with the
Guidelines for Animal Care and Use of the National Institutes of
Health with the approval of the Ethics Committee for Animal
Experimentation (Prot. N 03/2013) of Sapienza University of Rome.

2.2 Murine cerebellum: Isolation and
preparation

Cerebella were aseptically removed from CD1 mice at different
stage of cerebellar development (day 2, 5, 7 and 15) and store at −80°.
Murine cerebella were lysed in lysis buffer as described in “Western
Blot analysis” section (see below). For immunohistochemical
staining, cerebella from post-natal day 2, 5, 7, 10, and 15 were
formalin-fixed and paraffin embedded (FFPE).

2.3 Murine cerebellar GCPs: Isolation,
culture, and treatments

Cerebellar GCPs were prepared from 4-day-old CD1 mice
according to established protocols (Wechsler-Reya and Scott,
1999; Argenti et al., 2005). Briefly, aseptically removed cerebella
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were cut into small pieces and incubated for 15 min at room
temperature in D-PBS containing 0.1% trypsin, 0.2% EDTA, and
100 μg/ml DNase before being triturated with fire-polished Pasteur
pipettes to obtain a single-cell suspension. After centrifugation, cells
were resuspended in Neurobasal medium supplemented with B27,
penicillin–streptomycin, and L-glutamine (2 mM) (Invitrogen) and
plated at a density of 8 × 105 cells/cm2 on tissue-culture dishes or
eight-well Lab-Tek chamber slides (Permanox slide; Nunc,
Naperville, IL) coated with 1 mg/ml poly-L-lys. GCPs were
transfected with Arrb1 siRNA [ON-TARGETplus SMARTpool
(L40976-00-005)] or pcDNA3 β-arrestin1 HA (gift from Robert
Lefkowitz (Addgene plasmid # 14693) (Luttrell et al., 1999) using
Lipofectamine 2000 3 h after plating (Invitrogen). GCPS were
transfected at a rate of 15%–20%. Shh-stimulated GCPs were
incubated with recombinant Shh (3 μg/ml) (R&D, Minneapolis,
MN, United States) or BSA 0.1% (as control) for up to 48 h and
cells were harvested for RNA/protein analysis.

2.4 Neural stem cells isolation, cultures and
treatments

NSCs were isolated from mouse cerebella of 4-day-old
CD1 mice, as previously described (Po et al., 2010) and were
cultured in stem-cell medium (SCM) consisting of DMEM/
F12 supplemented with 0.6% glucose, 25 mg/ml insulin, 60 mg/
ml N-acetyl-L-cysteine, 2 mg/ml heparin, 20 ng/ml EGF, 20 ng/ml
bFGF (Peprotech, Rocky Hill, NJ), 1X penicillin-streptomycin, and
B27 supplement without vitamin A. For differentiation studies,
NSCs were mechanically dissociated and plated into D-poly-
lysine–coated dishes in differentiation medium (DFM) (DMEM/
F12 with N2 supplement and 2 mg/ml heparin, 0.6% glucose, 60 mg/
ml N-acetyl-L-cysteine, 1% FBS). Cells were harvested after 8, 16,
and 24 h.

Amaxa nucleofector (Lonza) was used to transfect plasmids
according to manufacturer’s procedure. pcDNA3 β-arrestin1 HA.
Silencing of β-arrestin1 was performed using ON-TARGETplus
SMARTpool (L40976-00-005) from Thermo Scientific.
Transfection efficiency of ARRB1-HA overexpression
experiments ranged between 80% and 90%. siGLO Red
transfection control reagents (10 nM) (Dharmacon) were used to
verify transfection efficiency that ranged between 75% and 85%.

2.5 RNA extraction and real-time PCR

Total RNA was purified and reverse transcribed as previously
described (Spiombi et al., 2019). Quantitative RT-PCR (RT qPCR)
analysis was performed using the ViiA 7Real-Time PCR System
(Thermo Scientific), using best coverage TaqMan gene expression
assays, specific for each analyzed mRNA.

Each amplification was performed in triplicate, and the average
of the three threshold cycles was used to calculate the amount of
transcripts (Thermo Scientific). Transcripts quantification was
expressed in arbitrary units as the ratio of the sample quantity to
the calibrator or to the mean values of control samples. All values
were normalized to the 4 endogenous gene controls: Gapdh, ß-
Actin, ß2-microglobulin and Hprt.

2.6 Western blot analysis

Murine cerebella and cells were lysed in Tris–HCl pH 7.6,
50 mM, deoxycholic acid sodium salt 0.5%, NaCl 140 mM, NP40
1%, EDTA 5 mM, NaF 100 mM, Na pyrophosphate 2 mM and
protease inhibitors, while nuclear extraction was performed as
already described (Po et al., 2017).

Lysates were separated on 8% or 6% acrylamide gel and
immunoblotted using standard procedures. The following
antibodies were used: anti-GLI1 (L42B10, Cell Signaling), anti-
CASPASE-3 (D3R6Y, Cell Signaling), anti-β-ARRESTIN1 K-16 (sc-
8182; Santa Cruz Biotechnology), anti-ACTIN I-19 (sc-1616; Santa
Cruz Biotechnology), anti-E2F1 C-20 (sc-193; Santa Cruz
Biotechnology), anti-E2F1 (acetyl K120/K125) (AP10555SU-N,
Acris Antibodies); anti-ZIC1 (ab72694; Abcam); anti-PARP
p85 Fragment (G7342; Promega), anti-SP1 1C6 (sc-420X; Santa
Cruz Biotechnology), anti-PCNA (2586; Cell signaling), anti-H3 (ab
1971, Abcam), and anti-GAPDH (ab8245; Abcam). HRP-conjugated
secondary antibodies (Santa Cruz Biotechnology) were used in
combination with enhanced chemiluminescence (ECL Amersham).

2.7 Cell biology assays

Cell proliferation was evaluated by bromodeoxyuridine (BrdU)
labeling assay (Roche) according to the manufacturer’s instructions.
BrdU pulse was of 24 h and cells were counted in triplicate and the
number of BrdU positive nuclei was annotated.

Apoptosis was detected by terminal deoxynucleotidyl
transferase-mediated UTP nick end labeling (TUNEL) assay with
the In Situ Cell Death Detection Kit Fluorescein (Cat. 702 No.
1684795, Roche Applied Sciences), according to the manufacturer’s
instructions. Images were acquired with Carl Zeiss microscope
(Axio Observer Z1) and AxioVision Digital Image Processing
Software. Cells were counted in triplicate and the number of
TUNEL-positive nuclei was annotated.

For overexpression experiments, a double-labeling assay for
detecting apoptotic cells, using the terminal deoxy-nucleotidyl
transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay,
and antigens of interest (pcDNA3 β-arrestin1 HA) using anti-HA (sc-
7392 Santa Cruz), by immunofluorescence. Immunofluorescence
staining was performed as already described (Po et al., 2017) using
anti-β-ARRESTIN1K-16 (sc-8182; Santa Cruz Biotechnology) for GCPs
and anti-NANOG (REC-RCAB0002P-F; Cosmo Bio Co), anti-SOX2
(MAB4343; Millipore Billerica, MA), anti-NESTIN antibody (ab81462;
Abcam), anti-GFAP monoclonal antibody (MAB360; Millipore), anti-
PARVALBUMIN (P3088; Sigma); anti-S100 (S2644; Sigma); anti-β-III
TUBULIN (MAB1637; Millipore) for NSCs.

To evaluate cell viability GCPs were plated at a density of 5 × 105

cells/well in 96-well plates and were incubated with MTS solution
(CellTiter 96® AQueous One Solution Promega).

2.8 Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) analyses were
performed on chromatin extracts according to manufacturer’s
specifications of MAGnify Chromatin Immunoprecipitation
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System kit (Invitrogen). Sheared chromatin was
immunoprecipitated with 5 µg of the following antibodies: anti-β-
arrestin1 (Clone 10 cat. 610550 BD Biosciences) or normal mouse
IgG, provided by the kit, was used as negative control. Eluted DNA
was amplified by qPCR using EpiTect ChIP qPCR Assay (Qiagen)
for the indicated genes (Mouse Cdc25a, Trp73, Cdkn1b, Casp3,
Casp7, Zeb1, Zeb2, Birc5, Vim and Fn1). As control we used
Actin and Gapdh gene. Data are presented as input percentage
enrichment over background.

2.9 Immunohistochemistry (IHC)

For immunohistochemical staining, 5 μm FFPE sections were
used. Mouse FFPE sections from different stage of cerebellum
development (p2, p4, p7, p10, p15) were stained with the
following primary antibodies: anti-CASPASE-3 (D3R6Y, Cell
Signaling), anti-CDC25A (PA5-77902), anti-P27 (sc-1641; Santa
Cruz Biotechnology) and then stained with hematoxylin and
eosin (H&E).

CASPASE-3 and CDC25A indexes were generated based on the
count of DAB positive cells on the total number of cells, quantified
using the bioimage analysis software QuPath (Bankhead et al.,
2017).

2.10 Statistical analysis

Statistical Analysis was performed using Prism software Version
6.0 (GraphPad, United States). Statistical differences were analysed
by Mann–Whitney U test for non-parametric values and p-values
lower than 0.05 were considered statistically significant. Results are
expressed as means ± S.D.

3 Results

3.1 ARRB1 controls apoptosis and cell
proliferation in granule cell progenitors
(GCPs)

We wanted to elucidate the function of ARRB1 in the early
postnatal stages of cerebellar development, in which GCPs
proliferation, differentiation, and death are coordinated by Shh
signaling (Wechsler-Reya and Scott, 1999). As expected, between
4 and 7 days after birth, undifferentiated GCPs are in proliferating
stage under the effect of an active Hh signaling, whose activation is
detectable by GLI1 protein expression levels. Subsequently, between
7 and 21 days after birth, GCPs progressively exit cell cycle,
demonstrated by increased level of P27 (Supplementary Figure
S1), and differentiate into mature granule cells (no detectable
level of GLI1) [Figure 1 and (Ferretti et al., 2008)]. We observed
detectable protein levels of ARRB1 at different stage of cerebellar
development (2-, 5-, 7-, 15 post-natal day old mouse cerebella),
under its physiological regulator Shh (Figure 1A; Supplementary
Figure S2A). We observed a co-expression of GLI1 (as a readout of
Shh signaling activation) and ARRB1 between 5 and 7 days of
cerebellum development (Figure 1A). As already described,

GLI1 regulates the shuttling of ARRB1 into the nucleus but not
its transcription since ARRB1 is not a direct target of Gli1. For this
reason, a concomitant increase in the two molecules is not
appreciated. ARRB1 appeared to primarily function as a nuclear
messenger for GCPs, likely providing scaffolds that regulate the
localization and concentration of specific transcription factors at
target gene promoters (Ma and Pei, 2007; Parathath et al., 2010).

Cerebellar GCPs were isolated according to procedures reported
in the material and method section and we confirmed that GCPs
expressed specific lineage markers such as ZIC1 and MATH1
(Supplementary Figures S2B, S3A). Based on previous findings
(Parathath et al., 2010), exogenous Shh stimulation of cerebellar
GCPs from post-natal day 4 mice significantly increased their GLI1
(both mRNA and protein levels) (Figure 1B; Supplementary Figure
S2C). Interestingly, when such experiment was repeated on GCPs
subjected to siRNA-mediated silencing of ARRB1 (si-Arrb1), the
Shh-induced increase in proliferation was even more substantial
reported as a percentage of BrdU positive cells (Figure 1C), while no
difference was observed in terms of cell viability (Supplementary
Figure S4A).

ARRB1 is known to interact with CREB and with the histone
acetyltransferase P300 on the promoter of P27, enhancing its
expression by acetylating histones H3 and H4 (Kang et al., 2005;
Parathath et al., 2010). Our findings confirmed that the presence of
ARRB1 in GCPs serves to terminate Shh-induced proliferation by
increasing P27expression (Figure 1D). These findings are consistent
with previous reports of a negative feedback loop, whereby
mitogenic Shh signaling causes nuclear accumulation in
cerebellar GCPs of the cyclin-dependent kinase inhibitor P27,
which ultimately induces their cell-cycle exit (Parathath et al.,
2010). In contrast, neither Shh stimulation nor ARRB1 depletion
had any effect on GCPs differentiation, as reflected by β III
TUBULIN (βIIItub) (Figure 1E) and ZIC1 (Supplementary
Figures S2B, S3A).

Further on, considering Shh the major regulator of
ARRB1 function in GCPs we examined cell apoptosis as it is a
physiological process that plays fundamental roles in normal
cerebellar development (Yeo and Gautier, 2004; Argenti et al.,
2005). As shown in Figure 1F, Supplementary Figure S4B, Shh
stimulation increased apoptosis of GCPs, and ARRB1 appears to be
a key player in this effect given the significantly blunted apoptotic
response observed in ARRB1-depleted cells and increased when
ARRB1 is overexpressed. Accordingly, after Shh stimulation, GCPs
increased the apoptotic PARP-C expression in the nucleus, together
with ARRB1, while PARP-C protein decreased after si-Arrb1
(Supplementary Figures S2D, S4C). Moreover, no modulation of
cell cycle associated protein (PCNA) was observed in siRNA
experiments (Supplementary Figures S2D, S4C).

Cerebellar GCPs apoptosis is also reportedly dependent on
expression of the transcription factor E2F1 (O’Hare et al., 2000).
However, in normal and neoplastic lung cells, ARRB1 binds E2F-
responsive promoters of genes that promote cell proliferation and
survival (Dasgupta et al., 2011). The Janus-like behavior of E2F1 is
controlled by its acetylation status (Pediconi et al., 2003).
Acetylation of E2F1 “shifts its attention” from target genes that
promote cell cycle progression (e.g., Cell division cycle 25a - Cdc25a,
Thymidylate synthetase -Tyms, and Baculoviral IAP
repeat–containing 5- Birc5) (Dasgupta et al., 2006; 2011) or
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epithelial mesenchymal transition (EMT) (e.g., Zinc Finger E-Box
Binding Homeobox 1-Zeb1, Zinc Finger E-Box Binding Homeobox
2-Zeb2, Vimentin and Fibronectin 1-Fn1 (Pillai et al., 2015) to those
that are pro-apoptotic, including Transformation-related protein 73
(Trp73), Caspase 3 (Casp3) and Caspase 7 (Casp7) (Pediconi et al.,
2003; Ianari et al., 2009). Therefore, the role of ARRB1 in GCPs
apoptosis might conceivably be related to its effects on
E2F1 acetylation.

Previous evidence (Miele et al., 2021) showed that E2F1 and
ARRB1 co-immunoprecipitated in GCPs and the acetylation of
E2F1 (E2F1-ac) are induced by overexpression of ARRB1. Based
on these data, we demonstrated that silencing of ARRB1 had no
effect on the abundance of E2F1 protein, but it appreciably
diminished levels of the acetylated form and cleaved form of
CASPASE 3 (CASP-3-C), one pro-apoptotic target of E2F1-ac
(Figure 1G; Supplementary Figure S2E).

Collectively, these findings highlight two critical roles for
ARRB1 in physiological neuronal cell models: induction of GCPs
apoptosis by the acetylation of E2F1 and termination of cell cycle
progression by enhancing P27 expression.

3.2 ARRB1 controls GCPs apoptosis via
acetylated E2F1 pro-apoptotic targets

We evaluated the target genes regulated by ARRB1 in Shh
treated GCPs. In particular, we evaluated whether
ARRB1 mediates the induction of genes known to be targets of
E2F1-ac: i) Pro-apoptotic genes: Trp73, Casp3 and Casp7; ii) Pro
survival/proliferative genes: Cdc25a, Birc5, and Tyms; iii) Genes
involved in epithelial mesenchymal transition: Zeb1, Zeb2, Vimentin
and Fn1.

FIGURE 1
ARRB1 controls cell proliferation and apoptosis in granule cell progenitors (GCPs) via E2F1 acetylation. (A) Murine cerebellum Western blot.
Representative images of endogenous GLI1 and ARRB1 in murine cerebella at different days (2, 5, 7, 15) of cerebellar development. GAPDH: loading
control. (B–G) GCPs experiments. Shh was added to cultures of murine cerebellar GCPs that had or had not undergone siRNA-mediated silencing of
ARRB1 (siArrb1). After 48 h of Shh stimulation, GCPs were assayed for: (B) Gli1mRNA and protein levels (as a read-out of Shh signaling activity), and
ARRB1 protein level; ACTIN as loading control; (C) proliferation reflected by bromodeoxyuridine (BrdU) uptake; (D) left: p27 mRNA levels ((D) right and
Supplementary Figure S4B: Overexpression data are consistent); (E) differentiation reflected by β III tubulin mRNA levels; (F) apoptosis evaluated by
TUNEL assay, and (G) ARRB1, E2F1, E2F1-ac, cleaved CASPASE-3 protein expression levels. ACTIN and HISTONE H3: loading controls. For Western blot,
densitometry values are shown below the blots and densitometric graphs are presented in Supplementary Figure S2. Data representmeans ± S.D., from at
least three independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 2
E2F1-ac targets’ transcripts after ARRB1 modulation. (A,B) Expression of pro-apoptotic E2F1-ac target genes (Trp73, Casp3 and Casp7) in GCPs that
had or had not undergone siArrb1 (black) or over-expression of Arrb1 (Arrb1-HA) (orange). (C,D) Expression of proliferative (grey) and epithelial
mesenchymal transition (violet) E2f1-ac target genes (Cdc25a, Birc5, Tyms, Zeb1, Zeb2, Vim and Fn1) in GCPs that had or had not undergone siArrb1. Data
represent means ± S.D., from at least three independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001. (E) IHC staining for ARRB1 and P27 in
representative mouse cerebellum sections at several differentiation stages (p2, p4, p7, p10, p15) (upper panels). Magnification ×10; insets ×40. Scale bar,
250 µm. CASPASE-3 and CDC25A indexes (expressed as percentage) calculated as DAB positive cells of total number of cells (bottom panels). Data
represent means ± S.D., from at least three independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001 vs. p10. #p < 0.05; ##p <
0.01 vs. p15.
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We observed by RT qPCR that among the E2F1-ac targets
induced by Shh, ARRB1 regulated only the pro-apoptotic genes
Caspase 3, Caspase 7, Trp73, as shown by both ARRB1 silencing and
overexpression experiments (Figures 2A, B).

On the other hand, the proliferative (Cdc25a, Birc5, and Tyms)
and the EMT (Zeb1 and Fn1) E2F1-ac target genes were controlled
by Shh without requiring the presence of ARRB1 (Figures 2C, D).
We did not observe a significant modulation of the other EMT genes
(Zeb2 and Vim) neither under Shh stimulation, nor after
ARRB1 silencing (Figure 2D).

To support ourmRNAdata, we evaluated by IHC two of the E2F1-ac
target proteins (CASPASE 3 and CDC25A) during mouse cerebellum
development (from p2 to p15). As shown in Figure 2E the expression
level the pro-apoptotic CASPASE 3 was expressed from p2 to p10, with a
peak on p4/p7 in a context of Shh stimulation and ARRB1 expression
(Supplementary Figure S2E). Instead, the proliferative CDC25A followed
a significant negative trend during development, decreased from p2 to
p10/p15 (Supplementary Figure S2E).

Collectively, these findings demonstrated the critical role of
ARRB1 in normal cerebellar development in induction of GCPs
apoptosis via E2F1-ac pro-apoptotic genes.

3.3 ARRB1-E2F1 complex direct regulates
the expression of E2F1-ac pro-apoptotic
target genes

Such ARRB1 function was validated by chromatin
immunoprecipitation (ChIP) experiments. In Shh treated GCPs,
ARRB1 mediates the binding of E2F1 to the promoter region of
Trp73, Casp3 and Casp7 highlighting the role of ARRB1 in the
regulation of apoptosis (Figure 3A); while it does not bind to the

promoter of pro survival/proliferative genes as Birc5 and Cdc25a,
and to epithelial mesenchymal transition genes as Zeb2, Vimentin,
Fn1 and Zeb1 (Figure 3B).

We found that ARRB1 also bound to the Cdkn1b/p27 promoter,
strengthening support for ARRB1’s role in GCPs growth arrest
(Figure 3A).

Collectively, these findings demonstrated the direct controls of
ARRB1-E2F1-ac complex on pro-apoptotic targets’ promoter regions.

3.4 ARRB1 controls apoptosis via E2F1-ac
target in neural stem cells

The early postnatal murine cerebellum contains multipotent NSCs
[described by (Lee et al., 2005)] which can also give rise to SHH MB
(Northcott et al., 2012). For this reason, we investigated the
physiological roles of ARRB1 in these cells obtained from the
cerebellum of 4 days old WT mice (Ferretti et al., 2008). NSCs
growing in stem medium expressed very low levels of ARRB1 (Po
et al., 2017) (Figure 4A; Supplementary Figure S2F), conversely they
were positive for neuronal marker β-III TUBULIN (TUBB3) and
stemness markers NANOG, NESTIN, SOX2, (Supplementary Figure
S3B). On the other hand, ARRB1 overexpression is linked to a
“differentiated neural phenotype” (Po et al., 2017), confirmed by the
expression of differentiation markers [TUBB3, S100, PARVALBUMIN
(PARV) and GFAP] (Supplementary Figure S3C).

Here, we demonstrated that ectopic expression of ARRB1 in
NSCs increased E2F1 acetylation and enhanced transcription of pro-
apoptotic E2F1-ac target genes (e.g., Trp73) but not those with
proliferative effects (e.g., Cdc25a) (Figure 4A).

As shown in Figure 4B and Supplementary Figure S2G, in
NSCs E2F1 is not acetylated in the absence of ARRB1, while in

FIGURE 3
ARRB1-E2F1 complex direct regulates the expression of E2F1-ac pro-apoptotic targets. (A,B) qPCR-ChIP assay of ARRB1 in GCPs stimulated or not
with Shh. Immunoprecipitation with IgG was performed as control. Eluted DNAwas amplified by qPCR using primers specific for the regulatory region of
the indicated genes. Actin andGapdh (not shown) were used as endogenous non-enriched regions. qPCR data are presented as percentage of ChIP input
controls. Data represent means ± S.D., from at least three independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001.
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differentiating conditions, ARRB1 protein is expressed and
increased E2F1 acetylation together with the expression of its
target Trp73 (Figure 4C; Supplementary Figure S2H). In line with
these observations, ARRB1 depletion reduced Trp73
transcription in differentiating NSCs but had no effect on
Cdc25a transcription (Figure 4C).

Consistent with the role of ARRB1 observed in GCPs, in
differentiating NSCs where ARRB1 is expressed and E2F1 is
acetylated, ARRB1 protein is expressed and induced pro-
apoptotic E2F1-ac target genes transcription.

The results in this physiological context allow us to propose a
model where ARRB1 is involved in apoptosis and cell cycle exit in
committed precursors to favor cell differentiation (Figure 5).

4 Discussion

In this study, we show the key roles of ARRB1/E2F1-ac axis in vitro
experiments using two cellular populations that give rise to SHH MB:
cerebellar GCPs and NSCs, useful models to mimic the normal
cerebellar environment. Notably, the dysregulation of this process is
a major promoter of tumor cell growth in MB (Miele et al., 2021).

The developing cerebellum needs a proper and timely balance
between cell proliferation, survival, differentiation and apoptosis, this
latter is a hallmark feature of CNS development (Yeo and Gautier, 2004).

ARRB1 is known to regulate multiple intracellular signaling
pathways, many of which are involved in “life-or-death” balance in
the cell (Lefkowitz and Shenoy, 2005; Gurevich and Gurevich, 2006).
ARRB1 was described as a scaffolding protein that shuttles between
the cytoplasm and the nucleus, where it interacts with CREB and the
acetyltransferase P300 on the promoters of its target genes (Kang
et al., 2005; Parathath et al., 2010). The functional consequences of
ARRB1’s nuclear activity are less clear than the cytoplasmic ones,
and many appear to be cell type- and/or context-specific.
ARRB1 transcriptionally regulates genes involved in cell-cycle
arrest/differentiation (p27, c-fos), those involved in proliferation/
survival by recruiting E2F1 (cAbl, Bcr/Abl), Cdc25A, Tyms, and Birc5
(Dasgupta et al., 2011; Qin et al., 2014) as well as those controlling
apoptosis (Trp73, Caspase 3 and Caspase 7), mediated by the binding
with the E2F1 acetylated form (Miele et al., 2021).

To evaluate ARRB1’s role within physiological cerebellar models,
we analyzed its temporal expression at different stages of cerebellum
development (from 2 to 15 days), and we carried out experiments
modulating its levels in two cerebellar cell models, GCPs and NSCs.

In committed neuronal precursors (GCPs), we carried out
experiments modulating β-arrestin-1 levels after Shh and
chromatin immunoprecipitation experiments in GCPs to assess
its role in this context. We found that ARRB1, in GCPs, as
shown in Figure 5, acts in concert with its molecular partners
(E2F1-ac) to ensure normal cerebellar development. In the
present work we demonstrated that ARRB1 exerts its
physiological nuclear functions at two levels: a) by the activation
of the cell cycle exit via P27 (Figures 1–3), and b) by enhancing the
acetylation of E2F1, redirecting its functions to non-proliferative
ones. Indeed, ARRB1 promotes the acetylation of E2F1 under Shh
stimuli and induce apoptosis via the pro-apoptotic targets of E2F1-
acetylated (Trp73, Caspases 3 and 7) (Figures 2, 3). Our findings are
consistent with reports of the diffuse, physiological GCPs apoptosis
(Ahlgren and Bronner-Fraser, 1999; Charrier et al., 2001).

In the other cell model analyzed, neural stem cells (NSCs),
ARRB1 is epigenetically suppressed, such as other developmental
genes, during the expansion phase of the cerebellar pool ((Burgold
et al., 2008) and this report), to favor the proliferation and survival.
Later, when the pool of NSCs has expanded, ARRB1 expression is
reactivated to terminate the proliferative phase and allow the
precursors to undergo differentiation or apoptotic elimination
(Wechsler-Reya and Scott, 1999; Po et al., 2017). Coherently, our
result demonstrated that the ectopic expression of ARRB1 in NSCs
induced the expression of acetylated E2F1 and its target Trp73
(Figure 4A). Moreover, the endogenous expression of the ARRB1,
under differentiation conditions, regulated the transcription of pro-
apoptotic genes such as Trp73 but not that of the proliferative genes
(Cdc25a) (Figures 4B, C).

FIGURE 4
ARRB1 controls NSCs apoptosis via E2F1 acetylation. (A) Effects
of Arrb1-HA overexpression and mock transfection (control) of NSCs
on ARRB1 and E2F1-ac protein levels (Western blot assay-left) and
Trp73 and Cdc25a mRNA levels (right). *p < 0.05 vs. mock
transfected cells (Mock). GAPDH: loading control for Western blot. (B)
Western Blot analysis of endogenous ARRB1, E2F1, and E2F1-ac
expression in NSCs cultured in SCM (0 h) and after 8–24 h culture in
DFM. GAPDH: loading control. Effects of si-Arrb1 or scrambled control
(siCtr) on (C) Trp73 and Cdc25a mRNA levels (left) and ARRB1 protein
levels (Western blot assay-right) in NSCs cultured in SCM (0 h) and
after 18 h culture in DFM. ACTIN: loading control for Western blot. For
Western blot, densitometry values are shown below the blots and
densitometric graphs are presented in Supplementary Figure S2. *p <
0.05 vs. scrambled control (siCtr).
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MiR-326 also contributes to this process by blunting
proliferative signals mediated by E2F1, Hedgehog, and Notch,
and by promoting cell differentiation as already reported
(Ferretti et al., 2008; Kefas et al., 2009; Po et al., 2017; Miele
et al., 2021).

Altogether, our results provide a significant contribution to
elucidate a molecular mechanism through which ARRB1 mediates
apoptosis and cell cycle exit in the two cells of origin of SHH-MB:
cerebellar granule neuron precursors and neural stem cells.
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FIGURE 5
Schematic model of ARRB1/E2F1-ac functions in GCPs and NSCs. Overview of roles played by ARRB1/E2F1-ac in normal cerebellar development.
(A): Committed neuronal precursors (i.e., NSCs grown in DFM, GCPs). In our previous works, we identified miR-326 as a miRNA necessary for maturation
of granule cell progenitors (GCPs) into mature granule cells (Ferretti et al., 2008). Moreover, this miRNA is integrated into the first intron of the Arrb1 gene
and shares the same regulatory regions as its host gene. miR-326 also contributes to ARRB1 functions by blunting proliferative signals mediated by
E2F1, Hedgehog, and Notch, and by promoting cell differentiation (Ferretti et al., 2008; Kefas et al., 2009; Po et al., 2017; Miele et al., 2021). Committed
neuronal precursors express ARRB1 and mir-326, which regulate their development at multiple levels. Shh signaling upregulates ARRB1 levels and
promotes its translocation to the nucleus. There ARRB1, in complex with P300, induces acetylation of E2F1 (E2F1-ac), redirecting the transcription factors
activity from survival/proliferative gene targets towards those that promote apoptosis (Trp73, Caspases 3 and 7). Interacting with CREB and P300,
ARRB1 upregulates the expression and nuclear accumulation of P27, which eventually blocks cell cycle progression. miR-326 favors neuronal cell
differentiations by inhibiting multiple survival/proliferative signaling: E2F1, Hedgehog (Hh) and Notch via direct binding of the 3′-UTRs of E2f1, Smo, Gli2,
Notch1 and Notch2. (B): In NSCs, non-expression of ARRB1 and miR-326 promotes cell proliferation, survival, and stemness by favoring non-acetylated
E2F1 activity and active Hedgehog (Hh) and Notch signaling.
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SUPPLEMENTARY FIGURE S1
Expression levels of P27 during mouse cerebellum development. IHC
staining for P27 in representative mouse cerebellum sections at several
differentiation stages (p2, p4, p7, p10, p15). Magnification 10X; insets 40X.
Scale bar, 250 µm.

SUPPLEMENTARY FIGURE S2
Densitometric analysis. (A-H) Densitometric graphs of the western blots
presented in the manuscript. Data represent means ± S.D., from at least
three independent experiments.

SUPPLEMENTARY FIGURE S3
Characterization of cellular models. (A) Left: CT values (by RT qPCR) of
GCPs markers (Math1 and Zic1), and β-2-microglubulin (as housekeeping
gene), evaluated in silencing experiment on GCPs. Right: Western Blot
analysis of endogenous expression of ZIC1, a GCPs marker, in GCPs that had
or had not undergone siArrb1. GAPDH: loading control. (B) Representative
image of immunofluorescence staining of NSCs for stemness/neuronal
markers (NANOG, NESTIN, SOX2 and TUBB3). Nuclei are counterstained with
Hoechst. Scale bar: 10 μm. (C) Representative image of
immunofluorescence staining of differentiated NSCs for differentiation
markers (TUBB3, S100, PARV and GFAP). Nuclei are counterstained with
Hoechst. Scale bar: 10 μm. For western blot, densitometry values are shown
below the blots and densitometric graphs are presented in Supplementary
Figure S2.

SUPPLEMENTARY FIGURE S4
ARRB1 overexpression increases apoptosis in GCPs. (A) Evaluation of cell
viability, measured with MTS assay, of GCPs treated for 48 h with Shh
had or had not undergone siRNA-mediated silencing of ARRB1
(siArrb1). Statistical differences (versus untreated cells, ns = not
significant) were evaluated by One-Way ANOVA. Data represent
means ± S.D., from at least three independent experiments. (B)
Apoptosis evaluated by a double-labeling assay for detecting apoptotic
cells (TUNEL assay), and Arrb1 overexpressed (pcDNA3 β-arrestin1 HA)
using anti-HA antibody, by immunofluorescence. Data represent
means ± S.D., from at least three independent experiments; *p < 0.05;
**p < 0.01; ***p < 0.001. (C) Nuclear subcellular localization of
endogenous ARRB1, PARP-C and PCNA by Western blot (SP1 was used
as loading controls and markers for purity of nuclear fraction). For
western blot, densitometry values are shown below the blots and
densitometric graphs are presented in Supplementary Figure S2.
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