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Abstract

Motivation: Over the past decade, network-based approaches have proven useful in identifying disease modules
within the human interactome, often providing insights into key mechanisms and guiding the quest for therapeutic
targets. This is all the more important, since experimental investigation of potential gene candidates is an expensive
task, thus not always a feasible option. On the other hand, many sources of biological information exist beyond the
interactome and an important research direction is the design of effective techniques for their integration.

Results: In this work, we introduce the Biological Random Walks (BRW) approach for disease gene prioritization in
the human interactome. The proposed framework leverages multiple biological sources within an integrated frame-
work. We perform an extensive, comparative study of BRW's performance against well-established baselines.
Availability and implementation: All codes are publicly available and can be downloaded at https://github.com/
LeoM93/BiologicalRandomWalks. We used publicly available datasets, details on their retrieval and preprocessing

are provided in the Supplementary Material.

Contact: marialuisa.sponziello@uniroma.it or becchetti@diag.uniroma1.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, through the advent of big data, genomics and quan-
titative in silico methodologies, medicine is witnessing tremendous
advancements toward the understanding of the human pathophysi-
ology (Silverman et al., 2020). Gene—disease associations have been
identified by genome-wide association studies (Hardy and Singleton,
2009) and more recently by whole exome or whole-genome
sequencing studies (Koboldt ez al., 2013). While many of the mecha-
nisms underlying these associations remain largely unclear, a grow-
ing body of research highlights associations between groups of
interacting proteins and diseases within the so-called ‘human inter-
actome’, representing the cellular network of all physical molecular
interactions (Barabasi et al., 2011). A key feature is that disease pro-
teins do not appear to be uniformly scattered across the interactome
(Menche et al., 2015), but they are prone to participation in com-
mon biological activities such as, e.g. genome maintenance, cell dif-
ferentiation or growth signaling, which are the most relevant
pathways in carcinogenesis (Ozturk ez al., 2018). For these reasons,
while traditional single protein (i.e. magic bullet) approaches have

limited effectiveness in addressing complex diseases, network-based
ones can prove useful in identifying disease modules within the inter-
actome, hopefully providing insights into key mechanisms and guid-
ing the quest for therapeutic targets. Moreover, experimental
investigation of potential gene candidates is an expensive task, thus
not always a feasible option.

The human interactome refers to all protein—protein interactions
(PPIs) within a cell, including regulatory interaction of transcription
factors, metabolic enzyme-coupled interactions, protein complexes
and kinase/substrate interactions. This network is largely incom-
plete. Currently, more than 140 000 interactions involving over
13 000 proteins are known [e.g. see Korcsmaros et al. (2017) and
Gustafsson et al. (2014)]. The interactome-based approach to net-
work medicine (Barabasi ez al., 2011) proved effective for a number
of diseases, e.g. by identifying putative biomarkers and subtypes,
thus allowing a principled approach to drug targeting (Barabasi
et al., 2011; Ozturk et al., 2018). The need for new disease genes (or
disease proteins) as putative candidates for diagnosis, prognosis or
treatment, motivated the development of a number of algorithms for
disease genes and modules prediction (Ghiassian et al., 2015).
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Two related classes of methodologies have emerged over the last
decade as the most promising: module-based (Barabasi ez al., 2011;
Ghiassian et al., 2015) and network propagation (Cowen et al.,
2017; Kohler et al., 2008) algorithms. Module-based algorithms
find topological, functional or disease modules in the interactome
network, on the hypothesis that these represent cellular components
likely involved in the same disease. Network propagation (or
diffusion-based) algorithms leverage the information flow through
nearby proteins in the network from initial (known) disease genes as
their main ingredient.

While important and effective in many cases, the interactome is
only one of many sources of biological information. An important
research direction is the quest for effective techniques that allow the
seamless integration of rich and heterogeneous biological sources
into methods that were originally designed to leverage the topologic-
al features of the interactome (De Bie et al., 2007; Dimitrakopoulos
et al., 2018; Shang and Liu, 2020).

Our contribution. In this work, we introduce the Biological
Random Walks (BRW) framework for disease gene prioritization.
The proposed framework leverages the integration of multiple bio-
logical sources within a propagation-based approach. We compare
BRW’s performance against well-established baselines, such as:
RWR (Navlakha and Kingsford, 2010), DIAMOnD (Ghiassian
et al., 2015), DADA (Erten et al., 2011) and RWR-M (Valdeolivas
etal.,2019). In particular, we investigate BRW’s performance along
different axes: (i) an in-depth, comparative analysis on four cancer
phenotypes (i.e. breast cancer, lung adenocarcinoma, papillary thy-
roid cancer and colorectal adenocarcinoma); (ii) a broad compara-
tive analysis of BRW’s prioritization performance over a wide
spectrum of Mendelian diseases with different characteristics and
prior information available; (iii) an external validation using Food
and Drug Administration (FDA)-approved drugs for breast cancer
treatment, along with an evaluation of the algorithm results’ stabil-
ity across multiple population studies [some of the ideas presented
in this submission, albeit in preliminary form and accompanied by a
minimal, internal validation, appeared in Gentili et al. (2019). For
the sake of completeness, Supplementary Section C.4 presents a
comparison of our approach with Gentili et al. (2019)].

2 Materials and methods

2.1 BRW
BRW build on the hypothesis that integrating different biological in-
formation sources may better reflect the complexity of protein inter-
actions in a cell’s process. In light of this insight, our approach
integrates information on pairwise protein interaction of the PPI net-
work (Barabasi et al., 2011) with other biological data in a unified
framework. Our approach is to some extent agnostic to the particu-
lar biological data source, as long as it affords a principled notion of
similarity between proteins. In the remainder, we use bold lowercase
to denote vectors and capital, non-bold letters to denote matrices.
Given a vector x, x; denotes its i-th entry.

Notation. We represent the PPI as an undirected graph
G = (V,E), with genes as vertices. Any edge (i, j) represents a
known PPI recorded in the PPI. We assume | V| = 7 in the following.
For a given gene i, Nj,(i) denotes the subset of G’s vertices whose
shortest path distance from i is exactly b.

2.1.1 Random walks with restart

Random Walk with Restart (RWR) (Kohler et al., 2008) is a
diffusion-based method, whose purpose is identifying disease mod-
ules that are topologically ‘close’ to known disease genes in the
interactome. It was shown to outperform other prioritization algo-
rithms in many cases (Navlakha and Kingsford, 2010). In a nutshell,
this algorithm can be seen as performing multiple random walks
over the PPI network, each starting from a seed node associated to a
known disease gene, iteratively moving from one node to a random
neighbor, thus simulating the diffusion of the disease phenotype
across the interactome. More formally, the RWR is defined as:

pt = (1 -nWp +1rq. (1)

Here, W is the column-normalized adjacency matrix of the graph
and p is a vector, whose i-th entry pl(-t) is the probability of the ran-
dom walk being at node 7 at the end of the ¢-th step. € (0, 1) is the
restart probability, i.e. the probability that the random walk is
restarted from one of the (disease-associated) seed nodes in the next
step. Upon a restart, the probability of restarting the random walk
from some seed node j is q;. Vector q is normally called a personal-
ization vector in the Data Science literature. This random walk cor-
responds to an ergodic Markov chain (Levin and Peres, 2017) that
admits a stationary distribution (i.e. a fixed point) p. Nodes of the
PPI are simply ranked by considering the corresponding entries of p
in descending order of magnitude.

2.1.2 Biological information-aware random walks

For the sake of exposition, in the remainder, we refer to the biologic-
al information associated to a gene (e.g. the set of its annotations) as
the set of its features. These can include (more precisely, be derived
from) annotations from the Gene Ontology database (The Gene
Ontology Consortium, 2019) (GO in the remainder) or gene expres-
sion levels. We remark that, in principle, any reliable information
source on gene biology can be integrated. BRW ranks genes accord-
ing to the main steps outlined below.

Unlike Kohler et al. (2008) and similar approaches, our
method consists of two main steps: (i) extracting statistically sig-
nificant features from biological data, using them to compute a
personalization vector and a transition matrix used by the BRW
algorithm; and (ii) using the stationary distribution of the corre-
sponding random walk to rank genes. Our approach to computing
aggregated personalization vectors and transition matrices is out-
lined below, with further details given in Supplementary Sections
B.3 and B.4.

Computing a personalization vector. Both gene annotation data
and gene expression levels allow derivation of personalization vec-
tors that reflect some notion of similarity between a gene and a dis-
ease, with the latter represented by the set of its seed genes. In the
first case, this similarity is defined in terms of knowledge about
genes’ involvement in various biological functions and/or diseases.
In the second case, similarity is defined in terms of co-expression lev-
els of different genes in subject cases as opposed to expression levels
in a control group, using data about a population of patients
involved in a clinical trial.

For annotation data, assume we have ¢ sources of biological in-
formation (e.g. GO, KEGG pathways etc.). Let S denote the seed set.

For everyj=1,...,¢, we use F' to denote the subset of annotations
from the j-th source that are associated with at least one gene in S.
Then, for every j = 1,..., ¢, we select a subset of annotations F/, fil-

tering out annotations that are not statistically significant, as shown
in Supplementary Figure S2 (i.e. P —value > 1075, using Fisher
Exact Test and FDR correction), so that F = Uf;lff denotes the set
of all statistically significant annotations that are associated with
genes in S. Likewise, for every gene i (not necessarily belonging to
S), we denote by A(i) the set of its annotations, possibly extracted
from multiple biological information sources. We assign each gene i
a weight 0;, which reflects the extent to which 7 shares annotations
that are statistically significant for genes that belong to the seed set
of the disease under consideration. While other choices are possible,
the definition we adopted reflects the extent of the inclusion of A; in
each of the ¢ sources (Fig. 1):

‘ ; ~
[A@G) NF|
=) —=—, (2)
2

[it should be noted that Kohler et al. (2008) correspond to
choose 6; = 1ifi € S, 0; = 0 otherwise].

At this point, the components of a personalization vector q can
be computed as follows:
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Fig. 1. Network aggregation and network flow of BRW. (a) Shows the preprocessing step that combines PPI and CO-Expression topology to derive a combined network. The
transition matrix of PPI and CO-Expression network are combined using a convex combination to compute an aggregated transition matrix. Note that what is termed ‘aggre-
gated network’ in tab (a) is actually a weighted network that corresponds to the aggregated transition matrix. (b) Shows the flow of the random walker when the personaliza-
tion vector is biased with disease-specific information. In this way the flow can propagate from seed nodes (i.e. known disease genes), but also from node that are not part of

the seed set but biologically similar to it (i.e. biological teleporting probability)

0;
i = l} 3
q SN0, (3)

with N the number of genes we consider. Note that g; denotes the
probability that, upon teleportation, the random walkers jump to
gene i. Further details are given in Supplementary Section B.3.1.

We next discuss how to compute personalization vectors from
gene expression data. An important goal is the identification of dif-
ferentially expressed (DE) genes, whose expression levels systematic-
ally differ between case (breast cancer cells) and a control group
(normal breast cells). We follow the approach proposed in Menche
et al. (2017), in which subjects of the control group are assigned per-
sonalized perturbation profiles (PEEPs), from which gene
expression-aware personalization vectors can be derived. Succinctly
put, for each gene i and for each subject j, the expression level /; of
gene 7 in subject j is compared with the distribution of the expression
level of gene i within the control group by taking the corresponding
z-score z;;. This approach allows association of a ‘bar code’ to each
subject. Following Menche et al. (2017), we set |z;| > 2.5 as the
threshold to declare gene i DE in subject ;. Following the general in-
tuition stated in the introduction that disease genes generally are not
scattered across the interactome, we also bias our choice toward DE
genes that are closer to disease genes in the PPL. Eventually, we ob-
tain a personalization vector q that reflects both genes’ differential
expressions and vicinity to disease genes. For full details on comput-
ing PEEPs and deriving gene expression-aware personalization vec-
tors, we refer the reader to Supplementary Section B.3.1.

Computing a transition matrix. Similar approaches can be used
to derive a transition matrix for the RWR. Both approaches rely on
the PPL, differing on the way PPI’s edges are assigned weights that
reflect genes’ similarity and determine the probabilities of edge tra-
versals. We leverage categorical, biological information (e.g. gene
annotations) by defining a weighted transition matrix W, in which
each entry W;; depends on the extent to which nodes/genes 7 and j of
the PPI share common annotations (i.e. they are involved in com-
mon biological processes) that are also significant for the disease. In
more detail, considered genes i and j, we define the following
Disease Specific Interaction Function (DSI function in the
remainder):

DSI(i,j) = |AG) NAG) N Fl, (4)

where we remind that A(k) denotes the set of gene k’s annotations,
while F denotes the overall set of annotations that are statistically
significant for disease genes. Intuitively, the higher DSI(i, j), the
more i and j share annotations that are also statistically significant
for the disease under consideration. In the end, edges in the PPI will
be assigned weights depending on the DSI function as follows:

W, — { (c)+ DSI(i.j) if (i.j) € E, )
otherwise.

Here, c is a positive constant that accounts for usual sparsity of
the available datasets, so that no biological information may be
available for the end-points of a link in the PPL In this case, the link
receives a minimum weight c. As with personalization vectors, gene
expression information about a population of patients can also be
used to define a tissue-specific, population-dependent transition ma-
trix. Specifically, gene expression information is used to assign
weights to edges of the underlying PPI network, this time reflecting
similarities between genes in terms of co-expression with respect to
the subject population. Consider a CO-Expression network in which
each pair of genes (4, f) is assigned a score equal to the Pearson’s cor-
relation coefficient pc;; between the expression levels of i and j with-
in the population. We can define a transition matrix W by assigning
each edge (i, j) of the PPI network a probability as follows:

= peijl 6)
2 keng) Peil

where N(i) is the set of i’s neighbors in the PPI network. Note that
(i) for every node/gene i we consistently have a probability distribu-
tion over its incident edges and (ii) the importance of edges reflects
the absolute value of the correlation between the expression levels of
two genes within the population of interest.

Integrating biological information and gene expression. We dis-
cussed above two orthogonal approaches to the design of personal-
ization vectors. The first one leverages similarities between the
biological processes associated to known disease proteins and those
to be prioritized. Hence, teleporting probabilities depend on the
seed set through association with common biological processes. In
the second case, teleporting probabilities depend on information
that is tissue-specific (the level of expression in a population of sub-
jects affected by a certain disease) and partly on the seed set, but this
time through the PPI’s topology. Hence, these two approaches large-
ly rely on complementary sources of information. In order to inte-
grate these complementary sources into a unique personalization
vector that leverages both, we follow a simple, yet mathematically
principled approach, whereby we take a convex combination of the
corresponding personalization vectors. Namely, assume, we have
computed two personalization vectors q; and q,, the former using
biological information only, the latter using gene expression data
and the PPI. We obtain a personalization vector as follows:

q=oaq; + (1 —o)qy, (7)

where o € [0, 1]. Parameter « allows to weigh in the relative import-
ance of the different information sources we are using. Intuitively,
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this type of aggregation amounts to considering a gene a potential
candidate if it is statistically significant in terms of its involvement in
biological processes, of its gene expression levels in the subject
group, or both (note that this approach seamlessly extends to an ar-
bitrary number of information sources). The choice of o (and other
parameters of the model), its impact on performance and depend-
ence of the optimal choice on the scenario at hand are discussed in
detail in Sections 3 and 4 and Supplementary Section C.2. Remark.
Despite its simplicity, this is a mathematically principled choice. In
particular, it is well-known (Jeh and Widom, 2003) and easy to
show that the stationary distribution corresponding to the convex
combination of two personalization vectors q; and q, is itself the
linear combination of the stationary distributions corresponding to
q; and q,, respectively. Briefly put, the parameter o allows us to
tune the relative importance of the information provided by gene
annotations and gene expression levels, respectively. Moreover, this
approach extends seamlessly to an arbitrary number of heteroge-
neous sources of information (and corresponding personalization
vectors). Other aggregation methods were also considered, yet they
provided worse or at most comparable results. Some are presented
in Supplementary Section B.3.2 for the sake of completeness. In the
previous paragraphs, we have seen how we can derive random walk
transition matrices using only information about biological proc-
esses (i.e. annotations) or gene expression data from a population of
subjects. As with personalization vectors, multiple transition matri-
ces derived from complementary biological sources can be inte-
grated into a single aggregate tramsition matrix. For example,
assume, we computed transition matrices Wy and W, using biologic-
al and gene expression information, respectively. Any convex com-
bination of W, and W, is a feasible transition matrix. Namely, for
some f € [0, 1], we consider the transition matrix

W = Wy + (1 — ) W,.

It is easy to see that (i) W is still a transition matrix, i.e. the
entries of each row sum to one and that (ii) the approach seamlessly
extends to any number of complementary sources. In the case of bio-
logical annotations and gene expression data, f =1 corresponds to
only considering biological annotations, whereas = 0 corresponds
to only leveraging gene expression data. So, f§ is a parameter, whose
tuning allows us to weigh the importance of one source of informa-
tion with respect to the other.

3 Results

This section investigates BRW’s performance in prioritizing gene
candidates for genetic diseases.

3.1 Experimental setup
We used a number of biological data sources. Some of them were
used as inputs, to define key parameters of our algorithms, while
others were used to biologically validate the results of the algorithms
we considered. They are briefly described here and more extensively
in Supplementary Section A.

Data sources. The experiments discussed in Section 3 were con-
ducted on the HIPPIE PPI network (Alanis-Lobato et al., 2016) and
on the same PPI network as in Ghiassian et al. (2015) for the sake of
comparison.

We used three different sources of gene biological information:
GO Consortium (http://geneontology.org/) where, for each gene, we
downloaded its biological processes, KEGG (Kanehisa, 2019;
Kanehisa and Goto, 2000; Kanehisa et al., 2019) and Reactome
(Jassal et al., 2020), which we used to download pathways’ annota-
tions. Gene expression datasets were downloaded from The Cancer
Genome Atlas database (https://portal.gdc.cancer.gov/).

We validated the methods considered in this study both via an in-
ternal validation on known disease genes and through an external
validation using drug target associations. In more detail, we used
disease-gene associations as in Ghiassian et al. (2015) that describe
a corpus of 70 Mendelian diseases. From Pinero et al. (2020), we
further derived known disease—gene associations for the four

different cancer types that we investigate in Section 3 (i.e. breast
cancer, lung adenocarcinoma, papillary thyroid cancer and colorec-
tal adenocarcinoma). Finally, we used Drug-Gene Target associa-
tions from DrugBank (https:/go.drugbank.com/) (Wishart et al.,
2017). We selected only drugs approved for breast cancer treatment
from FDA (https://www.cancer.gov/about-cancer/treatment/drugs/
breast) (Supplementary Table S2).

All data sources mentioned above are more extensively discussed
in Supplementary Section A.

Baselines. To provide a robust performance assessment, we com-
pared BRW with a number of well-known, state-of-art baselines for
disease gene prioritization, namely, RWR (Kohler et al., 2008),
DIAMOnD (Ghiassian et al., 2015), DADA (Erten et al., 2011) and
RWR-M (Valdeolivas et al., 2019). For the sake of completeness,
Supplementary Section C.4 also compares our approach against an
embryonic (and underperforming) version of our framework that
was presented in Gentili et al. (2019).

Performance indices. We used the widely adopted indices
Recall@K and nDCG in some of the experiments described in the re-
mainder. To keep presentation self-contained, they are briefly
described in Supplementary Section C.1.

3.2 Multi-omics integration improves algorithm

performance

In a first round of experiments, we performed two (internal) valid-
ation steps: (i) we first compared the algorithms with respect to four
cancer phenotypes (i.e. breast cancer, lung adenocarcinoma, papil-
lary thyroid cancer and colorectal adenocarcinoma), for which both
biological annotations and gene expression data are available; and
(ii) as a further step, we performed a broader, yet less specific valid-
ation on a corpus of 70 manually curated Mendelian diseases
(Ghiassian et al., 2015), for which only biological annotations were
used. For each disease, we performed a mean 100-fold validation,
by sampling 70% of known disease genes uniformly at random and
using the rest to test the algorithms. For each tested disorder, we
computed Recall@K and the nDCG of each algorithm.

Four cancer phenotypes. We performed a grid search to identify
the best combination of hyper-parameters (o, 8, 7). The benchmark,
discussed in Supplementary Section C.2 and illustrated in
Supplementary Figures S6 and S7, highlights interesting, mixed
results. For the task of disease gene prioritization [we remark that
the settings discussed here are not optimal for other tasks in general,
e.g. drug target discovery (see Section 3.4)] and to the purpose of
computing personalization vectors (i.e. teleporting probabilities),
the signal contained in statistically significant annotations derived
from seed genes is definitely stronger than the signal carried by gene
expression, so that the best choice for disease gene prioritization on
cancer phenotypes is o = 1.0, thus, completely removing informa-
tion about DE genes. However, gene expression information is cru-
cial in determining the transition matrix of the random walk, with
values of € [0.25,0.5] achieving best predictive performance, indi-
cating that both information sources provide crucial information to
BRW for disease gene ranking.

Results for the four cancer phenotypes show that algorithms that
only leverage the PPI tend to perform worse in terms of both
Recall@k and nDCG, as shown in Figure 2a and b. Conversely,
multi-Omics methods that, like BRW and RWR-M, rely on multiple
biological information sources typically perform better in terms of
the aforementioned indices. Improvement of these methods over
single-source baselines at least in part stems from the well-known
fact that disease-associated genes tend to be involved in similar path-
ways and biological processes (Barabasi et al., 2011), see also
Section 3.3. Interestingly, BRW’s ability to bias the random walk to-
ward related genes that do not necessary belong to the seed set seems
to play an important role in improving prioritization of the test set,
at least in terms of Recall@k. At the same time, RWR-M achieves
similar performance (slightly better or worse, depending on the
dataset) if one considers nDCG as a global measure of rank, as
shown in Figure 2b. As previously remarked, biased teleporting
makes BRW explore areas of the PPI network that could be
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cer using a 100-fold Monte Carlo random sampling validation choosing uniformly at random the 70% of known disease genes and considering the remaining ones as the test
set (30%). (c) Shows the average shortest path length of top 200 candidates predicted by the analyzed algorithms. (d) Shows the comparison between BRW with the state-of-
the art on a corpus of 70 Mendelian diseases downloaded from Ghiassian et al. (2015). (¢) Compares multi-omics frameworks (BRW and RWR-M) on average Recall@k on
cancer phenotypes when the PPI network is randomized. The average Recall@K is computed as described in the previous experiment. (f) Illustrates how multi-omics integration
affects the bias induced by curated ontologies, such as GO, Kegg and Reactome and the PPI network. It compares the distribution of P-values (negative log scale) computed by
the testsuit using KEGG pathways and gseapy on gene sets predicted on randomized PPI networks with those predicted on the original PPL. As hypothesized, BRW, having in
input statistical significant pathways from KEGG, Reactome and GO, returns biologically meaningful candidate sets. However, their significance is not comparable with the

set predicted using the original PPI

relatively far from the seed set, a fact that is reflected in its candidate
genes in the top 200 positions having higher average shortest path
distance than other RWR-based methods that only teleport to genes
of the seed set, as shown in Figure 2c.

Mendelian diseases. As a further internal validation, we provided
a less specific yet broader, comparative assessment of BRW, by per-
forming a Monte Carlo cross-validation (Dubitzky et al., 2007) on
‘gold standard’ gene sets. These sets contain known genes associated
with 70 diseases, which were previously selected in Ghiassian et al.
(2015) from OMIM and PheGenl databases. As discussed more in
detail at the end of Supplementary Section A.1, in this experiment
(and only in this one), we used the PPI considered in Ghiassian et al.
(2015), for the sake of consistency [all other experiments use the
more recent HIPPIE-v2.2 PPI network of Alanis-Lobato et al.
(2016)]. In this second round of experiments, we set o = 1.0 and
p = 1.0, since gene expression is not used. Figure 2d compares the
performances of RwR, DIAMOnD, DADA, RWR-M and BRW in
terms of Recall@k. Our heuristic ranks more known disease proteins
than DIAMOnD in the top 200 positions for 95% of disorders ana-
lyzed and respectively for 72%, 73% and 63% of the disorders for
RwR, DaDA and RWR-M.

3.3 Randomization and bias

BRW and RWR-M leverage multiple data sources. As a result, we
expect their results to be less affected by random noise in the PPI
with respect to other heuristics. To test this hypothesis, we per-
formed a first experiment, by performing an internal validation as
done in Section 3.2, but this time running the random walk-based
heuristics using degree-preserving randomized version of the PPL. To
this purpose, we implemented the degree-preserving randomization
algorithm of Milo et al. (2003), also described in Supplementary
Section B.5. As hypothesized (Fig. 3e), by leveraging multiple bio-
logical sources, BRW and RWR-M are less affected by randomiza-
tion of the PPL This effect is stronger in BRW, whose teleporting

probabilities also depend on phenotype information (statistically sig-
nificant ontologies, pathways and DE genes). This is further shown
in the more detailed Supplementary Figure S8a, highlighting a posi-
tive correlation between the number of test genes ranked in the first
200 positions (Recall@K) and the value of BRW’s restart probability
r. As remarked above, this effect is also present in RWR-M, in which
heterogeneous biological sources are summarized in different, lay-
ered networks. In particular, as shown in Supplementary Figure S8a,
RWR-M’s performance degrades significantly if one also random-
izes the Pathways network used by the algorithm. Altogether, these
results suggest that phenotypical information associated to the nodes
plays an important role in prioritization for these heuristics, owing
to the fact that known disease proteins tend to be involved in the
same pathways, a fact that becomes apparent in an internal-only val-
idations as the one considered in this section.

The results above are part of a more general phenomenon. As
shown in Lazareva et al. (2021), several heuristics inherit biases pre-
sent in up-to-date PPI networks and manually curated ontologies,
such as GO, KEGG and Reactome, in some cases with results that
improve when the PPI is replaced by a randomized one. To further
investigate this issue, in particular, the bias inherited by BRW when
ontologies from manually curated data sources are used, we consid-
ered the Active Module Identification Methods test suite proposed
in Lazareva et al. (2021), which allows systematic comparison of
candidate gene sets predicted using an original PPI network and per-
turbed versions thereof. To this purpose, we considered the Lung
Cancer phenotype, which was both considered in Section 3.2 and is
used as a benchmark in Lazareva et al. (2021). We considered
randomized versions of the original PPI obtained using all random-
ization algorithms implemented in the test suite (i.e. expected de-
gree, uniform, shuffled and scale-free). Candidate genes ranked by
BRW, RWR-M and RWR using the original PPI as input were com-
pared with the results obtained using each of the aforementioned
randomized counterparts of the PPIL Statistical significance was
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Fig. 3. Algorithm comparison on breast cancer disease: (a) percentage of breast cancer drug targets found by each framework in the top K positions. (b) Drugs that are enriched
(corrected P-value < 107°) in at least one of the predicted candidate gene sets. (c) Number of candidate genes, predicted by each algorithm, that are frequently mutated in at

least j of the remaining studies, with j € {1,2,3,4}

computed on KEGG pathways enrichments computed by the test
suite on predefined KEGG pathway.

Figure 2f shows that BRW, RWR-M and RWR extract statistic-
ally significant candidate gene sets on the original PPI network.
Relying only on the PPI, RWR provides no statistically significant
results when the PPI is randomized, except when expected degree is
preserved. (This phenomenon arises because the stationary distribu-
tion of a random walk on an undirected network follows exactly the
degree distribution. As a result, the stationary distribution of a
RWR over an undirected network is positively correlated with de-
gree distribution.) On the other hand, BRW and RWR-M inherit
PPI and ontology’s biases, so that their results are still statistically
significant when the PPI is randomized using expected degree, scale-
free and uniform randomization algorithms. Still, BRW’s results are
considerably more significant when the original network is used,
indicating that topology of the PPI is crucial to (more) effectively
propagate information extracted from other biological sources.
BRW predicts more significant outcomes on the actual PPI than on
the randomized versions. While all ontologies (GO, KEGG and
Reactome) were considered in the experiment summarized in
Figure 2f, we further investigated BRW’s behavior when KEGG
(which is used in the enrichment) is not used. In this case, BRW’s
results are no longer statistically significant if one randomizes the
network, with the exception of a mild significance when expected
degree is preserved.

3.4 A case study: breast cancer phenotype

In this section, we discuss the results of an in-depth analysis of
BRW’s performance on the breast cancer phenotype, a global health
concern (Crimini et al., 2021; Siegal et al., 2014), with 284 200 new
cases and more than 44 000 deaths in the USA in 2021 (Siegal et al.,
2014). In particular, we present (i) an external validation using
drugs FDA-approved drugs; (ii) drug enrichment; and (iii) an assess-
ment of the algorithm(s) stability across multiple populations.

3.4.1 Drug target discovery

We validated the top candidate gene sets prioritized by each algo-
rithm along different axes. To this purpose, we created a test set of
target genes for breast cancer drugs approved by the FDA as
described in Section 3.1. Results are summarized in Figure 3a, show-
ing Recall@K for the algorithms we considered. Compared to other
baselines, BRW prioritizes the highest number (25%) of drug targets
in the top 200 candidates. Looking at the specific gene targets pre-
dicted by the algorithms, BRW predicts the highest number of genes
(14 out of the 20 predicted genes), making four unique predictions,
namely, Cyclin Dependent Kinases 4 and 6 (CDK4 and CDKG6),
the Protein Kinase C Zeta (PRKCZ) and Caspase 3 (CASP3). On
the other hand, the DNA Topoisomerase I Alpha (TOP2A) and the
progesterone receptor (PGR) genes are uniquely predicted by
DIAMOnD. The Protein Kinase C Theta gene (PRKCQ) is only pre-
dicted by RWR-M algorithm. More details are given in
Supplementary Table SS5.

Furthermore, we validated the prioritized genes from a different
perspective: we considered the group of drug targets returned by
each framework and showed the drugs that target them. We filtered
out drugs in Drug Bank that were not annotated with the ‘Breast
Cancer’ or related associated condition. Supplementary Table S3
shows how the number of drugs ranges from 6 to 17 as we change
the combination of hyper-parameters. As expected, the number of
drugs correlates positively with the predicted drug target percentage
(Recall@200). Supplementary Table S4 shows the drugs prioritized
(i.e. a drug with at least one drug target prioritized in the top 200
positions) by BRW and the other algorithms. BRW prioritizes the
highest number of drugs. Interestingly, CDK4/6 inhibitors palboci-
clib, ribociclib and abemaciclib, currently used to treat hormone
receptor-positive/HER2-negative metastatic breast cancer (Duranti
etal.,2021), are only predicted by BRW.

Finally, we identified drugs that have an enrichment with the top
candidate genes predicted by each algorithm. To identify enriched
drugs, we used the gseapy package for gene set enrichment analysis
(Subramanian et al., 2005), and we chose drugs that were enriched
by at least one algorithm with a corrected P-value lower than 1075,
In particular, Supplementary Table S3 shows how the enrichment is
affected by various hyper-parameters combinations. In this case,
drug enrichment correlates positively with gene expression, and the
best combination is obtained when o and B are equal to 0.25.
Indeed, while drugs target and inhibit genes involved in disease-
specific pathways, the effect of the drugs can be measured by the
differential expression and the co-expression between targets and
nearby genes (Chen ef al., 2017). In general, results highlight the fol-
lowing trends: (i) different biological sources (in our case, gene ex-
pression and ontologies) provide complementary information, with
different subsets of FDA-approved drug targets significantly
enriched for both low (gene expression bias) and high (ontologies
bias) values of the parameters o and f; and (ii) best performance is
achieved for lower values of the restart probability 7 (0.25), confirm-
ing that BRW’s prioritization depends on information that is not
necessarily confined to the immediate neighborhood of the seed set.

Figure 3b highlights drugs that are enriched in BRW and in the
other baselines considered in this manuscript, with details for each
drug reported in Supplementary Table S6. Interestingly, 11 FDA-
approved drugs for breast cancer treatment are enriched in BRW
gene candidates (i.e. fulvestrant, doxorubicin, paclitaxel, tamoxifen,
methotrexate, letrozole, cyclophosphamide, trastuzumab, fluoroura-
cil and gemcitabine). The mTOR inhibitor sirolimus showed the
best significance. While it is not currently used to treat breast cancer,
preclinical in vivo studies demonstrated its potent antiangiogenic ac-
tivity on breast cancer models (Muhammad Sakri et al., 2022).

3.4.2 Breast cancer—multi-population study

A desirable property of disease gene prioritization should be a cer-
tain stability in the set of proposed disease gene candidates across
different populations. In other words, to some extent (e.g. up to in-
trinsic biases or qualitative differences in the datasets used), results
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should not overly depend on the specific dataset the algorithm is
analyzing. To investigate this aspect, we characterized the behaviors
of BRW and the other baselines we considered when applied to dif-
ferent population studies on breast cancer. We considered Invasive
Breast Cancer population studies retrieved from cBioPortal datasets
(Banerji et al., 2012; Ciriello et al., 2015; Kan et al., 2018; Shah
et al., 2012; Stephens et al., 2012) (see Supplementary Section A),
which allowed us to identify five different seed sets for the algo-
rithms we considered, one per study. Figure 3d plots the number of
candidate genes, predicted by each algorithm, that are seeds in at
least j other studies (frequently mutated genes in the associated pop-
ulations, i.e. mutation frequency >1%), forj € {1,2,3,4}. Notably,
BRW has the highest number of candidates that are frequently
mutated in the other four studies (the far right bar). The 10 genes
identified by BRW, that are frequently mutated in four out of the
five breast cancer populations are AR, JUN, STAT3, NOTHCI,
JAK2, histone deacetylase 1 (HDAC1), SMAD4, YAP1 and CHDA4.
While the HDACT is also retrieved by all the other algorithms,
SMAD4 and CHD4 are only predicted by BRW. The remaining
genes are returned by BRW and at least another heuristic. Details
are reported in Supplementary Table S7.

4 Discussion

Guided by the hypothesis that disease causing genes often share im-
portant common biological processes and pathways, we extended
the RWR approach to disease gene prioritization, proposing a
framework that allows seamless integration of multiple biological
information sources. The proposed approach consists of two main
steps: (i) extracting significant disease features from disease-term as-
sociation data, such as statistically significant biological processes
and pathways, and (ii) using these features to bias the RWR in a
way that is consistent with the biological sources used. These two
aspects are discussed in Section 2.

In general, BRW outperforms, in terms of standard indices of
predictive accuracy, such as recall and nDCG, previous frameworks
that only rely on a s single biological source, such as RWR
(Navlakha and Kingsford, 2010), DaDa (Erten et al., 2011) and
DIAMOnD (Ghiassian et al., 2015) that rely on PPI network. This is
also true for an extension of RWR, namely, RWR-M (Valdeolivas
et al., 2019), that performs a random walk on a multi-layer net-
work. Using a Monte Carlo random sampling validation, we
showed that prioritization results returned by BRW frequently out-
perform other baselines on four different cancer types: breast, colo-
rectal, lung, and thyroid cancer. These results were further
supported by a broader, computational validation on a corpus of 70
Mendelian disease manually curated by Ghiassian ez al. (2015).

A main aim of precision medicine is to use disease genes to en-
able tailored treatments. In this perspective, we investigated how the
candidate genes prioritized by each framework are related to breast
cancer drug targets. Results show that BRW prioritizes the highest
number of drug targets in the top 200 candidates (Fig. 3a). As a fur-
ther assessment, we considered the group of drug targets returned by
each algorithm and identified the drugs that target them. We found
that BRW prioritizes the highest number of FDA-approved drugs for
breast cancer treatment (Supplementary Table S4). In general, we
noticed that drug targets are more correlated with phenotypic path-
ways, while drug enrichment highlights how drugs affect gene ex-
pression in terms of co-expression and differential expression. This
is not surprising: indeed, although drugs often target and inhibit
genes involved in disease-specific pathways, the effect of the drugs
can be measured by the differential expression and the co-expression
between targets and nearby genes (Chen ez al., 2017).

To investigate the stability of the proposed disease gene candi-
dates, we characterized the behaviors of BRW and the previous
frameworks across different population studies. We selected ‘inva-
sive breast cancer’ as a phenotype and we retrieved data for five dif-
ferent populations from cBioPortal (https://www.cbioportal.org/).
Consistently, BRW showed excellent stability, with the highest num-
ber of gene candidates in one study that are frequently mutated in
the other four (Fig. 3¢ and Supplementary Table S7).

The BRW framework is not without limitations. On one hand,
inducing a bias in teleporting probability and the transition matrix
through the use of ontologies improves predictive accuracy of the al-
gorithm. On the other hand, this bias can hinder BRW’s ability to
identify new disease-related pathways. For this reason, we believe it
is important to exploit the framework’s ability to integrate heteroge-
neous, hopefully complementary, data sources. Furthermore, experi-
ments summarized in Supplementary Figure S7 and Supplementary
Table S3 quantitatively showed that every data source comes with
its bias. As a result, the relative weights attributed to different bio-
logical information sources (the combined choice of o and B in our
case) can significantly affect predictive accuracy, with a magnitude
that in general depends on the validation test used. For example,
while ontologies showed most effective in a computational valid-
ation and for drug target discovery, gene expression proved particu-
larly useful in identifying a candidate gene set that is highly enriched
in breast cancer and cancer related drugs. In our opinion, these
results provide support to the use of (at least partially) complemen-
tary sources of biological information, even though these sometimes
present non-negligible correlations, as discussed in Section 3.3.

We also emphasize that, in this study, we only leveraged a lim-
ited set of disease-specific data sources (co-expression and differen-
tial expression). Potential performance improvements might be
achieved by integrating further disease information sources, such as
methylation data, microRNA expression or microRNA-target gene
associations. Doing this might provide further insights into key bio-
logical mechanisms and provide new prospective gene targets,
though, of course, only functional studies can provide the ultimate
answer as to their biological role.
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